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ABSTRACT

A study was made of the problem of a finite partition function for bound electronic
states in a hydrogenic ion and the associated problems of the intensity drop of spectral
lines and the lowering of the effective ionization potential. Solutions of the Schrodinger
equation (SE) with the complete screened Coulomb potential (CSCP) were obtained for ls,
2s, 2p, 3s, 3p, and 3d states. The CSCP used is given by

V (r) = -Ze2 1(i 1 0A), A
V( r)

V (r) = -Ze 2  D exp[(A-r) /0 r > A
D+A r

where D is the screening radius and A is the mean minimum radius of the ion atmosphere.
The standard transformations x = 2Zr / ka0 and E -Z2ie 4 22 2 , where X is the CSCP quan-
tum number, yield the well-known form of the SE with x in place of n. The numerical
solutions of the SE are obtainable using a nonlinear method that is accurate and stable.
The resulting quantum numbers can be accurately described by simple analytic fits for a
wide range of the interesting values of D. For a given ratio of A to D the relative normali-
zations of the CSCP wave functions to the corresponding Coulomb wave functions ( .e (X)
can also be described by simple analytic functions. It was shown that for states where
3aon 2 /2Z - D, ( is generally near 1le for solutions with A= D. For 3aon 2 /2Z > D) (

decreases rapidly. This (P-function is used in the definition of a finite electronic par-
tition function as a multiplying factor for each Boltzmann factor, viz., , p(k) exp(-E /kT).
This is shown to be analogous to the definition of the equilibrium prob~tbility of a state
derived by Tolman in his study of nonisolated systems. The problem of the number of
screened Coulomb states was resolved: the CSCP yields as many states as the Coulomb
potential. However, with the CSCP, for states with 3aon 2 /2Z > D, the separation of the
levels is less than the corresponding Coulomb levels, i.e., the density of states near the
continuum increases. Removal of t-degeneracy, the question of a maximum bound prin-
cipal quantum number, and integer quantization of the ground state quantum numbers
was discussed. In particular, relative to various calculations of a maximum bound prin-
cipal quantum number by perturbation and/or variational methods, it was shown that
these methods actually calculate the increase in the energies of the states with small n,
where 3a0 n 2/2Z < D, by the amount AE - Ze 2 (D+ A). Present results also apply to the
unsolved problem of the intensity drop of hydrogen lines in the solar atmosphere and in
laboratory hydrogen at a low temperature, where the observations are in excellent
agreement with the CSCP solutions with A= D/2 and the effective screening radius is
identified with the radius of the mean atomic volume. It was possible to calculate the
observed ionization potential of hydrogen and to give evidence of a screened Coulomb red
shift in laboratory spectra.

PROBLEM STATUS

This is a report of the work accomplished to date on the problem; work on other
phases of the problem continues.
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A FINITE ELECTRONIC PARTITION FUNCTION
FROM SCREENED COULOMB INTERACTIONS

INTRODUCTION

The standard electronic partition function (p.f.) for bound states is given by

Qeb : exp(-Ei,j 1 kT), (1)

where the Ei, are the energies of the bound states. From Coulomb interactions for a
hydrogenic ion (neutral hydrogen will be an "ion" with zero charge),

Qeb = L 2n2 exp(-E/kT), (2)
n

where n is the principal quantum number (q.n.); 2n2 represents the degeneracies of the
states, and E, is the energy of the state relative to the ground-state energy taken as zero,
i.e., E', ~ 1 - ( 1/n 2 ) .

Unfortunately, Eq. (2) diverges as.n - co. Attempts to limit Qeb have ranged from
applications of the concepts of excluded volumes by Urey and Fermi (1) to the calculation
of a maximum bound principal quantum number (2), with the region between filled with
various ad hoc models (3) including recent attempts to count the number of bound states
(4).

Since these approaches avoid the basic problem of calculating the eigenvalues for
bound states (except for slight perturbations) of even the simple hydrogenic ion, it seemed
interesting to consider numerical solutions of the Schrodinger equation (SE) with the com-
plete screened Coulomb potential (5) as a well-established first-order interaction of a
bound electron and its surrounding particles - essentially, the rest of the universe. In
spite of remarks to the contrary (4), the eigenvalue problem turned out to be regular and
the quantum numbers and relative normalizations of the wave functions can be accurately
represented by simple analytic expressions. In the present report the definition of a
finite electronic p.f. will be associated with the relative normalization of the bound states
as a function of the screening distance. Since f (r) ] 2 represents the relative proba-
bility of finding the electron in state (n, f ) with energy En f between r and r + dr, then
f [,p n (r) ]2 dr represents a relative total probability of finding the electron in state (n, e).
Now, if [Vq. g (r, D) ] 2 changes upon introduction of an interaction potential with screening
radius D, then the relative total probability of the state (n, f ) also changes as a function
of D. Consequently, the ratio of the relative total probability with finite screening to that
with infinite screening (the standard Coulomb solutions) will be referred to as the rela-
tive normalization - or relative probability - of the state.

The concepts and results introduced in this derivation will be applied to the unsolved
problem of the intensity drop of hydrogen lines in the solar atmosphere and laboratory
spectra. In addition, the problem of the change in ionization potential will be solved
simultaneously.

Next, we will discuss numerical solutions of the Schr6dinger equation with the com-
plete screened Coulomb potential where consideration of the so-called "maximum bound
principal quantum number" is given in the Appendix.
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The finite electronic partition function will then be developed, from the correct nor-
malization of the bound state, as the total probability of the state, and the results will be
applied to the problem of the disappearance of hydrogen lines as well as to the problem
of the observed ionization potential of hydrogen.

NUMERICAL SOLUTIONS OF THE SCHRODINGER
EQUATION WITH THE COMPLETE SCREENED
COULOMB POTENTIAL

The standard form of the complete screened Coulomb potential (CSCP) is given (5-7)
by

Vj(r) - -_ (1 A)' 0 0 r < A

V(Tr) (3)

Vo(r )  Ze 2  D exp[(A-r)/D 

1-0 D+ A r , >

where D is the screening length, A is the mean minimum radius of the ion atmosphere
(8,9) and m0 is the dielectric constant of the medium, considered uniform everywhere.

For the present study we chose the Yukawa or Debye-Huckel (D-H) form of the
screened Coulomb potential in Eq. (3), for two reasons. First, it has a simple analytic
form and second, the work of Broyles et al. (10) indicates that a D-H radial distribution
of charged particles is physically representative. Hence, potentials due to charged-
particle distributions similar to the D-H radial distribution will lead to quantitative, but
not qualitative, variations of the present results.

It will be assumed that values of D and A for a material of interest at a given density
and temperature are derivable from other considerations. For example, in a low-density
gas, the D-H screening radius is given by

D2H = kT yo
4 7

Te2 Z.  2 (4)

where N1 is the number density of ions of kind j with charge Z. In a degenerate Fermi
gas D is proportional to kF, where kF is the Fermi momentum (11) divided by -A. In a
solid or liquid D would probably be close to the radius of the mean atomic value (11) r o.

In various radial distributions of particles, one would expect values of A to range from
A 0 to A - D, where, in general, D corresponds to the mean distance to the maximum
deviation from the average charge density of the medium. We consider values of A given
by A= 0, A= D, and A=-D/2 with 70 -1. oeverywhere. The case with A= 0 corresponds to
the situation with V(r) = Vo(r) alone (with A = 0), the case usually considered in the litera-
ture by approximate perturbation or variational methods (2,3,12).

Method of Solution

After the standard transformations (13)

x 2Zr/Xa 0  (5)

and
EX , Z2 ze 4  1 (6)- (2
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the radial SE for a hydrogenic ion with the CSCP given by Eq. (3) with7 o : i. 0 becomes

d2R 2 dR F
+- 2 x(x)dx 2 xci d +b2 + - I) R=0

X 
2

IV(X) = (_ -I 1 0 < xi (X) d+ a) I < a

d exp [(a- x)/d] , x aV 0 (x) d + a x -

where d and a are the values of D and A in x-space, and b2 is a constant to be designated.
In the standard analytic Coulomb solutions, b2 = 1/4.

The numerical method of solution to Eq. (7) is that developed by the author (14) and
will only be outlined for subsequent references. The wave function 1(x) and the slope of
the wave function m(x) = dR/dx are simultaneously expanded in a Taylor series, between
space steps, to the cubic terms, viz:

1 1n "H(x+AX) = R(x) + m(x)Ax +- M(x)Ax 2 +- M(x)Ax
3

2 6

1 13
m(X+AX) m M(X) + m'(X)AX + -m"(X)Ax 2 +-- M(X)AX

2 6

(9)

(10)

m(x) 2 M(X) + b
2

x I)+[6
+f({± 1) + 1v()HX+ + 2 .v(x)] 1 (x)++ 2

from which m"(x) and m '(x) can be obtained and v(x) is given by Eq. (8). Note that in Eq.
(9), m'(x), and all higher derivatives are known exactly from the SE, but R(x) and r(x)
are only available from the Taylor expansions in the previous step.

Exact initial values are obtained from a series solution of the SE and are applicable
to all Coulomb and screened Coulomb wave functions. We write the series solution in
the form

with

O(x) 
= 

Za k
X k

a0 +0.

Letting (i) indicate the ith derivative, the initial values are given by

RX , e(0) =-
i ! ai _

where ai_ - 0 for i < t. From the series solution the a's are equal to

a 2 1 a
2( + 1)0

(12)

(13)

(14)

(15)

with

and

with

(11)

R(X) = xe¢(x),
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and

b 2 at 1 -kat >(16)
S(t +1)(2t+ +2+t) ' t> 1,

with

b : + 
( 1 7 )

4 d+a

In the present work all numerical results are carried out with a - 1. 0 for i -. Other

values of a0 will be considered, in the third part of the report, through analytical con-
siderations.

It should be noted that in the region x < a, the series is exact for a given value of X.
For a large, say a greater than 20, this series solution essentially represents an accu-
rate solution to the screened Coulomb problem. However, the CSCP q.n. k would still
have to be obtained by iterations in order to determine the value that would yield an ex-
ponential tail at large x.

Quantum Numbers from the Complete
Screened Coulomb Potential

We now present the quantum numbers and, of course, eigenvalues obtained from
numerical solutions of the SE with the CSCP. As described in Refs. 5 and 14, solutions
were sought for wave functions with the same shapes as the Coulomb wave functions -
i.e., the same number of nodes. Consequently, we will use the standard Coulomb desig-
nations 11 f for the corresponding CSCP wave functions with n and t, the standard
Coulomb principal q.n. and angular momentum q.n., respectively. The CSCP q.n. X will
be a function of d and a as well as n and t. We will refer to the 1s, 2s, 2p, etc., states
and7or wave functions with screening distance d(D) and minimum ion atmosphere radius
a(A). The CSCP q.n.'s, x, will also be written as Xn, and it will be understoodthat

X - %n~ 1 d,a). (18)

The eigenvalues will all be given in units of rydbergs divided by z:, or from Eq. (6),

Ex 2 2  1 (19)

Z 2 ue
4  x2

From Eq. (6)

ZD Mda0  2 (20)

as the transformation to r-space of the values of d assumed in Eqs. (7) and (8).

We consider the 1s, 2s, 2 p, 3s, 3p, and 3d states with a - d, a = 0, and a = d/2. (The d
in 3d will not be confused with the distance d.) We use space steps AX = 10- 2 and Ax = 10- 3

to obtain four or more significant figure accuracy as was obtained in the linear study (5)
with Ax = 10- 4 . With a = 0, it was found necessary to use Ax = 10- 3 to obtain this desired
accuracy. The maximum values of x used ranged from 10 to 25, as discussed in Ref. 14.
All calculations were done on the CDC 3800 computer at the Naval Research Laboratory.
With the linear system of equations previously analyzed, the automatic search for one
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q.n. took about 12 to 15 min on a CDC 3600 computer using AX = 10-4. With the present
cubic system of equations, q.n.'s can be calculated in about 4 to 5 min - including printer
time- using Ax : 10

-
2.

Tables 1, 2, and 3 present the CSCP q.n.'s for cases a = d, a = 0, and a = d/2, respec-
tively. Table 4 presents more detailed information from solutions in which ZD 3ao n2/2.
Note the decreases by a factor of about e in the eigenvalues and radial probability densi-
ties x21 g below the values from the corresponding Coulomb wave function for solutions
with a = d. (Also see Ref. 5.) The change in X 2 [1.f (x)] 2. will be discussed in more detail
in part three in relation to the relative probability of the state D,, e (X) shown in the last
column. Figures 1, 2, and 3 present plots of X vs d, log X vs log (ZD/a o), and cxvs ZD/ao,
respectively.

Table 1
CSCP Quantum Numbers X,. p from Solutions with a - d for the

1s, 2s, 2p, 3s, 3p, and 3d States

d (a=d) kIS x 2s j pp2 p 3s 3p 3d

103 1.0010 2.0040 2.0040 3.0090 3.0090 3.0090
102 1.01005 2.0404 2.0404 3.0910 3.09135 3.09135
48 - - - 3.1930 3.1933 3.19335
32 2.1289 2.1289 - - -
24 - - - 3.3980 3.3983 3.39835
16 1.06445 2.2656 2.2656 - - -
12 1.0868 2.3609 2.3609 3.8420 3.8422 3.8423

9 - - - 4.1600 4.1608 4.16175
8 1.1328 2.5611 2.56135 - - -
6 1.1804 2.7717 2.7733 4.8273 4.8354 4.8468
4 1.2795 3.2113 3.2234 - -

3 1.3824 3.6619 3.6973 6.8820 6.9754 7.1257
2 1.5941 4.5707 4.6887 - - -
1 2.2445 7.2872 7.8401 - - -

0.5 3.5556 - -..

Table 2
CSCP Quantum Numbers P 0 from Solutions with a = 0 for the

Is, 2s, 2 p, 3s , 3p, and 3d States

d a ) l x S 2. )2p '3s . '3p k 3dad(a:0) ?. 2  3  3  3

103 1.0020 2.0080 2.00795 3.0179 3.0179 3.0179
102 1.0199 2.07925 2.07963 3.1790 3.1790 3.1790
48 - - - 3.3660 3.3670 3.3721
24 - - - 3.7165 3.7250 3.7424
16 1.1219 2.4778 2.4907 - - -
12 - - - 4.39375 4.4240 4.4852

9 - - - 4.8335 4.8836 4.9856
8 1.2394 2.9301 2.9756 - - -
6 - - - 5.6951 5.7959 6.0019
4 1.4671 3.7998 3.9524 - - -
3 1.6168 - -- 8.2067 8.5237 9.1718
2 1.9083 5.4823 5.9602 - - -
1 2.7693 8.7716 10.149

0.5 4.4663 - -
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Table 3
CSCP Quantum Numbers n, f from Solutions with a = d/2 for the

Is and 2s States Only, with X2s /2 also Shown

d (a = d/2) j 1 s I X2 s 2s/2

103 1.00133 2.0053 1.00265
102 1.01342 2.0540 1.0270
32 - 2.1736 1.0868
30 1.045 - -
16 1.0868 2.3606 1.1803
8 1.1798 2.7589 1.37945
4 1.3746 3.5632 1.7816
3 1.5061 - -

2 1.7692 5.1306 2.5653
1 2.5524 8.1936 4.0968

0.5 4.1044 -

Details of
and

Table 4
CSCP Solutions where ZD R 3a 0n2

CP is the Coulomb Potential*

*The relative normalization (Dn,
tCP results at 3n 2 /2 = Z7n/a o .
I Maximum value printed out.

is discussed in part three of this report.

Figure 3 deserves additional comment. The plots of (c , p - Es)jvs ZD/a 0 in this fig-
ure have the well-known shapes associated with the lower part of the spread of the elec-
tronic energy levels in the conventional band theory of solids. Note that for A = D the de-
crease in the separation of the levels occurs only when ZDa o < 3n 2 /2. For ZD/a o > 3n2 /2
the separations of the levels are essentially equal to the separations of the corresponding
Coulomb levels. Obviously, with a net positive screening as one would expect for an elec-
tron either bound to a negative ion or interacting with "holes" (positrons), similar calcu-
lations would lead to a variation similar to the upper part of the solid-state band of energy
levels. Finally, if a bound electron experiences a net negative screening for large

State J V d j a J KX /?)2 (xR)2= j ZD/a0  j( 0 , ( )

is CP - - 1.0000 0.54134 0.44808t - 1.0000
CSCP 1.802 1.802 1.6648 0.19791 0.1681 1.5000 1.3933
CSCP 1.214 0.0 2.4676 0.1063 0.1016 1.4978 0.2764

2s CP - - 2.0000 0.38187 0.35694 - 1.0000
CSCP 3.55 3.55 3.3819 0.1360 0.1289 6.0030 0.3772
CSCP 2.483 0.0 4.8332 0.08221 0.08217 6.0004 0.2866

2p CP - - 2.0000 4.68880 3.21246 - 1.0000
CSCP 3.55 3.55 3.4014 0.5670 0.3946 6.0374 0.3630
CSCP 3.509 3.509 3.4200 0.5551 0.3911 6.0004 0.3597

3s CP - - 3.0000 0.30460 0.30238 - 1.0000
CSCP 5.3 5.3 5.0974 0.1079 0.1076 13.508 0.3728

3p CP - - 3.0000 1.37405 1.26514 - 1.0000

CSCP 5.3 5.3 5.1114 0.1658 0.1543 13.545 0.3650

3d CP - - 3.0000 115.649 65.5850 - 1.0000
CSCP 5.3 5.3 5.13175 4.657 2.654 13.599 0.3526
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0 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15
d

Fig. 1 - k0 n vs d from CSCP solutions with
a d and a= 0 for Is, 2s, and 3s states. The
solid straight line connects the origin with points
where d = 1.8, 3.6, and 5.4 on the a= d curves
for Is, 2s, and 3s states, respectively. The
dashed straight line connects similar points with
d = 1.25, 2.5, and 3.75 on the a =0 curves. Note
that, generally, for either solution with a = d or
a =0, a line through the origin connects points
with d(n,s) - nd(1,s), as shown for d(l,s) = 1.8
and 1.25. The relation is almost exact for lines
near and to the right of the ones shown for the
a d and a-0 solutions.

20 2p, a-d 3p, od n=l,2,and 3

2s, a~d I 3d, o~d

10 1 3s o II

-4

1.0 10 102 10
3

ZD/ o

Fig. 2 - Log e0 p vs log ZD/a o from CSCP solu-
tions with ad for Is, 2s, 2p, 3s, 3p, and 3d
states. The straight line connects points where
ZD -, 3aon 2 /2. See Fig. 1. ZD/a o = Kd/2, with Kn,
from Tables 1 and 4.

screening distances, and a net positive screening for small screening distances, then it
would be expected that, as r 0 decreases, the energy of a level relative to the ground state
would first decrease, then increase as exhibited qualitatively in conventional solid-state
theory. This will be considered quantitatively in a later study.

With the present hydrogenic CSCP solutions the parts of the ( e, 6 1 .) curve labeled
with n > 2, n >3, etc., represent 'bands" of bound states. From left to right, the part with
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ZD/ao

Fig. 3 - E,,() vs ZD/a o and [ n p (K) - Cs(k)]
vs ZD/a o from CSCP solutions with a= d for ls,
Zs, Zp, 3s, 3p, and 3d states. E, (K) =-l! f)
with Xn, F from Table 1.

ZD/ao < 3, labeled n >2, represents the merging of all excited states. The portion be-
tween 3.3 < ZD/a o 0 !7, labeled n >3, represents the merging of all excited states with n >3.
Clearly, the extension beyond ZD/a o 8, but less than about 14 or 15, would represent the
merging of excited states with n > 4, and so on. And, of course, the bona fide continuum
would lie above this (en, f - Es) band.

Approximate Analytic Fits to CSCP Quantum Numbers

When this study was started, it was expected that definite patterns would be found in
the values of the q.n.'s. A simple analytic fit to the q.n.'s, valid over the range of inter-
est for this study, is given for s-states by

Sn CW - 11 - 2a- e-W(0.525w 2 + 0.14 W3)i (21)

with
n

W7 < 1.0, 0 <a<d,

c 2 12

and

C C -2 (i- a) w >A.

For other ,-states, Eq. (21) also gives XK, F accurately for D > 3a n 2/2Z, which is about
the same range above for a . A more general analytic fit to the present CSCP quantum
numbers appears to be possible by an expression of the form

X,,p (a,d )
n 1 + Cw + T Bj(n t,d,a) wje - ( w/ j - l )

j =2
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where w and c are defined in Eq. (21). For three-digit accuracy in the range w < 1, only
two terms are needed in the summation to J = 3. However, in the range w < 10, four terms
are needed to J 5. For example, in the ls state with a = d and w < 10, values of the B.'s
are given by B2 =0.525, B3 = 0.080, B4 = 0.0040, and B5 = 0.000132. A slight increase in
the B 's as a function of n and t will lead to fits to the other values of Kn f (a - d) in Tables
1 and 4. (Note: K s(a= d = 0.1 = 14.056).) The values of K, p(a 0) can be fitted by either
another set of constants, or simply by the a = d expression but with a negative sign in
front of the summation.

The solutions with a = d/2 established the C-fits in Eq. (21), with the term in brackets
indeed nearly dropping out, except for w > 1. Actually, c2 is a "good" fit over the entire
range, but C1 is better for w < 1/12.

Note that s-state quantization occurs in whole number multiples of the ground state
only for a d!2 and for fixed values of w. But for w << 1, integer quantization occurs for
all 0 _< a < d to a high degree of accuracy for fixed w = n/d.

Note further from Tables 1 and 2 and Fig. 3 that, to three significant figures or so,
the eigenvalues (quantum numbers) for states with t > 0 are not significantly different
from solutions with A = D until the screening distance is less than 3aon 2 /2Z = F,, the mean
position of the electron in the corresponding Coulomb (n, s) state. (See also Table 4.)

For a specific application the quantum numbers (eigenvalues) from the CSCP can be
calculated more accurately, and more accurate fits can be derived. For the present gen-
eral study of the SE with the CSCP the above fits will suffice.

In closing this section, we see that for d > 0, the CSCP yields an eigenf unction for all
Coulomb a, t. Consequently, there are at least as many CSCP states as there are
Coulomb states. But for states with D < Fn the spacings between levels are significantly
less than those of the corresponding Coulomb states. (And for solutions with A= 0 this
decrease occurs for values of D greater than Fn.) Now, since there is no explicit "maxi-
mum bound principal quantum number" (see the Appendix), this is how the CSCP and the
Coulomb potential yield the same number of states: with the CSCP the density of states
near the continuum increases!

Having presented an outline of the numerical method and some solutions of the CSCP,
we proceed to the basic statistical mechanical problem of a finite partition function for
the bound electronic states.

A FINITE ELECTRONIC PARTITION FUNCTION

How can screened Coulomb interactions of bound electrons be used to define a finite
p.f. ? We have shown that the CSCP and Coulomb potential yield the same number of bound
states (infinite), there being no such quantity as an explicit "maximum bound principal
quantum number." What the CSCP solutions yield that may be useful is the total proba-
bility of the state, which varies with changes in d and a. In what follows, spin degeneracy
will be omitted, since it is well known to be 2.

Normalization of Bound-State Wave Functions

Before presenting the CSCP results, it will be necessary to derive the correct trans-
formation of the radial normalization integral from x-space to r-space. The desired r -
space normalization integral - the total probability of the state - is given by
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r 2 [?, p(r)]2Idr = 1 (22)

for the normalized radial wave functions R,, p (r). But what is usually evaluated is (13)

X 2 [ ,F(X) i
2

dx = N(n,4 ) . (23)

Then N(n,' ) is multiplied by (aon/2Z)3 to obtain this value for the unnormalized wave
function in r-space, or,

(24)-[Rd(Z r )]N , (a ) •
r2' Rn nao J \ 2Z]

However, for any radial wave function of the form x,(cLx), we substitute le, F(x) = xp¢ , F(x)
into Eq. (23) and obtain

x2P +2 [0"n,(x) ]
2 dx = N(n, - , (25)

where s = t. From Eq. (5), x 2Zr /na 0 and dx : 2Zdr /na, hence, the
left side of Eq. (25) yields

O r2 P + 2 [,2Zr )

0f P F na
N(n, [)

as the correct transformation (with x = n in Eq. (5) for all n and 4).
standard normalized analytic Coulomb radial wave functions, when
should be

transformation of the

(26)

In other words, the
handled correctly,

lp~) { 2Z )2 F+1 2(n+')! }/2Rn, r = - [a-n- 2n [( n + t) ! I ' X/ 2 xF 2 +1
L+f (x) (27)

2 F +l
where L,+p (x) is the associated Laguerre polynomial.

With the numerical solution for the CSCP, the present normalization integrals are
carried out by the Trapezoidal Rule to x = ma x . In Ref. 14 it is shown that this yields
very accurate answers. Hence, for our study, we can approximate

LX
max (28)

which can easily be made as accurate as one desires (14).

Now, for a given ? and a, N(K, t, d, a) decreases as d -, 0. For d and/or a - co, N( K, t,
d, a) -* N(n, t), the normalization integral for the corresponding Coulomb wave function.
Next, since initial magnitudes can be arbitrary, the present numerical calculations were
all carried out with initial magnitudes equal to 1.0 for s-states, initial slopes equal to 1.0
for p-states, etc. This is equivalent to setting a0 z 1.0 in the series solution, Eq. (13)-
even for Coulomb wave functions. (In Ref. 5, it is demonstrated that all Coulomb s-states
yield identical normalizations if modified to have the same initial values.)

X2e+2[0 )X(X)]2 dx N(,,,cd,a),

dr ( 2Z 2-/
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The final modification of the normalization integral is one that is necessary to give
relative values of r 2 [/?X 0 (r) ]2 in r-space proportional to x2 [RX? 0 (x) ]2 calculated in x-
space for s-states. It is shown in Ref. 5 that this will be true for s-states if the initial
magnitude of the wave function is 1/k in r -space. The equivalent series in r -space would
have a : i/o. Consequently, the net effect on the magnitude of the normalization, Eq. (28),
would be to divide the right side by X

2 . Therefore, the presently desired transformation
of N( X, , d, a) calculated in x-space leads to

O 2 F (r; )2 (ao )2f+3 2 ] 2f+1 N(K,Fd,ca). (29)

In the present CSCP solutions, for a given ?, and a, as d -, 0, X2P+IN(K) 0 also. Or, N(K)
decreases faster than X2P+1 increases.

Definition of a Finite Electronic Partition Function

The right side of Eq. (29) describes the total probability of an hydrogenic state that
has the "arbitrary" constant of the wave function set equal to 1/K, where K is the CSCP
quantum number for the state. And, since the change from a Coulomb state to a screened
Coulomb state reflects the interaction of a bound electron with the external particles of
the ion atmosphere, the relative normalization of the screened Coulomb state could pos-
sibly be of interest in expressing the increased probability that the bound electron in the
n, t-state will interact with a neighboring particle or particles - or, a decreasing prob-
ability of finding an electron in that state because of the increased probability of being
perturbed. Since the screening of interest depends on the time-averaged positions of the
neighboring particles, the mean effect on a system of particles could be expressed by a
modification of the Boltzmann factor; or, we define - for a given V and A-

CSCP

Qeb 2 E. qI, ip(K,D,A) exp(-Ex/kT), (30)
n, f

where (D, g is a function of the relative normalization of the CSCP wave function to the
corresponding Coulomb wave function.

From Eq. (29) we define

4F n(K, VA) = X2e+1 N(K,'6 (31)
n 2f+1 N(n,6)

for a radially symmetric potential.* As mentioned above, whenever we write k alone, the
dependence on V and A is implied. Tables 5, 6, and 7 give values of on, f (k) for the cases

*Note added in proof: The reader's attention is called to the fact that the basic theoreti-
cal argument used to derive the probability &F, e is that the electron charge probability
density should change under screening. This' phenomenon appears to be measurable
through the isomer shift (where the nucleus emits a gamma ray) with the Mbssbauer
effect. Note the following published reports: O.C. Kistner, and A.W. Sunyer, Phys. Rev.
Letters 4:412 (1960); S. DeBenedetti, G. Lang, and R. Ingalls, Phys. Rev. Letters 6:60
(1961); L.R. Walker, G.K. Wertheim, and V. Jaccarino, Phys. Rev. Letters 6:98 (1961);
J.H. Wood, Phys. Rev. 117:714 (1960); D.N. Pipkorn, O.K. Edge, P. Debrunner, G.
De Pasquali, H.G. Drickamer, and H. Frauenfelder, Phys. Rev. 135:A1604 (1964); R.
Ingalls, Phys. Rev. 155:157 (1967); R. Ingalls, H.G. Drickamer, and G. De Pasquali,
Phys. Rev. 155:165 (1967); J.-P. Bocquet et al. Phys. Rev. Letters 17:809 (1966); H.S.
M611er, and R.L. M6ssbauer, Phys. Letters 24A:416 (1967).
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Table 7
Relative Normalizations 4(, g K) from CSCP

Is and 2s States and ZM/a o = M/2, with
Solutions with a = d/2 for
k,, p from Table 3

A= D, A= 0 and A= D2, respectively. Some of these values are plotted in Figs. 4 and 5 as
a function of u = ZD/a 0

n 2 . With the equivalence of % = 1.0 in the series solutions, Eq. (13),
for the Coulomb wave functions, the exact normalization integrals for these wave func-
tions, N(n,'t), are equal to 2, 2, 2, 24, 9, and 720 for the ls, 2s, 3s, 2p, 3 p, and 3d states,
respectively. The approximate values obtained numerically for these Coulomb wave
function normalizations (14) by the Trapezoidal Rule, integrating to xmax -20 as in Eq. (28),
are accurate to three or more significant figures.

The most interesting property of $n is that for a given relationship between a and
d, the function (n, p is essentially independent of n and t for u = zDaon2 > 2. Further-
more, at u = 1. 5 the spread in values of (n, F for the states considered is only four units
in the second significant figures, as is also shown in Table 4, last column. However, for
larger values of n this spread at u = 1. 5 may increase. But since the low-lying states are
the most important for most applications, this relatively small spread is very convenient:
it suggests the possibility of simple analytic fits. For example, for u > 1.5, exp(-1. 5/u)

falls in the upper part of the "(-band," and for u < 1. 5, exp [-( 1. 5/U) '], with m P 2 or 3,
falls nicely in the lower part of the (-band. If, now, we substitute for u, the mean (P-

function can be approximated by

1.0 Is
08

n=1 and 2

0.6 Is Fig. 4 - Log (F0 p(K) vs ZD/aon 2 from
/ 2s,a=0 CSCP solutions with a = d, d/2, and 0,

1ad] 2p d for Is, 2s, and 2p states. The case
0.4, 2s,a=2- acd/2 is shown only for Is and 2s

d0 /' states. Note 1le - 0.368. The mean
__3 position of an electron in a Coulomb

0 s-state is 3aon 2/2Z. Hence, u = 1.5 is
-2p,a-0 the mean position for all s-states.

0.2 Note the small deviations of the p-
D.2ao-=d state and d-state at u = 1.5.

01 1 --- -
0 I 2 3 4 5

u=ZD/a. n
2

ls 2s
d (a = d/2)

ZD/ao 1 S ZD/4ao D 2 s

103 501 0.997 251 0.995
102 50.67 0.974 25.67 0.948
32 - - 8.694 0.847
30 15.68 0.915 - -
16 8.694 0.847 4.721 0.719

8 4.719 0.721 2.759 0.545
4 2.749 0.551 1.782 0.381
3 2.259 0.478 - -
2 1.769 0.379 1.283 0.248
1 1.276 0.238 1.024 0.149

0.5 1.026 0.138 -
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Fig. 5 - Log l) p(K) vs ZD/aon2 from 3Pd
CSCP solutions with a ,cd and 0 for 3d, oO
3s, 3p and 3d states. The 3s solutions 0.4-1 , 3s,3p,a=O
arenearthe Is and Zs solutions shown I 3d~a=0
in Fig. 4 even with u < 1.5. The 3d- CO.3 =
curve with a= 0 was tested with more / 3s,a 0
accurate calculations using Ax = 10 02 3dad
but the 3 percent difference between 02 --- 3p,a=d
u = 2 and 3 was not altered. 3s,od

rn =3a.on/2Z
0 1 2 3 4 5 6

u = ZD/aon
2

,%( k,D,A) % 4 ),F (D) = exp ZD (32)

withm.i 1for V0 , and 1 < m < 3 for V < -. Note that the relative probability of the
state represented by (Dn, F is generally decreased approximately by a factor of e for that
state for which ZD 3a 0 n2 /2, i.e., when the screening distance is nearly equal to the mean
position of the electron in the corresponding Coulomb s-state. For the case a = d, this is
almost exactly true.

This latter observation suggests the CSCP interactions with a = d yields the quantum
analog of the semiclassical statistical mechanical "excluded volume" of Urey and Fermi
(1). As derived by Fowler, the equivalent of (D, call it p, is written as

p= [e(ap)on 2 (33)
[ -= ex 0 - ] ,

where r, is the radius of a mean volume for interactions associated with the free
charged particles. Note here that the e-fold reduction in p occurs when r 0 aon 2

, the
classical Bohr radius.

Discussion

In any system where the total sum over states - the complete partition function -
can be separated into translational, electronic, vibrational, etc., states, the above defini-
tion of QCscP, the bound electronic contribution, is a natural generalization that reflects
the first-order interaction of the bound electron with the surrounding particles. Tolman
(15), in discussing the long-time behavior of nonisolated systems, derives an expression
for the equilibrium probability P, of finding any given state n with energy En, that is
given by

Pn = nn = Ce- (34)

where pn, is the density matrix, C and/8 are parameters having values independent of the
state n, and the quantities En are the true energies for the various energy eigenstates n.
Of course in equilibrium, 8 = l/kT. Now, however, in the CSCP interactions of bound
states, the relative normalization (F represents a quantum analog of C in Eq. (34). Note



16 C. A. ROUSE

that with a given A, for bound states where D > 7,, ( is functionally independent of the
state (n,'6), but the magnitude of (F lies between 1 and about i/e for a finite screening
distance D. Furthermore, the ('s cannot generally be normalized by setting Qb = 1. 0.
With systems of bound and free electrons in ionization equilibrium, normalization for all
the possible electronic states, if necessary, would have to be relative to

CSCP FD
Qeb + Qel - (35)

FD

where Qe is the p.f. for free and/or mobile electrons satisfying Fermi-Dirac statistics.
At high densities, mobile electrons behaving as "free" particles have a classical analog
in that a particle acted upon by no external forces and a particle upon which the sum of
the external forces is zero, behave in the same manner.

Clearly, the partition function for bound electronic states given by Eq. (30) does not
contradict any basic statistical mechanics - it generalizes the previous definition to one
that reflects the mean interaction of bound electrons with neighboring particles. And the
present definition is based on solutions of the SE. We can summarize by saying that

, ' (X , VA) represents the probability, relative to that for an isolated atom (ion), of an
atom (ion) having an unperturbed, bound electronic state with energy E. when the bound
electron interacts with neighboring particles via a screened Coulomb potential, the
screened Coulomb potential being characterized by an effective screening distance V, by
an effective mean minimum ion atmosphere radius A for the neighboring particles, and
by a dielectric constant 7 for the first-order effect of neutral atoms or molecules. Here,
of course, we have assumed 77- 1.0.

In studying matter at high temperatures and/or high or low densities, a finite elec-
tronic partition function is necessary in the analysis of all phenomena in which there is a
significant probability that a bound electron can be excited and/or ionized. The magnitude
of an electronic p.f. for bound electrons will, as discussed here, depend on the interac-
tions experienced by bound electrons with neighboring particles, which essentially con-
stitute the rest of the universe. In equilibrium phenomena the p.f. defined by Eq. (30)
can be used as the bound electronic state contribution to the total sum over states in
statistical mechanics. Although an hydrogenic ion was considered above, it is conceiva-
ble that the electronic states of diatomic atoms would also be influenced by a screened
Coulomb potential in a qualitatively similar manner. In problems of astrophysical inter-
est the description of a mixture of elements in ionization equilibrium at low to high den-
sities p and at temperatures T greater than about 0.4 eV (z4000°K) would be of interest.
Also, the study of strong shock waves, exploding wires, plasmas, and other high-
temperature phenomena could be described very reasonably by monatomic matter.
Clearly, an accurate theoretical description of monatomic matter would have wide ap-
plication. Such a formulation should be compatible with a formulation that considers
diatomic molecules and then clusters of atoms that lead to the liquid and solid states (16)
at lower temperatures, i.e., the condensation problem.

A description of matter - for either equation of state and/or opacity calculations,
for example- based upon a modified Saha equation (17) with finite electronic p.f.'s pro-
vides such a theoretical formulation for monatomic matter at a given T and p applicable
over a wide range of densities. The efforts of the author to develop an accurate and use-
ful monatomic formulation have been reported elsewhere in the literature (18), as well
as the applications to exploding wires (19) and stellar structure (20).

Applications of the standard Saha equation to opacity calculations are given by
Stromgren (21) and in the article by Cox (22), and to equilibrium shock wave calculations
by McChesney (23). However, at the higher densities, the modified Saha equation should
be used.
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Quantitative ionization equilibrium equation of state (IEEOS) calculations, with the
refinements of the present report and with comparisons to results based upon the
Thomas-Fermi-Dirac model of the atom (24), will be reported later. It will only be
noted here that the basic postulates, in Refs. 17 and (20(b), are verified almost exactly
in the present screened Coulomb solutions with A= D and with the identification of the
screening distance D with the radius of the mean atomic volume r0 at high densities.
This also applies to the density-dependent Coulomb wave functions in Ref. 17 as approx-
imate CSCP wave functions.

Next, a more direct test of the CSCP effects is in the observations of relative inten-

sities of lines similar to those reported by Ivanov-Kholodnyi and Nikol'skii (25,26) who

report "... In prominence and chromospheric spectra, it has been found that near the

series limit the lines do not merge because of broadening and convergence, but instead
they disappear because of a rapid fall in intensity. As a result, we fail to observe the
last few lines of the series, even though their half-widths are smaller than the separa-
tion between them." It has been shown (27) that this "rapid fall in intensity" is indeed
compatible with the present relative normalizations when applied to the disappearance
of hydrogen lines in the solar photosphere and the chromosphere - provided that, at low
densities also, the effective screening distance is correlated with r0 and with the present
CSCP solutions with A= D/2. The correlation of r 0 with D at liquid or higher densities
was expected (above and see Refs. 11, 17, and 20b), but this is the first known evidence
for this correlation at low densities. As shown in Ref. 27, an effective maximum bound
state ne defined by

ne 2 = 0.59 ZD/a o  
(36)

for the state where (F I le in solutions with A - D/2 is in excellent agreement with the last
significantly occupied hydrogen levels in the solar atmosphere; the state where (F 0. 1 in

solutions with A: D/2 is in excellent agreement with the last distinct levels observed in
the solar atmosphere. The resulting relation for these maximum detected levels n is

n ZD/a°  (37)

And, as expected, setting D equal to the Debye radius leads to very inaccurate answers.

Further evidence of the effect of screening on the disappearance of the Balmer lines
of hydrogen even at very low temperatures - demonstrating a dominant density depend-
ence - is in the experimental results of G. M. Shrum (28). With an electric discharge
through nearly pure hydrogen at T = 21°K and a pressure of 5 mm Hg, Shrum was just
able to detect the H 2-8 line in the Balmer series. Assuming that the pressure is given by
P = NkT, N and r0 can be determined. With this r0 the maximum detected level is given by

a2 r/ao and yields nm 9.4 or 9. Considering that the electric field acts as an addi-
tional perturbation and multipole interactions have not been included in the present cal-
culations, this value represents a good agreement with observation. Next, we consider
the calculation of the effective ionization potential for hydrogen to illustrate the lowering
of an atom's ionization potential owing to screening. Since a depression of the continuum
is equivalent to an increase in the energy of the ground state, let us consider the change
in the ground-state energy. For w << 1, Eq. (21) yields

-n, s 2d nK 2c1+

n (c+a) d

1 + CIw. (38)

Now, the energy of state n is
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E,, (k) VZ e 4 1
2ih 2  K2 (39)

Since I < C < 2 in the physically interesting range, C1 w is also <<i. Substituting Eq. (38)
into Eq. (39) and retaining the term linear in w,

Z
2
,ye 

4  
1 ZILe 4 a o  KA2 2 + - h2(40)

,S 2ig2  a2 n 2 (D+A) (

Hence, the increase in the ground state energy is given by

ze 2 (41)' D+---A'

since K/n \ I for Cw << 1, and (' 2 /a o pe 2 ) - . 0. Consequently, for large screening dis-
tances, the energies of all states with small n are increased by Ze 2 /(D+ A).

We now consider, explicitly, the energy change for the ls state. The maximum de-
tected levels of hydrogen in the solar chromosphere (29) are n = 38 to 40; this indicates
that for nm= 38, r0 = n 2 ao = 1444 ao . Substituting D =r and A = ro/2 into Eq. (41), one
obtains

AE 1 , - 1.5 -0  1. 256 2 eV.

1. 5 r

Then from Eq. (40),
4 2

E i  (n = 38) P - .ue + e 2 -13.592 eV.1 2t2 1.5r 0

For a. = 40, similar calculations lead to a ground-state energy of

Els (n = 40) = -13. 594 eV.

These values are to be compared to the recent calculations of Garcia and Mack (30) of
the limiting hydrogen level using Dirac energies and a quantum-electrodynamical cor-
rection. Their value of El imi = 109678.7642 cm - , converted to electron volts yields,
relative to E - 0 at the continuum,

El (G-M) -13.598 eV.

Consequently, with respect to the accepted ionization potential for hydrogen of 13.595 eV,
the Schr6dinger equation with a screened Coulomb potential yields as accurate a value as
the Dirac equation with a quantum-electrodynamical correction.

Another effect that would decrease the ionization potential is line broadening (6).
However, the only quantitative change in Eq. (40) would occur relative to states near the
continuum where the energy added during a perturbation would free the electron, i.e.,
perturb it to a positive energy state. Otherwise, broadening of states near the continuum
limit - particularly for states with - >> D - can only lead to merging of states. These
merged bound states still contribute to the p.f. even if only with diminishing effect be-
cause of the "guillotining" due to ¢C, F in screened Coulomb interactions. Note that line
broadening is completely consistent with the present results, since the neighboring par-
ticles that produce line broadening are the same particles whose time-averaged effect



NRL REPORT 6556

leads to a screened potential. This includes neutral particles through multipole interac-
tions, as well as charged particles.

Finally, as a test of the change in separation of the energy levels with screening,
CSCP eigenvalues from solutions with A= 0, plotted as in Fig. 3, indicate that there in-
deed would be a decrease in the separation of the n = 2 - 3 levels - H" line - even for
r0 /a -90, the screening radius resulting above in the Shrum experiment. This is the
correct sign of the change needed to calculate the observed wavelength of the H, line of
6562.82 A from the theoretical Coulomb SE H, line of 6561.29 A (allowing for refraction,
of course). However, since the change is small (essentially zero for solutions with A = D),
more accurate CSCP calculations with A= D/2 are necessary before presenting a value for
this screened Coulomb red shift.

Other evidence of red shifts in laboratory spectra is found in observations of high-
temperature plasmas (31). However, the shifts have been attributed to a quadratic Stark
effect, where the theoretical values exceed the observed values by 20 percent. As indi-
cated above, multiple interactions can be handled in a screened Coulomb potential
through the dielectric constant, where preliminary calculations (9) have shown that an
77 > 1.0 would lead to a decrease in the present (-function relative to calculations with
i}= 1.0.

SUMMARY AND CONCLUSIONS

Some numerical solutions of the Schr6dinger equation with the complete screened
Coulomb potential (CSCP) have been presented with tables and graphs of quantum num-
bers X,, f and relative normalizations ,, p (K). Although the SE with a screened Coulomb
potential is not analytic, K and (F can be accurately described by simple, analytic func-
tions for a wide range of interesting values of the screening distance D.

The problem of a maximum bound principal quantum number or a finite number of
screened Coulomb states has been resolved: the screened Coulomb potential yields at
least as many bound states as the Coulomb potential. For a CSCP wave function with the
same shape as a Coulomb (n, t) wave function, any D > 0 will yield a bona fide bound-state
solution with a noninteger quantum number k. f > n. However, with the CSCP, for states
with 3aon 2 /2Z > D, the separation of the levels is less than the separation of correspond-
ing Coulomb levels. In other words, the density of states near the continuum increases
under screening. In addition, for states with 3aon 2 /2Z > D, the relative normalization
4 n' (K) decreases very rapidly. The above results are used to define the quantum analog
of the equilibrium probability of a state as derived by Tolman for a nonisolated system.
This, of course, serves as the basis of a finite partition function for bound electronic
states, which is based on solutions of the Schrodinger equation.

The concepts and results introduced here also resolve the problem of the intensity
drop of hydrogen lines in the solar photosphere and chromosphere and in very low tem-
perature hydrogen in laboratory measurements. The excellent agreement with the max-
imum effective bound state and the maximum detected levels in the solar atmosphere and
the good agreement with the disappearance of Balmer lines in very low temperature hy-
drogen essentially confirm both the definition of the relative probability of an unperturbed
state, derived here, and the fact that the effective screening radius is correlated with the
radius of the mean atomic volume at low densities as well as at high densities. This im-
plies that the electron clouds of the nearest neighbor atoms also contribute to the screen-
ing of bound states as do the free particles of the ion atmosphere. Hence, Debye,-Huickel
theory applied to plasmas is applicable only to ideal, charged, hard spheres or to point
charges.
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The effect of screening on the lowering of the ionization potential of an atom is illus-
trated by the calculation of the observed ionization potential of hydrogen as accurately as
it is calculated by more elaborate methods.

In closing, astrophysical observations of effective maximum bound states and/or
maximum distinct levels will enable one to calculate an ion-number density in the source
of absorption or emission lines. This will be valuable in obtaining more information
about the atmospheres of stars in general, and quasi-stellar objects (32) and X-ray
sources (33) in particular, as well as local density variations in the atmosphere of the
sun (34). And, of course, with a given relative abundance of elements, a mass density
can be computed.

ACKNOWLEDGMENTS

This research was conducted while the author was an E. 0. Hulburt Research Ap-
pointee supported by the Office of Naval Research and the National Science Foundation.
I sincerely thank both organizations for the support that made this investigation possible.

I gratefully acknowledge the hospitality and assistance of the E. 0. Hulburt Center
staff. In particular, I wish to express my appreciation to Dr. Herbert Friedman for pro-
viding a pleasant and productive atmosphere for scientific research.

I also wish to thank Dr. Jerome Karle of NRL for helpful discussions and for re-
viewing the manuscript.

Finally, I wish to acknowledge the cooperation and assistance of the staff of the NRL
Research Computation Center. Here, the programming of Mrs. Doris E. Gossett was of
great value.

REFERENCES

1. Fowler, R.H., "Statistical Mechanics," Cambridge:Cambridge Univ. Press, 1936

2. Ecker, G., and Weizel, W., Ann. Physik 17:126 (1956); Margenau, H., and Lewis, M.,
Rev. Mod. Phys. 31:569 (1959); Harris, G.M., Phys. Rev. 125:1131 (1962); Ecker, G.,
and Kroll, W., Phys. Fluids 6:62 (1963); Smith, C.R., Phys. Rev. 134:A1235 (1964)

3. Armstrong, B.H., and Brush, S.G., "Opacity of High Temperature Air," Appendix in
"Progress In High Temperature Physics and Chemistry," Vol. 1, C.A. Rouse, editor,
New York: Pergamon (in press). This appendix gives ".... a brief bibliography of
theory and experiment regarding the effect of interactions with other particles on
the ionization potential of an atom."

4. Schey, H.M., and Schwartz, J.L., Phys. Rev. 139:B1428 (1965)

5. Rouse, C.A., "Numerical Solutions of the Schrodinger Equation With the Complete
Screened Coulomb Potential," Univ. of Calif. Lawrence Radiation Lab. (Livermore)
Report 12101, Apr. 5, 1965

6. Margenau, H., and Lewis, M., in Ref. 2

7. Hill, T.L., "An Introduction To Statistical Thermodynamics," Reading, Mass.:Addi-
son-Welsey, 1960



NRL REPORT 6556

8. Rouse, C.A., "A Note On the Maximum Bound Principal Quantum Number," in "6th
Int. Conf. on Ionization Phenomena in Gases," Paris, Vol. I, p. 225, 1963

9. Rouse, C.A., "Dependence of the Solutions of the Schrodinger Equation on the Dielec-
tric Constant in the Complete Screened Coulomb Potential," Univ. of Calif. Lawrence
Radiation Lab. (Livermore) Report 12461, Apr. 15, 1965

10. Broyles, A.A., Sahlin, H.L., and Carley, D.D., Phys. Rev. Letters 10:319 (1963)

11. Thouless, D.J., "The Quantum Mechanics of Many-Body Systems," New York and
London:Academic, 1961

12. Meeron, E., "Statistical Mechanics of Reversible Processes in Plasma Dynamics,"
in "Plasma Physics," J.E. Drummond, editor, New York:McGraw-Hill, 1961

13. Schiff, L.I., "Quantum Mechanics," New York:McGraw-Hill, 1949; Bethe, H.A., and
Salpeter, E.E., "Quantum Mechanics of One- and Two-Electron Atoms" and "Hb. d.
Phys.," Vol. 33, Berlin:Springer- Verlag, 1957; Sherwin, C.W., "Introduction to Quan-
tum Mechanics," New York:Holt, Rinehart and Winston, 1960; Leighton, R.B., "Prin-
ciples of Modern Physics," New York:McGraw-Hill, 1959

14. Rouse, C.A., "Accurate and Stable Numerical Solutions to the Schrodinger Equation,"
Feb. 7, 1966; A.P.S. Bull. 11:356 (1966) J. of Math. and Phys. Vol. 46, p. 63, 1967

15. Tolman, R.C., "The Principles of Statistical Mechanics," Oxford:Oxford Univ. Press,
1938

16. Slater, J.C., "Quantum Theory of Molecules and Solids," Vols. 1 and 2, New York:
McGraw-Hill, 1963 and 1965; Pines, D., and Nozi~res, P., "The Theory of Quantum
Liquids," New York, Amsterdam:Benjamin, 1966

17. 'Rouse, C.A., "Ionization Equilibrium at High Densities," Ap. J. 139:339 (1964)

18. Rouse, C.A., (a) Ap. J. 134:435, 1961; (b) 135:599, 1962; (c) 136:636, 1962; (d) 136:
665, 1962; (e) 137:1286, 1963 (See also Refs. 8 and 17)

19. Rouse, C.A., "Theoretical Calculations of Exploding Wire Phenomena," Univ. of
Calif. Lawrence Radiation Lab. (Livermore) Report 5684-T and APS Bull. 4:449
(1959)

20. Rouse, C.A., "Calculation of Stellar Structure Using an Ionization Equilibrium Equa-
tion of State," Univ. of Calif. Lawrence Radiation Lab. (Livermore) Report 7820,
Rev. 1, July 20, 1964; Rev. 1, Supplement, Jan. 7, 1965; "New Solar Model," APS
Bull. 10:14 (1965)

21. Str6mgren, B., Zs. f. Ap. 4:118 (1932); See S. Chandrasekhar, "An Introduction to
the Study of Stellar Structure," New York:Dover, 1957

22. Cox, A.N., "Stellar Absorption Coefficients and Opacities," in "Stars and Stellar
Systems," Vol. VIII, L.H. Aller, and D.B. McLaughlin, editors, Chicago Univ. Press,
1965

23. McChesney, M., Can. J. Phys. 42:2473 (1964)

24. Brush, S.G., "Theories of the Equation of State of Matter at High Pressures and
Temperatures," in "Progress In High Temperature Physics and Chemistry," Vol. I,
C.A. Rouse, editor, Pergamon (in press)



C. A. ROUSE

25. Ivanov-Kholodnyi, G.S., Nikol'skii, G.M., and Gulyaev, R.A., Soviet Ast. -A.J. 4:754
(1961)

26. Ivanov-Kholodnyi, G.S., and Nikol'skii, G.M., Soviet Ast. - A.J. 5:339 (1961)

27. Rouse, C.A., Nature 212:803 (1966)

28. Shrum, G.M., Proc. Roy. Soc. A, 105:259 (1924); also note the observations of R.W.
Wood (Roy. Soc. Proc. 97:455 (1920) who wrote, "If the pressure is gradually raised,
the higher (Balmer) members disappear in succession, as they should on Bohr's
theory."

29. Mitchell, S.A., Ap. J. 1051 (1947); Thomas, R.N., and Athay, R.G., "Physics of the
Solar Chromosphere," New York:Interscience Publishers, Inc., 1961

30. Garcia, J.D., and Mack, J.E., J. Opt. Soc. Am. 55:654 (1965)

31. Berg, H.F., Ali, A.W., Lincke, R., and Griem, H.R., Phys. Rev. 125:199 (1962);
Griem, H.R., Phys. Rev. 128:515 (1962)

32. Greenstein, J.L., and Schmidt, M., Ap. J. 140:1 (1964); Sandage, A., Ap. J. 141:1560
(1965); Burbidge, G.R., Burbidge, M., Hoyle, F., and Lynds, C.R., Nature 210:774
(1966)

33. Bowyer, S., Byram, E.T., Chubb, T.A., and Friedman, H., Science 147:394 (1965);
Sandage, A.R., Osmer, P., Giacconi, R., Gorenstein, P., Gursky, H., Waters, J.,
Bradt, H., Garmire, G., Sreekantan, B.V., Oda, M., Osawa, K., and Jugaku, J., Ap.
J. 146:316 (1966); Friedman, H., Byram, E.T., and Chubb, T.A., Science 153:1527
(1966)

34. Tousey, R., "The Extreme Ultraviolet Spectrum of the Sun," in "Space Science Re-
views" 2:3 (1963)



APPENDIX

THE MEANING OF THE SO-CALLED "MAXIMUM BOUND
PRINCIPAL QUANTUM NUMBER"

Clearly, for any d > 0 the CSCP will yield an eigenfunction for all Coulomb n, t. One
may inquire, then, about the exact meaning of the concept of a maximum bound principal
quantum number (2-5,8).

If, now, one assumes that the spacing of all the CSCP levels are equal to the spacing
of the Coulomb levels and also assumes that the continuum is depressed by AE1 in Eq.
(41), then there will be a level with, say, n *, whose absolute magnitude will nearly
equal AE15 as in Ref. 8,

Z
2 

u e4  Ze 2

2~g2 +A

or,

2 (D+A), (Al)

since a0 = A2/le
2 . Consequently, the so-called maximum bound principal quantum number

9* is the fictitious CSCP q.n. for that level which would be at the edge of the continuum

if the CSCP levels were all assumed spaced as the standard Coulomb levels and raised
by an amount XzE-: Ze 2 /(D+ A) for large screening distances D.

It should be noted that Eqs. (41) and (Al) were derived in Ref. 8 from straightforward
physical arguments, and it is the only reference, prior to the present study, to derive the
correct dependence of g* on A and D. It should also be noted that the basic pitfall in pre-
vious calculations of a "maximum bound principal quantum number" was the assumption
that for a finite screening distance, there exists an eigenvalue equal to zero. Obviously,
this assumption was made to explain the disappearance of spectral lines in plasmas. A
more reasonable explanation for this is given in the text.

We will now demonstrate the difference in the "q.n." g* for the edge of the continuum
and the q.n. ne of the state in which the relative probability 4) g is about 1/e. For A- D,
g* is given by Eq. (A1) as g*2= ZD/ao. Now for the state in which n =n, from Fig. 4 for

s-states, 1.5 aon e2 
'd ZD, or

g*2 = 1.0 ZD
a
o

with A= D, (A2)
ne 0.67 ZD

ea
o

which are significantly different. At the other extreme, for A- 0, Eq. (Al) yields
g,2= 0.5 ZD/a 0 , whereas the state for which 'F -, 1/e is, from Fig. 4, given by 1. 85a 0 ne2 

ZD

or
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.2 0.50 ZD
a.

with A = 0, (A3)

2 0. 54 ZD
e a0

which are surprisingly close in value. Finally, for A= D/2, from Eq. (Al) and Fig. 4,

.,2 = 0.75 ZP
ao
2 with A = D12, (A4)

n 2 P 0.59 -e a0

where ne 2 in (A4) is near the mean value of ne2 from Eqs. (34) and (A3). Consequently,
in constructing an empirical partition function - which was the objective of Ecker and
Weizel and others - a more meaningful principal quantum number with which to termi-
nate the series is the whole number nearest ne, or perhaps ne + 1. The t-states corre-
sponding to ne should also be included.
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