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ABSTRACT

The magnetic constants of an ideal superconducting
torus, located in a uniform magnetic field perpendicular to
its axis of symmetry, are calculated from a scalar poten-
tial expansion in toroidal Legendre functions. An algorithm
for finding the expansion coefficients, suitable for digital
computation, is included. Graphs and approximate formulas
are given for the induced magnetic moment of the torus and
the maximum field values (with locations) on its surface,
as functions of its radius ratio.
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POTENTIAL AND MAGNETIC MOMENT OF A
SUPERCONDUCTING TORUS IN A NONAXIAL

UNIFORM MAGNETIC FIELD

INTRODUCTION

The torus has long been of interest in the study of electromagnetism and in hydro-
dynamics. The toroidal body considered here is an ideal superconducting ring (no flux
penetration) of circular cross section, placed in a uniform magnetic field.* The mag-
netostatic potential and magnetic moment of such a torus have previously been calcu-
lated (1) for the case where the applied magnetic field is parallel to the axis of the torus.
The analogous calculations are made here for the case of an applied field perpendicular
to the axis. To treat the problem of a torus at an arbitrary angle to the field, the axial
and transverse solutions are superposed linearly. This allows the calculation of net
Meissner effect torques on such a ring.

A scalar potential solution of Laplace's equation V2 U = 0 is appropriate for this
problem. The methods used here are similar to those of Ref. 1 in solving the problem of
a superconducting torus in an axisymmetric field. The analogous problem in fluid flow
has also been treated by the method of conjugate functions (2), an approach which cannot
be used here because of the lower degree of symmetry.

The axisymmetric problem is a Neumann potential problem for a doubly connected
domain, with the potential dependent on only two coordinates. The transverse problem
considered here is more complicated in that it is truly three-dimensional, but simpler in
that the domain of the potential function is, in effect, simply connected. There will be no
flux passing through the central opening of the torus, and no circulation effects (persist-
ent currents), since these are inherently associated with axial symmetry. Thus the
potential to be found will be strictly single-valued; no other case need be considered.

LAPLACE'S EQUATION IN TOROIDAL COORDINATES

The toroidal coordinate system used here will be described briefly; further details
can be found in Refs. 1 and 3.

The transformations between toroidal coordinates (s, p, 0) and cylindrical coordinates
(p, o, z) are:

a(s 2 - 1) / ( )/2 T- cO ot
- 1  

(p2 + 02 - a
2

)

s - cos 0 2az

a sin T p
2 + 22 + a 2

2 -cos CP =1/2

[(p2+Z2+a2)
2  

- 4a2p2j

The azimuthal angle 0 is the same in both systems, and a is a scale factor for the to-
roidal system. Some constant surfaces and unit vectors are shown in Fig. 1.

*Thus the boundary conditions correspond to those of ideal fluid flow past a solid torus.
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Fig. 1 - Toroidal Coordinate System. Some constant
surfaces for s and (p are shownin a section through the
half-plane 0 = 0. Each constant surface for s is a torus
centered onthe z axis. The constant surfaces for (p are
spheres having the common rim s = c (a circle of radius
a in the x-y plane). The unit vectors i, j, are shown
atthe points= 1.1, p = 77/6,0=0.

'P6

A line element is given by

dr = N ds + 1[(s 2 - 1) 1 /2
dqop + (S

2
- 1)

1 1
/

2
dOG]

and the gradient by

(s 2 
- 1) 1/2 d 1 uL 1 du
N as N T NoN( s2 - 1)1/2

where

N - a
S - cos (P

Laplace's equation can be partially separated in toroidal coordinates (3), with the
solutions:

U(s,P,0) (s- cos)1/
2 S(s) D(Cp) @(o)

where
m m

S(s) =C 1 P 0n 1 /2 (s) + C2 Qn- 1 /2 (s)

I(qp) = e s3 cos nP + C4 sin nT(

(o) = c 5 Cos mO + c 6 sin mO

and {c .. c 6 } are arbitrary expansion coefficients.

For U( s, T, 0) to be single-valued, n and m in these expressions must be integers.

The Legendre functions of half-integral degree and integral order m (ring functions)
have the following representations (4):
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7T0o 1 2 1/2

n/ - 8f [s + (s
2

-1)

0

o 7m
n- 1l/2( s) = f cos np dp

(s - cos (p)1/2

P -
( s )  =(s2 )M/2 dm  0

n 1/ dsm' 0-1/2
( s

n- 1/2 dsn n 12(

m = 1,2,...

m= 1,2,....

These functions satisfy the usual recursion formulas for Legendre functions:

2ns K,_ 1 / 2 (s) = (n-m+ 1/2) Kn+1/2 (s) + (n+m-1/2) Kn_3/2(s)

Kn+l/ 2 (s) - K / 2 (8) = 2n( s2 - 1) 1/2 rn- (s)n +1 2 n-/2n-1/2(8

where K denotes either P or Q.

The ring functions of the first kind {P,/ 2 (s)} diverge as s -4, while those of the
second kind {Qnt,/2 (s)} diverge as s - 1. For approximate formulas and graphs of some
of these functions, see Ref. 5. (Note that many authors use u = cosh- is as the argument.)

BOUNDARY CONDITIONS AND SYMMETRY

Consider a superconducting torus centered on the z axis, with large and small radii
R and r, respectively (see Fig. 2). Then the surface of the torus is the constant coordi-
nate surface s = s where so = R/r, and R = a so/( so2 - 1)1/2 . If a uniform external mag-
netic field Ho = Ho; is applied along the x axis, then the boundary conditions on the scalar
magnetic potential U( s, (p, 0) are:

U ,"Uo = - Ho X

p 2 
+ 22 __0

VU" ~ = 0

z

Fig. 2 - A torus defined by the constant Ho s
coordinate surface s = R/r. The angle r
0, which can be used instead of T to -
locate a point on the surface, is related /
to p by cos = (so cos p-1)/(s0 -cos p). x

n- 1/2

cos P]I
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or

au

To apply the second boundary condition, which expresses the fact that the magnetic
flux does not penetrate the torus, it is convenient to have an expansion in ring functions
for

U0 - -HO x

-a H0 cos 0 (s21/2
8 - cos T

Such an expansion (valid for s > i) can be obtained by a Fourier analysis of (s - cos () -3/2,

and by using Eqs. (2) and (4) above. The result is:

_ F' 1 1U0  all0  cos 0(s-cos Tp) 1/2 Q-1/2(s) + 2 Qn_1 /2 (s) cos nco
n= 1

The total potential can be expressed by U = U0 + U1 , where U0 is that component of
the total potential corresponding to the external field, and U, is the potential due to in-
duced currents on the surface of the torus. Since U, may not diverge outside the torus
(I < s < so), U1 must be expanded in the {P$.1 /2(s)} . Considering symmetry conditions
about the plane T = 0, the cos n T solutions, and not the s in nT solutions, must be used.
Then U1 can be written:*

0o

U 27 aH0 cos 0 ( s - cos cp)' /  
An P ,/ 2 (s) cos fl<P

n=0

where {A,,} are coefficients to be determined. (For later convenience, (2f--/7) aHo is
factored out.)

The total potential can then be written:

00

U(s,cpO) = Cos ( - Cosq)) 
1 / 2  A, P 1/ (s) + (2- 8n) Q CosnP (5)

where 8no is the Kronecker delta.

The components of the gradient are:

*Explicit symmetry conditions on the 0-dependence require an expansion in

m M
A,, P,-I2 (s) cos np sin inO,

where m is an odd integer. That An can be set equal to zero for m+ 1 is inferred from
the form of the expansion for U0. In any case, if such a solution can be found, the unique-
ness theorem for the Neumann problem guarantees that any other solution differs, at
most, by a constant.
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VU s V2 Ho(' O-cos p)
1

1
2 
(S

2
- 1)

1
1

2 
cos 0 cos nq0

IT= 0

P7 1 /2 (s) +2 ( s- cos,) P,-1 2

V - H,,( s _ COS (p)1/
2

COS 0

( (2- 'nO) Q n 1 /(s) + 2( s- Cos p) 1- 1/2 (S) (6a)

1 1
() + (2-8no)Q 1  (S)

n-1/2

x [sin (p cos ncp - 2n(s- Cosq) sinnp]

2.F - _ OS ( ps/ - 8 cs~ s 1 1S H0  2 sin 0 An Pn-1/ 2 (s) + (2- no0) Qn, 1 2 (s) cos n1/.
( -1) 1/ 2

n=

(6b)

(6c)

The dotted functions signify differentiation; for example:

1 d 1
n-1/2 s n-1/2(s)

Applying the surface condition, au/ds I -So = o, leads to the following recurrence
relations for the coefficients {A}:

1 .I ] 1  sI+"s .I
0 [P1/2

( s
o0 2s 0 P1/2(s o )] 0 Q-1/2(s o ) + 2s 0 Q_1 / 2 ( s

o) - A 1 P 1/2 ( ) - 2Q1 (8 0 (7a)

and, for n > 0,

A7 [ Pn~o/2 ( ) + 28 P i/2 ( s o )
"1

+ 2 Qn- 1/ 2 (so )
+ 2so 6n-1/2 o)

+8 [) A 2 (8 + ( 0] .n 1 n 1 P _3/2
( 8 0 )

- 2 Qn+l/2
(

0) Qn_3/2
(

0) 1 = (7b)

Since these formulas are not sufficient to determine the {An } uniquely, one additional
condition (expressing the requirement An  0 as n -i. ) is required. In Appendix A, the
following relation is derived, using the fact that the induced field must be just strong
enough to expel all flux from the torus:

A n [ - P1_/ 2 ( 80) Q_ 3 /2 ( 0 ) - n + -1) P 3/2 (S O) Qno-/ 2(
8 0 ) =

n=o

if
2

8(s 02 - 1)

Although Eqs. (7) and (8) provide enough conditions to fix the {A,,} uniquely, it does
not follow that exact formulas for the coefficients can be found. In fact, Eq. (7b) is an
inhomogeneous second-order difference equation with variable coefficients, which there
is no general way of solving exactly. However, an algorithm suitable for digital compu-
tation which will find the coefficients to any desired degree of precision is described in
Appendix B.

X{A,
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CALCULATION OF THE MAGNETIC MOMENT

The magnetic moment resulting from a current density distribution J in a volume v
is given (6) by*

m - - frxJ dV
2

V

where the vector r gives the location of the source point with respect to an arbitrary
origin. Since currents flow only on the surface of the superconducting torus, its mag-
netic moment can be written as an area integral:

m = I J rxKdA

A

where K is the surface current density. In terms of the field at the surface of the torus,
K is given (6) by

K x H- 18=s_ 0

HO- (H- H'PO) IS So

The position vector r to a point on the surface, with respect to the origin of the
toroidal coordinate system, is given by

r so - Cos so2 cosT + so sinT ].

The y and a components of m vanish; the x component of the integrand is:

a 1/20
2

rxK - - a H sin T cos 0 + H (2 - 1)1/2 cos sin 0so- -Cos TO si 0 so

An element of area is:

dA (= o4cos )2 (s 0
2 

- 1)/ dcp dO.

The moment is given by the integral:

a 3- 
-

a ( 1/2 {27 dO 2 [T dT 2 1)1/2 H1 cos T sin 0
r M = " 2 (s80 - Cos T)3 I3 sin TO cos 0 + ( 0 1)o 

/

0 0

In this expression, H. and H. are evaluated at s so.

Now if H is divided into the two parts H = H0 + H , where H, = -VU 1 , the integral
above will divide into two integrals: the first ( m) involving the components of H0 , and
the second (mI) involving the components of H1. The first integral is -H0 V, where V is
the volume of the torus. (See Appendix C.) The second part of m can be written,t after
integrating over 0:

*In this report all equations are in rationalized MKS units.
IThe following mathematical steps, along with some others in this paper, involve such
manipulations as the interchange of order of summation and integration, or differentia-
tion under an integral. It will be implicitly assumed that such procedures are validwhen
applied to the functions appearing here.
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rn = 2V/a2- a3H_( 8 - I1)

( s o - cos (p)3/ 2
cos nq cos (

0 )

0 _c ) AP /s) sin
2 (s - os 711-12'0

cp cos n(p - 2n( so - cos (p) sinnp ] sin

= 2VTa
3 H ( 2 -_ )12 Z.=A, P 1 soc2 ( Snq

71IT 0

cos(p + n sinn(p sin

( so - COS

2 T

STd-If s 2 (P cosn(p dq.
2o f s CS()5/2

When the integrands are reduced by means of trigonometric identities, these integrals
can be evaluated in terms of ring functions and their derivatives. The result, after using
some identities for Legendre functions (7) is:

16 a aH A (s
1  T 0 nno APn1/2(

n=0

- *n ) Qn+1/2 ( s o ) - (n +

(Note that QI1 2 ( s) IT Q I (s ).)

RESULTS

The results of the magnetic moment calculation, for several values of the radius
ratio so, are presented in Table 1 and Fig. 3 in terms of the ratio

- m 0 + m1  m 1
)- Hov -- + HoV

Mean Equivalent
Table 1

Transverse and Axial Susceptibilities*

s o = R/I3± l

1.1 -1.3583
1.2 -1.3595 -2.074
1.4 -1.3673 -2.0797
1.6 -1.3780 -2.0761
2.0 -1.3997 -2.0639
3.0 -1.4372 -2.0400
5.0 -1.4692 -2.0195
7.0 -1.4816 -2.0116

10.0 -1.4896 -2.0066

-1.5000 -2.0000

*To convert susceptibility in rationalized MKS units to

Gaussian units, divide by 477. To normalize the moment
values to the volume of a sphere of radius R, rather
than to the volume of the torus, multiply by

2r 2
Rr 2/( 4/3) 7rR3 IT 3,7/2s02 .

PI

77

1 /2 fO dqpf (s o - COS )) 3

Qn-3/2
(

8 0 ) •
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1.50 2.00 3.00 5.00 7.00

Fig. 3 - Mean transverse susceptibility of
torus vs radius ratio

where 5. represents a "mean equivalent transverse susceptibility" for the superconduct-
ing torus. The analogous quantity 5i, for an axisymmetric applied field, is also tabu-
lated for comparison.*

Table 2 and Fig. 4 give maximum values of the components of the field H( s, qP, 0) on
the surface of the torus for several values of s o . The column labeled i 1rim lists the
maximum magnitude of the field on the outer rim of the torus, IH0( so, 0, T/2) I. The col-
umn labeled Hm ax lists the maximum field value on the entire surface, IIIy( SO' Cma x, 0) ,

Maximum Outer
Table 2

Rim Fields and Maximum Surface Fields
(Transverse Applied Field)

with Locations

1.3552 H0
1.3457
1.3279
1.3114
1.2819
1.2253
1.1581
1.1210
1.0892

1.0000

so Hrim H max (Pm ax

1.5815 H0
1.5987
1.6347
1.6705
1.7356
1.8428
1.9272
1.9576
1.9765

2.0000

0.4297
0.5857
0.7880
0.9286
1.1147
1.3271
1.4502
1.4909
1.5173

1.5708

*Values in the \'jj column were derived from the calculations of Ref. 1 and represent only

that part of the magnetic moment arising from the expulsion of flux from the material of
the ring. Additional axisymmetric contributions to the moment arise from persistent
currents and depend on the value of the magnetic flux through the central opening of the
torus when it becomes superconducting (8).

I .540

1.500

0

N

-4

I',,

1.460

I .420

I .380

1.340

2f~f~I

100

,. .I I I I i I

10.00

1.1
1.2
1.4
1.6
2.0
3.0
5.0
7.0

10.0

I1.3
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Fig. 4 - Maximum surface field vs radius
ratio, maximum rim field vs radius ratio,
and q location (in radians) of maximum sur-
face field vs radius ratio

where the values of Pmax are given in radians in the next column. The last column gives
the corresponding value of the angle V, (see Fig. 2), where

so cos Om - 1
Cos qmax =

- cos max

Entries are included in Tables 1 and 2 for the extreme case so - 0, where the torus
becomes a wire loop of infinitesimal thickness. Exact limiting values of the fields and
moments for such a loop are easily calculated since the problem reduces to that of a
uniformly magnetized infinite cylinder (9). In fact, the calculation can even be general-
ized to the case of a loop of elliptical cross section, with semiaxes b and c, as shown in
Fig. 5.

Fig. 5 - Wire Loop of Elliptical
Cross Section. As R/b -o and
R/c -*,the mean equivalent sus-
ceptibilities of this supercon-
ducting loop approach the limits

7~ (1 +f 'L (1+
For the case of a circular cross
section (b : c = r), Table 1 shows
that these limits are verynearly
reached when R= 10r.

2b () /

_ 2c
- R

The susceptibility and fields can be represented by the following approximate for-
mulas, where the maximum relative error for s o i. 1 is given in each case:

3 In so + 1
IT -1.5 + 7.6

H 1/Hr irn 0 -

H0 (s o + 1)3 / 2

o< 0. 002

(< 0.001 for s o > 2)

-4. 4/S 0

e + 0.06
+ I2.4s o

E < 0. 0005

so = R
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+ 0. 096 - 40 e' C< . 002

(< 0.001 for s o > 2).
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Appendix A

DERIVATION OF SUPPLEMENTARY CONDITION
FOR COEFFICIENTS

Equation (8) can be derived by using Gauss's law for the magnetic field. Let the
torus lie as shown in Fig. Al, with the applied field H, in the positive x direction. Con-
struct a Gaussian cylinder along the negative x axis, the base at T = o , with radius and
length RI P where RI tends to infinity. The net flux of the magnetic field through this
surface must be zero.

Fig. Al - A cylindrical Gaussian surface,
centered on the x axis, is used to derive
Eq. (9). The integral fH i . dA over the shaded
area is calculated as R I -+ 00.

/

This flux can be written

TR1 2 H - (R 1 2 - 2rp2) Ho + fH .dA = 0

the first term representing the flux of H0 crossing the end of the cylinder at x IT -II, and
the second representing the flux of Ho passing through the end at x = o. The integral
covers the whole surface of the cylinder except where x = 0 and s > so. Thus the fact
that H = 0 within the torus is taken into account. Now as i1? - 00, H, will vanish on the
surface of the cylinder except on the x o 0 end. If the integral of H, over the y-z plane
is denoted by (,D then

DI: fJf Hidydz
X=0

8<8,

S277r
2 H, 0

This clearly expresses the fact that the flux of Ho which is expelled from the torus when
it becomes superconducting must reappear outside.

Substituting the expression derived previously for H., and integrating over the half
plane 0 = o gives:
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1 2 T 8 _ _ _ S -s a~ 2 2 V/ T H o ( C O p) 2 00 1 S) C o
1 , dPf 2 ds ( a ) (s- cos A n2P- 1 /2)c n]j

0 1 (82 - 1)1/2 ( 1) n=O

a 0
4 v Ho a 2 LAn

I
f Pn- 1/2(s)ds IT

1 ~ 2 - -

8 °
' (

s ° p 1 ''oi ds
,8 H a 2  An s pn/ ( S) Q 0l/ ( S) s - 177 0- ft f 12 n- /

71=0 1 8 -

If these integrals are evaluated,* the result, when ( 1 is equated to

27ra 2110sTr o  2
s2 1

is

2 Pn 1/2(So) Qn- 3/2 0 -( + Pn_3/ 2
(

0 ) Qn-l/2
(

0)

*See Erd4lyi et al. (4), p. 169.

cos nqdq

(s - cos T)' / ,

8(s02

8('S02 -_1

Ano [ (n
nt=0



Appendix B

NUMERICAL CALCULATION OF COEFFICIENTS

To calculate the coefficients {A}, the ring functions and their derivatives must be
evaluated for values of n greater than those in existing tables.* Methods of doing this,
using the recurrence relations for Legendre functions (Eqs. 5), have been described by
other authors (11). Successive applications of the recurrence formula must be made in
the direction of stability:t increasing n for the {PI,/2 } and decreasing n for the {Q< 1 ,2 }.

When these functions are known up to a sufficiently large value of n, and substituted
in Eqs. (7a) and (7b), then all the equations can be reduced to two-term recurrence
formulas.

First, Eq. (7a) is of the form 60A o + coA = do . If this equation is solved for A0 and
substituted into the second relation, involving AO , A,, and A 2 , that relation can be re-
duced to the form 6,Al + c1 A2 = dI. By continuing in this manner, a set of two-term
relations is derived:

6,,A, + c,A,+l Id,, n = 0,1,2,..., N.

Now if a suitable approximate value for An+,1 is chosen (AN+ 1 i: 0 or, better, AN+I = AN/e 2 u °

where e ' - 8o+ v7-T), these two-term relations can be used to compute successively
each A., n N N - 1 . o.. ,. The backward direction of recurrence is, as might be ex-
pected, the direction of stability for this computation. Thus, the computed values of the
{A, } for small values of n depend very little on the initial choice for AN+,, provided N is
chosen large enough. A sufficiently large choice for the least favorable case computed
here (s o =i 1.1) was N = 30, which gives at least six significant figures for each of the
first twelve coefficients.

The auxiliary relation

N

N0 A , P S) 0 (n+_ S)Q0 ( )] -72n _-1/2 ( 0 Qn _3i 2 ( o )  _ n + pn- 3/2 s  0 nI/2 0 -8 12) t~~/2 ~s,)Q~-~2(~ J 8(s02 -1)

(a truncation of Eq. (8)) then serves as a check on the process.

*Reference 10 tabulates the functions for the
tSee Abramowitz and Stegun (7), p. xiii.

first six values of n.



Appendix C

CALCULATION OF THE MAGNETIC MOMENT

It was asserted in the text that if

m0  a 3 
(02 - 11/2 2T dO

2
T

0 .

dp B[Ho sin q) cos 0 + (So2 1)1/2 H,6 cos q sin ]

(-cos () , o I

where Ho = Ho;, then

(sowher -2is 2 a311 the volu -H V

where V is the volume of the torus.

The simplest way to
H0 in their closed form:

calculate the integral is to start with the o and p components of

( 80 2 -1 ) 
1 / 2

Ho = -H o cos 0ow 80 - cos p) sin q)

Hoo = -H o sin 0

giving

m 0 =-2Hoa
3

(So
2 - 1)

= -Horia 3
(s 2 - 1)

7T

f dO
7f oc~ [ s in (p c o 2 0 .2 00 (s,-o sq' 8 n2TCosp 2o+ Cos T sin20f(S o C 0os (P) s o0 - Cos (P

sin 2T

s o - cos P4

cos (p
+(s o - Cos I)

-277
2

a
3
H 0  2o 3/2 - HoV

(so2 - 1)

where V = 2n211r 2 is the volume of the torus.
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