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Systematic Errors in Ultrasonic

Propagation Parameter Measurements

V. A. DEL GROSSO

Propagation Branch
Sound Division

It was shown in Part1 of this series of reports that appreciable errors in sound speed
and sound absorption determinations may be attributed to a neglect in applying appropri-
ate corrections to those situations closely approximating free-field conditions (finite
size, plane-parallel source). In the present report it is shown that appreciable errors in
the measurement of sound speed and sound absorption for guided mode propagation may
be attributed to neglect in applying corrections that may be required because of the selec-
tion of geometric parameters or the method of measurement.

This report contains graphs of pressure and phase, relative to plane-wave values and
averaged over a plane-parallel receiver of size equal to the source size, for acoustic
energy propagation down a right-circular liquid cylinder with lateral boundary condition
appropriate to one of the following: absolutely rigid walls, infinitely flexible walls,
liquid walls, or elastic solid walls. The latter boundary condition, which is considered
to be that most appropriate to the situation of a liquid contained within a thick-walled
metal tube, is shown to result in maximum anomalies in sound speed determinations when
the transducer completely closes one end of the tube.

INTRODUCTION

Because the apparently incompatible results
obtained by different experimenters using both
similar and different techniques (1-3)indicate the
presence of unresolved systematic errors, an in-
vestigation into the anomalies of ultrasonic
propagation parameter measurements has been
undertaken. These systematic errors do not lend
themselves to statistical manipulation, so the
present attempt is to predict the theoretical be-
havior for specific geometric configurations of
acoustic test setups and to correlate this be-
havior with experimental observations. The intent
is to gain a sufficient grasp of the behavior of
laboratory acoustic instrumentation in order to
ascertain the need for, and, if necessary, to ap-
ply, appropriate corrections. Of course, if the
proper corrections are known and made, there is
then no error due to the particular effect in ques-
tion. Ideally, experimental methods requiring no
corrections could then be selected.

Part 1 of this series of reports (4) considered
some predictable, and observed, effects of free-

NRL Problem S01-02; Project RF 001-03-45-5251. This is
an interim report on the problem; work is continuing. Manu-
script submitted June 15, 1964.

field diffraction and indicated that appreciable
errors in both sound speed and sound absorption
could be attributed to these effects. An earlier
report (5), primarily concerned with the measure-
ment of sound speed by interferometry, dealt also
with the relatively simple problem of axial wave-
guide propagation in a right-circular cylinder with
absolutely rigid walls; the results indicated that
a deliberate attempt to destroy cylindrical sym-
metry could in fact closely approximate the con-
ditions of free-field propagation even for con-
tinuous waves in a terminated enclosure.

The present report is concerned with guided
mode propagation of acoustic energy and the
anomalies caused by geometric constraints. For
simplicity of calculation the medium considered
is assumed to fill a right-circular cylindrical
cavity of finite radius and semi-infinite length—
that is, terminated only at one end by a driving
source. This cavity in turn is assumed to be
located in another medium of otherwise infinite
extent in order to avoid ring resonances, outer
reflections, and other phenomena associated with
the finite wall thickness of a container. The lat-
eral boundary conditions considered are those
relevant to (a) an absolutely rigid boundary, (b)
an infinitely flexible boundary, (c) a liquid
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boundary, or (d) an elastic solid boundary. Part
3 of this series of reports will remove the above
restriction and consider liquid cylinders contained
in shells; Part 4 will add viscosity to more ade-
quately specify the appropriate boundary condi-
tions; Part 5 will deal with iterative reflection
for continuous waves resulting from the addition
of an elastic termination to the open end of this
cylindrical cavity, and Part 6 will correlate these
predictions with recent experimental results. It
should not be necessary to state here that small
confined samples are nearly prerequisites for
adequate specification of homogeneity and ex-
ternal physical conditions of a test liquid.

Many reports pertinent to this investigation
may be found in the available literature. Possi-
bly the earliest report, dealing with gases, dates
from 1877 and is due to Lord Rayleigh (6). Kras-
nooshkin (7-9), though principally developing an
interferometer theory, followed the 1868 results
of Kirchhoff (10) in assuming the near-trivial
case of absolutely rigid walls with no losses, no
thermal conductivity, and perfect smoothness to
allow free slipping. Experimental confirmation of
some of the predictions of Krasnooshkin were
made for absorption results by Van ltterbeek in
1951 (11) and for sound speed results by Bell in
1950 (12). Morse (13) discussed the theoretical
treatment given by Rayleigh. Hartig and Swanson
(14) gave an excellent account of these modes for
low frequencies in 1938, and Jacobi (15) in 1949
continues not only for high frequencies but also
for the interesting case of liquid walls, besides
the other near-trivial case of infinitely flexible
walls. Biot (16) discusses a cylindrical bore
through an elastic solid and Lin and Morgan (17)
consider thin elastic walls.

It should be noted that a complete theoretical
treatment of the case of propagation in infinitely
long solid cylinders was also done by Pochham-
mer (18) and Chree (19) in the previous century.
The liquid cylinder with infinitely flexible walls
is a degenerate case of this, although in some
recent work it has been offered as a representa-
tion of the rigid wall situation.

Many other investigators (20-48) have con-
sidered aspects of this problem. Among the
latest are Redwood (42) and Carome and Witting
(44) at John Carroll University. The latter group

pase the interesting thesis that the example of a
liquid confined in a metal-walled cylinder is
described more accurately by the theoretical
formulation pertinent to infinitely flexible walls
rather than to absolutely rigid walls or some
combination of the two. Needless to say, this
statement, for which experimental evidence is
proferred, merits very careful analysis. Refer-
ence must also be made to the recent work of
Elco and Hughes (48) who point out the obviously
inadequate approximation of an elastic lossy
boundary by an absolutely rigid one and who
rightly question the validity of the common, but
unsatisfactory, assumption of free slipping along
perfectly smooth walls.

The formulation of this report will be derived
in a rather elementary fashion. It is hoped that
this will facilitate interpretation and permit more
easy reconciliation with the intuitive feelings of
experienced investigators which are too often
quickly dismissed.

GUIDED MODE FORMULATION IN A
RIGHT-CIRCULAR CYLINDRICAL CAVITY

As stated in the Introduction, for simplicity of
calculation this report will assume a liquid me-
dium contained in a right-circular cylindrical
cavity of finite radius b and infinite extent along
the positive z axis. The cavity, which is termi-
nated at one end by a baffle containing a driving
source, is located in another medium of infinite
extent (see Fig. 1).

As usual we assume a velocity potential
¢(r,0,z, 1) throughout the cylinder which satisfies
the wave equation

2
v - L 96 (1)
c2 (9t2

Separating out the time-dependent variable so that

¢ = &(r.0,2) T(2),

the separation constant k? is introduced as

and the homogeneous time-independent wave
equation, or Helmholtz equation, is

Vig + k2 = 0.
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Fig. 1 — A right-circular, liquid, cylindrical cavity of
radius b is assumed as the geometry for this discussion
of guided mode propagation. The cavity is capped at
one end by a driving source of radius a and a baffle.
The cavity is assumed to be infinitely long in the + z
direction. The outer medium is infinite in extent.

For simple harmonic time variation, the time-
dependent equation

2,
c?_{ L R2E32T =0
or?

yields
T Ael®t | Be it

where

[ 277
k=T X

In cylindrical coordinates the Helmholtz equation
is expressed as

Pp 1 0P

9%p 9%
A

1
+ -— + —
O P

+ k% = 0.

Separating the variables so that
¢ = R(r) O(0) Z(2) ,

the solutions of the equation are of the form

® = C cos nf + D sin nf
7 - EJd9% 4 Fe 9%
and rVkZ_qz
R - g [ -«
n n=>0

where ¢ = B +i0, B = 2n/A(=k), n is an in-
teger, and g}n is the nth-order Bessel function of

the first kind. So the general solution of the
time-independent part of the wave equation is

Dom = (Knm cos nf + L sin n@)

' (2a)
g.n(r kz - qnm2 ) eizqnmz'

To limit consideration only to those solutions
with circular symmetry, » is restricted to zero
and the function ¢ is independent of 0; thus

¢‘0m = ¢(r:z)
KOm 30<r V k2 — qém)eiiQOmz

If only outward going waves are considered, then

KOm g,o(r\/kZ _ qgm)eiiq()mz (2¢)

is appropriate for a time dependence e '™ If
Yom = o, (= iB — @) is imaginary, Eq. (2¢)
represents a wave propagating along the positive

(2b)

¢0m

z axis with a complex phase velocity

C - ___(‘)__
0m = By, + i%,

If y,,, is real, there is no propagation. If ab-
sorption is neglected, then of course ¢, = 0
and C, = w/f;,, - In the immediately previous
report (4), it was shown that phase velocity C, ,
group velocity V. and free-field plane-wave
phase velocity C are related as

c? = C, V (3)

Om Om

where V, is the group velocity of a particular
“mode” (corresponding to a specific value of m).
Without here specifying the particular charac-
teristic equations whose solutions or character-
istic values are the particular modes referred to
(the calculation of the appropriate characteristic
functions ig detailed in later sections of this
report), we may express the characteristic value

X

as
“0m

X

Om

b V> - 4} (4)

where b is the cylindrical cavity radius. So
the argument of the zero-order Bessel function
may be expressed as

V=2, = g2 )

b
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For now, since the specification of the charac-
teristic values involves boundary conditions
equivalent to equating impedances, we calculate
the impedance in the radial direction on.the
liquid cylinder side of the radial boundary. Re-
storing the time dependence temporarily,

¢0m = MOm g.O(r v kz - qém )ei(qomz-wt)"

The excess pressure is given by

d¢

P - _p 22
P dt’
whereby
P Momf}o‘(r‘/’ez _ q(2)m>iwpei(qomz—a)t)
or

P() = Pogo(r V2 - 45 ) (©6)

where
Py = diwpM,,, eidomz @0

The particle velocity in the radial direction is
given by

0
vy - 2,
whereby

Ulr)y = M

0m %[o(rvkz“qzom)}

o i(dom= =@
@)

]

P
jw—;()) V i? —qém g'l(r\/ - q(z)m>

The impedance is given by the excess pressure
divided by the particle velocity, so

—iop §o(rVEE-22, )
Vii-gl, (Ve -g,)
(8)

in the radial direction. The particle velocity and
displacement ¢ are related by

=l e

Impedance =

U = é‘l‘a)
so that P/§ = Piw/U, or

GROSSO

P B pwz g’o(" \& kz_q(%m)
¢ Viz -2 4, (V2 -2, ) @

CHARACTERISTIC
FUNCTION EXPANSIONS—ORTHOGONAL
AND NONORTHOGONAL

We will assume that the time-independent
velocity field inside the cylinder may be ex-
panded in terms of the natural modes ¢, as

p(rz) = Z Ky, g'o(r r

m =0

Z’") eifom?  (10)

where we have assumed radial symmetry. The
sequence of characteristic functions must be a
complete set in order for this representation by a
series to be possible. To easily calculate the
we would like the
sequence of characteristic functions to be mutu-
ally orthogonal.
To determine the amplitude of the various

expansion coefficients K,

modes we write the velocity potential at z = 0 as

P(r,0) = Z K, g}0<rf%’3>. (11)

m

Multiplying both sides by

and integrating with respect to r over the limits
0 to b we obtain

b X
f ¢(r,0) 8’0<r —Z—E> rdr =
0

[ 2 o) )

(12)

Assuming a transmitter of radius #(a < b) under-

going harmonic vibration as a plane circular
piston, then

@(r,0) = ¢, (a constant)
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and the left-hand side of Eq. (12) becomes
ab a
f )rdr~ ¢0X gl( o[’“b‘>'
0

(13)
Further, assuming (a) a receiving transducer of
r = a)
with response proportional to the vectorial
average of the excess pressure over the area of

a

bt r

the same radius as the transmitter (i.e.,

the crystal and (b) weak interaction of the trans-
ducers with the acoustic field, we obtain for the
average potential

<>

Il

1 a
— f (r,2z) 2 rdr
0

wa

(14)

Now if the orthogonality relation could be in-
voked, the only term remaining on the right-hand
side of Eq. (12) would be that for £=m viz.,

b XO
m
f Kom302<’ b >Td’ =
0

Kom%z[ 02(x0m) + f}lz(XOm)],

Using Eqs. (12), (13), and (15), the expansion
coefficients are given by

2“5'1 (XOm%)
? 6%y, (42 (Xon) + $12(Xom)]

for orthogonal characteristic functions, and Eq.
(14) would then become

(15)

K

0om —

(16)

1 “ Xo
m)
L3 [ Kbl )t
wa 0
m

A

Relative to the plane-wave value, the time-
independent velocity potential is given by

2 ay =ik - )z
4g ( Om b) z 40m
@ - —— :
m XOm [go (XOm) + %1 (xOm)]
As in the immediately previous report dealing

with free-field diffraction (4), we calculate the
magnitude of the rms pressure (averaged vectori-

(19)

ally, relative to the plane-wave value) over the
receiving transducer as

<P> rel =\/R62 <¢>rel + Im2 <¢>rel :

The phase difference <6>rel
phase is given by

(20)

from plane-wave

<6> = 6> . -~ L6
rel diffracted plane 1)
fm<p> |
= tan Re<(;'>> .

rel

If we are not able to invoke orthogonality so
that Eq. (15) is not the only term remainingon the
right-hand side of Eq.(12), or, in other words, if

b

X X
f ﬂ'o(r —Z—”’) 2}0<r ~—ZE> rdr £ 0 for m #1,(22)

0

the determination of the expansion coefficients
is somewhat more difficult. In this case Eq. (14)

becomes
2b 1
> == Kom 5— 41 (Xom 1,) “om*, (23)
Om
m
with

XOm igom?
5 /€ B rdr

2
na
m 0

> :ZMO f 24 fon %)30(,

bXOm [302 (XOm)

and, finally,

@ =) 081" (Xon § ) 0n”

m XOmZ[gOZ(XOm) + 8'12 F(XOm)]

.(18)

, (17)

+ 312 (Xom)]

2b
<¢>rel = ;l_Q‘TOZKO"’
" (24)
1 —i(k - =z
X—Sh (XOm %) Hk " 2om)
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and K, is not given by Eq. (16). To determine
K, in this case, first we simplify the notation
and write the characteristic functions as

X
Om
R, = g'n(r b )

so that the previous orthogonality condition may
be written as

(25)

b

f Ry, Rop rdr = 0.
0

(26)

The criterion for this condition is derived as
follows.

Bessel’s equation, with the parameter kz—qz,
may be written as

2 2
Ti—[g+d—R+((k2-q2)r—n—)R=O(27)
drz dr

and cast in the form of the Liouville equation as

2R + <<k2-q2)r- ﬁf) R =0

dr (28)

where the parameter represents the separation
constants, and R’ = dR/dr. To check orthogo-
nality we consider solutions for different values
of the parameter for which

Ry, = %(N kK - qgm) = g(,(r—x—‘;—’”). (29)

Because the Liouville equation is self-adjoint
we may simply write it down twice with different
subscripts, multiply the first equation by the
characteristic function of the second, multiply
the second equation by the characteristic function
of the first, subtract the two, and integrate over
our limits of r from 0 to b (the tube radius). The
result of this procedure, after a slight rearrange-
ment, is

2
Om

b

> f ’RomRoﬁdr =
b 0

2
- Xor

(30)
b b

f R, ;ld? (rRé)g)dr - f Ryp % (rR(')m) dr
0 0

Considering the first integral on the right-hand
side, integration by parts, with

u = R du = Ry, dr,

Om >

d ' :
dv = ;j;(rROE)dr' and v = 7Ry,

transforms the integral to

b b

1
ROm rROE - f
0

0

1 7
rROff Ry, dr.

Similarly, the second integral on the right-hand
side of Eq. (30) becomes

b 3
I3 ! I
Rop Ry, | = f ™Ry, Rop dr,
0 0

and the difference between the two, or the com-

plete right-hand side, is
b b
1 !
Rom "™Rog| = Rop 7Rgy, |

m

which may be written

right- X m X X
2 ) 2]

side
(31)
b
Xop Xom Xom
+$0 r'—b"- r A 5,‘«1 r b
0
Finally,
right-hand = X, o (Xop) & (Xo,m)
side
= Xop go (XOm) 3'1 (xolZ) (32)
so that
f e b’
om Nol AT = T o
XOm - XOE

0

Xom o (Xat) &1 (Xon)
= Xop % (Xom) 31 (xoﬂ)] (33)

and the orthogonality criterion is
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Xom gO(XOIZ) Sl (Xom) = Xop gO(XOm) $h (Xgp)= 0 for € # m. (34)

But whether or not the characteristic functions are orthogonal, Eq. (33) remains valid. We also find
straightforwardly that
b

2
2 b 2 2/
J ROm rdr = 7 ,:go (XOm) + gyl (XOm)jl' (35
0
Returning to Eq. (12) and using (13) we have

b X X |
w0 ) - ) el )l =z
0 m

or, using the definition

we obtain

b
ab a
) Xy g’l(XOEZ) :J ZKOm Rom Rog rdr (37)
0 m

Which may be expanded as a set of simultaneous equations as follows:
b b

ab a 2
L= 0 ¢y 5 $i(Xe07) = f Koo RZ, rdr +f Koy Ry Roy rdr
00 0 0
b b
+f KOZ Ryo Ro2 rdr + f K03 Ryo Ry3 rdr + ...
0 0
b b
. ab a 2
E = 1: ¢0 X'—— SI(XOI '5) = J‘ KOO ROI ROO rdr +f KOl ROl rdr
01 o o
b b (38)
+j Ky, Ryy Ry, rdr+J K03 Ryy Roz rdr + ...
0 0
b b
ab a
=2 % gl(xozz) = f Koo Roz Rog rdr + Ko1 Roa Roy rdr
02 o o
b b
+ f K02 R(z)2 rdr + f K03 Ry, R03 rdr + ... , etc.
0 0

If the above series in £ is terminated after a finite number of terms, that is, if the characteristic
function expansion contains a finite number of modes, then the set of simultaneous equations above may
be solved directly for the expansion coefficients K, , which may then be used in Eq. (24). Obviously,
the simpler method of determining the coefficients by Eq. (16), which is valid for an orthogonal set of
characteristic functions, is much to be preferred.
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After we determine the characteristic func-
tions from the characteristic equations for the
several boundary value conditions to follow, we
will check their orthogonality and investigate
possible simplification of the determination of
the expansion coefficients if any characteristic
functions prove to be nonorthogonal.

CHARACTERISTIC EQUATIONS
Absolutely Rigid Boundary

Though the absolutely rigid boundary condition
cannot be obtained in reality, it does present an
interesting limiting case. If we consider that the
hypothetical cylinder of liquid down which our
signal is propagating is enclosed radially withan
absolutely rigid wall in the standard sense; we
must have the radial component of particle veloc-
ity U(r) going to zero at the boundary r = b, i.e.,

U(r)

= 0. (39)

r=b
From Eq. (7) we find that this is equivalent to

letting

o =(-4,) =0, for r=b, (40)

or

E}I(hV/az - q§m> = 0,

which may also be written
g’1 (XOm) = 0.

This condition is tantamount to letting the dis-
placement ¢ go to zero or the impedance go to
infinity, which is readily seen from Eqgs. (8)
and (9).

To indicate that the above characteristic equa-
tion applies to rigid boundary conditions we write

1 (Xg) = 0 (41)

where the R stands for rigid. We number the
modes m from zero since Xp, = 0 is a charac-
teristic value in this case. Thus

m = 0,1,2,3,...

“/2 2
bVk ~ 9Rm

and

me =

of

2
kz (me>

b (42)

9rRm =
where k = w/c = 2n/) and qp, = o/Cp, =
277/)\Rm.
From these we find that the real modes are
limited by

2 2
C Xunm
bZ
which is equivalent to

Xg, < kb.

m

For a value of m which makes the characteristic
value greater than this value, the wavelength
becomes imaginary and we have a nonpropagating
or evanescent mode; so we shall use this limiting
value for m. Finally, from

(Re<¢> “”>R -

XRm_<Jeb (43)
441 (X R %) cos [ (4g,, - k) 2]
7 =0 X??m g02 (XRm)
and
(!m <¢> rel) =
R
X rm<kb (44)
, 43,12 (XRm %) sin [(qum - k) z]
X.%?m 3,02 (XRm) ,
m=0

which are obtained from Eq. (19) using ﬂl(XRm) =0,
we find that ¢ = b is a special case which, by
the application of L’Hospital’s rule, yields only
m = 0; this value of m is found to be the plane-
wave mode C,, = C and is sometimes written
C =Cpp,and Apy = A = Ay

We recall that Eq. (19) is a result of invoking
orthogonality. If this does not hold, then we
have Eq. (24) with different values for KRm or
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XRmZkbd

(Re<¢>m)k -

m =0
and
XrRmS<kb
(tmes> ) -
m=0

Infinitely Flexible Boundary

The infinitely flexible boundary condition is
another trivial case which could be reproduced
only if a cylinder of liquid could support itself in
a vacuum. However, this case is a limiting situ-
ation and we will therefore calculate it. The
statement invoking a pressure release boundary
means just that; the pressure goes to zero on the
radial boundary, or

Pl _, = o. (47)

From Eq. (6) we note that this is tantamount to
the condition

2 2 _
ifo(b k* - q0m) =0, (48)
which will be written
o (Xrn) - 0 )

where the F stands for flexible. In this situation
X g, = 01s not a characteristic value, so m
takes on the values

m = 1,2,3,

Again, as in the case for an absolutely rigid
boundary, we find that m is summed to

2 2
c XFm

A

b2 Fm kb,

but here C o does not exist.

2bKRm 2
FpXp, 51 (Xem ) o5 [(7rm ~R)z] [ 45

26K, o
FoXny 11 (kn) sin[(arn-#)] [ GO

Finally,
(Re<® o)) -

XFm<kb (50)
45}12(me %) cos [(qu - k) zJ

Xi“m §12 (XFm)

m=1
and
(Im <¢>rel) -

F‘
Xpmlkb 1)
4312 (XFm %) sin [(qu - k)z]
X:;’m glz (XFm)
m=1

where we have used 5‘0(me) = 0 and have again
invoked orthogonality of the characteristic func-
tions R .- 1f this latter does not hold, the
modification previously discussed for absolutely
rigid boundary conditions must be made.

Thin Elastic Walls

Although the thin elastic wall situation is not
calculared in this report, it is included here
mainly because of the interesting observation of
Jacobi (15) that a 2-1/4-in. (outside) diameter
steel tube with a 1/64-in.-thick wall was found
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to be flexible enough so that the observed mode
(the first real one) experimentally followed that
for a pressure release tube.

If we use the equations of motion for a tube,
given by Lin and Morgan (17), which neglect
rotatory inertia we find that the X, (here des-
ignated X . are the zeroes of

p 8‘0 (X7.n) _ _<Cp>2 .

b
P Xrp &y (X1)
2 2
& (=) (9
bw C_ 12b2 Cp C
1 (52)
(&) (o) (@) (&)
where p is the contained liquid density, p is the
tube metal density, v is the Poisson’s ratio, C
is the compressional velocity in the wall material,
h is the wall thickness, K is a somewhat arbi-
trary constant slightly less than unity, and the
subscript T refers to the tube.

We further find that there exists one imaginary
root so that

2 2
ch, < 2

but for all the other modes
2 > 2
CTm ¢
Another observation is the existence of Cro and

C; atall frequencies, but the other modes have
cutoff frequencies given by

(e 2

0

Cp C _
g (b S\ Pp o< ko
1 ¢, C ph C, C

For m # 0 we have the relation

$o(X1m) go(b V2 - q%w)

(54)

while for m = 0 this becomes
—go(”‘izro - kz)
b \/‘Igro - & gl(b bq'zro ‘kz)

using §,(iX) = §,(X) and $,(iX) = i4,(X).

(55)

Liquid Boundary

The liquid boundary condition is the first
really interesting situation and requires that we
distinguish between the two media involved (see
Fig. 2). Medium I is assumed to have an imped-
ance p,C; and medium Il an impedance p,C,.

Fig. 2 — Cylindrical cavity containing (liquid) medium
IThaving an impedance g C; surrounded by mediumII with
impedance p,C,. (See Fig. 1 and caption.)

The previous relation for the time-independent
velocity potential given by Eq. (2¢) is then re-
written as

¢OmI = KOmI gO(r v klz - qgm ) equmz (56)

and

I _ 11 1 V 2 2 ) ]
¢Om - KOm }(0( )(r k2 ~ om e'om*
(57)

where, in the notation of Jahnke and Emde,

}(0(1) = 30 + ino.*

bl VA (V)

*See discussion concerning this function in Appendices A
and C.
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Imposing the boundary conditions at » = b of
continuity of pressure and continuity of the
normal component of velocity amounts to requir-
ing continuity of impedance, or

iw I i I
e erale) . 8)
or or
r=>b r=4

which becomes

p1 go (b klz B qgm)

\/ 2 2 2 2
RS = 4o gl(” kq ‘qOm)

(1 2 2
Pz}(o( )(b k)" - ‘Iom)

V2 2 (V3 2 2
kY~ Qom Hl( )<b k)" — qOm)

(59)

Now for truly guided waves, g{)II must vanish as

r > . The function Ho(l) vanishes for an infinite
complex argument with the imaginary part posi-
tive, so we require

2 2
9o, = k>

or (63)
yZ > x2,

For Y to be real we require C, > C; and may
write

go(x) P2 HO(I)(im)
x§,X) " p; Vy2 Zx2 g 0 (:Vy2 Jx?) ,

(64)

and m is summed to X;, < Y. We may note that
for an absolutely rigid wall the particle velocity
U goes to 0 at the boundary; so from Eq. (7)

CRm 2 CRm 2
Vi’ - g5, S’l(bbklz - q??m) = dgmY (T) -1 §1<qub (T) -1 ) =0 (63)

Defining
V 2 2
X=1b kl = 9om
so that
2 (1)2
x2 = p? (_OJ_Z - "‘2—’>, (60)
C1 CO
and
2 2
Y = b kl - k2
so that
w’ °
Y? = b2<.-—2 - =) (61)
Cl C2
by rearranging we obtain
4,00 o }(0(1)( x2 _y2 ) (62)
Xgl(x) P1 ‘\/XQ _y2 }(1(1)( 2 _y2 )

which implies that either CR = C, the “plane-
m
wave” mode, or

51<qub (%)2 - 1> = 0,

the “reflected conical wave” modes. Just as the

(66)

characteristic function for the rigid wall limiting
case is derivable as above from this liquid wall
case, so may we obtain the infinitely flexible
wall limit (where p > 0) as

o)1) o

In both these limiting cases the argument of the
Bessel functions is just X,

Returning to the liquid wall case, we note that
for p; = p, and k; = k, we obtain (from Eq. (62))

é _ Hl(l) _ g’ogl + T[OT(I = i(glno - 6Lonl)
g’o Ho(l) o2 + 7-(02

(67)

(68)
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By equating the imaginary parts we find
. glﬁo - gf‘onl;

but 5}17‘(0 ~ &, = 2/aX # 0 for any X (except
X = =), so we find that the above limit is not
valid in this equation. That is, we may not, fol-
lowing the development of Eq. (62), let p, - p,;
and kZ - kl'

The values of X satisfying the characteristic
equation (64) are the characteristic values for
liquid boundary conditions and will be denoted
by X, ., for future use.

Elastic Solid Boundary

As in the previous liquid boundary case, we
must also consider two media for an elastic solid
boundary. But here, as usual for elastic media,
we will use a displacement vector § given by

s =Vd + VxV¥ (69)

where @ is the scalar displacement potential and
¥ the vector displacement potential satisfying
respectively, the “wave” equations*

2
V2p - ._1.. Q_(D_ -0
c? or?
5 (70)
Viy _ E _ (2_‘{‘ - 0
2 CS2 dt?

with the compressional velocity

C :1})\+2y,
¢ P

and the shear wave velocity

being related to Poisson’s ratio v by

(%) -

Because of our axial symmetry we will retain

2(1-v)
1-2v °

only the single component 8 of ¥ and indicate
this by the scalar ¥.

*The word wave is written with quotation marks because of
the extraneous term in the second half of Eq. (70). See
Appendix B for more details.

For guided waves in the liquid cylinder, we
write

(71)

for k2 > qgm. For q(z)m > k% we would have
Stonely waves and would write

0, = 08, (Va2 - @2, ) itaonz=00 ()

where g'o(z'x) = Qo(x). Since ®; is a scalar dis-
placement potential, we have the pressure

p = -p®
and the particle velocity

9

8 B .
v, = (9rq)1’

but the particle displacement is

P_ 9
S: T or e
where the subscript r refers to the r component
and the superscript { refers to the liquid media.

For C, > (, the above relations become

p = Bopio’ go(’ Vi? - q(z)m )ei(q(’mz_wt) (73)

and
¢ 2 2
Sr - T (I)O k™~ Tom

&(NIJ ~Gom >ef<qom2‘f‘”> (74)

where we have used
1600 = 4%
so that
2 2

p - P go(b k qOm) 75
7 - .
i r=b k? - q(z)m gl (b Vi? - qgm )

Using the previous definition

X Ekaz—qgm,

Om
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this ratio becomes

(76)

Returning to the elastic wall, in analogy with
the previous solutions to the wave equation, we

write*
=, Ko(’ Vas,, - & ) e (Wt a0m?)
(77)
vo= ¥ Kl(’ Vg, - & ) eTH@ITdom=)

where the subscripts ¢ and s refer to compres-
sional and shear waves, respectively, and KO and
KI are modified Bessel functions of the second
kind.

The displacement components for the elastic
medium are

@y
St T 9 T Oz
and (78)
b 1 9
Sy = 5. * 7 é;(rllf),

and the stress components are given by

5 asr
Grr - 2p2Cs x
Os s Js
2 r _r =
* 2p5Cs (l 21/)(81‘ ot 8z>
and (79)

where pZCS2 is equal to the shear modulus y and

2({_v
2P Cs (l -2v

constant usually denoted by A.

) is equal to the other Lamé

o , ei(wt“QOmZ) _
rr

r=b

For axially symmetric cylindrical coordinates,
the elastic wave equations become

2D 1 0P ) 1

— + = 5=+ —= = — —

R O P T

C
and (80)
v 1 9y Wy P 1 9%y
_ 4+ - —_— - 4 —_— = — ——
or? r dr 72 Jz2 c? 012
S

so that, using these results with the equations
for o and s and the relationship between C_ and
C_, we obtain

c?
?® 9% v o\ &0
_ 29 = 25 — \ZZ
Ty = 2P2C5 < or2 araz> ! (1 —V) o2
and (81)
2 2 2
2 [ 0°9 _ 0°v 0°v
Trz = 2p2Cs (L:)raz 822> * P2 o2 ’

The two appropriate boundary conditions are
the vanishing of tangential stress at the bound-
ary, or

Urz = O’
r=b
and the equality
[4 =%
s‘Z S,
T
r=b r=b

From the vanishing of tangential stress we obtain

%o i(243,, - *J) Kl(b\/qgm—_?) (82)

7=
0 -\/ 2 2 ! “[ 2 2
2qOm 9om ~ kc KO(b 9dom — kc )

where the prime refers, as usual, to differentia-
tion with respect to the entire argument. Now,
solving for 0"lr~b we find

2p2C52 (q(z)m - kcz) (I)O K;(b v q(z)m - k’cz)

(83)

. 2 -‘[ 2 2 “/ 2 2 2{_V ‘\/ 2 2
- ’ZPZCS 90m ¥ 9om ~ ke ¥y K;.(b Tom — ks ) T prw (1_V)(I)0 KO(b dom — k¢ )

*See Appendix C for discussion of appropriate Bessel
Function solutions.

Solving for sr' we find, eliminating @, by
r=b

using Eq. (82),
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. ik >
s el(m!_QOmz) = - — lyo Kl (bm) (84)

’ r=b Zqom
so that
. " 2 2
o, idp,C ( 5 i 2) o, KO (b Vai,, - kc)
s = Yom\9om ~ R¢
S 2
k
"1, s ¥, Kl(b\/qgm - ksz) (85)

4p2C52 5 ‘/;—-—2 Kll (bVq(z)m - ksz)

9om Om s

. 2 v
s — i2p,C 2qp,, (l—v) .
K (b o~k 2) v (bV _— kz)
s 1 Tom ~— Rs 07" 9om s

+
kZ

Replacing the ratio ®,/¥, in Eq. (85) by Eq. (82), Eq. (85) becomes

20,C Ve — 52 ( - k2) K’é(” Ve, - &2 )
(

2 Om c

k. K

-
O N
R 3
(=)
!
il
MI\) (,}N Q
e e ON
3

2 ]
4p,C 5 ) Kl (b
* 9om Y90m — ks

2
k Kl(b T —

K (b\/q(z)m—k2>

v
+ p2Cs2 (Zq(z)m - ksz) (1 V) . (86)
\/ 2 2 ‘\/ 2)
Yom ~ kc K (b 9om ~ c
Using the identities
' ‘ Kl(x) 1" 1 Kl(x)
Kox) = =Ky () Ki) = =Ko = —/— Koo = -Ki = Koo + ——
and the relationship
2
v k.
1-v 1-2 k_z_ ’
we obtain
-‘/ 2 2
0., zpzﬁ)z 4P2‘0 qom 1/ Ko(b 9om ~ ks )
s, - 2 ( 3 2)
"1, bk, K1 bVay, — ks
2 2 2
py0° (245, - ( Tom — & )
2 - ( Om ) Om c (87)
k \/ 2 2 ( V )
s 95, =k’ K \6Vag,, - &
Finally, using the second boundary condition in conjunction with Eq. (76), we have
2 -‘/ 2 2
8"0 (XOm) P1 2 <4q0m> 2 L 2 KO(b Tom — ks )
Y 4 Ix_ o = - qOm - S
X X 2y 2 4
0m 31( om) P2 bk bk Kl(b\/q(z)m _ &2 >
2
2 2 N 2)
" (qum — k) K o#Ved, — & : (88)

bk4 ~kc K<I’WOm cz)
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Defining
2 2
Y, = bVk® - kg
and
2 2
Y. = bVE - k-,
and using the previous X, = b Vi - q(2)m , we
obtain
gO(XOm) P1 ~ 2

XOm gl (X0m) PZ

2
<4q0m> Y 2 X2
0m
b2k A *

s

KO(ij - xg,,;) (89)
k(Wiox,)

2 /
2 2 ;2 2 )
+ (qum - ks ) KO( )c - XOm
4y 2 2 (\/ 2 2 ) ’
ks Yc - XOm Kl Yc - XOm

which applies to the reflected waves or C, > C.

There is also one imaginary root or Stonely wave
for C > C, . The subsciits 1 and 2 on the
density p refer to the liquid « \d wall, respec-
tively. The applicable values of ks/kc are
between /2 and «, which correspond to values of
Poisson’s ratio v between 0 and 0.5. For guided
waves g, < k, or m is summed to Xom < kb
since X, > 0. Now C_ > C_,ork, > k_,
which implies that Y_ < Y_. Again, for truly
guided waves, ®! 5 0 as r - o« implies that
g2, >k’ and ¢, > k2,50 q5 >k? >k
or, finally,

<

0 < X5, <Y < Y.

Again we will denote the roots of the character-
istic equation (89) as the characteristic values

Xg,, Where the E stands for elastic wall.

It should be noted that Eq. (89) differs from
any previous work. A particularly pleasing cir-
cumstance is that the liquid boundary case can
readily be shown to be a degenerate case of (89).
For if there is no shear, then C_ = 0, &, = o,
and Eq. (89) becomes directly

gO(XOm)

XOm gl (XOrn)
-‘/ 2 2
__p_2_ KO( Yc - XOm)
P1 2 2 Vy?2 2 )
Yc - XOm Kl( Yc - XOm

which, by virtue of the definitions

K Dx) % Ko (X)

H(D(ix)

]

- 2X,00,

may be written

o (Xom)

_ZO\ Um)
xOmgl(X()m)
(1)(-\/ 2 2 )
Py }(0 z Yc Xom
P .‘/ 2 2 1(.\/ 2 2 >
z Yc _XOm Hl()l Yc —XOm

which, with Y_ = Y, is identically Eq. (64) for

liquid boundaries.
We note that for an absolutely rigid wall, the

impedance going to infinity at the boundary
amounts to the denominator of Eq. (75) going to
zero, or (611 (me) = 0. For an infinitely flexible
wall, again, we have the impedance going to
zero or, directly from the numerator of Eq. (75),
QO (XFm) = 0; these are the limiting cases pre-
viously employed.

ORTHOGONALITY CHECKS
AND NONORTHOGONAL SIMPLIFICATION

We will now turn our attention to the determi-
nation of the appropriate characteristic functions
and the calculation of the expansion coefficients
in Eq. (24) by using Eq. (38) or, if the functions
prove orthogonal, by using Eq. (16). Equation
(33) is

b
JR Rop rdr — —P
om “of 7T = T 2

0 xOm'_er

,:Xom Fo(Xor) $1(Xo,) = Xot 80(Xo,) & (XoE)b-'
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X
Om .
where R~ = gn (r ) and the orthogonality

m b
criterion is that Eq. (33) be equal to zero for
m# L.
In this section only we shall, for simplicity,
standardize the parameters as shown in Table 1.*
(These parameters are all varied later).

TABLE 1

Standard Reference Parameters Used in
Calculating Characteristic Functions and
Expansion Coefficients in Eq. (24)

A = 0.15 cm (acoustic source operating
wavelength)
a = 100 = 1.5 cm (acoustic source_

radius)
b = 2a = 202 = 3.0 cm (propagation-
cylinder radius; radius ratio

b/a = 2)
k = 2u/A (wave number associated with
wavelength A)
kja = 207
klb = 407

p,/p1 = 7 (p, is density of medium inside
cylinder; p, is density outside)
k, /k2 = 4 (wave number ratio for the two
media)
(ky/ky = Ay /Ay = C,/Cy; C is the velocity
in the indicated medium)
v 0.325 (Poisson’s ratio)
o = O (absorption coefficient)

I

For rigid wall boundary conditions, Eq. (41)
shows that the appropriate characteristic values
are the zeros of 91 , including zero, up to kb
where & is the wave number and b is the tube
radius. For the standardized parameters in
Table 1 we find that kb = 125.66370616 and the
appropriate list of characteristic values is given
in Table 2.

However, for this rigid wall boundary condi-
tion case we find that we do not need the actual

*All the calculations in this report use ka = 20 77, which im-
plies that @ =10 A. In the previous report (4), we recall
that graphs of <p>re1 and <9>re1 plotted ws. z N/ a* super-
impose forall ka 2 207. Thus all the graphs in the present
report are valid for @ 2 10A. The b/a parameter variations
used herein are obtained by changing only the value b.

TABLE 2
List of Characteristic Values
XRm < kb for the Rigid Wall Boundary Condition
[Characteristic Eq. (41)] and b/a = 2.0

m XRm m XRm
0 0 20 63.6113567
1 3.8317060 21 66.7532267
2 7.0155867 22 69.8950718
3 10.1734681 23 73.0368952
4 13.3236919 24 76.1786996
5 16.4706301 25 79.3204872
6 19.6158585 26 82.4622599
7 22.7600844 27 85.6040194
8 25.9036721 28 88.7457671
9 29.0468285 29 01.8875042

10 32.1896799 30 95.0292318

11 35.3323076 31 98.1709507

101.3126618
104.4543658
107.5960633
110.7377548
113.8794408
117.0211219
120.1627983
123.3044705

12 38.4747662 32
13 41.6170942 33
14 44.7593190 34
15 47.9014609 35
16 51.0435352 36
17 54.1855536 37
18 57.3275254 38
19 60.4694578 39

values in Table 1 to check orthogonality. From
Eq. (33) we note immediately that if the charac-
teristic values are zeros of 5}1 , then both terms
in the equation are identically zero. Thus the
characteristic functions derivable from the as-
sumption of absolutely rigid walls are orthogonal
and the relatively simple Eq. (16) may be used
for calculation of the expansion coefficients.

For infinitely flexible boundary conditions, we
likewise immediately note that the pertinent
characteristic values, the zeros of f,lo , result in
both terms of Eq. (33) being identically zero. So
the expansion of the velocity potential field
inside the cylinder may, for infinitely flexible
boundary conditions, as well as absolutely rigid
boundary conditions, be obtained in the relatively
simple formulation pertinent to orthogonal func-
tions. A table of appropriate characteristic
values for this infinitely flexible boundary condi-
tion, using the values shown in Table 1, is given
in Table 3.
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For liquid boundary conditions, the appropri-
ate characteristic values X;  indicated by Eq.
(64) are summed, according to Egs. (61) and (63),

up to
Y = bVE? - &)

where £, is the wave number of the contained
liquid and k&, is the wave number of the boundary
liquid. Our standard reference conditions are
ki /k, = 4 and b = 20A; with A; = 0.15 cm, so
for this case Y = 121.673. The appropriate char-
acteristic values are given in Table 4.

Since these values are neither zeros of ﬂo or
g'l » Eq. (33) is obviously not identically zero by
inspection. As a matter of fact, it is generally
true that the characteristic functions will not be
mutually orthogonal if the boundary conditions
depend on the characteristic value.

If we use Table 4 and calculate go (XLm) and
§1 (me) with the standardized value of b, we

TABLE 3
List of Characteristic Values
XFm < kb that are zeros of $o(Xp,) for the
Infinitely Flexible Boundary Condition
[Characteristic Eq. (49)] and b/a = 2.0

m XFm m XFm
1 2.4048256 21 65.1899648
2 5.5200781 22 68.3314693
3 8.6537279 23 71.4729816
4 11.7915344 24 74.6145006
5 14.9309177 25 77.7560256
6 18.0710640 26 80.8975559
7 21.2116366 27 84.0390908
8 24.3524715 28 87.1806298
9 27.4934791 29 90.3221726
10 30.6346065 30 93.4637188
11 33.7758202 31 96.6052680
12 36.9170983 32 99.7468199
13 40.0584258 33 102.8883742
14 43.1997917 34 106.0299309
15 46.3411884 35 109.1714896
16 49.4826099 36 112.3130503
17 52.6240518 37 115.4546126
18 55.7655108 38 118.5961766
19 58.9069839 39 121.7377421
20 62.0484692 40 124.8793089

TABLE 4

List of Characteristic Values
X; ., <Y for the Liquid Boundary Condition
[Characteristic Eq. (64)} and b/a = 2.0

m XL m m XLm
1 2.2716377 21 63.8405807
2 5.2211344 22 66.9679868
3 8.2022980 23 70.0963105
4 11.2055952 24 73.2254264
S 14.2292985 25 76.3552248
6 17.2712781 26 79.4856088
7 20.3289243 27 82.6164906
8 23.3996145 28 85.7477895
9 26.4809976 29 88.8794289
10 29.5710924 30 92.0113338
11 32.6682830 31 95.1434277
12 35.7712728 32 98.2756279

101.4078399
104.5399468
107.6717908
110.8031348
113.9335679
117.0622018
120.1859282

13 38.8790273 33
14 41.9907212 34
15 45.1056940 35
16 48.2234141 36
17 51.3434505 37
18 54.4654514 38
19 57.5891272 39
20 60.7142374

obtain Table 5 from Eq. (33) where the combina-
tion is such that the first characteristic value is
checked for orthogonality in turn with each suc-
cessive one, that is, the first with the second,

the first with the third, the first with the fourth,
etc. This amounts to defining { = 1 in Eq. (33).

Before commenting on Table 5 we shall deter-
mine the characteristic values X, for elastic
boundary conditions using the standardized pa-
rameters shown in Table 1. In this case we use
Eq. (89) with the roots summed from 0 <X  <Y.
The reference parameters from Table 1 yield
Y, = 109.474, and the characteristic values
smaller than this value are listed in Table 6.
From this table of characteristic values for
elastic boundary conditions and the reference
parameters, we again check for orthogonality, as
was done for Table 5 for liquid boundary condi-
tions, and obtain Table 7 where again the check
is for each value in turn with the first.
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Tables 5 and 7 indicate that the characteristic
functions for both the liquid boundary condition
and the elastic boundary condition are nonorthog-
onal, as might have been expected. However, it
does not seem trivial or unduly heuristic to state
that they are almost orthogonal. In any event, it
would be interesting to calculate and compare
the expansion coefficients K, obtained by the
relatively simple Eq. (16), which invoked ortho-
gonality, and the more exact Eq. (38), the latter
being properly terminated after a finite number of
terms, as previously shown.

Table 8 is a comparison of the expansion
coefficients calculated by both methods for the
liquid boundary condition reference parameters,
and Table 9 is the same comparison for the
elastic boundary condition reference parameters.

TABLE 5

Orthogonality Check of the
Characteristic Functions Listed in Table 4.
The Values of Table 4 are Used in Evaluating
Eq. (33), Which Would Equal Zero
for Orthogonality.

TABLE 6

List of Characteristic Values

Xg,, < Y, for the Elastic Boundary Condition
{Characteristic Eq. (89)] and 4/a = 2.0

m XEm m XEm
1 3.0413911 19 60.3961131
2 6.5283908 20 63.5395907
3 9.8273980 21 66.6826014
4 13.0557922 22 69.8251471
5 16.2518595 23 72.9672093
6 19.4306369 24 76.1087436
7 22.5991233 25 79.2496705
8 25.7609959 26 82.3898569
9 28.9183657 27 85.5290817
10 32.0725284 28 88.6669664
11 35.2243216 29 01.8028211
12 38.3743096 30 94.9352565
13 41.5228853 31 98.0610040
14 44.6703291 32 101.1700866
15 47.8168454 33 104.2115035
16 50.9625847 34 106.5524618
17 54.1076584 35 107.9510042
18 57.2521485

m Evaluation m Evaluation
of Eq. (33) of Eq. (33)

1 - 21 | +1.520180 x 1077

2| -1.269465 x 1077 | 22 { —1.531461

3 | +1.501627 23 | +1.547735

4| -1.632731 24 | -1.569518

5 | +1.697591 25 | +1.597487

6 | —1.720454 26 | —1.632527

7 | +1.718015 27 | +1.678582

8 | -1.701534 28 | —1.728905

9| +1.677856 29 | +1.793230

10 | —2.038622 30 | —1.873832

11 | +1.624821 31 | +1.972802

12 | —1.599700 32 | -2.097020

13 | +1.576982 33 | +2.256007

14 | -1.557219 34 | —2.465297

15 | +1.540742 35 | +2.752281

16 | -1.527754 36 | —3.170842

17 | +1.518400 37 | +3.846300

18 | -1.512808 38 [ -5.170171

19 | +1.511116 39 | +9.726968

20 | —1.513498

It is obvious that the numerical values obtained
for the expansion coefficients by the assumption
of orthogonality are generally changed but little
from their actual values. (Although the last few
elastic wall coefficients have large errors, they
will be seen to contribute little to the final
result.)

The final check on the suitability of using
expansion coefficients calculated by the simple
method valid for orthogonal functions is a com-
parison of both the average relative pressure
{P> el and the average relative phase difference
<6 e} calculated by the two sets of coefficients.
Tables 10 and 11 are the result of these calcula-
tions for the liquid boundary reference conditions
and Tables 12 and 13 are the same comparison for
the elastic wall boundary reference conditions. It
is obvious that no real differentiation of the re-
sults can be made and that invoking orthogonality
of the characteristic functions simplifies the cal-
culations while introducing no effective error, at

least for b/a = 2.
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TABLE 7 TABLE 8
Orthogonality Check of the Comparison of Liquid Boundary
Characteristic Functions Listed in Table 6. Expansion Coefficients Kj , Obtained by
The Values of Table 6 are Used in Evaluating Assuming Orthogonality [Eq. (16)] with the
Eq. (33), Which Would Equal Zero Actual K ,, Values Obtained Using the Exact
for Orthogonality. Method [Eq. (38)] and b/a = 2.0
. . Krm Relative Error
" Evaluation . Evaluation ™ | (Orth. Assump.) Krm (Actual) (re Actual)
of Eq. (89) of Eq. (89)
1 +0.7016619 +0.7016466 +0.0000217
1 - 19 | - 5.86770x10°5 2| +0.6946078 +0.6945457 | +0.0000895
2 1+11.16391 <1073 | 20 | + 5.96176 3 -0.1551839 -0.1551602 +0.0001531
4 -0.5036120 -0.5034236 +0.0003741
_ o, 1 -
2 3951 ; ;; 6.09159 5 +0.0447238 +0.0446840 +0.0008928
+ 8.9719 + 6.26297 61 +0.4150456 | +0.4148227 | +0.0005374
5 |- 8.22789 23 | - 6.48415 7 +0.0034498 +0.0034203 +0.0086066
6|+ 7.65611 24 |+ 6.76699 8 -0.3591414 ~-0.3588310 +0.0008650
7 | = 7.20909 25 | - 7.12880 9 -0.0281100 -0.0281205 -0.0003730
8 6.85694 2 7. 7 10 +0.3195555 +0.3193022 +0.0007933
0 + p 62220 2? ¥ o 2(9)384 11| +0.0416518 | +0.0415708 | +0.0019474
- - . 12 -0.2897809 -0.2894450 +0.0011606
10 |+ 6.34402 28 |+ 9.03244 13|  -0.0493929 -0.0493879 | +0.0001014
11 |- 6.16285 29 | - 10.20153 14 +0.2664664 +0.2662270 +0.0008993
12 | + 6.02141 30 |+ 11.94970 15 +0.0539082 +0.0537956 +0.0020930
_ 5.01372 - 14.85767 16 -0.2476499 -0.2473100 +0.0013743
13 3.9 266 31 20 6;1 ) 17 -0.0565419 -0.0565328 +0.0001606
14 |+ 5.83 32 |+ 20.6813 18| +0.2320947 +0.2318738 | +0.0009525
15 |- 5.78804 33 | - 38.29343 19| +0.0580382 +0.0579030 +0.0023354
16 |+ 5.76666 34 | +151.58271 20 -0.2189810 -0.2186361 +0.0015772
17 |~ 5.77224 35 | - 66.44633 21 -0.0588300 -0.0588218 +0.0001397
22 +0.2077433 +0.2075363 +0.0009976
18 .80541
+ 5.8054 23 +0.0591800 +0.0590240 +0.0026427
24 -0.1979790 -0.1976210 +0.0018116
25 - 0.0592541 -0.0592484 +0.0000965
Additional calculations show that the error 26 +0.1893926 +0.1891914 +0.0010635
introduced by the approximation of orthogonality 27 +0.0591619 +0.0589820 +0.0030515
is even less for b/a > 2. However, the error 28 -0.1817621 ~0.1813764 +0.0021267
i as b/a approaches 1, at a greater rate 29 ~0.0589801 ~0.0589763 +0.0000631
Increases as pp > L3 & i 30| +0.1749157 +0.1747074 | +0.0011924
for the elastic than for the liquid boundary condi- 31 +0.0587673 +0.0585530 +0.0036590
tions. In later calculations in this report with 32 ~0.1687168 - 0.1682744 +0.0026290
the parameter b/a, both the actual and the orthog- 33| -0.0585770 -0.0585709 +0.0001037
onal-assumption expansion coefficients, as well 341 +0.1630505 +0.1628042 +0.0015130
h ared for b/a < 2 35 +0.0584744 +0.0581954 +0.0047953
as graphs, are comp ’ 36 -0.1578094 -0.1572207 +0.0037444
It may be noted that the orthogonality (or near- 37 -0.0585826 -0.0585447 +0.0006466
orthogonality) of the sequence of characteristic 38| +0.1528488 +0.1523702 +0.0031411
N 39 +0.0594298 +0.0587811 +0.0110368
functions ensures that there are no complex char-

acteristic values if 7, k, ¢, and » are real. For

if, say, R = u + iy, thenu - iv = R, would b
also have to be a characteristic function by sym- f r(u2 i U2) dr = 0

metry. (The characteristic functions would be

complex conjugates of each other, as would the

characteristic values.) Then orthogonality would  which is inconsistent with the statement that r,

require that u, and v are real.

0



20

TABLE 9
Comparison of Elastic Boundary
Expansion Coefficients Ky  Obtained by
Assuming Orthogonality [Eq. (16)] with the
Actual Kg,, Values Obtained Using the Exact
Method [Eq. (38)] and b/a = 2.0

V. A. DEL GROSSO

K Relative Error

7 1 (Orth. zf;nsump.) Kem (Acwal) | =4 Crual)

1| +1.0266836 +1.0267832 ~0.0000970

21 +0.3956044 +0.3950305 +0.0014528

3| -0.5153298 -0.5145621 +0.0014919

4] -0.2341204 -0.2347660 | -0.0027501

5| +0.3992444 +0.3999285 | -0.0017105
6| +0.1794007 +0.1784297 | +0.0054418
71 -0.3390867 -0.3379713 | +0.0033004

8| -0.1505190 -0.1515411 - 0.0067446

9] +0.3002692 +0.3013158 | —-0.0034737
10| +0.1321559 +0.1308594 | +0.0099083
11| -0.2724367 -0.2709951 +0.0053197
12| =0.1192285 -0.1205983 | -0.0113585
13| +0.2511771 +0.2525801 -0.0055548
14| +0.1095285 +0.1078649 +0.0154233
15| -0.2342299 -0.2323967 +0.0078879
16| -0.1019304 -0.1037114 | -0.0171723
17|  +0.2202946 +0.2221320 | -0.0082714
18| +0.0957968 +0.0936446 | +0.0229825
19| -0.2085599 -0.2061787 | +0.0115493
20| -0.0907414 -0.0930989 | ~0.0253233
21| +0.1984868 +0.2009515 | -0.0122652
221 +0.0865216 +0.0836075 | +0.0348547
23| -0.1896973 -0.1864125 | +0.0176211
24| -0.0829896 -0.0863160 | -0.0385380
251  +0.1819104 +0.1854755 -0.0192215
26| +0.0800767 +0.0756883 | +0.0579790
271 -0.1748948 -0.1696998 | +0.0306132
28| -0.0778215 -0.0833048 | -0.0658225
29 | +0.1684097 +0.1746527 | -0.0357452
30 +0.0765399 +0.0677138 +0.1303452
31 -0.1619917 -0.1494347 | +0.0840305
32| . -0.0780996 ~0.0936788 | -0.1663039
33| +0.1519948 +0.1750994 | -0.1319512
34| +0.1360407 -0.0094748 | +15.3581715
35 | +0.0354620 +0.0832140 | -0.5738464

A sufficient condition for completeness of the

sequence of characteristic functions derived as

solutions of the Liouville-type equation is that

they satisfy boundary conditions such that

Tgo(rx%> 4

‘< X0m>
o\"

r=b

r=0

In our cases this requirement is obviously satis-
fied when the X, are the zeros of 31 as in ab-
solutely rigid boundary conditions, as well as
when the X, ate the zeros of 5;0 , as in infinitely
flexible boundary conditions. While the lower
limit satisfies the equality for all the boundary
conditions considered here, the upper limit does
not. Rather than attempting to prove complete-
ness mathematically so that the expansion of
Eq. (10) may be made, we will resort to a physi-
cal argument. The notion of completeness here
concerns the least-squares representation of a
function by a series expansion of characteristic
functions. In our case we note that the charac-
teristic functions for both absolutely rigid and
infinitely flexible boundary conditions are com-
plete. From a physical standpoint we would ex-
pect the type of boundary condition to become
relatively immaterial as b/ increases, and in
fact for reasonable values of the dimensionless
quantity z \/a®> we would expect, for large values
of b/a, that all the boundary conditions would
agree with the free-field values. If these predic-
tions are borne out we can be reasonably certain
that the characteristic function expansions for
liquid and elastic boundary conditions are valid
representations. To demonstrate that this is not
true for the reference parameter b/a = 2, we
plot Figs. 3 through 10 which show <{p> ., and
<0>rel , respectively, for the four boundary con-
ditions (rigid, flexible, liquid, and elastic) con-
sidered in detail. Obvijously there is little agree-
ment among the plots and no particular coinci-
dence with the free-field (4/a = o) calculation
(ka = 20w, or @ = 10A, for all these plots).
Figures 11 and 12 are composite presentations,
respectively, of {p> ., and <0> ., for the four
boundary conditions and the reference parameters,
with the exception that b/a = 5 in these plots,
compared with the free-field result for ka = 20m;
Figs. 13 and 14 are the same but with b/a = 10.
In the former case (b/a = 5) coincidence is
being approached, while in the latter (b/a = 10)
we apparently have justification of our assump-
tion. (Recall that we are changing only the
value of 5.)
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TABLE 10
Comparison of Average Relative Pressure Values
<<p> tel) ;. Obtained Using Orthogonal Assumption and Actual K;

[Characteristic Eq. (64)] and /a = 2.0

A
z— <P el Relative Error
2 ( ). (<P>re1), (Actual) e e
(Dimensionless) | (Orth. Assump.)
0.0 0.9895775 0.9894456 +0.0001334
0.1 0.9306396 0.9305719 +0.0000728
0.2 0.9018492 0.9018035 +0.0000508
0.3 0.8832659 0.8832215 +0.0000503
0.4 0.8747904 0.8747423 +0.0000550
0.5 0.8601329 0.8600888 +0.0000513
0.6 0.8296854 0.8296640 +0.0000258
0.7 0.8454234 0.8453774 +0.0000545
0.8 0.8156356 0.8156078 +0.0000340
0.9 0.8024712 0.8024510 +0.0000251
1.0 0.8094636 0.8094384 +0.0000311
2.0 0.7535671 0.7535548 +0.0000162
3.0 0.7475792 0.7475292 +0.0000668
4.0 0.5320858 0.5321009 -0.0000285
5.0 0.5033542 0.5033521 +0.0000043
6.0 0.3703530 0.3703732 -0.0000546
7.0 0.2964656 0.2964915 -0.0000873
8.0 0.4134798 0.4134609 +0.0000458
9.0 0.3812747 0.3813003 ~-0.0000671
10.0 0.5912150 0.5912050 +0.0000171
TABLE 11

Comparison of Average Relative Phase-Difference Values
(<9> rel)L Obtained Using Orthogonal Assumption and Actual K,

Values from Table 8 in Eqs. (21)and (24) for the Liquid Boundary Condition

[Characteristic Eq. (64)] and 6/a = 2.0

A (<0> e1) .
z— rel 6> Relative Error
. f12 L ( rel)L (Actual) (re Actual)
(Dimensionless) | (Orth. Assump.)
0.0 0.0000006 0.0000006 0
0.1 0.0770784 0.0770483 +0.0003907
0.2 0.1104181 0.1103926 +0.0002308
0.3 0.1358862 0.1358591 +0.0001993
0.4 0.1639416 0.1639192 +0.0001367
0.5 0.1836409 0.1836184 +0.0001226
0.6 0.2061965 0.2061710 +0.0001238
0.7 0.2209007 0.2208823 +0.0000832
0.8 0.2617586 0.2617183 +0.0001541
0.9 0.2418164 0.2418140 +0.0000100
1.0 0.2425141 0.2425331 -0.0000786
2.0 0.3661808 0.3661959 -0.0000412
3.0 0.7017445 0.7016980 +0.0000663
4.0 0.7916116 0.7916051 +0.0000082
5.0 0.7776839 0.7777139 -0.0000386
6.0 1.0905651 1.0904750 +0.0000826
7.0 0.6155605 0.6156242 -0.0001034
8.0 0.6405180 0.6405112 +0.0000106
9.0 0.4942622 0.4943238 -0.0001246
10.0 0.5903329 0.5903391 -0.0000104

21
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TABLE 12
Comparison of Average Relative Pressure Values
((P) rel)E Obtained Using Orthogonal Assumption and Actual Kg
Values from Table 9 in Egs. (20)and (24) for the Elastic Boundary Condition

[Characteristic Eq. (89)] and b/a = 2.0

A

z (<p>rel) B Relative Error

a2 (<P> rel) E(Actual) (re Actual)
(Dimensionless) | (Orth. Assump.)
0.0 0.9717788 0.9713188 +0.0004736
0.1 0.9141165 0.9142742 -0.0001725
0.2 0.8860098 0.8864551 -0.0005023
0.3 0.8667967 0.8662562 +0.0006240
0.4 0.8564165 0.8562606 +0.0001821
0.5 0.8415938 0.8420237 ~0.0005106
0.6 0.8190483 0.8186038 +0.0005429
0.7 0.8225790 0.8221697 +0.0004978
0.8 0.8094269 0.8097581 -0.0004089
0.9 0.7846205 0.7844757 +0.0001846
1.0 0.7762643 0.7759440 +0.0004127
2.0 0.7059880 0.7055973 +0.0005538
3.0 0.7464714 0.7462238 +0.0003319
4.0 0.7666435 0.7664073 +0.0003082
5.0 0.6782722 0.6783252 -0.0000781
6.0 0.7197391 0.7197888 ~0.0000690
7.0 0.8061243 0.8058819 +0.0003008
8.0 0.7915121 0.7917809 ~0.0003396
9.0 0.7181985 0.7187899 -0.0008227
10.0 0.8622688 0.8627789 -0.0005911
TABLE 13

Comparison of Average Relative Phase-Difference Values
(<0>rel)<E Obtained Using Orthogonal Assumption and Actual KEm
Values from Table 9 in Eqgs. (21) and (24) for the Elastic Boundary Condition
[Characteristic Eq. (89)] and b/a = 2.0

A (<05 1e1) :
z— rel 0> Relative Error
2 E re
a ( I)E (Actual) (re Actual)
(Dimensionless) | (Orth. Assump.)

0.0 0 0 0
0.1 0.0778414 0.0784568 ~-0.0078441
0.2 0.1151891 0.1146869 +0.0043793
0.3 0.1422784 0.1418842 +0.0027785
0.4 0.1659318 0.1665204 -0.0035344
0.5 0.1894090 0.1893459 +0.0003332
0.6 0.2217272 0.2213196 +0.0018414
0.7 0.2228230 0.2230320 -0.0009370
0.8 0.2655853 0.2657002 -0.0004324
0.9 0.2644061 0.2635660 +0.0031874
1.0 0.2681320 0.2679827 +0.0005574
2.0 0.4333332 0.4338638 -0.0012228
3.0 0.5311679 0.5318601 -0.0013016
4.0 0.8584935 0.8591407 -0.0007333
5.0 0.9762409 0.9768278 -0.0006009
6.0 0.9276615 0.9286576 -0.0010726
7.0 1.1607084 1.1611076 -0.0003438
8.0 1.4857913 1.4862842 -0.0003316
9.0 1.6592534 1.6596663 -0.0002488
10.0 1.7931229 1.7934281 -0.0001702
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INTRODUCTION OF ABSORPTION

In the immediately preceding report on free-
field diffraction (4), absorption was introduced
merely by replacing the wave number k& by
E* = kgo — i0go.* To introduce absorption
into the guided mode formulation of this report,
we may, as in the previous report, substitute a
complex wave number for the parameter &. To an
apparent first-order approximation, we will also
assume that the characteristic values X, are
not themselves modified by attenuation in the
medium or the walls, but that only propagation in
the modes across and down the tube is affected.
That is, in Eq. (24) only the exponential term will
require modification.

We write

* M .
YDom = 9om — *Yom

(L) " - ()’

and obrain from separately equating the real and

* .
koo = koo — i

(90)

the imaginary parts

2 2 Xom ’ M \2 — a2
koo — Qgo = + (qOm) 0m
and

Opnk

00%00 (91)

M
= Qo om:

We use the second relation in Eq. (91) to elimi-
nate 0,  from the first relation and obtain

(92)

or, finally, the modified ¢, , i.e., qlgm , is given
by

Xq, \ 2
2 _ 2 .2 (Zom
Z(qg'm) = kyo = %o ( b )

i(l’_”. ) k4 4
+ b + Roo + Qoo

*In this notation, the star superscript refers only to a com-
plex value, not to the complex conjugate of an already
complex number.

X 2
2 2 Om 2
+ 2ky, O‘oo+2< b ) %50

<X0m> 2 2 &
-2 5 kOO (93)
The exponential in Eq. (24) is now written
_ _ _koo
e ’<(k°° on) (1 m)(’*"’)z (94)

where k;, and 0, are given as plane-wave free-
field propagation parameters of the contained
liquid.

We note that in this manner the X,  are real,
as previously, and the new ¢,  are also real.
Returning to our assumption that the procedure
outlined above is a first-order-type approxima-
tion, we note that for the limiting situations of
absolutely rigid and infinitely flexible boundary
conditions the use of the theorem stating that
there are no pure imaginary or complex zeroes of
g'o or f}l indicates that no approximation is in-
volved in our method of introduction of absorption
for the fluid contained in absolutely rigid or in-
finitely flexible walls. That is, in Eq. (8) (the
characteristic equation) we essentially have
written the relation

Impedance
of liquid i M
. . = =1
(in radial P Xg«l(x)
direction)

and equated this to the impedance Z of the wall
so that

iwp go(x)

X4.0 (95)

= Zwall :

If the wall impedance is pure real we have atten-
uation, while a pure imaginary impedance results
in propagation. For absolutely rigid walls Z
goes to , and for infinitely flexible walls Z
goes to 0. Obviously, for both these limiting
cases we can only have the characteristic value
X real inasmuch as Bessel functions of complex
argument are in general themselves complex. We
may note in passing that the left-hand side of
Eq. (95) resembles the cotangent function, so the
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procedures used in the sections devoted to ab-
solutely rigid and infinitely flexible boundaries
may be replaced by finding the zeroes and infini-
ties, respectively, of this quotient.

For the liquid and elastic boundary conditions
we find the right-hand side of Eq. (95) replaced
by a function which, if allowed to become com-
plex, then requires complex values of X. So
our procedure for introducing absorption into
these conditions is only an approximation.* Be-
cause absorption was introduced in the contained
liquid at a relatively late stage of the develop-
ment, we find that in order to equate impedances
across the boundary we now demand the simul-
taneous introduction of a related absorption for
the wall material. Recalling that

Y = b\/klz — k22

we now find

Y =

The real part yields

Y=b\/k12—a2-k2+a22

1 2
and the imaginary part
kioy = kya,.

We demanded that Y be real, so substitution gives

\/ k; 2
b klz—alz—k22+(k—2 ocl> . (96)

*We will not in this report present a more rigorous introduc-
tion of absorption but will delay it to a future report, since
even with restrictions to frequencies far removed from re-
laxation effects involving bulk viscosity or chemical reac-
tions, it would appear necessary to ascribe a viscosity to
the fluid and thus negate any simplifying assumption con-
cerning the transverse component of pressure or particle
velocity at the boundary. Indeed, apparently one becomes
involved with simultaneous solutions to a diffusion (para-
bolic) equation as well as a wave or hyperbolic equation.

In any event, the simple introduction of a complex propaga-
tion constant, without implying viscosity, leads to attenua-
tion, and for relatively small attenuations it could not result
in characteristic values Xg,, much changed from those re-
sulting from real propagation constants. The characteristic
functions would not be orthogonal for a complex impedance,
but we recall that they were not orthogonal anyway for liquid
and elastic boundary conditions—though, being nearly so,
they did not significantly change (for & > 2a) the expansion
coefficients Ko, from their values obtained by invoking
orthogonality.

Y =

sVE? - 2k 0y — 0P —ky? - 2iky 0, + 07 .

This restriction above is innocuous, albeit not
particularly desirable. It has no particular sig-
nificance other than that the assumption of X
unchanged implies that Y is unchanged.

Utilizing the previous equations with the ex-
ponential as modified in Eq. (94) and with the
new q[gm given by Eq. (93), we calculate {p>
and <0> _, as before, but for the absorption pa-
rameter & = 0Oy, = 0, 0.01, 0.1, 1.0, and 10.0.
Recause the 0.01 and 0.1 plots are almost indis-
tinguishable from o = 0, we plot only the values
® = 0, 1.0, and 10.0 for each of the boundary
conditions. Figure 15 is a plot of {p)> _, for ab-
solutely rigid boundaries for the ® parameter
values 0, 1.0, and 10.0. Figure 16 shows <0>rel
for absolutely rigid boundaries plotted in the
same way over the same ranges of z N/ a? (dimen-
sionless) and for the same absorption parameter
values. It should be remarked again that, unless
otherwise noted, all graphs in this report are for
the standard reference parameters given in Table
1. Thus, the figures are for b/a = 2 and
ka = 207. In a similar fashion, Figs. 17 and 18
show (p> ., and <9>rel , respectively, for in-
finitely flexible boundary conditions with the ab-
sorption parameter varied; Figs. 19 and 20 are
for liquid boundary conditions with additional
standard reference conditions p,/p; = 7 and
k,;/k, = 4; and the last boundary condition con-
sidered here, elastic walls, is plotted in Figs.
21 and 22 and includes the further additional
standard reference parameter of the Poisson’s
ratio v = 0.325.

The most noticeable feature of these absorp-
tion parameter plots is the marked smoothing of
the pressure and phase plots caused by the intro-
duction of absorption in this, for the latter two
boundary conditions, first-degree-approximation
manner. (All the graphs in this report will be
discussed more fully in a later section.)

ADDITIONAL PARAMETERS

We have already shown graphs comparing the
four boundary conditions for the radius ratio
b/a = 2 with the free field and for b/a = 5 and
b/a = 10. The absorption parameter was also
varied for the reference value b/a = 2. These

plots were all for k@ = 207 and, where applica-
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ble, k,/k, = 4. We now turn our attention to a
variation of b/a, where we have previously noted
that most of the change due to this variable
occurs for the smaller values of this variable.
We have also alluded to the increasing differ-
ences to be expected in a comparison of the
actual expansion coefficients with those ob-
tainéd by erroneously using the simplification of
orthogonality for the liquid and elastic boundary
cases. Our primary interest is in a comparison
of both {p> _, and {6 ., calculated using ex-
pansion coefficients obtained by the two different
methods.

For b/a = 1.25 we have tabulated values and
proportional differences in Table 14 for (<p) tel) L

in Table 15 for (<0>rel)L7 in Table 16 for
((p} rel)E , and in Table 17 for (<0>161)E .

Obviously, no significant error is caused by the
orthogonal assumption for the liquid boundary,
but differences as large as 3 percent occur for

(<[J> fel)E and 8 percent for (<0>fel)E .

Additional calculations indicate that the
liquid boundary case involves no appreciable
error even for b/a = 1, as shown in Table 18 for
(<P>reI)L and Table 19 for( <0>[e[)L . But
here the insignificant difference is not caused by
a small change in K;  but rather by the decreas-
ing contribution of the higher m values. As seen
in Table 20 there is an appreciable difference
(as large as 88 percent) between the acwal K;
and the orthogonal assumption K, _, for b/a = 1,
which is not reflected in the { {p> ;c1),; and
(<6>fe1)L values.

Table 21 compares the two sets of expansion
coefficients K for the elastic boundary situa-
tion, with b/a = 1 being the only parameter
changed from the standard reference values. We
find some coefficients changed by almost 100
percent. The corresponding (<p> rel)E and
( <6>rel)E for selected values of z)\/a? are
tabulated in Tables 22 and 23, respectively. The
greatest difference in( <P>re1)E is 25 percent,

and that in (<0>re] )E is 1000 percent.

TABLE 14
Comparison of Average Relative Pressure Values

( <p>[e1) ¢ Obtained Using Orthogonal Assumption and Actual K; , Values
(Calculated from Eqs. (16) and (38), Respectively) in Eqgs. (20) and (24)
for the Liquid Boundary Condition [Characteristic Eq.(64)] and 4/a = 1.25

A (<> .e)
Z — r 7
: (0D, acua | Rlee o
(Dimensionless) | (Orth. Assump.)
0.0 0.9899171 0.9897142 +0.0002050
0.1 0.9243691 0.9242909 -0.0000846
0.2 0.9078447 0.9077375 +0.0001182
0.3 0.8630293 0.8629577 +0.0000829
0.4 0.8492456 0.8491806 +0.0000766
0.5 0.8432466 0.8431503 +0.0001142
0.6 0.8374968 0.8374500 +0.0000559
0.7 0.8681471 0.8680264 +0.0001390
0.8 0.8379808 0.8379386 +0.0000504
0.9 0.8691401 0.8690317 +0.0001247
1.0 0.8595755 0.8594977 +0.0000905
2.0 0.9192813 0.9192201 +0.0000666
3.0 0.8537115 0.8536319 +0.0000932
4.0 0.8981722 0.8980542 +0.0001314
5.0 0.8490684 0.8489840 +0.0000993
6.0 0.8523115 0.8522883 +0.0000273
7.0 0.8460231 0.8459170 +0.0001254
8.0 0.8144340 0.8143755 +0.0000718
9.0 0.8222387 0.8221836 +0.0000671
10.0 0.8244292 0.8243614 +0.0000823
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TABLE 15
Comparison of Average Relative Phase-Difference Values
(<9>f‘31)L Obtained Using Orthogonal Assumption and Actwal K;  Values
(Calculated from Eqgs. (16) and (38), Respectively) in Eqs. (21) and (24)

for the Liquid Boundary Condition [Characteristic Eq.(64)] and /4 = 1.25

A (
z — <0 I ) 1
: R R
(Dimensionless) | (Orth. Assump.)

0.0 0 0 0
0.1 0.0751249 0.0751140 +0.0001446
0.2 0.1237556 0.1237194 +0.0002922
0.3 0.1485767 0.1485352 +0.0002797
0.4 0.1511827 0.1511792 +0.0000228
0.5 0.1409557 0.1409701 -0.0001024
0.6 0.1517650 0.1517736 -0.0000569
0.7 0.1850660 0.1850342 +0.0001715
0.8 0.1947565 0.1947661 -0.0000492
0.9 0.2136579 0.2136648 -0.0000324
1.0 0.2358251 0.2358388 -0.0000580
2.0 0.4669629 0.4669691 -0.0000133
3.0 0.7005599 0.7005384 +0.0000307
4.0 0.9307200 0.9307649 -0.0000482
5.0 1.1635297 1.1635811 -0.0000442
6.0 1.4359258 1.4359296 -0.0000027
7.0 1.7188279 1.7188191 +0.0000051
8.0 1.9325513 1.9325491 +0.0000012
9.0 2.2348147 2.2348432 -0.0000128

10.0 2.4549971 2.4549533 +0.0000179

TABLE 16

Comparison of Average Relative Pressure Values
(<p> fel)E Obtained Using Orthogonal Assumption and Actual K = Values
(Calculated from Eqs. (16) and (38), Respectively) in Eqgs. (20) and (24)
for the Elastic Boundary Condition [Characteristic Eq.(89)] and b/a = 1.25

A (
zZ— <p>rel) ) Relative Error
E
a2 (<P e g (Actual) | 0 0 al)
(Dimensionless) | (Orth. Assump.)

0.0 0.6762827 0.6866799 -0.0151414
0.1 0.6155481 0.6204182 -0.0078496
0.2 0.6168034 0.6300323 -0.0209972
0.3 0.5994986 0.6123391 -0.0209696
0.4 0.5761935 0.5789443 -0.0047513
0.5 0.5441485 0.5531761 -0.0163195
0.6 0.5133055 0.5122106 -0.0021376
0.7 0.5171981 0.5165782 +0.0012001
0.8 0.4799800 0.4934086 -0.0272160
0.9 0.4636831 0.4638596 -0.0003805
1.0 0.4690766 0.4788756 -0.0204625
2.0 0.3481575 0.3457400 +0.0069924
3.0 0.5582870 0.5599304 -0.0029350
4.0 0.5983060 0.6011824 -0.0047848
5.0 0.3676897 0.3698082 -0.0057286
6.0 0.4284766 0.4369658 -0.0194274
7.0 0.6318598 0.6455171 ~-0.0211572
8.0 0.4911429 0.5046498 -0.0267649
9.0 0.3236569 0.3209491 +0.0084369
10.0 0.4989774 0.5006685 -0.0033777
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TABLE 17
Comparison of Average Relative Phase-Difference Values
(<6>feI)E Obtained Using Orthogonal Assumption and Actual K, Values
(Calculated from Eqs. (16) and (38), Respectively) in Eqgs. (21) and (24)
for the Elastic Boundary Condition [Characteristic Eq.(89)] and b/a = 1.25

A (
z— <9>rel) Relative E
2 E 0 ) elative Error
a (< D el B (Actual) (re Actual)
(Dimensionless) | (Orth. Assump.)

0.0 0 0 0
0.1 0.1380550 0.1360894 +0.0144435
0.2 0.2118209 0.2298612 -0.0784834
0.3 0.3249062 0.3154815 +0.0298741
0.4 0.4181617 0.4242684 -0.0143934
0.5 0.4845435 0.4945054 -0.0201451
0.6 0.5506718 0.5411030 +0.0176838
0.7 0.5859817 0.6076427 -0.0356476
0.8 0.6900229 0.6831681 +0.0100337
0.9 0.6527385 0.6541685 -0.0021860
1.0 0.7507075 0.7521207 -0.0018790
2.0 1.0479946 1.0799276 -0.0295695
3.0 1.5272789 1.5271199 +0.0001041
4.0 2.2624835 2.2558020 +0.0029619
5.0 2.8991612 2.8799479 +0.0066714
6.0 3.1144023 3.1207704 -0.0020406
7.0 3.7961330 3.7927269 +0.0008981
8.0 4.5533582 4.5694361 -0.0035186
9.0 4.9727837 4.9992754 -0.0052991
10.0 5.2715110 5.2596523 +0.0025465

TABLE 18

Comparison of Average Relative Pressure Values
( P el )L Obtained Using Orthogonal Assumption and Actual K; = Values
(Calculated from Egs. (16) and (38), Respectively) in Egs. (20) and (24)
for the Liquid Boundary Condition [Characteristic Eq.(64)] and 6/a = 1.0

A ( )
z— <Pl 5 Relative Error
a ( PP el )L (Actual) (re Actual)
(Dimensionless) | (Orth. Assump.)

0.0 0.9981645 0.9998849 -0.0017206
0.1 0.9744380 0.9753644 -0.0009499
0.2 0.9478367 0.9485705 -0.0007736
0.3 0.9233720 0.9239012 -0.0005728
0.4 0.9019077 0.9024089 -0.0005554
0.5 0.8810601 0.8813703 -0.0003520
0.6 0.8653565 0.8658056 -0.0005188
0.7 0.8473875 0.8477187 -0.0003907
0.8 0.8420991 0.8427221 -0.0007393
0.9 0.8169883 0.8173123 -0.0003965
1.0 0.7959366 0.7960492 -0.0001414
2.0 0.6731596 0.6732681 -0.0001612
3.0 0.8379450C 0.8383262 -0.0004548
4.0 0.9657948 0.9666361 -0.0008703
5.0 0.7894673 0.7897891 ~0.0004075
6.0 0.6606877 0.6604517 +0.0003574
7.0 0.8855006 0.8862457 -0.0008408
8.0 0.9431363 0.9437847 -0.0006870
9.0 0.7642870 0.7643782 -0.0001193
10.0 0.6711493 0.6707567 +0.0005853
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TABLE 19
Comparison of Average Relative Phase-Difference Values
( 6> fel)L Obtained Using Orthogonal Assumption and Actual K, ,, Values
(Calculated from Eqs. (16) and (38), Respectively) in Eqs. (21) and (24)

for the Liquid Boundary Condition [Characteristic Eq. (64)] and b/a = 1.0
A (<0%.e1)
z— rel/ 0> Relative Error
' .a ( rel)L (Actual) (re Actual)
(Dimensionless) | (Orth. Assump.)

0.0 0.0000006 0.0000006 0

0.1 0.0905143 0.0909282 -0.0045518

0.2 0.1556971 0.1560929 -0.0025352

0.3 0.2104748 0.2108481 -0.0017705

0.4 0.2576192 0.2578053 -0.0007220

0.5 0.3012797 0.3014043 -0.0004134

0.6 0.3475494 0.3479874 -0.0012587

0.7 0.3771373 0.3771603 -0.0000609

0.8 0.4225055 0.4228402 -0.0007913

0.9 0.4680654 0.4686056 -0.0011527

1.0 0.4854230 0.4857166 -0.0006043

2.0 0.7208829 0.7207918 +0.0001264

3.0 1.0179109 1.0181569 -0.0002417

4.0 1.4538678 1.4533953 +0.0003251

5.0 1.9759632 1.9764646 -0.0002537

6.0 2.1794069 2.1789635 +0.0002035

7.0 2.4786985 2.4787000 - 6.0000006

8.0 2.9542018 2.9542190 -0.0000058

9.6 3.4332652 3.4333348 -0.0000203

10.0 3.6757460 3.6760906 -0.0000937
TABLE 20 TABLE 21

Comparison of Liquid Boundary Expansion
Coefficients K;  Obtained by Assuming Ortho-

gonality [Eq. (16)] with the Actual K,

Values

Obtained Using the Exact Method [Eq. (38)] and

Comparison of Elastic Boundary Expansion
Coefficients Kg,, Obtained by Assuming Ortho-

gonality [Eq. (16)] with the Actual K.,

Values

Obtained Using the Exact Method [Eq. (38)] and

b/a = 1.0 b/a = 1.0
Relative Relative
m KLm (Ofth. KLml Error m Kfm (Ol'th. (AKEml Error
Assump.) (Actual) (re Actual) ssump.) ctual) (re Actual)

1 |+1.5592724 |+1.5599775 |-0.0004520 1| +0.6847004 | +0.7285022 | —0.0601258

2 | -0.9336714 |-0.9360733 | —0.0025660 2 | -0.2541044 | —0.3201611 | —0.2063232

3 | +0.6403251 |+0.6447437 |-0.0068532 3 | +0.1438355 | +0.2264065 | —0.3647026
4 | —0.4624958 |-0.4688900 | —0.0136369 4 | —~0.0965672 | —0.1942744 | —0.5029339

5 | +0.3467280 | +0.3549177 | -0.0230748 5 | +0.0713326 | +0.1842075 | -0.6127596
6 | -0.2680057 |-0.2778048 | -0.0352733 6 | =0.0561096 | —0.1850984 | —0.6968662

8 | -0.1716642 |-0.1842819 | —0.0684699 : : :

9 | +0.1409130 |+0.1548213 | —0.0898346 8 | —0.0394569 | —0.2071299 | —0.8095065
10 | =0.1170241 |-0.1321886 | -0.1147187 9 | +0.0347496 | +0.2274224 | -0.8472022
11 | +0.0979923 |+0.1144071 | —0.1434768 10 | -0.0314822 | —0.2555165 | —0.8767901
12 | -0.0824768 |-0.1001631 |-0.1765752 11 | +0.0293366 | +0.2945913 | —0.9004158
13 | +0.0695511 |+0.0885593 | —0.2146379 12 | —0.0281958 | —0.3508499 | —0.9196358
14 | —=0.0585517 |[-0.0789664 | —0.2585236 13 | +0.0281567 | +0.4372198 | —0.9356006
16 | ~0.0404466 | -0.0641313 | -0.3693159 . ' ' '

17 | +0.0325891 |+0.0583154 | ~0.4411572 5 | +0.0346552 | +0.8916582 | —0.9611340
18 | -0.0250121 |-0.0533050 | -0.5307736 16 | —0.0527891 | ~1.8700824 | -0.9717718

19 | +0.0170344 |+0.0489757 | —0.6521863 17 | +0.2748274 | +4.6615750 | —0.9410441

20 | —-0.0053318 |—0.0452071 | —0.8820580 18 | —0.0610809 | —4.1532538 | —0.9852932
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Returning to the graphs for the b/a parameter
varied between 1 and 2 we have, for rigid bound-
aries, {p>e] plotted in Figs. 23 and <0>¢] in
Fig. 24. Figures 25 and 26 show (p> 1 and
<O:el , respectively, for infinitely flexible
boundary conditions. The results for liquid
boundary conditions proved to be independent of
whether the coefficients were obtained in the cor-
rect manner or by means of the orthogonal simpli-
fication and are shown as {p)> el in Fig. 27 and
<9>re1 in Fig. 28. Figures 29 and 30 show
<pdrel and <BD,.], respectively, for elastic
boundary conditions and are the only graphs
which differentiate between the actual calcula-
tions and those obtained by orthogonal simplifi-
cation. (The values for 5/¢ = 1.5 and 2.0 are
so nearly identical that no differentiation can be
made between the two methods of calculation on
Figs. 29 and 30.) For the (b) p'art of each figure
(i.e., 1 £ zM/a*> < 10) we note that the varia-
tion in the actual curve for 5/a = 1 is so rapid
that only the portion 5.0 < zMa? < 5.5is
sketched in detail; for other regions on this curve
only the envelope is indicated.

With this last group of figures, we have ex-
hausted the parameters that can be varied and
compared for all of the four boundary conditions.
For the liquid and elastic walls, we can next
vary the ratio of the wave number for the con-
tained liquid and for the wall material. Figures
31 and 32 show {pD>re1 and <0, for liquid
walls and £;/k, values of 3, 4, and 5. Figures
33 and 34 are for the same variation of param-
eters for elastic walls. The ratio of densities
p,/p; is also at our disposal and we select
values of 6, 7, and 8 for this in Figs. 35 and 36,
which are for liquid boundary conditions, and in
Figs. 37 and 38, which apply to elastic boundary
conditions. The only parameter remaining is
Poisson’s ratio v for the elastic walls, and

{P>:el and 0> el are plotted for v = 0.300,

0.325, and 0.350 in Figs. 39 and 40, respectively.

DISCUSSION AND APPLICATION

In earlier sections of the report we have
shown that the proper expansion coefficients for
the nonorthogonal characteristic functions are

essentially the same as those obtained by
wrongly assuming orthogonality, and the resulting
calculations of {p> re] and {0):.] for the liquid
and elastic boundary conditions are essentially
unchanged in the correct formulation from the ap-
proximation of orthogonality (for 5 2 2a). From
Figs. 3 through 10 we note that none of the
boundary conditions for b/a = 2 are in essential
agreement with the free-field calculations for the
same radiating piston. But for b/a = 5 in Figs.
11 and 12 the graphs are becoming quite similar,
while for b/a = 10 in Figs. 13 and 14 the graphs
for all the boundary conditions just about coin-
cide with free-field calculations over the dis-
tances z considered.

If we compare the various boundary condition
plots for b/a = 2 we note that for 0 < z\/a’
< 1 the {p)> el plots are quite similar; the same
is true for the <6, plots, although one might
say that {0 for infinitely flexible boundary
conditions is generally out of phase with the
other boundary conditions over this range of dis-
tance. The same plots for 1 < zA/a®> < 10
indicate that infinitely flexible and liquid bound-
ary conditions are similar up to about z\/a’ = 5,
as are the absolutely rigid and elastic boundary
conditions. While there is a general tendency
toward similarity of the four plots at z\/a* = 5,
for greater 2N a? values {6, separates, with
the rigid and elastic conditions forming one simi-
lar pair and the flexible and liquid conditions
another. But for {p) e1, while it could be said
that the liquid and flexible continue with some
similarity, it is obvious that the elastic diverges
from the rigid and, in fact, begins to resemble
infinitely flexible boundary conditions. The gen-
eral trends toward increasing or decreasing
values are perhaps more significant in this ap-
praisal than the absolute values. In any event,
it apparently is necessary to carefully specify
the boundary conditions appropriate to a given
experiment.

We will return to the discussion of tube-to-
crystal radius ratio b/a as a parameter later; for
now we shall direct our attention to absorption.
Figures 15 and 16 indicate that for rigid bound-
ary conditions neither (> e] nor {BD¢] are
particularly affected by the inclusion of a realis-
tic intrinsic absorption in the contained liquid.
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TABLE 22
Comparison of Average Relative Pressure Values
((p) rel )E Obtained Using Orthogonal Assumption and Actual Kg,, Values
(Calculated from Eqgs. (16) and (38), Respectively) in Eqs. (20) and (24)
for the Elastic Boundary Condition [Characteristic Eq.(89)] and b/a = 1.0

A ( )
2 P et E <pD Relative Error
) a ( P2zl )E (Actual) (re Actual)
(Dimensionless) | (Orth. Assump.)
0.0 0.0865885 0.1149452 -0.2466977
0.1 0.0837691 0.0885871 -0.0543867
0.2 0.0819398 0.0837064 -0.0211038
0.3 0.0816765 0.1026259 -0.2041334
0.4 0.0791261 0.0844068 -0.0625626
0.5 0.0771040 0.0703626 +0.0958097
0.6 0.0778171 0.0967713 -0.1958666
0.7 0.0755567 0.0841316 -0.1019345
c.8 0.0742354 0.0670090 +0.1078425
0.9 0.0754615 0.0907023 -0.1680305
1.0 0.0738765 0.0857666 -0.1386335
2.0 0.0810237 0.0763331 +0.0614479
3.0 0.0739906 0.0652305 +0.1342936
4.0 0.0757399 0.0779204 -0.0279841
5.0 0.0794552 0.0935181 -0.1503765
6.0 0.0741046 0.0896573 -0.1734676
7.0 0.0840508 0.0966090 -0.1299905
8.0 0.0717685 0.0660596 +0.0864209
9.0 0.0825636 0.0740020 +0.1156933
10.0 0.0742248 0.0820247 -0.0950918
TABLE 23

Comparison of Average Relative Phase-Difference Values
(<6>re1) Obtained Using Orthogonal Assumption and Actual Kg Values
(Calculated from Egs. (16) and (38), Respectively) in Eqgs. (21) and (24)
for the Elastic Boundary Condition [Characteristic Eq.(89)] and b/a = 1.0

A (<0>re) :

z— rel <6> Relative Error
2 e
a ( i I)E (Actual) (re Actual)
(Dimensionless) | (Orth. Assump.)

0.0 0 0 0

0.1 0.1164774 | 0.0123768 10.4109544
0.2 0.2429197 0.3906022 0.3780892
0.3 0.3374536 0.3773222 0.1056622
0.4 0.4170587 0.2355805 0.7703445
0.5 0.5266520 0.6172168 0.1467309
0.6 0.6133799 0.6556577 0.0644815
0.7 0.6812442 0.4752492 0.4334463
0.8 0.7721171 0.7757266 0.0046530
0.9 0.8697393 0.9672980 0.1008569
1.0 0.9410286 0.7772928 0.2106489
2.0 1.7700447 1.6318643 0.0846764
3.0 2.8077192 2.9059464 0.0228021
4.0 3.5623730 3.6924945 0.0352395
5.0 4.5911729 4.6815573 0.0193064
6.0 5.3566908 5.3429339 0.0025748
7.0 6.3399993 6.2022560 0.0144352
8.0 7.2382555 7.0272994 0.0300195
9.0 8.1288061 8.1732742 0.0054407
10.0 9.1389897 9.3734856 0.0250169
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For the rather large value of ¢ = 10 the effect
on {p>c] is only an additional loss, similar to
that found for free-field conditions in the imme-
diately preceding report of this series. The ef-
fect on <6 ,.] may appear somewhat startling;
apparently at zA\/a’ = 10 the phase difference
with respect to a plane wave is materially re-
duced by the inclusion of this large absorption
value. But this should not really be surprising.
We recall that the higher order modes are the
least nonplanar in the sense that they are asso-
ciated with increasingly larger errors in wave-
length (but their group velocities are increasingly
smaller than plane-wave velocity). And the effect
of intrinsic absorption is to preferentially attenu-
ate the higher order, more complex modes. We
also recall here that absolutely rigid boundary
conditions are the only ones considered in this
report for which a plane wave is one of the family
of modes possible of propagation.

Figures 17 and 18 indicate that the effect of
including absorption in the contained liquid for
infinitely flexible boundary conditions is similar
to that for rigid boundary conditions, but because
the plane-wave mode does not exist for the
former, the decrease in phase “error” is not as
pronounced. The effect is one of general smooth-
ing in the nature of the curves.

For the liquid boundary conditions as shown
in Figs. 19 and 20, not much more can be said of
the effect of intrinsic absorption other than that
there is a general trend toward smoothing of the
curves to a more monotonic variation. For the
shorter range of zA/a® the relative magnitude de-
crease is generally greater, and the relative
phase increase is generally smaller, for the
larger absorption, but for larger distances z it is
obvious that the only real effect is one of smooth-
ing of the oscillations.

Figures 21 and 22, for elastic boundary condi-
tions, indicate that the statements made above
concerning the effect of intrinsic absorption in
the liquid for liquid boundary conditions could
generally be made also for the elastic boundary
conditions. But there is one obvious difference
in that, while the smoothing characteristic noted
for the other boundary conditions is maintained

for the overall trend of the curves, the introduc-
tion of absorption into the elastic boundary con-
dition case results, for the larger absorption co-
efficient considered, in a much more rapid de-
crease in {p) o] over the larger z\/a’® range.

As has been stated, the limiting boundary
condition of absolutely rigid walls (devoid of
thermal conductivity and perfectly smooth) does
result in one permissible mode being a plane
wave. Moreover, as indicated earlier, the situa-
tion for b/a = 1 (i.e., the transducer completely
filling one end of the tube) results in the plane-
wave mode being the only permissible one. Fig-
ures 23 and 24, with b/a as the parameter, show
that {(pDre1 = 1 and {BD;e) =
tion (b/a = 1). But even so small a change as
b/a = 1.1 results in a drastic change in the
plots of <p> e and {ODc;. (Here we should
stress that one does not have uniform piston
motion when a transducer completely covers the

0 for this situa-

opening of a hollow right-circular cylinder, so
that the ratio b/a would necessarily be greater
than unity, even if rigid walls were attainable.)
For the shorter range of z\/a’ we find {p> e
decreasing faster than free field and then oscil-
lating about free field, while 6D ¢| initially in-
creases like free field and than levels off some-
what about 0.05 radian. For the larger z\/a”
range we find that {p> re] is oscillating about a
value of 0.8 while <6),.] is oscillating about 0
radian. For b/a = 1.2, however, we find {pD re]
decreasing faster than free field and then demon-
strating a general leveling off, while {6,
starts off like free field, levels off at about 0.15
radian near z\/¢® = 1, and then, like the curve
for b/a = 1.1, oscillates about O radian. At this
point it should be remarked that these last two
plots for which <0>,.; becomes negative are the
only ones as yet which could result in an ap-
parent phase velocity being smaller than (or an
apparent group velocity being greater than) the
plane-wave sound speed. For b/a = 1.5 as with
b/a = 2, both {p> (e and {O>;.| approximate
the free-field curves over the short z\/a? range.

But {p> (e} portrays a sharp minimum near

zMa® = 5.5 and then climbs sharply; <0 .|
simultaneously climbs very sharply near zA/a’ =
5.5 before assuming its gradual increase.
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Figures 25 and 26, with b/a as parameter, are
plotted for infinitely flexible boundary condi -
tions. Over the short range and for b/a = 1,
{P> el decreases faster than free field, but for
the larger b/a value it generally shows increas-
ing resemblance to free field (b/a = 1.2 appears
to be an exception). The behavior of {6,
over the shorter zA/a” range is more regular with
the parameter b/a. Here we find the curve for
b/a = 1 portraying the greatest ratio of increase
in 0>, with the curves for successively
larger values of b/a showing a monotonic tend-
ency to closer agreement with free field. Over
the larger z\/a’® range we find the relative phase
behavior continuing in the same manner, and the
behavior of {p) e} for various values of b/a ap-
proaches bedlam but generally remains above the
free-field value, except for b/a = 2 where<{p),e]
is beginning to resemble free field.

Liquid boundary conditions with 4/a as param-
eter are shown in Figs. 27 and 28. These figures
are not sufficiently detailed to note differences
between the curves as calculated by the erron-
eous, but simplifying, assumption of orthogonality
and by the correct (actual) procedure. Hereagain
we find a general tendency for {p) ;1 to oscil-
late about a constant value after an initial de-
crease (except for b/a = 2, which again is be-
ginning to resemble free field), while 6>
tends to separate for the various values of the
b/a parameter. The trend in <6>,.] is again for
the b/a =
the plane-wave curve, with increasing b/a values

1 curve to be the most different from

leading to <>, converging on the free-field
plot.

The last boundary condition considered is the
most realistic for a metal tube, that is, the elas-
tic solid boundary condition. Figures 29 and 30
show the effect of the b/a parameter for this
case. For the first time the differences between
the correct (actual) curves and the ones calcu-
lated with the assumption of orthogonality are
apparent in the curves for which b/a < 1.5. We
also note that the differences are greater for
these elastic boundary conditions. Here we find
{pDrel generally assuming a constant value for
each b/a, with the variation increasing with
z\/a* and the constant value increasing with

b/a. For the phase plots, however, we find that
<{0>;e) has the greatest rate of increase for the
smaller values of b/a; thatis, b/a = 1 has the
largest phase correction to a plane wave, with
the correction decreasing with increasing b/a
until, at the value /2 = 2, it begins to approxi-
mate free-field conditions over the distances
plotted. Obviously those individuals who attempt
to minimize the apparent sound speed discrepan-
cies with respect to plane-wave values by pur-
posely choosing b/a = 1, in the mistaken as-
sumption that their boundary conditions approxi-
mate absolutely rigid walls and thus permit only
the plane-wave mode, could not have selected a
worse b/a parameter. These plots, it should be
recalled, are for a realistic metal wall with a
density seven times that of the contained liquid,
a sound speed four times that of the contained
liquid, and Poisson’s ratio v = 0.325. All cal-
culations, except for the parameter being varied,

are for the standard reference conditions in
Table 1.

The next parameter varied is the wavenumber
(or unconfined plane-wave sound speed) ratio
k,/k, of the contained liquid to the wall material.
We select values of k,/k, = 3,4, and 5. Fig-
ures 31 and 32 are for liquid boundary conditions.
Obviously the variation of this parameter has
very little effect on the curves, which cannot be
distinguished over the major portion of the z\/a?
range and, as usual, oscillate about the free-field

curve.

Figures 33 and 34 are for the parameter /el/lz2
for elastic boundary conditions. Unlike the
liquid boundary condition, the effect here is pro-
nounced and can be summarized by noting that
the {p) ;c] plots are generally similar, with the
curves for the larger parameter values beginning
at lower {p> ;e] values and then all tending to
merge toward the end of the z\ a? range at a
value well above free field, showing the effectof
coherent reflections. The <9>rel plots are like-
wise generally similar, roughly approximating the
free-field curve until the reflections become im-
portant, and with the phase relative to a plane
wave increasing with &, /k,.

Varying the density ratio p,/p; of the wall
material and the confined liquid again results in
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litcle differentiation for the values pz/p1 = 6,
7, and 8 in the case of liquid boundary conditions
(see Figs. 35 and 30).

The density ratio parameter variation for elas-
tic boundary conditions is shown in Figs. 37 and
38. Here we note that the behavior is similar to
the k, /k, variation effect for elastic walls.
Again {p ] begins with values that are de-
pendent on the parameter values; the curve for
the larger density ratio is the farthest below free
field. All the curves end with general merging at
2\ a® = 10 at a value above free field. The
curves for <8, tend initially to oscillate about
the free-field value but appear to be heading for
phase differences (from plane-wave values) that
are greater than the free field is from the plane-
wave value at z\/a®> = 10. The greater density
apparently has the greater anomoly.

Figures 39 and 40 indicate the effect of vary-
ing the Poisson’s ratio parameter v for elastic
boundary conditions. Here again we find minor
differences in {p)c| over the shorter z\/a’
range and an eventual merging at the greatest
distance considered. Conversély, {B>,c1 values
show little difference up to Nd? = 1, beyond
which there is a gradual divergence of the v pa-
rameter plots, with the smaller Poisson’s ratio
contributing a slightly larger phase discrepancy
from plane-wave values.

As discussed in Ref. 4, the intrinsic absorp-
tion coefficient ¢ of the contained liquid can be
experimentally determined most readily from the

1 < ﬂ)
Q0o 1=
(X; — Xy) A,
where X, — X, represents a sufficiently small
distance interval and

A (&) <D_1>
Al Nl D2
is obtained from the measured amplitudes N and

the diffraction amplitude D. The latter two
quantities are obtained from

equation

N - Nl e"'IJ(XQ_Xl)

2
and
— Dl e"s(XZ -X1)

where we have assumed no interaction, i.e.,
¢ =v -0,

and we note that both v and & may be either posi-
tive or negative depending on the distances
involved.

Similarly, the application of these current
calculations to sound speed measurements is
adequately detailed in the immediately preceding
report of this series. In the case of guided prop-
agation, however, the advantages accruing from
increasing path in free-field propagation are non-
existent, and the utilization of differential path
techniques must be applied with even more judi-
cious selection of operating distances.

Of all the boundary conditions considered in
this report, the one which is believed to most
adequately approximate a thick-walled metal tube
containing a liquid is the formulation for an elas-
tic solid wall. For this situation we find the
choice of b/a = 1 to be an unusually inept se-
lection, and for values of b/a > 2 the predicted
effect is essentially the same as that for free-
field propagation from a similar source (for
ka = 20m) up to at least N a? = 10, which
corresponds, for @ = 10A, to z = 150 cm. It
should be recalled that the formulation in this
report deals with nonterminated situations or
with terminations wherein the effects of such
may be time-separated, such as by the use of
pulsing techniques.

CONCLUSIONS

As was shown also for free-field diffraction
(finite size, plane-parallel source) in an earlier
report (4), appreciable errors in the measurement
of sound speed and sound absorption may be at-
tributed to either neglect in applying appropriate
corrections to guided mode propagation measure-
ments or to improper selection of geometric pa-
rameters so that corrections are not precluded.
In particular, the elastic solid boundary condi-
tions, which are considered to be those most ap-
propriate to the situation of a liquid contained
within a thick-walled metal tube, are shown to
tesult in maximum anomolies in sound speed
determination for the situation of a transducer
completely filling one end of the tube. For tube-
to-transducer radius ratios greater than 2, the
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effect for this boundary condition closely ap-
proximates (to ranges of zMa® =~ 10) that of
free-field propagation from a finite transducer.

FUTURE WORK

The next report of this series will deal with
propagation within liquid cylinders contained in
shells, both liquid and elastic. Subsequent re-
ports will (a) introduce viscosity in order to more
precisely specify appropriate boundary conditions
and deal with viscous absorption, (b) introduce
an elastic termination to the open end of the
liquid cylinder, resulting in iterative reflections,
especially for continuous waves, and (c) correlate
the theoretical predictions with recent experi-
mental findings. A report on a more adequate
representation of free-field phenomena at z = 0,
including point-source approximations, is also
anticipated.
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APPENDIX A

TIME CONVENTION FOR AN OUTGOING WAVE

The function appropriate to an outgoing wave
with the time convention e *“? is }((1) = E( +
tn when r > 0. This leads dxrectly, for exam-
ple to the characteristic equation (Eq. (62)) fora
liquid boundary condition:

$,00 HO(Vx2 —v?)
X §(x) Vx2 _ y2 }((11)(\/)(2 _y2 )

(97)

Lied

The requirement that the velocity potential in the
second (boundary) medium vanish as the distance
r perpendicular to the acoustic source axis ap-
proaches oo, plus the fact that ]‘(81) vanishes for
an infinite complex argument with the imaginary
part positive, since

2

(1)
}{m (y) —> -

(98)

as the distance z parallel to the source axis ap-
proaches «, requires that

yZ > x2,

So we write

o0 p KOV ¥
XS’1(X) P1 '\/ _x2 H(l)(‘/YZ—X )
(99)
Since
K (y) = % 5 HD (iz),  (100)
with
Km(y)—) \/Zﬂ—y e Y as z - oo (101)
we may rewrite (89) as
| S (102)
QO(X) P2 Ko( y? - Xz)
X PL Vy2 _x2 Kl(\/Yz - x2)

36

The appropriate characteristic values X for the
standard reference conditions (Table 1) are given
in Table 4. We note that the Hankel functions
}((ml) and }((mZ) have complex values for real argu-

—}(El )(iy), - i}‘(gz)(—iy), and

- }(gz)(—iy) are real for positive y. Also

H{D(y) = = H(P(=iy)

ments, but i}(gl )( iy),

(103)

and

H{D(iyy = H{P(=iy). (104)
The Hankel functions are the only unmodified
Bessel functions that vanish for an infinite com-
plex argument. The modified Bessel Functions
K are real and vanish exponentially at infinity.
They are defined in terms of H(l)only and are
sometimes called hyperbolic Bessel functions.
iwt

If we had chosen the time convention ¢*“*, an

outgoing wave would apparently be represented

by
XOm)

el®t e 140m? ]‘(82)(, T (105)

where

KD = 4, - M,

This would lead directly to another characteristic
equation for a liquid boundary condition:

o ey WK -2
X$ T op
$,00 Pr V2 _ y2 }((12)<VX2 _ Y2>
(106)
As
HPz) — e 2 (107)
17z
for infinitely large z, so also does
—; 21
Hf)z)(z) —> e 7 \/”—: as z - oo. (108)

But here we note that ng) vanishes for an infinite
complex argument with the imaginary part nega-
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tive. If we choose the same limits as before,
i.e., Y2 > X2 —which corresponds to qém > p?
and further requires that C, > C; (or k; > ky)
for Y real—we have a pure imaginary argument
which is positive, so

S0 }(52)("”2"‘2)
X 4,(X) P Ay2_x2 }((12)(1-\/)/2 _ XZ)'

(109)

The simplest way to rectify this is to substitute
—i for i, which amounts to defining the argument
of ng) in (105) as negative. This step leads
directly, using (107) and (108), to

go(x) P2

Hgl)(i VYZ _XZ )
X0 L iVy2 _x2 }(gﬂ(i\/m)

which is just the characteristic equation we used
for the e™*“! time convention. Thus, the set of

roots X would be identical to that shown in

Table 4, and the succeeding calculations based
on these roots would follow exactly as before.

At this point, it might prove enlightening to
not change the sign of the argument in (109) but
to follow the calculations blindly from this point
on. The resulting roots are given in Table Al,
along with the correct roots repeated from Table
4. With this wrong time convention, then, (P> e]
is calculated both by (erroneously) invoking
orthogonality and by the correct procedure and is
listed in Table A2; <0)..; is similarly shown in
Table A3. With the time convention used both
correctly and incorrectly ((p) rel )L values for the
orthogonal assumption are calculated for outgoing
waves and are compared in Table A4, and
(<0>f31)L values are similarly compared in
Table A5. Finally, (<P>re1 )L values for the
actual case with the time convention handled cor-
rectly and incorrectly are compared in Table AG,
a“d(<9>rel)L values are similarly compared in
Table A7. Without belaboring the issue further,
the effect of careless handling of the limits of
functions is obvious.

TABLE Al

Comparison of Characteristic Values X; < Y Obtained by
Using the Correct[Eq. (62)]and Incorrect [Eq. (109)] Time Convention in the

Characteristic Equation.

Calculations are Based on Standard Reference

Parameters Shown in Table 1

m XLm-correct XLm—incorrect m XLm—correct XLm—incorrect
(From Table 4) {From Table 4)
1 2.2716377 2.5456742 21 63.8405807 66.5372263
2 5.2211344 5.8345490 22 66.9679868 69.6927184
3 8.2022980 9.1249658 23 70.0963105 72.8473568
41 11.2055952 12.3981611 24 73.2254264 76.0012595
5 14.2292985 15.6518249 25 76.3552248 79.1545308
6| 17.2712781 18.8875996 26 79.4856088 82.3072641
71 20.3289243 22.1082122 27 82.6164906 85.4595453
8| 23.3996145 25.3163963 28 85.7477895 88.6114550
9| 26.4809976 28.5145236 29 88.8794289 91.7630717
10| 29.5710924 31.7045325 30 02.0113338 94.9144750
11 32.6682830 34.8879669 31 95.1434277 98.0657501
12 35.7712728 38.0660457 32 98.2756279 101.2169937
13| 38.8790273 41.2397301 33 1 101.4078399 104.3683248
14| 41.9907212 44.4097812 34 | 104.5399468 107.5199028
15| 45.1056940 47.5768059 35 | 107.6717908 110.6719660
16| 48.2234141 50.7412913 36| 110.8031348 113.8249268
17 | 51.3434505 53.9036324 37 | 113.9335679 116.9796742
18| 54.4654514 57.0641517 38 | 117.0622018 120.1393156
19| 57.5891272 60.2231152 39 | 120.1859282 -
20| 60.7142374 63.3807447
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TABLE A2
Comparison of Average Relative Pressure Values
({pDre1), Obtained Using Orthogonal Assumptionand Actual Values of K,
and the Incorrect{Eq. (109)] Time Convention. Pressure Values are for the
Liquid Boundary Conditionand are Based onStandard Reference Parameters
Shown in Table 1. (See Table 10 for Correct Time Convention Values.)

A
z— (<e> re.l)L (<p>rEI)L_ Relative Error
. fz — incorrect —incorrect (re Actual)
(Dimensioniess) | (Orth. Assump.) (Actual)
0.0 0.9893119 0.9894439 -0.0001334
0.1 0.9306673 0.9307352 -0.0000729
0.2 0.9021680 0.9022147 -0.0000517
0.3 0.8828351 0.8828814 -0.0000524
0.4 0.8716027 0.8716449 -0.0000484
0.5 0.8557258 0.8557640 -0.0000447
0.6 0.8381940 0.8382258 -0.0000379
0.7 0.8307657 0.8307995 -0.0000406
0.8 0.8248261 0.8248644 -0.0000464
0.9 0.8053215 0.8053477 -0.00600325
1.0 0.7863048 0.7863138 -0.0000115
2.0 0.7524726 0.7525081 -0.0000473
3.0 0.6416083 0.6416015 +0.0000106
4.0 0.6750847 0.6751106 -0.0000384
5.0 0.5406173 0.5406127 +0.0000085
6.0 0.4759966 0.4759698 +0.0000563
7.0 0.5544776 0.5544712 +0.0000117
8.0 0.7111028 0.7111316 ~-0.0000404
9.0 0.7762329 0.7762875 -0.0000703
10.0 0.7352137 0.7352249 -0.0000152
TABLE A3

Comparison of Average Relative Phase-Difference Values (<9>fel)L
Obtained Using Orthogonal Assumption and Actual Values of K, and the
Incorrect[Eq. (109)] Time Convention. Phase-Difference Values are for the
Liquid Boundary Condition and are Based on Standard Reference Parameters
Shown in Table 1. (See Table 11 for Correct Time Convention Values.)

A 0 <6>
z— ( < >re_l)L ( rel) L Relative Error
a — incorrect —incorrect (re Actual)
(Dimensionless) | (Orth. Assump.) (Actual)
0.0 0.0000006 0.0000006 0
0.1 0.0770320 0.0770624 ~-0.0003940
0.2 0.1109370 0.1109651 -0.0002535
0.3 0.1378661 0.1378951 -0.0002106
0.4 0.1603679 0.1603884 -0.0001276
0.5 0.1836590 0.1836803 -0.0001159
0.6 0.2128278 0.2128556 -0.0001307
0.7 0.2161217 0.2161328 -0.0000513
0.8 0.2450991 0.2451190 -0.0000810
0.9 0.2568528 0.2568658 ~-0.0000505
1.0 0.2757060 0.2757279 -0.0000795
2.0 0.4586840 0.4587147 -0.0000670
3.0 0.6006214 0.6006454 -0.0000398
4.0 0.6731474 0.6731453 +0.0000030
5.0 0.8388133 0.8388583 -0.0000537
6.0 0.6892981 0.6892698 -0.0000410
7.0 0.7115613 0.7115412 +0.0000282
8.0 0.7916429 0.7916281 +0.0000186
9.0 1.0351496 1.0351467 +0.0000029
10.0 1.1512997 1.1513039 -0.0000037
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TABLE A4
Comparison of Average Relative Pressure Values
(<p> fel)L Obtained Using the Orthogonal Assumption Values of K, and
the Correct [Eq. (62)] and Incorrect [Eq. (109)] Time Convention. Pressure
Values are for the Liquid Boundary Condition and are Based on Standard
Reference Parameters Shown in Table 1.

A (<p>reI)L (<P>rel)L —correct
z— . Relative Error
2 — incorrect .
. (Orth. Assump.; (Orth'b?ssll:)mp" (re Correct)
(Dimensionless) Table A2) Table 10)
0.0 0.9893119 0.9895775 ~0.0002684
0.1 0.9306673 0.9306396 +0.0000298
0.2 0.9021680 0.9018492 +0.0003535
0.3 0.8828351 0.8832659 -0.0004877
0.4 0.8716027 0.8747904 -0.0036440
0.5 0.8557258 0.8601329 -0.0051237
0.6 0.8381940 0.8296854 +0.0102552
0.7 0.8307657 0.8454234 -0.0176436
0.8 0.8248261 0.8156356 +0.0112679
0.9 0.8053215 0.8024712 +0.0035519
1.0 0.7863048 0.8094636 -0.0294527
2.0 0.7524726 0.7535671 -0.0014545
3.0 0.6416083 0.7475792 -0.1651645
4.0 0.6750847 0.5320858 +0.2687516
5.0 0.5406173 0.5033542 +0.0740296
6.0 0.4759966 0.3703530 +0.2852511
7.0 0.5544776 0.2964656 +0.8702932
8.0 0.7111028 0.4134798 +0.7198006
9.0 0.7762329 0.3812747 +1.0358888
10.0 0.7352137 0.5912150 +0.2435640
TABLE A5

Comparison of Average Relative Phase-Difference Values
( <0>f€1)L Obtained Using the Orthogonal Assumption Values of K; and
the Correct [Eq. (62)] and Incorrect [Eq. (109)] Time Convention. Phase-
Difference Values are for the Liquid Boundary Condition and are Based on
Standard Reference Parameters Shown in Table 1.

A (<p>fel)L ( <p>rel)L —correct
z 3 —incorrect Relative Error
e (Orth. Assump.; (Orth'b?ssump'; (re Correct)
(Dimensionless) Table A3) Table 11)
0.0 0.0000006 0.0000006 0
0.1 0.0770320 0.0770784 -0.0006020
0.2 0.1109370 0.1104181 +0.0046994
0.3 0.1378661 0.1358862 +0.0145703
0.4 0.1603679 0.1639416 -0.0217986
0.5 0.1836590 0.1836409 +0.0000986
0.6 0.2128278 0.2061965 +0.0321601
0.7 0.2161217 0.2209007 -0.0216342
0.8 0.2450991 0.2617586 -0.0636445
0.9 0.2568528 0.2418164 +0.0621811
1.0 0.2757060 0.2425141 +0.1368659
2.0 0.4586840 0.3661808 +0.2526165
3.0 0.6006214 0.7017445 -0.1441024
4.0 0.6731474 0.7916116 -0.1496494
5.0 0.8388133 0.7776839 +0.0786044
6.0 0.6892981 1.0905651 -0.3679441
7.0 0.7115613 0.6155605 +0.1559567
8.0 0.7916429 0.6405180 +0.2359147
9.0 1.0351496 0.4942622 +1.0943329
10.0 1.1512997 0.5903329 +0.9502550
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TABLE AG
Comparison of Average Relative Pressure Values
E(p}rel) Obtained Using the Actual Values of K, ., and the Correct
Eq. (62)] and Incorrect [Eq. (109)] Time Convention. Pressure Values are
for the Liquid Boundary Condition and are Based on Standard Reference
Parameters Shown in Table 1.

N (<P>eer), (<P>er). _correct
zZ— . Relative Error
2 —incorrect
. “ (Actual ’I('AbcltuaIIO) (re Correct)
i e
(Dimensionless) Table A2) a
0.0 0.9894439 0.9894456 ~0.0000017
0.1 0.9307352 0.9305719 +0.0001755
0.2 0.9022147 0.9018035 +0.0004560
0.3 0.8828814 0.8832215 -0.0003851
0.4 0.8716449 0.8747423 -0.0035409
0.5 0.8557640 0.8600888 -0.0050283
0.6 0.8382258 0.8296640 +0.0103196
0.7 0.8307995 0.8453774 -0.0172407
0.8 0.8248644 0.8156078 +0.0113493
0.9 0.8053477 0.8024510 +0.003610
1.0 0.7863138 0.8094384 -0.0285687
2.0 0.7525081 0.7535548 -0.0013890
3.0 0.6416015 0.7475292 ~-0.1417038
4.0 0.6751106 0.5321009 +0.2687643
5.0 0.5406127 0.5033521 +0.0740249
6.0 0.4759698 0.3703732 +0.2851086
7.0 0.5544712 0.2964915 +0.8701082
8.0 0.7111316 0.4134609 +0.7199489
2.0 0.7762875 0.3813003 +1.0358953
10.0 0.7352249 0.5912050 +0.2436040
TABLE A7

Comparison of Average Relative Phase-Difference Values
(<9>re1) Obtained Using the Actual Values of K, ,, and the Correct
[Eq. (62)] and Incorrect [Eq. (109)] Time Convention. Pressure Values are
for the Liquid Boundary and are Based on Standard Reference Parameters

Shown in Table 1.

R (<Oer), (<0.e1), —correct A
2 —incorrect Relative Error
Di ionl (Actual; (Actual; (re Actual)
(Dimensionless) | 1 A3) Table 11)
0.0 0.0000006 0.0000006 0
0.1 0.0770624 0.0770483 +0.0001830
0.2 0.1109651 0.1103926 +0.0051860
0.3 0.1378951 0.1358591 +0.0149861
0.4 0.1603884 0.1639192 -0.0215399
0.5 0.1836803 0.1836184 +0.0003371
0.6 0.2128556 0.2061710 +0.0324226
0.7 0.2161328 0.2208823 -0.0215024
0.8 0.2451190 0.2617183 -0.0634243
0.9 0.2568658 0.2418140 +0.0622454
1.0 0.2757279 0.2425331 +0.1368671
2.0 0.4587147 0.3661959 +0.2526484
3.0 0.6006454 0.7016980 -0.1440115
4.0 0.6731453 0.7916051 -0.496451
5.0 0.8388583 0.7777139 +0.0786207
6.0 0.6892698 1.0904750 ~-0.3679178
7.0 0.7115412 0.6156242 +0.1558045
8.0 0.7916281 0.6405112 +0.2359317
9.0 1.0351467 0.4943238 +1.0940661
10.0 1.1513039 0.5903391 +0.9502416




APPENDIX B

REDEFINITION OF VECTOR DISPLACEMENT
POTENTIAL ¥

In the formulation for elastic solid boundary
conditions we have used the displacement vector

s =VDd +Vx V¥

where, because of axial symmetry, we have only
the single 0 component of ¥, denoted by the
scalar ¥. Our ¥ is a solution to

92w 1

T

av

or

1
Cz

+

2
2

which we call a pseudo-wave equation because

of the extraneous term —% . (The development
r

in the text utilized this potential ¥ and carried it
through straightforwardly.)

An alternate procedure consists of redefining
the potential used, such that

o
¥ o= — 3 (110)
where ¥ is a solution to the wave equation
v 1 gy P 1 v
T — — — . (111)
or? r 4 3 z? c? a2
Ry

The scalar potential ® remains unchanged. The
displacement vector components then become (cf.
Eq. (78))
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Using the stresses as defined in Eq. (79), the
displacement components as defined above, and
the relation between C, and C_, we then obtain

(cf. Eq. (81))
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and (113)
2 2y
[ PP [y
%z = 2P2C5 (araz or <(9z2
9 az
P2 7g,
Writing again the expansions in their correct
form, i.e.,
and (114)
¥ o= TI;O Kl(’vllém _kSZ ) e TI9t idomZ,

we obtain from the vanishing of tangential stress

at the boundary (i.e., 0, = 0)
r=b
o
7
“/ 2 '\/
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(cf. Eq. (82)). (115)

Following the same steps we then find (cf.
Eq. (83))
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and (cf. Eq. (84))

s, @t aomz) _
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qum

(117)

where we eliminated @ by the relation shown in

Eq. (115). Finally (cf. Eq. (86))

2
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Up until just before this last equation, the
various relations obtained using ¥ could be re-
lated to those obtained using ¥ by the simple
substitution of the original redefinition

v

e o

or by the equivalent relation
y
o 2 2

- Ki(rVeg, - &)
= = 7T ¥4y, T Rs .
¥ Kl(r Vqém - k52>

(119)

From Eq. (118), which is obtained from o_,ands,
whose respective two forms differ only by the
relation given in Eq. (119), we find that the two
forms of

Tr

r=b

can be equated only if, in addition to the relation
(eq. (119)), we have
" ’

KK
o . 120
K K, (120)
It is rather easily shown that such a relation,
with the primes referring to differentiation with
respect to the entire argument, is not generally
true. Quite irrespective of the validity of Eq.

(120), we may simplify Eq. (118) to (cf. Eq. (87))
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and using the second boundary condition—i.e.,
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we obtain
2
2 ‘\/ 2 2 2 2
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which becomes, by the previous definitions,
2
g/0 (XOm) Py 2 (zq(z)m _ksz) KO( Ycz _X(z)m ) 4q§m 473,,,
X, 4. (x Py -
Om 1( Om) P2 b2k52 k54\/Y‘;2“X(2)m KI(\/YCZ —_X(z)m) b2k54 b2ks4
(3,002 42) K (W2 oxg, ) V2 og, KW,
(123)
K1<-\/Y52 —X(z)m ) +WSZ _X(z)m KO<\/Y52 _X(2)m )
This is finally simplified by combining the last
two terms to
2 5
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Obviously, our unwarranted desire to modify
the potential used so as to obtain “true” wave
equations did not simplify the resulting expres-
sions.

We note that Eq. (124), as compared with Eq.
(89), implies for equality that

2 2 2 2 2 _
K2+ x2K? - xK K, - x? K72 = 0 (125)
where the argument of the Bessel Functions is
X. Equation (125) is the equivalent of Eq. (120).

No physical reason demands that this equation
be satisfied. However, the intuitive expectation
exists that identical {®) ;] values would be ob-
tained from the solutions X0, to Eq. (124) when
used in Eq. (24) with the K from Eq. (38) or
Eq. (16), as appropriate, as were obtained from
= to Eq. (89).

the solutions XO

Additional tables have been prepared to dem-
onstrate the degree of validity of this intuitive
Table Bl compares the roots ob-
tained from the redefined potential equation with
the original potential equation for the standard-
= 2. Obviously

expectation.

ized parameters, including b/a
the roots have not been appreciably changed and
consequently, as indicated in Table B2, there is
little difference between the original and modified
potential in the tabulated values of ( <P rel )E
calculated by invoking orthogonality. Similarly
the orthogonal assumption values for (<> fel)E
are essentially the same for both potentials, as
seen in Table B3. Finally, for this comparison
of results for both potentials for b/a = 2, we see
in Table B4 that the actual values of((p) rel )E
for both potentials show close agreement and in
Table B5 that the same holds for the actual
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( <0>IEI)E . The roots for both potentials ob-
tained for b/a = 1 are shown in Table BG6, where
again only a slight difference is noted. Tables
37 through B10 again compare solutions obtained
for both the original and the redefined potentials
and are, respectively, for the orthogonal assump-
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TABLE Bl

tion ((p) rel )E , the orthogonal assumption

( <6>fel)E , the actual ( D> rel)E , and the ac-
tual ( COIN )E . While somewhat larger differ-
ences may be found in these latter tables, there
is generally satisfactory agreement in the results
obtained for the two potentials.

Comparison of Characteristic Values

Xgm S Y Obtained by Using the Original
Potential Characteristic Equation(Eq. 89)and the
Redefined Potential Characteristic Equation (Eq.

124). Calculations are Based on Standard

Reference Parameters Shown in Table 1.

Xg

Original
™  Potential

Redefined

X, - )
Em " Potential

O O QAN NN =

3.0413911

6.5283908

9.8273980
13.0557922
16.2518595
19.4306369
22.5991233
25.7609959
28.9183657
32.0725284
35.2243216
38.3743096

41.5228853

44.6703291
47.8168454
50.9625847
54.1076584
57.2521485
60.3961139
63.5395907
66.6826014
69.8251471
72.9672093
76.1087436
79.2496705

82.3898569

85.5290817
88.6669664
91.8028211
94.9352565
98.0610040
101.1700866
104.2115035
106.5524618
107.9510042

3.0416401

6.5286045

9.8275617
13.0559227
16.2519678
19.4307297
22.5992045
25.76100685
28.9184315
32.0725888
35.2243777
38.3743623
41.5229351
44.6703767
47.8168911
50.9626290
54.1077017
57.2521910
60.3961552
63.5396328
66.6826438
69.8251902
72.9672536
76.1087898
79.2497194
82.3899096
85.5291399
88.6670328
91.8029004

94.9353582
98.0611503
101.1703499
104.2123242
106.5583070
107.9532132
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TABLE B2 TABLE B3
Comparison of Average Relative Comparison of Average Relative
Pressure Values (<P>re1)E Obtained by Using the Phase Difference Values (<9>[61)E Obtained by
Original Potential and the Redefined Potential with Using the Original Potential and the Redefined
the Orthogonal Assumption K . Calculationsare Potential with the Orthogonal Assumption K.
Based on Standard Reference Parameters Calculations are Based on Standard Reference
Shown in Table 1. Parameters Shown in Table 1.
A (<p>reI)E - (<p>rel)E - = A (<‘9>rel)E - (<9>rel)E -
z -a—z Original Potential Redefined Potential ? Original Potential | Redefined Potential
(Orthog. Assump.) (Orthog. Assump.) (Orthog. Assump.) (Orthog. Assump.)
0.0 0.9717788 0.9717451 0.0 0 0
0.1 0.9141165 0.9140872 0.1 0.0778414 0.0778460
0.2 0.8860098 0.8859779 0.2 0.1151891 0.1151897
0.3 0.8667967 0.8667604 0.3 0.1422784 0.1422912
0.4 0.8564165 0.8563953 0.4 0.1659318 0.1659428
0.5 0.8415938 0.8415637 0.5 0.1894090 0.1894081
0.6 0.8190483 0.8190046 0.6 0.2217272 0.2217426
0.7 0.8225790 0.8225615 0.7 0.2228230 0.2228506
0.8 0.8094269 0.8094015 0.8 0.2655853 0.2655847
0.9 0.7846205 0.7845758 0.9 0.2644061 0.2644171
1.0 0.7762643 0.7762408 1.0 0.2681320 0.2681761
2.0 0.7059880 0.7059790 2.0 0.4333332 0.4334086
3.0 0.7464714 0.7465071 3.0 0.5311679 0.5312887
4.0 0.7666435 0.7667065 4.0 0.8584935 0.8586492
5.0 0.6782722 0.6783703 5.0 0.9762409 0.9764162
6.0 0.7197391 0.7198947 6.0 0.9276615 0.9278846
7.0 0.8061243 0.8063043 7.0 1.1607084 1.1609503
8.0 0.7915121 0.7916595 8.0 1.4857913 1.4859755
9.0 0.7181985 0.7183433 9.0 1.6592534 1.6594026
10.0 0.8622688 0.8624221 10.0 1.7931229 1.7933139
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TABLE B4 TABLE B5
Comparison of Average Relative Comparison of Average Relative
Pressure Values (<p>,e1)E Obtained by Using the Phase Difference Values (<6>re1)5 Obtained by
Original Potential and the Redefined Potential with Using the Original Potential and the Redefined
the Actual K, . Calculations are Based on Potential with the Actual Kg,,- Calculations are
Reference Parameters Shown in Table 1. Based on Standard Reference Parameters
Shown in Table 1.
A (<p>rel)E - (<P>rel)E =
= Original Potential | Redefined i (0>cer), - (KO>cer),, -
a ginal Potentia edefined Potential A E E
(Actual) (Actual) z ‘; Original Potential Redefined Potential
(Actual) (Actual)
0.0 0.9713188 0.9712871
0.1 0.9142742 0.9142407 0.0 0 0
0.2 0.8864551 0.8864216 0.1 0.0784568 0.0784571
0.3 0.8662562 0.8662263 0.2 0.1146869 0.1146956
0.4 0.85626006 0.8562317 0.3 0.1418842 0.1418927
0.5 0.8420237 0.8419908 0.4 0.1665204 0.1665249
0.6 0.8186038 0.8185737 0.5 0.1893459 0.1893578
0.7 0.8221697 0.8221424 0.6 0.2213196 0.2213288
0.8 0.8097581 0.8097230 0.7 0.2230320 0.2230467
0.9 0.7844757 0.7844519 0.8 0.2657002 0.2657190
1.0 0.7759440 0.7759159 0.9 0.2635660 0.2635845
2.0 0.7055973 0.7055677 1.0 0.2679827 0.2680016
3.0 0.7462238 0.7462155 2.0 0.4338638 0.4338799
4.0 0.7664073 0.7663907 3.0 0.5318601 0.5319063
5.0 0.6783252 0.6783201 4.0 0.8591407 0.8592388
6.0 0.7197888 0.7198243 5.0 0.9768278 0.9769499
7.0 0.8058819 0.8059145 6.0 0.9286576 0.9288154
8.0 0.7917809 0.7917614 7.0 1.1611076 1.1613348
9.0 0.7187899 0.7187712 8.0 1.4862842 1.4865431
10.0 0.8627789 0.8627850 9.0 1.6596663 1.6599775
10.0 1.7934281 1.7938050
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TABLE B6 TABLE B7

Comparison of Average Relative
Pressure Values (<p>[e1)5 Obtained by Using the
Original Potential and the Redefined Potential with
the Orthogonal Assumption K . Calculationsare

Comparison of Characteristic Values
Xg.. < Y Obtained by Using the Original
Potential Characteristic Equation(Eq. 89)and the
Redefined Potential Characteristic Equation (Eq.

124). Calculations are Based on Standard
Reference Parameters Shown in Table 1
except b/a = 1.

based on Standard Reference Parameters
Shown in Table 1 except b/a = 1.

A (<p>rel)E - (<p>rel)E -
X g, — Original X i, — Redefined = ? Original Potential| Redefined Potential
m . . (Orthog. Assump.) (Orthog. Assump.)
Potential Potential

0.0 0.0865885 0.0862226

1 3.372720310 3.371880142 0.1 0.0837691 0.0834574
2 6.759933220 6.759426420 0.2 0.0819398 0.0815891
3 9.994916218 9.994554980 0.3 0.0816765 0.0813158
4 13.185228852 13.184944867 0.4 0.0791261 0.0788915
5 16.356399672 16.356162144 0.5 0.0771040 0.0767549
6 19.517557338 19.517349637 0.6 0.0778171 0.0774220
7 22.672755116 22.672566964 0.7 0.0755567 0.0753886
8 25.824039488 25.823863699 0.8 0.0742354 0.0739218
9 28.972516566 28.972347402 0.9 0.0754615 0.0749993
10 32.118778351 32.118610445 1.0 0.0738765 0.0737429
11 35.263071969 35.262899253 2.0 0.0810237 0.0810802
12 38.405321481 38.405135553 3.0 0.0739906 0.0737786
13 41.544976097 41.544762561 4.0 0.0757399 0.0749529
14 44,680410535 44.680138032 5.0 0.0794552 0.0781979
15 47.806349335 47.805921469 6.0 0.0741046 0.0732354
16 50.894362149 50.893176539 7.0 0.0840508 0.0843517
17 53.284213185 53.269740691 8.0 0.0717685 0.0729076
18 54.370414311 54.366793115 9.0 0.0825636 0.0832128
10.0 0.0742248 0.0732788
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TABLE B8 TABLE B9

Comparison of Average Relative Comparison of Average Relative
Phase Difference(<0>[el)5 Obtained by Usingthe Pressure Values (<p>,31)E Obtained by Using the
Original Potential and the Redefined Potential with  Original Potential and the Redefined Potential with

the Orthogonal Assumption K . Calculations are the Actual K . Calculations are Based on
Based on Standard Reference Parameters Standard Reference Parameters Shown in
Shown in Table 1 except b/a = 1. Table 1 except b/a = 1.
. A (<0>rel)E - (<9>rel)E - A (<p>rel)E - (<P>rel)5 -
.;_2- Original Potential Redefined Potential % ; Original Potential Redefined Potential
(Orthog. Assump.) (Orthog. Assump.) (Actual) (Actual)

0.0 0 0 0.0 0.1149452 0.1143217
0.1 - 0.1164774 0.1165960 0.1 0.0885871 0.0886270
0.2 0.2429197 0.2425264 0.2 0.0837064 0.0828748
0.3 0.3374536 0.3382476 0.3 0.1026259 0.1019088
0.4 0.4170587 0.4173054 0.4 0.0844068 0.0855379
0.5 0.5266520 0.5256253 0.5 0.0703626 0.0692773
0.6 0.6133799 0.6148207 0.6 0.0967713 0.0952813
0.7 0.6812442 0.6821635 0.7 0.0841316 0.0860895
0.8 0.7721171 0.7702584 0.8 0.0670090 0.0664880
0.9 0.8697393 0.8713507 0.9 0.0907023 0.0880094
1.0 0.9410286 0.9430995 1.0 0.0857666 0.0880855
2.0 1.7700447 1.7694259 2.0 0.0763331 0.0826905
3.0 2.8077192 2.8010887 3.0 0.0652305 0.0657404
4.0 3.5623730 3.5561345 4.0 0.0779204 0.0688498
5.0 4.5911729 4.5958849 5.0 0.0935181 0.0781585
6.0 5.3566908 5.3725154 6.0 0.0896573 0.0802315
7.0 6.3399993 7.0155598 7.0 0.0966090 0.1057441
8.0 7.2382555 7.2433562 8.0 0.0660596 0.0903985
9.0 8.1288061 8.1185271 9.0 0.0740020 0.0925368

10.0 9.1389897 9.1231125 10.0 0.0820247 0.0671322




NRL REPORT 6133

TABLE B10

Comparison of Average Relative
Phase Difference Values (<6>re1)5 Obtained by
Using the Original and the Redefined Potential
with the Actual K, . Calculations are Based on
Standard Reference Parameters Shown in
Table 1 except b/a = 1.

A (<9>rel)E - (<0>rel)E -
z ? Original Potential | Redefined Potential
(Actual) (Actual)

0.0 0 0
0.1 —-0.0123768 —-0.0121608
0.2 +0.3906022 +0.3845634
0.3 0.3773222 0.3867991
0.4 0.2355805 0.2383487
0.5 0.6172168 0.5959548
0.6 0.6556577 0.6736168
0.7 0.4752492 0.4887624
0.8 0.7757266 0.7343813
0.9 0.9672980 0.9886973
1.0 0.7772928 0.8038792
2.0 1.6318643 1.6129921
3.0 2.9059464 2.7563164
4.0 3.6924945 3.5702522
5.0 4.6815573 4.7394374
6.0 5.3429339 5.5420472
7.0 6.2022560 6.4038979
8.0 7.0272994 7.1159801
9.0 8.1732742 7.9348692
10.0 9.3734856 9.0432620




APPENDIX C

SELECTION OF APPROPRIATE
BESSEL FUNCTION SOLUTIONS

Reduced wave equations are obtained from
Eq. (70) by separating out a harmonic time de-
pendence e “®! so that the axial dependence for
outgoing waves is ¢!90m?, The remaining radial

dependence for axial symmetry then is

P2 ® 2 2
LA A N I A Al N S
87‘2 r (91‘ C(;z n 7‘2
(126)

and
9? 2

‘P+l%E_ © _gB-Llv-o0qa2
or? T 4 Cg 7

where we note that we have only the single 0
component of the original vector potential W.
Equation (126) is Bessel’s equation with param-
eter

and order zero; its general solution is
® = C; o(Brr) + € Mo(Byr), (128)

and C, = 0 for our liquid cylinder, which in-
cludes r 0. Equation (127) is a modified
Bessel’s equation with parameter

50

and order unity; its general solution is

b4 (129)

C3 9, (Byr) + ¢, Ky (Byr),

for our second (wall) medium, which
. We note in passing that Kl > 00

and CS
includes »

0

as r » 0, but our wall material does not extend to
r = 0. Thus if our region were the cylinder, we
should set C;, = 0 and retain Cj.

In the liquid boundary case considered earlier
in the report, we had only a scalar potential for
the wall material, which did not extend to r = 0,
so that we kept both solutions to Bessel’s equa-
tion. But for ease of handling, we chose the

particular combination of constants

and c,

using
O = §o(Byr) + i T (Bur)

Noting that
Blzikcz—qnz =i~qn2—kf:2

we may write

il

HED(Byr). (130

Y,

d - }{gl)(,-yn,) - - 2;’ Ko(ynr). (131)

Thus for the outside region we choose K (or
}(.81)) for the scalar potential solution and R for
the vector potential solution when it exists.



FIGURES

The following figures illustrate the effect of changing the parameter values shown in Table 1 on
calculations of the average pressure relative to plane-wave values {p)> o) and of the average phase
difference <8);c; from plane-wave phase. The calculations of {p>.e] and {B;er are compared for
four possible conditions that might exist at the boundary of a cylindrical cavity and for the free field

associated with the radiating piston. In this report, a liquid cavity in the form of a right cylinder is

assumed to be the medium and the geometry for guided mode acoustic energy propagation.

Comparison of each boundary condition with the free field for the standard reference parameters shown

in Table 1:

Fig. 3 — ¢p>el vs zA/a’ for rigid boundary condition
(@) 0 < zMa* L1
(b) 1 £ zA/a® £ 10

Fig. 4 — <02;c1 vs zA/a2 for rigid boundary condition
(a) 0 < z\/d* <11
(b) 1 £ zMa” £ 10

Fig. 5 — {(pDrel vs zMa® for infinitely flexible boundary condition
(@) 0 < z\/a® <1
(b) 1 £ z)\a® <10

Fig. 6 — <0),¢1 vs 2\ a? for infinitely flexible boundary condition
(@) 0 < zMa® <1
(b) 1 < zMa? <10

Fig. 7 — ¢p>rel vs z)\/a® for liquid boundary condition
(@) 0 < z\Ma® <1
(b) 1 £ z\/a®> £ 10

Fig. 8 — {0>¢| vs zA\/a? for liquid boundary condition
(a) 0 < zA/a® <1
(b) 1 < zAa/a® £ 10

Fig. 9 = {pDrel vs z\/a* for elastic boundary condition
(@) 0 < zMa® <1
(b) 1 < zA/a* £ 10

Fig. 10 — {0>,c1 vs zA/a® for elastic boundary condition
(a) 0 < zMd* <1
(b) 1 £ z\/a® <10

Comparison of the four boundary conditions with the free field for radius ratios b/a = 5 and b/a

(other reference parameters are as shown in Table 1):

Fig. 11 — ¢p>rel vs zA/a’ for all four boundary conditions and b/a = S
(a) 0 < z\d® <1
(b) 1 < zMa® <10

51
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Il
.

Fig. 12 — <8>..) vs zA/a’ for all four boundary conditions and b/a
(@) 0 < z2\/a®? <1
(b) 1 < zA/d® <10

Fig. 13 — {pD el vs z\/a* for all four boundary conditions and 4/a = 10
(@) 0 < z0/a® £1
(b) 1 £ zMa? £ 10

[

10

Fig. 14 — {0);c1 vs 2\ a* for all four boundary conditions and b/a
(a) 0 < z\a® <1
(b) 1 < zMa* 10

Comparison of each boundary condition with the free field for absorption parameter values 0 = 0,
& = 1.0, and 0. = 10.0 (other reference parameters are as shown in Table 1):

Fig. 15 — {pD el vs z)u/a2 for rigid boundary condition
(a) 0 < z\a? £ 1
(b) 1 < 2\/a® £ 10

Fig. 16 — {0 | vs z\/a’ for rigid boundary condition
(@) 0 < 2\a* <1
(b) 1 < zA/d® £ 10

Fig. 17 = {p>rel vs zA/a’ for infinitely flexible boundary condition
(@) 0 < zA/a®> £ 1
(b) 1 < zMa® £ 10

Fig. 18 — <9 vs 2\/a® for infinitely flexible boundary conditior
(a) 0 < zM/a? <1
(b) 1 £ 20/a® <10

Fig. 19 — {p>rel vs z)\ a® for liquid boundary condition
(@) 0 < z\Ma®? <1
(b) 1 < zMa? <10

Fig. 20 — <0>,.) vs z\/a® for liquid boundary condition
(@) 0 < zaa® <1
(b) 1 < z)/d? <10

Fig. 21 — {pDrel vs zA/a’ for elastic boundary condition
(@) 0 £ z\a® <1
() 1 < z\/a* £ 10

Fig. 22 — <0>¢) vs z\/a’ for elastic boundary condition
(@) 0 < zr\/d? <1
(b 1 < z\/a? <10

Comparison of each boundary condition with the free field for radius-ratio parameter values b/a =
1.1, 1.2, 1.5, and 2.0 (other reference parameters are as shown in Table 1):

Fig. 23 — {pDre] vs z)\/a2 for rigid boundary condition
(@) 0 £ zMa* <1
(b) 1 < zAa? <10
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Fig. 24 — <0>.¢1 vs z\/a’ for rigid boundary condition
(@) 0 < z\/d* <1
(b) 1 £ z\a? <10

Fig. 25 — {pDte1 vs z\a’ for infinitely flexible boundary condition

(@) 0 < zA/d* <1
b 1 < z20a? <10

Fig. 26 — {61 vs z\/a’ for infinitely flexible boundary condition

(a) 0 £ 2Ma? <1
(b) 1 £ zA/a? £ 10

Fig. 27 — {pDre1 vs zA/a* for liquid boundary condition
(a) 0 < zMa? <1
(b) 1 < zr/a? £ 10

Fig. 28 — <0>.e1 vs z\/a’ for liquid boundary condition
(@) 0 < zA/a® <1
(b) 1 £ z\/a? <10

Fig. 29 — {p> e vs zA/a’ for elastic boundary condition
(a) 0 < z\a? <1
(b) 1 £ z\/a* £ 10

Fig. 30 — <0>,] vs zA/a’® for elastic boundary condition
(a) 0 < zA/a® <1
(b) 1 £ z\a? <10
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Comparison of liquid and elastic boundary conditions with the free field for wave-number-ratio param-

eter values k;/ky; = 3, 4, and 5 (other reference parameters are as shown in Table 1):

Fig. 31 = {p>re1 vs z\/a?® for liquid boundary condition
(a) 0 < z\a? <1
(b) 1 < z\/a® £ 10

Fig: 32 — <{0>.e| vs zA/2> for liquid boundary condition
(a) 0 < zMa? <1
(b) 1 < zMa? <10

Fig. 33 — {pD el vs z\a® for elastic boundary condition
(a) 0 < zA/a* <1
(b) 1 < zMa? <10

Fig. 34 — {0D.c1 vs z\/a’ for elastic boundary condition
(a) 0 < zA/a® <1
(b) 1 < z0/a? <10

Comparison of liquid and elastic boundary conditions with the free field for density-ratio parameter
values p,/p; = 6, 7, and 8 (other reference parameters are as shown in Table 1):

Fig. 35 — {pD te] vs zA/a* for liquid boundary condition
(a) 0 < zM\a®? L1
(b) 1 £ zAa® £ 10
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Fig. 36 — <0>.¢| vs zA/a’® for liquid boundary condition
(a) 0 < zMa? <1
(b) 1 < z\/a? 10

Fig. 37 — {p>rel vs zMa’ for elastic boundary condition
(a) 0 < 20 /&% £1
(b) 1 < zMa®> <10

Fig. 38 — <0) .. vs z\/a® for elastic boundary condition
(@) 0 < zMa*> <1
(b) 1 < za/a® <10

Comparison of the elastic boundary condition with the free field for Poisson’s-ratio parameter values
v = 0.300, 0.325, and 0.350 (other reference parameters are as shown in Table 1):

Fig. 39 — {p>ei vs z\/a* for elastic boundary condition
(a) 0 < zA/a? <1
(b) 1 £ z)\/a® £ 10

Fig. 40 — <0>,.| vs z\/a’ for elastic boundary condition
@ 0 < z\a? <1
(b) 1 < zA/a? <10
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Fig. 3a — Average relative sound pressure {p>re1 VS z\/a for a cylindrical liquid cavity with rigid

boundaries. Comparison is between free-field values and rigid boundary values for the standard parameters
shown in Table 1 and 0 < 2zM/& < 1.

Figure 3

55



56

Pt

0.8

0.7

0.6

0.5

— — RIGID BOUNDARY

—— FREE FIELD
0.4 %
03 \ S -
02l —
o1l -
00 | | | | | | | |

) 2.0 30 2.0 5.0 6.0 70 8.0 5.0

z \/a? (DIMENSIONLESS)

Fig. 3b — Same as Fig. 3a except 1 < zMa* X 10

10.0



T r 1 T ~ |
/N
s N\ g
7~ T

0.25 > A

0.20— ]

——— ——RIGID BOUNDARY
FREE FIELD
0.15— —

)

&
S

O:10— —
0.05— —
/
/
o | | | 1 | |, | | |
0 ol 0.2 0.3 04 2 05 06 o7 08 09 1.0
zx/a” (DIMENSIONLESS)
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Fig. 5a — Average relative sound pressure {p)e1 vs zA/a* for a cylindrical liquid cavity with infinitely
flexible boundaries. Comparison is between free-field values and infinitely flexible boundary values for the
standard parameters shown in Table 1 and 0 < zA/& < 1.
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Fig. 7a — Average relative sound pressute {p) ;e1 Vs zA/@ for a cylindrical liquid cavity with liquid
boundaries. Comparison is between free-field values and liquid boundary values for the standard parameters
shown in Table 1 and 0 £ 2zA/& < 1.
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Fig. 9a — Average relative sound pressure {p) re1 vs 2A/a® for a cylindrical liquid cavity with elastic
boundaries. Comparison is between free-field values and elastic boundary values for the standard parameters
shown in Table 1 and 0 < z)\/& < 1.
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Fig. 10a — Average relative phase difference <8¢ from plane-wave phase vs zA/@ for a cylindrical liquid
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Fig. 15a — Average relative sound pressure {p )1 vs 2N/ for a cylindrical liquid cavity with rigid bound-
aries. The effect of changing the absorption parameter o on the values of <p> re1 1s shown for the rigid

boundary condition. The standard parameters of Table 1 were used (except that o is not restricted to 0) and
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Fig. 17a — Average relative sound pressure (p) oy vs 2N a*foracylindrical liquid cavity with infinitely
flexible boundaries. The effect of changing the absomption parameter & on the values of {$> ;o is shown for
the infinitely flexible boundary condition. The standard parameters of Table 1 were used (except that o is
not restricted to 0) and 0 < z)\/&® < 1.
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aries. The effect of changing the absorption parameter « on the values of {pD 1 is shown for the liquid
boundary condition. The standard parameters of Table 1 were used (except that ¢ is not restricted to 0) and

0 < zn/& < 1.
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Fig. 20a — Average relative phase difference {6 e1 from plane-wave phase vs zA/d for a cylindrical liquid
cavity with liquid boundaries. The effect of changing the absorption parameter o on the values of <6 ., is
shown for the liquid boundary condition. The standard parameters of Table 1 were used (except that « is not
restricted to 0) and 0 < 20/& < 1.
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Fig. 21a — Average relative sound pressure {p> o vs 2N\/a? for a cylindrical liquid cavity with elastic bound-
aries. The effect of changing the absorption parameterx on the values of {p> . is shown for the elastic
boundary condition. The standard parameters of Table 1 were used (except that o. is not restricted to 0) and

0 < 2n/a® < 1.
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Fig. 22a — Average relative phase difference {9, from plane-wave phase vs zA/d& for a cylindrical liquid
cavity with elastic boundaries. The effect of changing the absorption parameter o on the values of {8),.; is
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shown for the elastic boundary condition. The standard parameters of Table 1 were used (except that & is not

restricted to 0) and 0 < zA/a® < 1.
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Fig. 23a — Average relative sound pressure {p) o1 vs 2A/a*for a cylindrical liquid cavity with rigid bound-

aries. The effect of changing the radius-ratio parameter b/a on the values of () (o1 is shown for the rigid

boundary condition. The standard parameters of Table 1 were used (except that b/a is not restricted to 2) and

0 < =n/d < 1. Figure 23
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Fig. 24a — Average relative phase difference {6).¢] from plane-wave phase vs zA/&® for a cylindrical liquid
cavity with rigid boundaries. The effect of changing the radius-ratio parameter b/a on the values of {8),.; is
shown for the rigid boundary condition. The standard parameters of Table 1 were used (except that b/a is not
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Fig. 26a — Average relative phase difference {6,e1 from plane-wave phase vs zA/d for a cylindrical liquid

cavity with infinitely flexible boundaries. The effect of changing the radius-ratio parameter b/a on the values

of {8%.c1is shown for the infinitely flexible boundary condition. The standard parameters of Table 1 were

used (except that b/a is not restricted to 2) and 0 £ z)Ma® < 1. Figure 26
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Fig. 26b — Same as Fig. 26a except 1 < zA/a& < 10.
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Fig. 27a — Average relative sound pressure {(p>rel VS z\/d for a cylindrical liquid cavity with liquid bound-
aries. The effect of changing the radius-ratio parameter b/a on the values of (> ¢y is shown for the liquid
boundary condition. The standard parameters of Table 1 were used (except that b/a is not restricted to 2) and

0 < z0/d < i,

Figure 27
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Fig. 28a — Average relative phase difference <6, from plane-wave phase vs zA/d& for a cylindrical liquid
cavity with liquid boundaries. The effect of changing the radius-ratio parameter b/a on the values of {8>,.;
is shown for the liquid boundary condition. The standard parameters of Table 1 were used (except that b/a is
not restricted to 2) and 0 < z0\/& < 1.
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Fig. 29a — Average relative sound pressure {p> o) vs 27/d for a cylindrical liquid cavity with elastic
boundaries. The effect of changing the radius-ratio parameter b/a on the values of {p>c1 is shown for the
elastic boundary condition. The standard parameters of Table 1 were used (except that b/a is not restricted
to 2) and 0 £ zA/&® < 1. Light-weight lines indicate actual solutions; heavy-weight lines, orthogonal
assumption solutions.
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Fig. 29b — Same as Fig. 29a except 1 £ zA/a* < 10. Light-weight lines indicate actual solutions; heavy-
weight lines, orthogonal assumption solutions
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Fig. 30a — Average relative phase difference {6, from plane-wave phase vs zA/a for a cylindrical liquid

cavity with elastic boundaries. The effect of changing the radius-ratio parameter b/a on the values of {(B>re1
is shown for the elastic boundary condition. The standard parameters of Table 1 were used (except that b/a

is not restricted to 2) and 0 < z2/@ < 1. Light-weight lines indicate actual solutions; heavy-weight lines,

orthogonal assumption solutions.

0.8 0.9

Figure 30

109



110

100 T

9.0

80

70

b/a =1.0

6.01—

<6t
()]
)
I
i

40

3.0

20—

FREE_FIELD

| Op _]
b/a=2.0
—
00 l | l I l l I ]
1.0 20 30 40 50 6.0 7.0 8.0 90 10.0
z7/a? (DIMENSIONLESS)

Fig. 30b — Same as Fig. 30a except 1 < z2/@® < 10. Light-weight lines indicate actual solutions; heavy-
weight lines, orthogonal assumption solutions.
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Fig. 31a — Average relative sound pressure {PDre1 Vs 2/ @ for a cylindrical liquid cavity with liquid bound-
aries. The effect of changing the wavesnumbereratio parameter k,/k, on the values of {P> ret is shown for the
liquid boundary condition. The standard parameters of Table 1 were used (except that k/k, is not restricted
to4)and 0 < z3/a* £ 1.
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Fig. 33a — Average relative sound pressure {pDe1 vS 27A/a” for a cylindrical liquid cavity with elastic
boundaries. The effect of changing the wave-number-ratio parameter k;/&, on the values of {p>,.; is shown
for the elastic boundary condition. The standard parameters of Table 1 were used (except that k/k, is not
restricted to 4) and 0 < zA/4* £ 1.
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Fig. 33b — Same as Fig. 33a except 1 £ z)\/& < 10
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Fig. 34a — Average relative phase difference <9>,.e1 from plane-wave phase vs zA/a* for a cylindrical liquid
cavity with elastic boundaries. The effect of changing the wave-number-ratio parameter k,/k, on the values

of <8>e1is shown for the elastic boundary condition. The standard parameters of Table 1 were used (except
that k,/k, is not restricted to 4) and 0 < zA/& < 1.
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Fig. 34b — Same as Fig. 34a except 1 < zMa < 10
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Fig. 35a — Average relative sound pressure {pD,o; vs zA/a® for a cylindrical liquid cavity with liquid
boundaries. The effect of changing the density-ratio parameter 0,/ on the values of ( p> ey is shown for the
liquid boundary condition. The standard parameters of Table 1 were used (except that p,/ p; is not restricted

to 7)and 0 £ zNa* L 1.
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Fig. 36a — Average relative phase difference {6De1 from plane-wave phase vs zA/a* for a cylindrical liquid
cavity with liquid boundaries. The effect of changing the density-ratio parameter 0,/ p, on the values of
{8>;e1 is shown for the liquid boundary condition. The standard parameters of Table 1 were used (except
that ,oz/p1 is not restricted to 7) and 0 £ zA/a® £ L.
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Fig. 37a — Average relative sound pressure {pDre1 Vs zA/@* for a cylindrical liquid cavity with elastic
boundaries. The effect of changing the density-ratio parameter 0,/p, on the values of {p>;c; is shown for
the elastic boundary condition. The standard parameters of Table 1 were used (except that p,/p; is not
testricted to 7) and 0 < 20/ < 1.
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Fig. 38a — Average relative phase difference {8)e¢; from plane-wave phase vs zA/a* for a cylindrical liquid

cavity with elastic boundaries. The effect of changing the density-ratio parameter 02,/ P, on the values of

(&> e1is shown for the elastic boundary condition. The standard parameters of Table 1 were used (except

that p,/p; is not restricted to 7) and 0 < z)/& < 1.
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Fig. 39a — Average relative sound pressure {pDre1 vs zA/@ for a cylindrical liquid cavity with elastic
boundaries. The effect of changing the Poisson’s-ratio parameter v on the values of {p>re1 is shown for the
elastic boundary condition. The standard parameters of Table 1 were used (except that v is not restricted to
0.325)and 0 < 22/ < 1.
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Fig. 40a — Average relative phase difference {6>r¢; from plane=wave phase vs zA/a@” for a cylindrical liquid

cavity with elastic boundaries. The effect of changing the Poisson’s-ratio parameter v on the values of

{6>,c} is shown for the elastic boundary condition. The standard parameters of Table 1 were used (except

that v is not restricted to 0.325) and 0 < zA/@ < 1. Figure 40
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