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Systematic Errors in Ultrasonic

Propagation Parameter Measurements

V. A. DEL GROSSO

Propagation Branch

Sound Division

It was shown in Part I of this series of reports that appreciable errors in sound speed
and sound absorption determinations may be attributed to a neglect in applying appropri-
ate corrections to those situations closely approximating free-field conditions (finite
size, plane-parallel source). In the present report it is shown that appreciable errors in
the measurement of sound speed and sound absorption for guided mode propagation may
be attributed to neglect in applying corrections that may be required because of the selec-
tion of geometric parameters or the method of measurement.

This report contains graphs of pressure and phase, relative to plane-wave values and
averaged over a plane-parallel receiver of size equal to the source size, for acoustic
energy propagation down a right-circular liquid cylinder with lateral boundary condition

appropriate to one of the following: absolutely rigid walls, infinitely flexible walls,
liquid walls, or elastic solid walls. The latter boundary condition, which is considered
to be that most appropriate to the situation of a liquid contained within a thick-walled
metal tube, is shown to result in maximum anomalies in sound speed determinations when
the transducer completely closes one end of the tube.

INTRODUCTION

Because the apparently incompatible results
obtained by different experimenters using both
similar and different techniques (1-3) indicate the
presence of unresolved systematic errors, an in-
vestigation into the anomalies of ultrasonic
propagation parameter measurements has been
undertaken. These systematic errors do not lend
themselves to statistical manipulation, so the
present attempt is to predict the theoretical be-
havior for specific geometric configurations of
acoustic test setups and to correlate this be-
havior with experimental observations. The intent
is to gain a sufficient grasp of the behavior of
laboratory acoustic instrumentation in order to
ascertain the need for, and, if necessary, to ap-
ply, appropriate corrections. Of course, if the
proper corrections are known and made, there is
then no error due to the particular effect in ques-
tion. Ideally, experimental methods requiring no
corrections could then be selected.

Part 1 of this series of reports (4) considered
some predictable, and observed, effects of free-

NRL Problem SOl-02; Project RF 001-03-45-5251. This is
an interim report on the problem; work is continuing. Manu-
script submitted June 15, 1964.

field diffraction and indicated that appreciable
errors in both sound speed and sound absorption
could be attributed to these effects. An earlier
report (5), primarily concerned with the measure-
ment of sound speed by interferometry, dealt also
with the relatively simple problem of axial wave-
guide propagation in a right-circular cylinder with
absolutely rigid walls; the results indicated that
a deliberate attempt to destroy cylindrical sym-
metry could in fact closely approximate the con-
ditions of free-field propagation even for con-
tinuous waves in a terminated enclosure.

The present report is concerned with guided
mode propagation of acoustic energy and the
anomalies caused by geometric constraints. For
simplicity of calculation the medium considered
is assumed to fill a right-circular cylindrical
cavity of finite radius and semi-infinite length-
that is, terminated only at one end by a driving
source. This cavity in turn is assumed to be
located in another medium of otherwise infinite
extent in order to avoid ring resonances, outer
reflections, and other phenomena associated with
the finite wall thickness of a container. The lat-
eral boundary conditions considered are those
relevant to (a) an absolutely rigid boundary, (b)
an infinitely flexible boundary, (c) a liquid
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boundary, or (d) an elastic solid boundary. Part
3 of this series of reports will remove the above
restriction and consider liquid cylinders contained
in shells; Part 4 will add viscosity to more ade-
quately specify the appropriate boundary condi-
tions; Part 5 will deal with iterative reflection
for continuous waves resulting from the addition
of an elastic termination to the open end of this
cylindrical cavity, and Part 6 will correlate these
predictions with recent experimental results. It
should not be necessary to state here that small
confined samples are nearly prerequisites for
adequate specification of homogeneity and ex-
ternal physical conditions of a test liquid.

Many reports pertinent to this investigation
may be found in the available literature. Possi-
bly the earliest report, dealing with gases, dates
from 1877 and is due to Lord Rayleigh (6). Kras-

nooshkin (7-9), though principally developing an

interferometer theory, followed the 1868 results
of Kirchhoff (10) in assuming the near-trivial
case of absolutely rigid walls with no losses, no
thermal conductivity, and perfect smoothness to
allow free slipping. Experimental confirmation of
some of the predictions of Krasnooshkin were
made for absorption results by Van Itterbeek in
1951 (11) and for sound speed results by Bell in
1950 (12). Morse (13) discussed the theoretical
treatment given by Rayleigh. Hartig and Swanson
(14) gave an excellent account of these modes for
low frequencies in 1938, and Jacobi (15) in 1949
continues not only for high frequencies but also
for the interesting case of liquid walls, besides
the other near-trivial case of infinitely flexible
walls. Biot (16) discusses a cylindrical bore
through an elastic solid and Lin and Morgan (17)
consider thin elastic walls.

It should be noted that a complete theoretical
treatment of the case of propagation in infinitely
long solid cylinders was also done by Pochham-
mer (18) and Chree (19) in the previous century.
The liquid cylinder with infinitely flexible walls
is a degenerate case of this, although in some
recent work it has been offered as a representa-
tion of the rigid wall situation.

Many other investigators (20-48) have con-
sidered aspects of this problem. Among the
latest are Redwood (42) and Carome and Witting
(44) at John Carroll University. The latter group

posve the interesting thesis that the example of a
liquid confined in a metal-walled cylinder is
described more accurately by the theoretical
formulation pertinent to infinitely flexible walls
rather than to absolutely rigid walls or some
combination of the two. Needless to say, this
statement, for which experimental evidence is
proferred, merits very careful analysis. Refer-
ence must also be made to the recent work of
Elco and Hughes (48) who point out the obviously
inadequate approximation of an elastic lossy
boundary by an absolutely rigid one and who
rightly question the validity of the common, but
unsatisfactory, assumption of free slipping along
perfectly smooth walls.

The formulation of this report will be derived
in a rather elementary fashion. It is hoped that
this will facilitate interpretation and permit more
easy reconciliation with the intuitive feelings of
experienced investigators which are too often
quickly dismissed.

GUIDED MODE FORMULATION IN A
RIGHT-CIRCULAR CYLINDRICAL CAVITY

As stated in the Introduction, for simplicity of
calculation this report will assume a liquid me-
dium contained in a right-circular cylindrical
cavity of finite radius b and infinite extent along
the positive z axis. The cavity, which is termi-
nated at one end by a baffle containing a driving
source, is located in another medium of infinite
extent (see Fig. 1).

As usual we assume a velocity potential
0(r,O,z,t) throughout the cylinder which satisfies
the wave equation

-~5 1 _2_ (1)

22c 2 )t
2

Separating out the time-dependent variable so that

-_= 0(r,O,z) T(t),

the separation constant k2 is introduced as

V2 0 1 02 T 2_ - =k2

C2 T 9t 2

and the homogeneous time-independent wave
equation, or Helmholtz equation, is

±72o + k 2
95 = 0.
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the first kind. So the general solution of the

time-independent part of the wave equation is

Onm = (Knm cos nO + Lnm sin nO)

9-n( r Ak 2 - qn 2 ) e iqft1Z.

To limit consideration only to those solutions
with circular symmetry, n is restricted to zero

and the function 0 is independent of 0; thus

I _ INNER (LIQUID)

MEDIUM

'-DRIVING SOURCE

'-BAFFLE 0om =(r-(rqz)

K m o( -Xk _ qo2em iqm

Fig. 1 - A right-circular, liquid, cylindrical cavity of
radius b is assumed as the geometry for this discussion
of guided mode propagation. The cavity is capped at
one end by a driving source of radius a and a baffle.
The cavity is assumed to be infinitely long in the + z
direction. The outer medium is infinite in extent.

For simple harmonic time variation, the time-

dependent equation

02T 2 2
+ k C T - 0

yields

T = Aeiw
t + Be

-jcot

where

k 6jo 277

c A I

In cylindrical coordinates the Helmholtz equation

is expressed as

020 . 1 0d/ 1 02(b 02 2

Or 2  r Or r 2 002 ± z 2

Separating the variables so that

= R(r) 0(0) Z(z)

the solutions of the equation are of the form

E = C cos nO + D sin nO

Z E q Z + F e- 1q z

and
R = G \ k 2 _- a )

where q = /3 + i, (3 = 2r7/X (-k), n is an in-
teger, and J, is the nth-order Bessel function of

If only outward going waves are considered, then

Oom = Kom o(r V k2 
- qom)eiqorz (2c)

is appropriate for a time dependence e - i °t If

Yom - iqom (= if8 - U.) is imaginary, Eq. (2c)
represents a wave propagating along the positive
z axis with a complex phase velocity

C - a)

l Om + iuOm

If YOm is real, there is no propagation. If ab-
sorption is neglected, then of course a0m - 0
and Co = co/lOm. In the immediately previous
report (4), it was shown that phase velocity Corn
group velocity Vom , and free-field plane-wave
phase velocity C are related as

C = COmVOm (3)

where Vom is the group velocity of a particular
"mode" (corresponding to a specific value of m).

Without here specifying the particular charac-
teristic equations whose solutions or character-
istic values are the particular modes referred to
(the calculation of the appropriate characteristic
functions i§ detailed in later sections of this
report), we may express the characteristic value

Xom as

Xom b _/k 2  2 (4)- om (4)

where b is the cylindrical cavity radius. So
the argument of the zero-order Bessel function
may be expressed as

o(r /k 2 - q )
4 0 (r XO)-

b -T

Ia4

(2a)

(2 b)
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For now, since the specification of the charac-
teristic values involves boundary conditions
equivalent to equating impedances, we calculate
the impedance in the radial direction on the
liquid cylinder side of the radial boundary. Re-
storing the time dependence temporarily,

95 0m - Mm A(r k 2 - ))

The excess pressure is given by

P - P 0
at'

whereby

P = Mom okr Vk 2 - qom i~opei(qo -. t)

P po2 h(r Vk2 -q)
Vk 2  2 g(r k2_ qo )

- Om O- m

CHARACTERISTIC
FUNCTION EXPANSIONS-ORTHOGONAL

AND NONORTHOGONAL

We will assume that the time-independent
velocity field inside the cylinder may be ex-
panded in terms of the natural modes 95Or as

rx e iqomZ
0(r,z) - K o b

M=0/

(10)

where

The particle
given by

P(r) Pog( 
V k 2 _ q )

PO - i(O°Mom ei(qomz -cot)

velocity in the radial direction

U(r) -- Oa

whereby

U(r) Momei(qorZ-cot) [4 (r k2 2 )]

(7)
V 2 _ . r 2 2 )i~o VA2 q

-j 0 ,( - qorn

The impedance is given by the excess pressure
divided by the particle velocity, so

where we have assumed radial symmetry. The
sequence of characteristic functions must be a

(6) complete set in order for this representation by a
series to be possible. To easily calculate the
expansion coefficients Kom we would like the
sequence of characteristic functions to be mutu-
ally orthogonal.

To determine the amplitude of the various
1s modes we write the velocity potential at z = 0 as

(11)

Multiplying both sides by

and integrating with respect to r over the limits
0 to b we obtain

jb 9 5 (r,O) o(rb) rdr -

P
Impedance - U

Kom0  (r b) (r b) rdr.

(12)

in the radial direction. The particle velocity and
displacement 4-are related by

U = cia)

so that P/ = Piao/U, or

Assuming a transmitter of radius a(a : b) under-
going harmonic vibration as a plane circular
piston, then

95(r,O) -- 9 (a constant)

0) oK o(r ,T= --m b .

-i°°P 0o( r v k 2 - qom2

-qom r'1 -qoL2
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and the left-hand side of Eq. (12) becomes

a
5OAo (r XO)rdr =950 A, (I(X OF )-7- --( Xo7 T

Further, assuming (a) a receiving transducer of

the same radius as the transmitter (i.e., r = a)
with response proportional to the vectorial
average of the excess pressure over the area of
the crystal and (b) weak interaction of the trans-

ducers with the acoustic field, we obtain for the
average potential

<95> - 1 9(r,z) 27T rdr

(14)

27 Y2 fK (r XOm eiq .z rdr
7a 2 T, mm b

Now if the orthogonality relation could be in-
voked, the only term remaining on the right-hand
side of Eq. (12) would be that for t = m, viz.,

fo b

Krn O2(r XOm rK--- -(/b rdr =

(15)

Relative to the plane-wave value, the time-
independent velocity potential is given by

412(Xom a)e -i(k- q 0 )z

(13) <95> rel - 2 2 b +
(19)

As in the immediately previous report dealing
with free-field diffraction (4), we calculate the
magnitude of the rms pressure (averaged vectori-
ally, relative to the plane-wave value) over the

receiving transducer as

<P> rel = V/ Re2 <9> rel + m2 <95> rel (20)

The phase difference <0>re I from plane-wave
phase is given by

<0> - <0> - <0>rel diffracted plane

- l rel
tan Re<0> ,

(21)

If we are not able to invoke orthogonality so
that Eq. (15) is not the only term remaining on the
right-hand side of Eq. (12), or, in other words, if

fbio (rX )OmJO(r X Op) rdr 0

for m 7 F, (22)
Ko -{2(XEo) + k12(Xom)]

Using Eqs. (12), (13), and (15), the expansion
coefficients are given by

K0 m - 00
2ajl (X1m ~)

bXOM XOM)+ A,2 (X)]

the determination of the expansion coefficients
is somewhat more difficult. In this case Eq. (14)

becomes

(16)
<9 5> m O (Xom b)eiqor.z, (23)

for orthogonal characteristic functions, and Eq.
(14) would then become

r a2

and, finally,

<95> -

m0

40 0 1
2 (X0  a) iqo.z

X~~~~ OM2[ (O)+2 (XOM)1

with

2a. ( . ..) - -(r X e iqomz rdr

bX± o 1
2 (X1

<95> rel - TbZKom
m

.(18)
U1 (XOm a) -i(k-qm)ZX OM b

(17)

(24)
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and Kom is not given by Eq. (16). To determine
K om in this case, first we simplify the notation
and write the characteristic functions as

Considering the first integral on the right-hand
side, integration by parts, with

u = Rom ,  du = R Irdr,om ,omd,

R g Xom
(25)

dv d (rRo p)dr,dv 0 and v = rRo '

so that the previous orthogonality condition may
be written as

fb RomRoe rdr = 0. (26)

The criterion for this condition is derived as
follows.

Bessel's equation, with the parameter k 2-q 2

may be written as

S2 + r (k2 2 )r- ) R =0 (27)
dr

2  dr

and cast in the form of the Liouville equation as

-(rR') + (k 2 -q)r - - R = 0
r r)

transforms the integral to

b -

R0  rRo J rR'e R' d

0 U

Similarly, the second integral on the right-hand
side of Eq. (30) becomes

b b
Rop rRom rRom R o dr,

Um 0 o

and the difference between the two, or the com-
plete right-hand side, is

b

Ror rRoe
0(28)

b

R rRom,

0

where the parameter represents the separation
constants, and R' = dR/dr. To check orthogo-
nality we consider solutions for different values
of the parameter for which

Rom = 4 0 k 2 - qom

which may be written

right-X)
hand = - (r ----
side

= (r Xom) (29)b 0r-T

Because the Liouville equation is self-adjoint
we may simply write it down twice with different
subscripts, multiply the first equation by the
characteristic function of the second, multiply
the second equation by the characteristic function
of the first, subtract the two, and integrate over
our limits of r from 0 to b (the tube radius). The
result of this procedure, after a slight rearrange-
ment, is

x2 -x2 fb

Xom- X°g fo
b 2

of rRomRoedr

(30)

b.
or R' d r - O-R d (rR'm) dr

0 0

0

r-j- (r rn)]

Finally,

right-hand = Xom Ao (Xov) i (Xom)
side

- x0 e 9 0 (Xom) *i (XO)

(31)

(32)

so that

ob b

T Rom Rog rdr = x 2  x 2

0 Urn d

Xom 90 (XO) 1 (Xorn)

- xo Ao (Xom) A, (Xor)] (33)

and the orthogonality criterion is
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Xom o (XoV) A1 (Xorn) - XOf 0(X 0m) A1 (X0 ) 0 for V # m. (34)

But whether or not the characteristic functions are orthogonal, Eq. (33) remains valid. We also find
straightforwardly that

b

R 2 rdr = b ± (35)f om = T ( ) + 12 X m(5
U

Returning to Eq. (12) and using (13) we have
b

4+o Lb Xo K rnA o m jor 0(ri X ) rdr, (36)

or, using the definition

Rnm 4n - (r- )

we obtain

f0o (o -)=L Korn Ro or dr, (37)

Which may be expanded as a set of simultaneous equations as follows:

,b b0

J+ K 2 rdr + K R 0 3 R0  3 rdr

x°°, 0

,b b

+f K02 Rol R02 rdr + fo K 0 3 R 0 0 R 0 3 rdr + ...

0 b

a 0  b aL ) (Koo R R0 0 rdr + K0 1 R  o rdr
X01 okl-i0

b b (38)

+1 K 0 2  R 02 rdr + K 0 R 0 R 0 rdr ...

X02

b b

K 0 2 R 0 2  0 3 0 2  0 3

If the above series in f is terminated after a finite number of terms, that is, if the characteristic
function expansion contains a finite number of modes, then the set of simultaneous equations above may

be solved directly for the expansion coefficients Kom which may then be used in Eq. (24). Obviously,
the simpler method of determining the coefficients by Eq. (16), which is valid for an orthogonal set of
characteristic functions, is much to be preferred.
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After we determine the characteristic func-
tions from the characteristic equations for the
several boundary value conditions to follow, we
will check their orthogonality and investigate
possible simplification of the determination of
the expansion coefficients if any characteristic
functions prove to be nonorthogonal.

CHARACTERISTIC EQUATIONS

Absolutely Rigid Boundary

Though the absolutely rigid boundary condition
cannot be obtained in reality, it does present an
interesting limiting case. If we consider that the
hypothetical cylinder of liquid down which our
signal is propagating is enclosed radially with an
absolutely rigid wall in the standard sense; we
must have the radial component of particle veloc-
ity U(r) going to zero at the boundary r = b, i.e.,

U(r)I r=b - 0. (39)

From Eq. (7) we find that this is equivalent t
letting

90 =(-A 1 ) = 0, for r = b,

whc a- q')

which may also be written

0

V- 2 b I
qpr k2 , (42)

where k = aw/c = 27T/A and qRm = 6)/CRm

From these we find that the real modes are
limited by

c
2 x

2

_Rm < W0
2

b 2

which is equivalent to

XRrm kb.

For a value of m which makes the characteristic
value greater than this value, the wavelength
becomes imaginary and we have a nonpropagating
or evanescent mode; so we shall use this limiting
value for m. Finally, from

(Re <0> l)R -

(40) Xnj kb t 2  cos [(qRrn - k)z

= Rm 0 (XR m)

(43)

and

A1 (X 0m) = 0.

This condition is tantamount to letting the dis-
placement go to zero or the impedance go to
infinity, which is readily seen from Eqs. (8)
and (9).

To indicate that the above characteristic equa-
tion applies to rigid boundary conditions we write

AL(XRm) = 0 (41)

where the R stands for rigid. We number the
modes m from zero since XRm = 0 is a charac-
teristic value in this case. Thus

m = 0, 1, 2, 3, ...

and

X R m  b k 2  
- 2

- m qRm

( Im =

X Rm < k~b

mkb 4- 1
2 ( ~b)XRa sin [(qR m - k) z]

X=,0 ( O(mrn) I
rn=0

(44)

which are obtained from Eq. (19) using fl(XRrm) = 0,
we find that a = b is a special case which, by
the application of L'Hospital's rule, yields only
m = 0; this value of m is found to be the plane-
wave mode CRO = C and is sometimes written
C = C0 0 , and XR0 = X = 1\00.

We recall that Eq. (19) is a result of invoking
orthogonality. If this does not hold, then we
have Eq. (24) with different values for K Rm or
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XRm.:kb

2 bK R m

S a5 0 X

Mn =0

9,l(X~rn a) cos [(qRrn- k)z]}

XRm,_!kb
Xb Rm 

a.le

aoXRm CI(XRm)

m=0

sin [(qRm - k) zl}. (46)

Infinitely Flexible Boundary

The infinitely flexible boundary condition is
another trivial case which could be reproduced
only if a cylinder of liquid could support itself in
a vacuum. However, this case is a limiting situ-
ation and we will therefore calculate it. The
statement invoking a pressure release boundary
means just that; the pressure goes to zero on the
radial boundary, or

P(r) I =b = 0.

Finally,

(ReK<> rel)F -

X F rn _k b

m=1

41 2 (Xa)

X2
XFm

(50)

cos [(qFn - k) z]

91' (X~m) I

and

From Eq. (6) we note that this is tantamount to
the condition

k2
- q 2

which will be written

h0 (XF) = 0

where the F stands for flexible.
XFm = 0 is not a characteristic
takes on the values

(48) XFm!kb

4 1 1 2
(XF

m b
) sin [(

q
F

m - k)z]

(49) j F (X Fm)

=1

In this situation
value, so m

m = 1, 2, 3,...

Again, as in the case for an absolutely rigid
boundary, we find that m is summed to

C2 X 2
Fm

-< N 2 or X Fm < kb,

but here CFO does not exist.

(51)

where we have used *(XFm) - 0 and have again
invoked orthogonality of the characteristic func-
tions RF. If this latter does not hold, the
modification previously discussed for absolutely
rigid boundary conditions must be made.

Thin Elastic Walls

Although the thin elastic wall situation is not
calculated in this report, it is included here
mainly because of the interesting observation of
Jacobi (15) that a 2-1/4-in. (outside) diameter
steel tube with a 1/64-in.-thick wall was found

( R e <0 re>) R

and

(45)

(I<0rl)F

( <0 rel )R

(47)
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to be flexible enough so that the observed mode
(the first real one) experimentally followed that
for a pressure release tube.

If we use the equations of motion for a tube,
given by Lin and Morgan (17), which neglect
rotatory inertia we find that the X 0rn (here des-
ignated XTm are the zeroes of

while for m = 0 this becomes

-u 0 (b -V q 2 0 - k 2)

using A (iX) =_ 0(X) and A-i(ix) iJi1(X).

P b
Pth

9o (XTm)

XTm Cf (XTm)

(2( - ()2
bw 2

\bo /(c 1- P

(C'\2
0)2/ +

12b 2 \C )

(C~2

(52)

(c )2+

where p is the contained liquid density, PT is the
tube metal density, v is the Poisson's ratio, Co

is the compressional velocity in the wall material,
h is the wall thickness, K is a somewhat arbi-
trary constant slightly less than unity, and the
subscript T refers to the tube.
We further find that there exists one imaginary
root so that

CT2 < C2 ,

but for all the other modes

C2 > C

Another observation is the existence of CT0 and
CT1 at all frequencies, but the other modes have
cutoff frequencies given by

Pb C baw

Pth Co Ct)

(53)

For m #4 0 we have the relation

Liquid Boundary

The liquid boundary condition is the first
really interesting situation and requires that we
distinguish between the two media involved (see
Fig. 2). Medium I is assumed to have an imped-
ance P1 C1 and medium II an impedance P2C 2.

Fig. 2 -Cylindrical cavity containing (liquid) medium
I having an impedance p1 C1 surrounded by mediumllIwith
impedance p2C2  .(See Fig. I and caption.)

The previous relation for the time-independent
velocity potential given by Eq. (2c) is then re-
written as

and m U K -o (rVk1
2 - q 2 ) eiq Omz (56)

and

Km0rn" = KomI J(l(rNk22 - - ) eiqo.z

(57)

where, in the notation of Jahnke and Emde,

X- (XT) - W~k2 -- q 2 m A/ bk 
2 --

(54) 40() = g

-I *See discussion concerning this function in Appendices A
r and C.

(55)

(bw CP)C C
P

b6o C P
C P C

( h 2 ) ( 2 ) ( boi 212b 2 (1-0 K C P )
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Imposing the boundary conditions at r = b of
continuity of pressure and continuity of the
normal component of velocity amounts to requir-
ing continuity of impedance, or

icop1 ( )

(r 1
iwOp2 (0IH)

(00H)
I (58)

r-b r=b

which becomes

- qo ( 1  - )

k, 2 {J)b 2- q0MArn)I 0 (59)

V 2 - Y~ ({1 ')( 2 - q Tn

Now for truly guided waves, ¢5II must vanish as

r - oc. The function H 0(1) vanishes for an infinite
complex argument with the imaginary part posi-

tive, so we require

q0M 
> k2 2

(63)

Y 2 > X2 .

For Y to
write

4 0 (X)

XJ I(X)

be real we require C 2 > C 1 and may

P2 R'(')(i y2 _ X2

(64)

and m is summed to Xom Y. We may note that
for an absolutely rigid wall the particle velocity
U goes to 0 at the boundary; so from Eq. (7)

(b-V 2 - q2 )
CR_) 2

IV( 
LqR CC A,(qRrnbV(CR)2)-

which implies that either CRm - C, the "plane-
wave" mode, or

- 2 _ 2x = b - qorn

A, ( qRr b (CR)) 0, (66)

the "reflected conical wave" modes. Just as the

(60) characteristic function for the rigid wall limiting
case is derivable as above from this liquid wall
case, so may we obtain the infinitely flexible
wall limit (where p - 0) as

Y b k 2-k 2
1 2

so that

y2 b2(2U2 - C22)'

by rearranging we obtain

-I) P2 j{(1)(VX2 _ y2)

xAM( = P1 VX 2 2J(1)(V 2)

i0(qFn b[ (C )2) 0. (67)

In both these limiting cases the argument of the

(61) Bessel functions is just Xom.
Returning to the liquid wall case, we note that

for P1 = P2 and k 1 = k 2 we obtain (from Eq. (62))

g,1  J{ 1(1)
(62) -1 )

0 '(0

A0A1 + 01-(1 - '0 I

0
2 

±)q6

(68)

Nk2 - 2qRr 1

Defining

so that

(65)

X 2 = b2

and

-
W 2

c20M
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By equating the imaginary parts we find

0 = 1I - i0ll ;

but il)r0 - M11 2/nrX ? 0 for any X (except
X = -o), so we find that the above limit is not
valid in this equation. That is, we may not, fol-
lowing the development of Eq. (62), let P2 -> PI
and k 2 --> kI.

The values of X satisfying the characteristic
equation (64) are the characteristic values for
liquid boundary conditions and will be denoted
by XLm for future use.

Elastic Solid Boundary

As in the previous liquid boundary case, we
must also consider two media for an elastic solid

boundary. But here, as usual for elastic media,
we will use a displacement vector s given by

s = Vii + V x T (69)

where tP is the scalar displacement potential and
T the vector displacement potential satisfying
respectively, the "wave" equations*

V2 - 1 0__

C 
2 Ot2

(70)
V2 - P

2r

1 02w

C
2  Ot2
S

- 0

with the compressional velocity

C = V ±t
Cc p

and the shear wave velocity

being related to Poisson's ratio v by

For guided waves in the liquid cylinder, we
write

q1 = t 0 0 (r A k 2 - q 2) ei(qomz -ct) (7

for k 2 
> q2 rn. For q2 > k 2 we would have

Stonely waves and would write

$1) = (DOJO( r k - m ) ei(q 0 rnzoa)) (7

where 0o(ix) = Jo(X). Since 01 is a scalar dis-
placement potential, we have the pressure

and the particle velocity

r Or I

but the particle displacement is

- Or 1

where the subscript r refers to the r component
and the superscript C refers to the liquid media.

For Corn > C, the above relations become

p 2 
go(r k 2 

- "2  ) i(qomz
-
cWt)

and

s - OoVk 2  2
r ( - - om

1)

2)

(73)

(74)

where we have used

41 (X) -

(C )2
2(1 -v)
1-2v

Because of our axial symmetry we will retain
only the single component 0 of I and indicate
this by the scalar T.

*The word wave is written with quotation marks because of
the extraneous term in the second half of Eq. (70). See
Appendix B for more details.

so that

S
' I b

Using the previous definition

V22
Xon b k qomn

- Pl° (75)

Vk 2 _ q m k2 - 2
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this ratio becomes

P1 2 h X-
V pl o o .. ... . (76)
rIr=b 0An~ (XOm)

Returning to the elastic wall, in analogy with

the previous solutions to the wave equation, we

write*

(tt1O KO(r q 2 n - k ) ei(c6t - q
Omz)

For axially symmetric cylindrical coordinates,
the elastic wave equations become

02 (,

ar2

and

024T
+

0r2

1
+ r-

02 (D)

az
2

1 dT
r Or

1
c 

2

C

02 T

0 z2

02 0)

t2

1

c 
2

S

(80)

02 T
at

2

(77)

K (r Vq2r - k 2 )eitom0 0M S
where the subscripts c and s refer to compres-
sional and shear waves, respectively, and K0 and
K 1 are modified Bessel functions of the second

kind.
The displacement components for the elastic

medium are

O - OTs -r r - "z

and
O01 1 0(

Sz 0z jr rT'
r r

and the stress components are given by

r = 2 asr

=r 2oCS Or

+ 2p2C 2 (12 V Or

S

+ rr

and

(78)

so that, using these results with the equations

for a and s and the relationship between C s and
Cc, we obtain

a = 2P 2C5 k 
2

rr ar 2

and

0 2__ T P V ) a2(

02 9z v a2

(81)

2 (021 02T ) 02 T
rz = 2P 2Cs OrOz Oz 2 / P20t2

The two appropriate boundary conditions are
the vanishing of tangential stress at the bound-
ary, or

rz I r=b

+ 
()

(79)

and the equality

P

r7b

= 0,

S

r=b

From the vanishing of tangential stress we obtain

= P 2 C \ a z + a /

where p 2C 2 is equal to the shear modulus ft and

2P 2 C2 (l 2 ) is equal to the other Lame'

constant usually denoted by A.

(DO
To

i(2q2m - ks 2 ) Kl(bVq 2 - k2) (82)

2 2 2 k 22 qomN qor - k K (b 0~r -
2

where the prime refers, as usual, to differentia-
tion with respect to the entire argument. Now,
solving for rr r=b we find

ar e i(wtqo.z) = 2 2 (- 2 Sk
2) ),, K( - 0 - k )

(83)

i2P2Cs2 qomI/qm - ks2 TO K'(bVq2 - ks2 )- P2( )Vo J(o(b qm - k ).

*See Appendix C for discussion of appropriate Bessel
Function solutions.

Solving for s7j r we find, eliminating (D0 by

using Eq. (82),
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Ko (b -/ q- k 2

arr

S

r

r=b

qo qmn - ks 2

kP2 C
k S

2

)qor(qorn

K1 (b qgrn k52

K (b A qor 2 k 2)

-k2)~K~(b Aq2r - k 2)

c /) 0!K ( 0 (b k 5 2 ) 2( k

-i2p 2 Cs q0 m 0 0 bqr - ~
'T, K b q\I n - k 2)

Replacing the ratio (O/To in Eq. (85) by Eq. (82), Eq. (85) becomes

2P 2 C 2) Vq 2 - k2 2 2

4 P 2 C S2
(kSk2

2 V2 2
qorn qornS

±pC
2 (2q 2M - k 2)

k 2) K" (b 0~r - 2

K (b -q2r - k 
2

)

K' (b \qrO - k) )

(b q2 ks2)

KJO ~ ~ 2 rn c

K•I(b -\q - k 2

Using the identities

K (X) -K(x)

and the relationship

K,(x)
x Y "o(X) -K' (x) = Ko(X) +

1-v

k 4
Vq2 -k

0 Mn s

Ko(b qr - k2 )

Klq(b 2- k5 )

2
P2(0
ks4

(2q 2 - k2) 2 K0 (b q\n m k 2 )

q2 k2
0 - k

(87)

K (b-v 2 m - k 2 )

Finally, using the second boundary condition in conjunction with Eq. (76), we have

-o ( re)
0M UrnA- (K 0rn)

P1

P2

2

b2ks 2

+ (2q2m - k

bkA 2r
0Mqrn

(4bk 54) 2 0 (b/q 0 m - k2)
4q)2 o qqr - k K(b 2 - k)2

2) 2 K0(b qq 2" - k 2)
(88)

c ,(b 2m - k2)

so that

ik 2
S

2 q0 ,

(4Pc2)2

(84)

85)

U
rr

S

7
or 7~

V 2 k
M -c

(86)

we obtain

S

r=b

1l(X)

x

2 P2o 
2

bk 2

Sr I rbe i(wt-qomz)

K'I(X) = - Kow

k 2
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Defining

and

-s = dk 2 -k 2
S

Y -b 
2 k 2

Yc = - kc

2 2
and using the previous Xom bNk 2  q0 , we
obtain

K0 A-1(K 0M)
2

b 2k 2
S

(2qgr2 - k 2 )2

k 4 Vy 2  X 2
S c 0rn

- 2g~
Sm

-Ky2 2
s Urn

(89)

112_ -2

- Kgr 0 )7

which applies to the reflected waves or Corn > C.
There is also one imaginary root or Stonely wave
for C > Com. The subsctiits I and 2 on the
density p refer to the liquid , -id wall, respec-
tively. The applicable values of ks/k c are
between NJ and oo, which correspond to values of
Poisson's ratio v between 0 and 0.5. For guided

waves qo_ < k, or m is summed to Xm !< kb
since X. >0. Now Cc > Cs, or k. > kc,
which implies that Y < Ye. Again, for truly
guided waves, V -- 0 as r -* cc implies that

qg m > k?' and q0m > k 2 ,so q0m > k > k c
or, finally,

0 <K X < r < Y
Urn S

Again we will denote the roots of the character-
istic equation (89) as the characteristic values
XEm where the E stands for elastic wall.

It should be noted that Eq. (89) differs from
any previous work. A particularly pleasing cir-
cumstance is that the liquid boundary case can
readily be shown to be a degenerate case of (89).
For if there is no shear, then C. = 0, ks  cc,

and Eq. (89) becomes directly

A-0(K0rn _

XOK A (XOm) ( C 2 )
P2  ( cy - XOM

P1 y 2yV 2( - KX

which, by virtue of the definitions

O(1)(iX ) =2 .K 0(X)
0 771

1(1(1)(ix) 2 -
1 (X),

77

may be written

go (Xon)
X A-, (Korn)

im(1) I( I 2  K )2

-Vy 2 -K 2  N(1)(i/ ~ 2  Xr 2
C Urn 1 c O

which, with YC = Y, is identically Eq. (64) for
liquid boundaries.

We note that for an absolutely rigid wall, the
impedance going to infinity at the boundary
amounts to the denominator of Eq. (75) going to
zero, or A, (XRrn) = 0. For an infinitely flexible
wall, again, we have the impedance going to
zero or, directly from the numerator of Eq. (75),

4 0 (XFn) = 0; these are the limiting cases pre-
viously employed.

ORTHOGONALITY CHECKS
AND NONORTHOGONAL SIMPLIFICATION

We will now turn our attention to the determi-
nation of the appropriate characteristic functions
and the calculation of the expansion coefficients
in Eq. (24) by using Eq. (38) or, if the functions
prove orthogonal, by using Eq. (16). Equation
(33) is

rb

Rom RoV rdr = 2 b X2

J K 2  - K 2

[X Om h(K 0 p) S,(K0M) - KUe ho (KO ) A,(KNO]
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whereRnm = n(r- -M) and the orthogonality

criterion is that Eq. (33) be equal to zero for

In this section only we shall, for simplicity,
standardize the parameters as shown in Table 1.*
(These parameters are all varied later).

TABLE 1

Standard Reference Parameters Used in
Calculating Characteristic Functions and

Expansion Coefficients in Eq. (24)

k = 0.15 cm (acoustic source operating
wavelength)

a = 1OX = 1.5 cm (acoustic source

radius)
b = 2a = 20/\ = 3.0 cm (propagation-

cylinder radius; radius ratio

b/a = 2)

k = 27r/X (wave number associated with
wavelength A)

k l a = 20n

klb = 4077

P21Pl = 7 (p, is density of medium inside
cylinder; P2 is density outside)

k,/k 2 = 4 (wave number ratio for the two
media)

(kl/k 2  X2 /k 1 = C 2/C 1 ; C is the velocity
in the indicated medium)

v 0.325 (Poisson's ratio)
= 0 (absorption coefficient)

For rigid wall boundary conditions, Eq. (41)
shows that the appropriate characteristic values
are the zeros of A, , including zero, up to kb
where k is the wave number and b is the tube
radius. For the standardized parameters in
Table 1 we find that kb - 125.66370616 and the
appropriate list of characteristic values is given
in Table 2.

However, for this rigid wall boundary condi-
tion case we find that we do not need the actual

*All the calculations in this report use ka = 207T, which im-

plies that a = 10 X. In the previous report (4), we recall

that graphs of <p>rel and (0> re plotted vs. z K/a
2 

super-
impose for all ka _ 207T. Thus all the graphs in the present

report are valid for a 10 X. The b/a parameter variations
used herein are obtained by changing only the value b.

TABLE 2
List of Characteristic Values

XRm < kb for the Rigid Wall Boundary Condition
[Characteristic Eq. (41)] and b/a = 2.0

m XRm m [ Rr

0 0 20 63.6113567
1 3.8317060 21 66.7532267
2 7.0155867 22 69.8950718
3 10.1734681 23 73.0368952
4 13.3236919 24 76.1786996

5 16.4706301 25 79.3204872
6 19.6158585 26 82.4622599
7 22.7600844 27 85.6040194
8 25.9036721 28 88.7457671

9 29.0468285 29 91.8875042
10 32.1896799 30 95.0292318
11 35.3323076 31 98.1709507

12 38.4747662 32 101.3126618
13 41.6170942 33 104.4543658
14 44.7593190 34 107.5960633
15 47.9014609 35 110.7377548
16 51.0435352 36 113.8794408
17 54.1855536 37 117.0211219
18 57.3275254 38 120.1627983
19 60.4694578 39 123.3044705

values in Table 1 to check orthogonality. From

Eq. (33) we note immediately that if the charac-
teristic values are zeros of J, . then both terms
in the equation are identically zero. Thus the
characteristic functions derivable from the as-
sumption of absolutely rigid walls are orthogonal
and the relatively simple Eq. (16) may be used
for calculation of the expansion coefficients.

For infinitely flexible boundary conditions, we
likewise immediately note that the pertinent
characteristic values, the zeros of 0, result in
both terms of Eq. (33) being identically zero. So
the expansion of the velocity potential field
inside the cylinder may, for infinitely flexible
boundary conditions, as well as absolutely rigid
boundary conditions, be obtained in the relatively
simple formulation pertinent to orthogonal func-
tions. A table of appropriate characteristic
values for this infinitely flexible boundary condi-
tion, using the values shown in Table 1, is given
in Table 3.
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For liquid boundary conditions, the appropri-
ate characteristic values XLm indicated by Eq.
(64) are summed, according to Eqs. (61) and (63),
up to

Y = b k-k 2 21 2

where k, is the wave number of the contained
liquid and k 2 is the wave number of the boundary
liquid. Our standard reference conditions are
kl/k2 = 4 and b = 20X, with X = 0.15 cm, so
for this case Y = 121.673. The appropriate char-
acteristic values are given in Table 4.

Since these values are neither zeros of -0 or

A- , Eq. (33) is obviously not identically zero by
inspection. As a matter of fact, it is generally
true that the characteristic functions will not be
mutually orthogonal if the boundary conditions
depend on the characteristic value.

If we use Table 4 and calculate h (XLm) and

A- (XLn) with the standardized value of b, we

TABLE 3
List of Characteristic Values

XFm < kb that are zeros of A0(XFmr) for the
Infinitely Flexible

[Characteristic Eq.
Boundary Condition
(49)] and b/a = 2.0

XK,

TABLE 4

List of Characteristic Values

< Y for the Liquid Boundary Condition
[Characteristic Eq. (64)] and b/a = 2.0

m XLm m XLm

1 2.2716377 21 63.8405807
2 5.2211344 22 66.9679868
3 8.2022980 23 70.0963105
4 11.2055952 24 73.2254264
5 14.2292985 25 76.3552248
6 17.2712781 26 79.4856088
7 20.3289243 27 82.6164906
8 23.3996145 28 85.7477895
9 26.4809976 29 88.8794289

10 29.5710924 30 92.0113338
11 32.6682830 31 95.1434277
12 35.7712728 32 98.2756279
13 38.8790273 33 101.4078399
14 41.9907212 34 104.5399468
15 45.1056940 35 107.6717908
16 48.2234141 36 110.8031348
17 51.3434505 37 113.9335679
18 54.4654514 38 117.0622018
19 57.5891272 39 120.1859282
20 60.7142374

obtain Table 5 from Eq. (33) where the combina-
tion is such that the first characteristic value is
checked for orthogonality in turn with each suc-
cessive one, that is, the first with the second,
the first with the third, the first with the fourth,
etc. This amounts to defining F - 1 in Eq. (33).

Before commenting on Table 5 we shall deter-
mine the characteristic values XEm for elastic
boundary conditions using the standardized pa-
rameters shown in Table 1. In this case we use
Eq. (89) with the roots summed from 0 <XEm <Ys"

The reference parameters from Table 1 yield
Y = 109.474, and the characteristic values
smaller than this value are listed in Table 6.
From this table of characteristic values for
elastic boundary conditions and the reference
parameters, we again check for orthogonality, as
was done for Table 5 for liquid boundary condi-
tions, and obtain Table 7 where again the check
is for each value in turn with the first.

m XFm m XFm

1 2.4048256 21 65.1899648
2 5.5200781 22 68.3314693
3 8.6537279 23 71.4729816
4 11.7915344 24 74.6145006
5 14.9309177 25 77.7560256
6 18.0710640 26 80.8975559
7 21.2116366 27 84.0390908
8 24.3524715 28 87.1806298
9 27.4934791 29 90.3221726

10 30.6346065 30 93.4637188
11 33.7758202 31 96.6052680
12 36.9170983 32 99.7468199
13 40.0584258 33 102.8883742
14 43.1997917 34 106.0299309
15 46.3411884 35 109.1714896
16 49.4826099 36 112.3130503
17 52.6240518 37 115.4546126
18 55.7655108 38 118.5961766

19 58.9069839 39 121.7377421

20 62.0484692 40 124.8793089
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Tables 5 and 7 indicate that the characteristic
functions for both the liquid boundary condition
and the elastic boundary condition are nonorthog-
onal, as might have been expected. However, it

does not seem trivial or unduly heuristic to state

that they are almost orthogonal. In any event, it

would be interesting to calculate and compare

the expansion coefficients Kom obtained by the
relatively simple Eq. (16), which invoked ortho-
gonality, and the more exact Eq. (38), the latter

being properly terminated after a finite number of
terms, as previously shown.

Table 8 is a comparison of the expansion
coefficients calculated by both methods for the
liquid boundary condition reference parameters,
and Table 9 is the same comparison for the
elastic boundary condition reference parameters.

TABLE 5

Orthogonality Check of the
Characteristic Functions Listed in Table 4.

The Values of Table 4 are Used in Evaluating
Eq. (33), Which Would Equal Zero

for Orthogonality.

Evaluation Evaluation
of Eq. (33) of Eq. (33)

1 - 21 +1.520180 x 10 - 7

2 -1.269465 x 10 - 7  22 -1.531461
3 +1.501627 23 +1.547735

4 -1.632731 24 -1.569518

5 +1.697591 25 +1.597487
6 -1.720454 26 -1.632527

7 +1.718015 27 +1.678582
8 -1.701534 28 -1.728905

9 +1.677856 29 +1.793230
10 -2.038622 30 -1.873832

11 +1.624821 31 +1.972802
12 -1.599700 32 -2.097020

13 +1.576982 33 +2.256007
14 -1.557219 34 -2.465297

15 +1.540742 35 +2.752281

16 -1.527754 36 -3.170842
17 +1.518400 37 +3.846300
18 -1.512808 38 -5.170171
19 +1.511116 39 +9.726968

20 -1.513498

TABLE 6

List of Characteristic Values

XEm < Y for the Elastic Boundary Condition
[Characteristic Eq. (89)] and b/a = 2.0

m XEm in XErn

1 3.0413911 19 60.3961131
2 6.5283908 20 63.5395907
3 9.8273980 21 66.6826014
4 13.0557922 22 69.8251471

5 16.2518595 23 72.9672093
6 19.4306369 24 76.1087436

7 22.5991233 25 79.2496705
8 25.7609959 26 82.3898569
9 28.9183657 27 85.5290817
10 32.0725284 28 88.6669664
11 35.2243216 29 91.8028211

12 38.3743096 30 94.9352565
13 41.5228853 31 98.0610040
14 44.6703291 32 101.1700866

15 47.8168454 33 104.2115035
16 50.9625847 34 106.5524618
17 54.1076584 35 107.9510042
18 57.2521485

It is obvious that the numerical values obtained
for the expansion coefficients by the assumption
of orthogonality are generally changed but little
from their actual values. (Although the last few

elastic wall coefficients have large errors, they
will be seen to contribute little to the final
result.)

The final check on the suitability of using
expansion coefficients calculated by the simple

method valid for orthogonal functions is a com-

parison of both the average relative pressure

KP>r el and the average relative phase difference
<0>,el calculated by the two sets of coefficients.

Tables 10 and 11 are the result of these calcula-

tions for the liquid boundary reference conditions

and Tables 12 and 13 are the same comparison for

the elastic wall boundary reference conditions. It

is obvious that no real differentiation of the re-

sults can be made and that invoking orthogonality

of the characteristic functions simplifies the cal-

culations while introducing no effective error, at

least for b/a - 2.
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TABLE 7

Orthogonality Check of the
Characteristic Functions Listed in Table 6.

The Values of Table 6 are Used in Evaluating

Eq. (33), Which Would Equal Zero
for Orthogonality.

Evaluation Evaluation
m of Eq. (89) m of Eq. (89)

1 - 19 - 5.86770×10 - 5

2 +11.16391 x 10- 5 20 + 5.96176
3 - 9.95115 21 - 6.09159

4 + 8.97192 22 + 6.26297
5 - 8.22789 23 - 6.48415
6 + 7.65611 24 + 6.76699
7 - 7.20909 25 - 7.12880
8 + 6.85694 26 + 7.59572
9 - 6.64260 27 - 8.20884

10 + 6.34402 28 + 9.03244
11 - 6.16285 29 - 10.20153
12 + 6.02141 30 + 11.94970
13 - 5.91372 31 - 14.85767
14 + 5.83666 32 + 20.68132

15 - 5.78804 33 - 38.29343
16 + 5.76666 34 +151.58271
17 - 5.77224 35 - 66.44633
18 + 5.80541

Additional calculations show that the error
introduced by the approximation of orthogonality
is even less for b/a > 2. However, the error
increases as b/a approaches 1, at a greater rate
for the elastic than for the liquid boundary condi-
tions. In later calculations in this report with
the parameter b/a, both the actual and the orthog-
onal-assumption expansion coefficients, as well
as graphs, are compared for b/a < 2.

It may be noted that the orthogonality (or near-

orthogonality) of the sequence of characteristic
functions ensures that there are no complex char-
acteristic values if r, k, q, and n are real. For
if, say, R m = u + iv, then u - iv = R n would

also have to be a characteristic function by sym-
metry. (The characteristic functions would be
complex conjugates of each other, as would the

characteristic values.) Then orthogonality would
require that

TABLE 8

Comparison of Liquid Boundary
Expansion Coefficients KLrn Obtained by

Assuming Orthogonality [Eq. (16)] with the
Actual KLrn Values Obtained Using the Exact

Method [Eq. (38)] and b/a = 2.0

Lm Relative Error
(Orth. Assump.) KL( (re Actual)

+0.7016619
+ 0.6946078
-0.1551839
-0.5036120
+ 0.0447238
+0.4150456
+ 0.0034498
-0.3591414
-0.0281100
+0.3195555
+0.0416518
-0.2897809
-0.0493929
+0.2664664
+0.0539082
-0.2476499
-0.0565419
+0.2320947
+ 0.0580382
-0.2189810
-0.0588300
+0.2077433
+ 0.0591800
-0.1979790
-0.0592541
+0.1893926
+ 0.0591619
-0.1817621
-0.0589801
+ 0.1749157
+ 0.0587673
- 0. 1687168
-0.0585770
+ 0.1630505
+ 0.0584744
-0.1578094
-0.0585826
+ 0.1528488
+0.0594298

bIr(
0

+ 0.7016466
+0.6945457
-0.1551602
-0.5034236
+0.0446840
+0.4148227
+0.0034203
-0.3588310
-0.0281205
+ 0.3193022
+0.0415708
-0.2894450
-0.0493879
+ 0.2662270
+ 0.0537956
-0.2473100
-0.0565328
+0.2318738
+0.0579030
-0.2186361
-0.0588218
+ 0.2075363
+0.0590240
-0.1976210
-0.0592484

+0.1891914
+ 0.0589820
-0.1813764
-0.0589763
+0.1747074
+0.0585530
-0.1682744
-0.0585709
+ 0.1628042
+ 0.0581954
-0.1572207
-0.0585447
+0.1523702
+ 0.0587811

+0.0000217
+0.0000895
+0.0001531
+0.0003741
+0.0008928
+0.0005374
+0.0086066
+0.0008650
-0.0003730
+ 0.0007933
+0.0019474
+0.0011606
+0.0001014
+0.0008993
+0.0020930
+ 0.0013743
+0.0001606
+0.0009525
+0.0023354
+0.0015772
+0.0001397
+0.0009976
+0.0026427
+0.0018116
+0.0000965
+0.0010635
+0.0030515
+ 0.0021267
+ 0.0000631
+0.0011924
+ 0.0036590
+ 0.0026290
+ 0.0001037
+0.0015130
+0.0047953
+0.0037444
+0.0006466
+0.0031411
+0.0110368

u2 + v2) dr = 0

which is inconsistent with the statement that r,
u, and v are real.
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TABLE 9
Comparison of Elastic Boundary

Expansion Coefficients KErn Obtained by
Assuming Orthogonality [Eq. (16)] with the

Actual KErn Values Obtained Using the Exact
Method [Eq. (38)] and b/a 2.0

KErn 1 1 Relative Error
(Orth. Assump.) KErn (Actual) R t(re Actual)

+ 1.0266836
+0.3956044
-0.5153298
-0.2341204
+ 0.3992444
+ 0.1794007
-0.3390867
-0.1505190
+ 0.3002692
+0.1321559
-0.2724367

-0.1192285
+0.2511771
+ 0.1095285
-0.2342299
-0.1019304
+ 0.2202946
+0.0957968
-0.2085599
-0.0907414
+ 0.1984868
+0.0865216
-0.1896973
-0.0829896
+0.1819104
+0.0800767
-0.1748948
-0.0778215
+0.1684097
+0.0765399
-0.1619917
-0.0780996
+ 0.1519948
+0.1360407
+ 0.0354620

+1.0267832
+0.3950305
-0.5145621
-0.2347660
+0.3999285
+ 0.1784297
-0.3379713
-0.1515411
+ 0.3013158
+ 0.1308594
-0.2709951
-0.1205983
+ 0.2525801
+0.1078649
-0.2323967
-0.1037114
+ 0.2221320
+0.0936446
-0.2061787
-0.0930989
+0.2009515
+ 0.0836075
-0.1864125
- o.0863160
+0.1854755
+0.0756883
-0.1696998
-0,0833048
+ 0.1746527
+ 0.0677138
-0.1494347
-0.0936788
+0.1750994
-0.0094748
+ 0.0832140

-0.0000970
+0.0014528
+ 0.0014919
-0.0027501
-0.0017105
+ 0.0054418
+ 0.0033004
-0.0067446
-0.0034737
+0.0099083
+0.0053197
-0.0113585
-0.0055548
+0.0154233
+0.0078879
-0.0171723
-0.0082714
+ 0.0229825
+0.0115493
-0.0253233

-0.0122652
+0.0348547
+ 0.0176211
- 0.0385380
-0.0192215
+ 0.0579790
+ 0.0306132
-0.0658225
-0.0357452
+0.1303452
+0.0840305
-0.1663039
-0.1319512

+15.3581715
-0.5738464

A sufficient condition for completeness of the
sequence of characteristic functions derived as
solutions of the Liouville-type equation is that
they satisfy boundary conditions such that

r=b

4r=0 = 0.

In our cases this requirement is obviously satis-
fied when the Xor are the zeros of A1 as in ab-
solutely rigid boundary conditions, as well as
when the X0rm are the zeros of 0 , as in infinitely
flexible boundary conditions. While the lower
limit satisfies the equality for all the boundary
conditions considered here, the upper limit does
not. Rather than attempting to prove complete-
ness mathematically so that the expansion of
Eq. (10) may be made, we will resort to a physi-
cal argument. The notion of completeness here
concerns the least-squares representation of a
function by a series expansion of characteristic
functions. In our case we note that the charac-
teristic functions for both absolutely rigid and
infinitely flexible boundary conditions are com-
plete. From a physical standpoint we would ex-
pect the type of boundary condition to become
relatively immaterial as b/a increases, and in
fact for reasonable values of the dimensionless
quantity z X/a 2 we would expect, for large values
of b/a, that all the boundary conditions would
agree with the free-field values. If these predic-
tions are borne out we can be reasonably certain
that the characteristic function expansions for
liquid and elastic boundary conditions are valid
representations. To demonstrate that this is not
true for the reference parameter b/a = 2, we
plot Figs. 3 through 10 which show P> rel and
K0>rel respectively, for the four boundary con-
ditions (rigid, flexible, liquid, and elastic) con-
sidered in detail. Obviously there is little agree-
ment among the plots and no particular coinci-
dence with the free-field (b/a = o ) calculation
(ka = 2

07T, or a = 10A, for all these plots).
Figures 11 and 12 are composite presentations,
respectively, of <P> rel and KO>rel for the four
boundary conditions and the reference parameters,
with the exception that b/a = 5 in these plots,
compared with the free-field result for ka - 2077;

Figs. 13 and 14 are the same but with b/a - 10.
In the former case (b/a = 5) coincidence is
being approached, while in the latter (b/a = 10)
we apparently have justification of our assump-
tion. (Recall that we are changing only the
value of b.)
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TABLE 10

Comparison of Average Relative Pressure Values

(<P> rel) Obtained Using Orthogonal Assumption and Actual KLrn
Values from Table 8 in Eqs. 20 and 24 for the Liquid Boundary Condition

[Characteristic Eq. (64)] and b/a = 2.0

2 >rel)L (<P>rel)L (Actual) Relative Error
(re Actual)

(Dimensionless) (Orth. Assump.)

0.0 0.9895775 0.9894456 +0.0001334
0.1 0.9306396 0.9305719 +0.0000728
0.2 0.9018492 0.9018035 +0.0000508
0.3 0.8832659 0.8832215 +0.0000503
0.4 0.8747904 0.8747423 + 0.0000550
0.5 0.8601329 0.8600888 +0.0000513
0.6 0.8296854 0.8296640 + 0.0000258
0.7 0.8454234 0.8453774 + 0.0000545
0.8 0.8156356 0.8156078 +0.0000340
0.9 0.8024712 0.8024510 + 0.0000251
1.0 0.8094636 0.8094384 +0.0000311
2.0 0.7535671 0.7535548 + 0.0000162
3.0 0.7475792 0.7475292 + 0.0000668
4.0 0.5320858 0.5321009 -0.0000285
5.0 0.5033542 0.5033521 +0.0000043
6.0 0.3703530 0.3703732 - 0.0000546
7.0 0.2 964656 0.2964915 -0.0000873
8.0 0.4134798 0.4134609 +0.0000458
9.0 0.3812747 0.3813003 -0.0000671

10.0 0.5912150 0.5912050 +0.0000171

TABLE 11

( Comparison of Average Relative Phase-Difference Values
(0 rel)L Obtained Using Orthogonal Assumption and Actual KLm

Values from Table 8 in Eqs. (21)and (24) for the Liquid Boundary Condition
[Characteristic Eq. (64)] and b/a = 2.0

z >re Relative Error
a2)L <>rel)L (Actua) (re Actual)

(Dimensionless) (Orth. Assump.)

0.0 0.0000006 0.0000006 0
0.1 0.0770784 0.0770483 + 0.0003907
0.2 0.1104181 0.1103926 +0.0002308
0.3 0.1358862 0.1358591 +0.0001993
0.4 0.1639416 0.1639192 + 0.0001367
0.5 0.1836409 0.1836184 +0.0001226
0.6 0.2061965 0.2061710 + 0.0001238
0.7 0.2209007 0.2208823 +0.0000832
0.8 0.2617586 0.2617183 +0.0001541
0.9 0.2418164 0.2418140 +0.0000100
1.0 0.2425141 0.2425331 -0.0000786
2.0 0.3661808 0.3661959 -0.0000412
3.0 0.7017445 0.7016980 + 0.0000663
4.0 0.7916116 0.7916051 ±0.0000082
5.0 0.7776839 0.7777139 -0.0000386
6.0 1.0905651 1.0904750 +0.0000826
7.0 0.6155605 0.6156242 -0.0001034
8.0 0.6405180 0.6405112 ±0.0000106
9.0 0.4942622 0.4943238 -0.0001246
10.0 0.5903329 0.5903391 -0.0000104
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TABLE 12

Comparison of Average Relative Pressure Values

(kPrel)E Obtained Using Orthogonal Assumption and Actual KErn
Values from Table 9 in Eqs. (20) and (24) for the Elastic Boundary Condition

[Characteristic Eq. (89)] and b/a 2.0

z k (<P>rel) E (<P>rel) Rative Error
a2 E(Actual) (re Actual)

(Dimensionless) (Orth. Assump.)

0.0 0.9717788 0.9713188 +0.0004736
0.1 0.9141165 0.9142742 -0.0001725
0.2 0.8860098 0.8864551 -0.0005023
0.3 0.8667967 0.8662562 + 0.0006240
0.4 0.8564165 0.8562606 +0.0001821
0.5 0.8415938 0.8420237 -0.0005106
0.6 0.8190483 0.8186038 +0.0005429
0.7 0.8225790 0.8221697 +0.0004978
0.8 0.8094269 0.8097581 -0.0004089
0.9 0.7846205 0.7844757 +0.0001846
1.0 0.7762643 0.7759440 + 0.0004127
2.0 0.7059880 0.7055973 +0.0005538
3.0 0.7464714 0.7462238 +0.0003319
4.0 0.7666435 0.7664073 + 0.0003082
5.0 0.6782722 0.6783252 -0.0000781
6.0 0.7197391 0.7197888 -0.0000690
7.0 0.8061243 0.8058819 +0.0003008
8.0 0.7915121 0.7917809 -0.0003396
9.0 0.7181985 0.7187899 -0.0008227

10.0 0.8622688 0.8627789 -0.0005911

TABLE 13
Comparison of Average Relative Phase-Difference Values

(<0>rel).E Obtained Using Orthogonal Assumption and Actual KErn
Values from Table 9 in Eqs. (21) and (24) for the Elastic Boundary Condition

[Characteristic Eq. (89)] and b/a = 2.0
A (£0) I~ Acul

z \ re Relative Error
2 )Erel)E (Act (re Actual)

(Dimensionless) (Orth. Assump.)

0.0 0 0 0
0.1 0.0778414 0.0784568 -0.0078441
0.2 0.1151891 0.1146869 +0.0043793
0.3 0.1422784 0.1418842 +0.0027785
0.4 0.1659318 0.1665204 -0.0035344
0.5 0.1894090 0.1893459 +0.0003332
0.6 0.2217272 0.2213196 +0.0018414
0.7 0.2228230 0.2230320 -0.0009370
0.8 0.2655853 0.2657002 -0.0004324
0.9 0.2644061 0.2635660 + 0.0031874
1.0 0.2681320 0.2679827 +0.0005574
2.0 0.4333332 0.4338638 -0.0012228
3.0 0.5311679 0.5318601 -0.0013016
4.0 0.8584935 0.8591407 -0.0007333
5.0 0.9762409 0.9768278 -0.0006009
6.0 0.9276615 0.9286576 -0.0010726
7.0 1.1607084 1.1611076 -0.0003438
8.0 1.4857913 1.4862842 -0.0003316
9.0 1.6592534 1.6596663 -0.0002488

10.0 1.7931229 1.7934281 -0.0001702
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INTRODUCTION OF ABSORPTION

In the immediately preceding report on free-
field diffraction (4), absorption was introduced
merely by replacing the wave number k by
k* = k 0 0 - ia 0 0.* To introduce absorption
into the guided mode formulation of this report,
we may, as in the previous report, substitute a
complex wave number for the parameter k. To an
apparent first-order approximation, we will also
assume that the characteristic values Xo are
not themselves modified by attenuation in the
medium or the walls, but that only propagation in
the modes across and down the tube is affected.
That is, in Eq. (24) only the exponential term will
require modification.

We write

k*00 - a 0 m = qom - Urn

b-) - (k*) - (qo) (90

and obtain from separately equating the real and
the imaginary parts

.k20_ aU20 ( K-0M) 2

)

+ 
2 a2

and
= O M(X00kn ornqorn,

We use the second relation in Eq. (91) to elimi-
nate aOrn from the first relation and obtain

K ~ k Ur -o ) + ao ( 2g
(q M0M

(92)

or, finally, the modified qom , i.e., qr n' is given
by

+ 2 2 m

0) k o-

+ (X0M + k 4  + U4

00 00

*In this notation, the star superscript refers only to a com-
plex value, not to the complex conjugate of an already
complex number.

+ 2k 02 a 2 0 + 2 ( X m a2

00

k00) 
.

(93)

The exponential in Eq. (24) is now written

(94)

where k., and a60 0 are given as plane-wave free-
field propagation parameters of the contained
liquid.

We note that in this manner the XOm are real,
as previously, and the new qorn are also real.
Returning to our assumption that the procedure
outlined above is a first-order-type approxima-
tion, we note that for the limiting situations of
absolutely rigid and infinitely flexible boundary
conditions the use of the theorem stating that
there are no pure imaginary or complex zeroes of
h or 1 indicates that no approximation is in-
volved in our method of introduction of absorption
for the fluid contained in absolutely rigid or in-
finitely flexible walls. That is, in Eq. (8) (the
characteristic equation) we essentially have
written the relation

Impedance

of liquid 90 (m)

(in radial = -i 1 Ki(X)
direction)

and equated this to the impedance Z of the wall
so that

iOfP o(X)
X Cl(X) - wall " (95)

If the wall impedance is pure real we have atten-
uation, while a pure imaginary impedance results
in propagation. For absolutely rigid walls Z
goes to oo, and for infinitely flexible walls Z

goes to 0. Obviously, for both these limiting
cases we can only have the characteristic value
X real inasmuch as Bessel functions of complex
argument are in general themselves complex. We
may note in passing that the left-hand side of
Eq. (95) resembles the cotangent function, so the

-i((k 0o0- . ko)a0e qo0M

(XOm) 2
2 _- -
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procedures used in the sections devoted to ab-
solutely rigid and infinitely flexible boundaries
may be replaced by finding the zeroes and infini-
ties, respectively, of this quotient.

For the liquid and elastic boundary conditions
we find the right-hand side of Eq. (95) replaced
by a function which, if allowed to become com-

plex, then requires complex values of X. So
our procedure for introducing absorption into
these conditions is only an approximation.* Be-
cause absorption was introduced in the contained
liquid at a relatively late stage of the develop-
ment, we find that in order to equate impedances

across the boundary we now demand the simul-
taneous introduction of a related absorption for

the wall material. Recalling that

Y - k12 -
k 2 2

we now find

Y = bN/k2 - 2ikal-a 1
2 -k 2

2 + 2ik2 2 + 2
2 .

The real part yields

Y =A k12 1 2 - k 2
2 + a 2

2

and the imaginary part

k 1 a, - k 2 U 2 "

We demanded that Y be real, so substitution gives

12 12 2 a1)2

*We will not in this report present a more rigorous introduc-

tion of absorption but will delay it to a future report, since
even with restrictions to frequencies far removed from re-
laxation effects involving bulk viscosity or chemical reac-
tions, it would appear necessary to ascribe a viscosity to
the fluid and thus negate any simplifying assumption con-
cerning the transverse component of pressure or particle
velocity at the boundary. Indeed, apparently one becomes
involved with simultaneous solutions to a diffusion (para-
bolic) equation as well as a wave or hyperbolic equation.
In any event, the simple introduction of a complex propaga-
tion constant, without implying viscosity, leads to attenua-
tion, and for relatively small attenuations it could not result
in characteristic values Xom much changed from those re-
sulting from real propagation constants. The characteristic
functions would not be orthogonal for a complex impedance,
but we recall that they were not orthogonal anyway for liquid
and elastic boundary conditions-though, being nearly so,
they did not significantly change (for b 

> 
2a) the expansion

coefficients KOrn from their values obtained by invoking
orthogonality.

This restriction above is innocuous, albeit not

particularly desirable. It has no particular sig-

nificance other than that the assumption of XOm
unchanged implies that Y is unchanged.

Utilizing the previous equations with the ex-

ponential as modified in Eq. (94) and with the
new qom given by Eq. (93), we calculate <P> rel

and <0>rel as before, but for the absorption pa-
rameter U - U00 = 0, 0.01, 0.1, 1.0, and 10.0.

Because the 0.01 and 0.1 plots are almost indis-
tinguishable from a = 0, we plot only the values
a = 0, 1.0, and 10.0 for each of the boundary

conditions. Figure 15 is a plot of <P> tel for ab-

solutely rigid boundaries for the a parameter
values 0, 1.0, and 10.0. Figure 16 shows <0>rel
for absolutely rigid boundaries plotted in the
same way over the same ranges of z X/a 2 (dimen-
sionless) and for the same absorption parameter
values. It should be remarked again that, unless

otherwise noted, all graphs in this report are for
the standard reference parameters given in Table

1. Thus, the figures are for b/a = 2 and
ka = 2077. In a similar fashion, Figs. 17 and 18
show <p>,,e and <0>,,, respectively, for in-
finitely flexible boundary conditions with the ab-
sorption parameter varied; Figs. 19 and 20 are
for liquid boundary conditions with additional
standard reference conditions p 2 /p, - 7 and
k l/k 2 = 4; and the last boundary condition con-
sidered here, elastic walls, is plotted in Figs.
21 and 22 and includes the further additional
standard reference parameter of the Poisson's
ratio v = 0.325.

The most noticeable feature of these absorp-
tion parameter plots is the marked smoothing of
the pressure and phase plots caused by the intro-
duction of absorption in this, for the latter two

boundary conditions, first-degree-approximation
manner. (All the graphs in this report will be

discussed more fully in a later section.)

ADDITIONAL PARAMETERS

We have already shown graphs comparing the
four boundary conditions for the radius ratio

b/a = 2 with the free field and for b/a = 5 and
b/a = 10. The absorption parameter was also
varied for the reference value b/a = 2. These
plots were all for k l a = 207 and, where applica-
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ble, kl/k 2 - 4. We now turn our attention to a
variation of b/a, where we have previously noted
that most of the change due to this variable
occurs for the smaller values of this variable.
We have also alluded to the increasing differ-
ences to be expected in a comparison of the
actual expansion coefficients with those ob-
tained by erroneously using the simplification of
orthogonality for the liquid and elastic boundary
cases. Our primary interest is in a comparison
of both <p> rel and <0>re 1 calculated using ex-
pansion coefficients obtained by the two different
methods.

For b/a = 1.25 we have tabulated values and
proportional differences in Table 14 for (<p> reI)L'

in Table 15 for (<0>rel)L, in Table 16 for

(<P> rel)E, and in Table 17 for (<O>rel)E.

Obviously, no significant error is caused by the
orthogonal assumption for the liquid boundary,
but differences as large as 3 percent occur for

(<P>rel)E and 8 percent for (<0>rel)E•

Additional calculations indicate that the
liquid boundary case involves no appreciable
error even for b/a = 1, as shown in Table 18 for

(<P>rel)L and Table 19 for( <0>rel)L- But
here the insignificant difference is not caused by
a small change in KLm but rather by the decreas-
ing contribution of the higher m values. As seen
in Table 20 there is an appreciable difference
(as large as 88 percent) between the actual KLm

and the orthogonal assumption KL L for b/a = 1,
which is not reflected in the (<P>rel)L and

(<0>rel)L values.
Table 21 compares the two sets of expansion

coefficients KErn for the elastic boundary situa-
tion, with b/a = 1 being the only parameter
changed from the standard reference values. We
find some coefficients changed by almost 100
percent. The corresponding (<P>rel)E and

( <0>rel)E for selected values of zk/a 2 are
tabulated in Tables 22 and 23, respectively. The
greatest difference in( <P>rel)E is 25 percent,

and that in (<0>rel )E is 1000 percent.

TABLE 14
Comparison of Average Relative Pressure Values

(<P>tel) L Obtained Using Orthogonal Assumption andActual KLrm Values
(Calculated from Eqs. (16) and (38), Respectively) in Eqs. (20) and (24)
for the Liquid Boundary Condition [Characteristic Eq. (64)] and b/a = 1.25

z a-- eL ( <re)(Au Relative Error
a2  L <> re1)L (Actual) (re Actual)

(Dimensionless) (Orth. Assump.)

0.0 0.9899171 0.9897142 + 0.0002050
0.1 0.9243691 0.9242909 -0.0000846
0.2 0.9078447 0.9077375 +0.0001182
0.3 0.8630293 0.8629577 + 0.0000829
0.4 0.8492456 0.8491806 + 0.0000766
0.5 0.8432466 0.8431503 +0.0001142
0.6 0.8374968 0.8374500 + 0.0000559
0.7 0.8681471 0.8680264 + 0.0001390
0.8 0.8379808 0.8379386 + 0.0000504
0.9 0.8691401 0.8690317 + 0.0001247
1.0 0.8595755 0.8594977 +0.0000905
2.0 0.9192813 0.9192201 +0.0000666
3.0 0.8537115 0.8536319 +0.0000932
4.0 0.8981722 0.8980542 + 0.0001314
5.0 0.8490684 0.8489840 + 0.0000993
6.0 0.8523115 0.8522883 +0.0000273
7.0 0.8460231 0.8459170 + 0.0001254
8.0 0.8144340 0.8143755 + 0.0000718
9.0 0.8222387 0.8221836 +0.0000671

10.0 0.8244292 0.8243614 +0.0000823
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TABLE 15
Comparison of Average Relative Phase-Difference Values

(<O>rel)L Obtained Using Orthogonal Assumption and Actual KLm Values
(Calculated from Eqs. (16) and (38), Respectively) in Eqs. (21) and (24)
for the Liquid Boundary Condition [Characteristic Eq. (64)] and b/a = 1.25

X (<o)) (0re)(cul
Z tel 1 Relative Error

a_ 2L_0>___)L Actale(re Actual)
(Dimensionless) (Orth. Assump.)

0.0 0 0 0
0.1 0.0751249 0.0751140 +0.0001446
0.2 0.1237556 0.1237194 +0.0002922
0.3 0.1485767 0.1485352 + 0.0002797
0.4 0.1511827 0.1511792 +0.0000228
0.5 0.1409557 0.1409701 -0.0001024
0.6 0.1517650 0.1517736 -0.0000569
0.7 0.1850660 0.1850342 + 0.0001715
0.8 0.1947565 0.1947661 -0.0000492
0.9 0.2136579 0.2136648 -0.0000324
1.0 0.2358251 0.2358388 -0.0000580
2.0 0.4669629 0.4669691 -0.0000133
3.0 0.7005599 0.7005384 + 0.0000307
4.0 0.9307200 0.9307649 -0.0000482
5.0 1.1635297 1.1635811 -0.0000442
6.0 1.4359258 1.4359296 -0.0000027
7.0 1.7188279 1.7188191 +0.0000051
8.0 1.9325513 1.9325491 +0.0000012
9.0 2.2348147 2.2348432 -0.0000128

10.0 2.4549971 2.4549533 + 0.0000179

TABLE 16
Comparison of Average Relative Pressure Values

(<P> rel )E Obtained Using Orthogonal Assumption and Actual KErn Values
(Calculated from Eqs. (16) and (38), Respectively) in Eqs. (20) and (24)
for the Elastic Boundary Condition [Characteristic Eq. (89)] and b/a = 1.25

2 E (<P>rei) (Actual) Relative Error
_ a 2

_rE______re_ E (Ott) (re Actual)
(Dimensionless) (Orth. Assump.)

0.0 0.6762827 0.6866799 -0.0151414
0.1 0.6155481 0.6204182 -0.0078496
0.2 0.6168034 0.6300323 -0.0209972
0.3 0.5994986 0.6123391 -0.0209696
0.4 0.5761935 0.5789443 -0.0047513
0.5 0.5441485 0.5531761 -0.0163195
0.6 0.5133055 0.5122106 -0.0021376
0.7 0.5171981 0.5165782 + 0.0012001
0.8 0.4799800 0.4934086 -0.0272160
0.9 0.4636831 0.4638596 -0.0003805
1.0 0.4690766 0.4788756 -0.0204625
2.0 0.3481575 0.3457400 + 0.0069924
3.0 0.5582870 0.5599304 -0.0029350
4.0 0.5983060 0.6011824 -0.0047848
5.0 0.3676897 0.3698082 -0.0057286
6.0 0.4284766 0.4369658 -0.0194274
7.0 0.6318598 0.6455171 -0.0211572
8.0 0.4911429 0.5046498 -0.0267649
9.0 0.3236569 0.3209491 + 0.0084369

10.0 0.4989774 0.5006685 -0.0033777
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TABLE 17

Comparison of Average Relative Phase-Difference Values

(<O>rel)E Obtained Using Orthogonal Assumption and Actual KErn Values
(Calculated from Eqs. (16) and (38), Respectively) in Eqs. (21) and (24)
for the Elastic Boundary Condition [Characteristic Eq. (89)] and b/a = 1.25

(KO>rel) ( )Relative Error
a 2  E E) (Actual) (re Actual)

(Dimensionless) (Orth. Assump.)

0.0 0 0 0
0.1 0.1380550 0.1360894 + 0.0144435
0.2 0.2118209 0.2298612 -0.0784834
0.3 0.3249062 0.3154815 + 0.0298741
0.4 0.4181617 0.4242684 -0.0143934
0.5 0.4845435 0.4945054 -0.0201451
0.6 0.5506718 0.5411030 + 0.0176838
0.7 0.5859817 0.6076427 -0.0356476
0.8 0.6900229 0.6831681 + 0.0100337
0.9 0.6527385 0.6541685 -0.0021860
1.0 0.7507075 0.7521207 -0.0018790
2.0 1.0479946 1.0799276 -0.0295695
3.0 1.5272789 1.5271199 +0.0001041
4.0 2.2624835 2.2558020 +0.0029619
5.0 2.8991612 2.8799479 + 0.0066714
6.0 3.1144023 3.1207704 -0.0020406
7.0 3.7961330 3.7927269 +0.0008981
8.0 4.5533582 4.5694361 -0.0035186
9.0 4.9727837 4.9992754 -0.0052991

10.0 5.2715110 5.2596523 +0.0025465

TABLE 18

Comparison of Average Relative Pressure Values

(P> rel )L Obtained Using Orthogonal Assumption and Actual KLrn Values
(Calculated from Eqs. (16) and (38), Respectively) in Eqs. (20) and (24)
for the Liquid Boundary Condition [Characteristic Eq. (64)] and b/a = 1.0

z(Prel)~ p Relative Error
a 2 L <P> rel )L (Actual) (re Actual)

(Dimensionless) (Orth. Assump.)

0.0 0.9981645 0.9998849 -0.0017206
0.1 0.9744380 0.9753644 -0.0009499
0.2 0.9478367 0.9485705 -0.0007736
0.3 0.9233720 0.9239012 -0.0005728
0.4 0.9019077 0.9024089 -0.0005554
0.5 0.8810601 0.8813703 -0.0003520
0.6 0.8653565 0.8658056 -0.0005188
0.7 0.8473875 0.8477187 -0.0003907
0.8 0.8420991 0.8427221 -0.0007393
0.9 0.8169883 0.8173123 -0.0003965
1.0 0.7959366 0.7960492 -0.0001414
2.0 0.6731596 0.6732681 -0.0001612
3.0 0.8379450 0.8383262 -0.0004548
4.0 0.9657948 0.9666361 -0.0008703
5.0 0.7894673 0.7897891 -0.0004075
6.0 0.6606877 0.6604517 + 0.0003574
7.0 0.8855006 0.8862457 -0.0008408
8.0 0.9431363 0.9437847 -0.0006870
9.0 0.7642870 0.7643782 -0.0001193

10.0 0.6711493 0.6707567 + 0.0005853
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TABLE 19
Comparison of Average Relative Phase-Difference Values

( O>rel)L Obtained Using Orthogonal Assumption and Actual KLrn Values
(Calculated from Eqs. (16) and (38), Respectively) in Eqs. (21) and (24)
for the Liquid Boundary Condition [Characteristic Eq. (64)] and b/a = 1.0

( <0O> rel
z - L (<0) (Actual) Relative Error
a 2Le L ( ) (re Actual)

(Dimensionless) (Orth. Assump.)

0.0 0.0000006 0.0000006 0
0.1 0.0905143 0.0909282 -0.0045518
0.2 0.1556971 0.1560929 -0.0025352
0.3 0.2104748 0.2108481 -0.0017705
0.4 0.2576192 0.2578053 -0.0007220
0.5 0.3012797 0.3014043 -0.0004134
0.6 0.3475494 0.3479874 -0.0012587
0.7 0.3771373 0.3771603 - 0.0000609
0.8 0.4225055 0.4228402 -0.0007913
0.9 0.4680654 0.4686056 -0.0011527
1.0 0.4854230 0.4857166 -0.0006043
2.0 0.7208829 0.7207918 +0.0001264
3.0 1.0179109 1.0181569 -0.0002417
4.0 1.4538678 1.4533953 +0.0003251
5.0 1.9759632 1.9764646 -0.0002537
6.0 2.1794069 2.1789635 +0.0002035
7.0 2.4786985 2.4787000 -0.0000006
8.0 2.9542018 2.9542190 -0.0000058
9.0 3.4332652 3.4333348 -0.0000203

10.0 3.6757460 3.6760906 -0.0000937

TABLE 20 TABLE 21

Comparison of Liquid Boundary Expansion
Coefficients KLr Obtained by Assuming Ortho-
gonality [Eq. (16)] with the Actual KLm Values
Obtained Using the Exact Method [Eq. (38)] and

b/a = 1.0

Relative
m KLrn (Orth. KL n  Error

Assump.) (Actual) rca
(re Actual)

1 +1.5592724 +1.5599775 -0.0004520
2 -0.9336714 -0.9360733 -0.0025660
3 +0.6403251 +0.6447437 -0.0068532
4 -0.4624958 -0.4688900 -0.0136369
5 +0.3467280 +0.3549177 -0.0230748
6 -0.2680057 -0.2778048 -0.0352733
7 +0.2123773 +0.2236380 -0.0503523
8 -0.1716642 -0.1842819 -0.0684699
9 +0.1409130 +0.1548213 -0.0898346
10 -0.1170241 -0.1321886 -0.1147187
11 +0.0979923 +0.1144071 -0.1434768
12 -0.0824768 -0.1001631 -0.1765752
13 +0.0695511 +0.0885593 -0.2146379
14 -0.0585517 -0.0789664 -0.2585236
15 +0.0489824 +0.0709336 -0.3094618
16 -0.0404466 -0.0641313 -0.3693159
17 +0.0325891 +0.0583154 -0.4411572
18 -0.0250121 -0.0533050 -0.5307736
19 +0.0170344 +0.0489757 -0.6521863
20 -0.0053318 -0.0452071 -0.8820580

Comparison of Elastic Boundary Expansion
Coefficients KErn Obtained

gonality [Eq. (16)] with the
Obtained Using the Exact N

b/a = 1.

by Assuming Ortho-
Actual KE Values
lethod [Eq. (38)] and
0

Relative
KErn (Orth. KErn Error

Assump.) (Actual) (re Actual)

1 +0.6847004 +0.7285022 -0.0601258
2 -0.2541044 -0.3201611 -0.2063232
3 +0.1438355 +0.2264065 -0.3647026
4 -0.0965672 -0.1942744 -0.5029339
5 +0.0713326 +0.1842075 -0.6127596
6 -0.0561096 -0.1850984 -0.6968662
7 +0.0462064 +0.1931193 -0.7607366
8 -0.0394569 -0.2071299 -0.8095065
9 +0.0347496 +0.2274224 -0.8472022
10 -0.0314822 -0.2555165 -0.8767901
11 +0.0293366 +0.2945913 -0.9004158
12 -0.0281958 -0.3508499 -0.9196358
13 +0.0281567 +0.4372198 -0.9356006
14 -0.0297171 -0.5849160 -0.9491943
15 +0.0346552 +0.8916582 -0.9611340
16 -0.0527891 -1.8700824 -0.9717718
17 +0.2748274 +4.6615750 -0.9410441
18 -0.0610809 -4.1532538 -0.9852932
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Returning to the graphs for the b/a parameter
varied between 1 and 2 we have, for rigid bound-
aries, <P>rel plotted in Figs. 23 and O>rel in

Fig. 24. Figures 25 and 26 show <P>rel and
O>rel, respectively, for infinitely flexible

boundary conditions. The results for liquid
boundary conditions proved to be independent of
whether the coefficients were obtained in the cor-
rect manner or by means of the orthogonal simpli-
fication and are shown as <P>rel in Fig. 27 and

<O>rel in Fig. 28. Figures 29 and 30 show

KP>rel and O>rel, respectively, for elastic
boundary conditions and are the only graphs
which differentiate between the actual calcula-
tions and those obtained by orthogonal simplifi-
cation. (The values for b/a = 1.5 and 2.0 are
so nearly identical that no differentiation can be
made between the two methods of calculation on
Figs. 29 and 30.) For the (b) part of each figure
(i.e., 1 < zX/a 2  10) we note that the varia-
tion in the actual curve for b/a = 1 is so rapid
that only the portion 5.0 _ zk/a 2 < 5.5 is
sketched in detail; for other regions on this curve
only the envelope is indicated.

With this last group of figures, we have ex-
hausted the parameters that can be varied and
compared for all of the four boundary conditions.

For the liquid and elastic walls, we can next
vary the ratio of the wave number for the con-
tained liquid and for the wall material. Figures
31 and 32 show P> ,Iel and <0>rel for liquid
walls and k,/k 2 values of 3, 4, and 5. Figures
33 and 34 are for the same variation of param-
eters for elastic walls. The ratio of densities

P21PI is also at our disposal and we select
values of 6, 7, and 8 for this in Figs. 35 and 36,
which are for liquid boundary conditions, and in
Figs. 37 and 38, which apply to elastic boundary
conditions. The only parameter remaining is
Poisson's ratio v for the elastic walls, and

KP>rel and O>rel are plotted for v = 0.300,
0.325, and 0.350 in Figs. 39 and 40, respectively.

DISCUSSION AND APPLICATION

In earlier sections of the report we have
shown that the proper expansion coefficients for
the nonorthogonal characteristic functions are

essentially the same as those obtained by
wrongly assuming orthogonality, and the resulting
calculations of <P>rel and K0>rel for the liquid
and elastic boundary conditions are essentially

unchanged in the correct formulation from the ap-

proximation of orthogonality (for b 2a). From
Figs. 3 through 10 we note that none of the
boundary conditions for b/a - 2 are in essential
agreement with the free-field calculations for the
same radiating piston. But for b/a = 5 in Figs.
11 and 12 the graphs are becoming quite similar,
while for b/a = 10 in Figs. 13 and 14 the graphs
for all the boundary conditions just about coin-
cide with free-field calculations over the dis-
tances z considered.

If we compare the various boundary condition
plots for b/a = 2 we note that for 0 < zX/a 2

< 1 the <P> iel plots are quite similar; the same
is true for the <0>rel plots, although one might
say that <0>rel for infinitely flexible boundary
conditions is generally out of phase with the
other boundary conditions over this range of dis-
tance. The same plots for 1 < zX/a 2 < 10
indicate that infinitely flexible and liquid bound-
ary conditions are similar up to about z/a 2 = 5,
as are the absolutely rigid and elastic boundary
conditions. While there is a general tendency
toward similarity of the four plots at zA/a 2 = 5,
for greater zA/a 2 values <O>rel separates, with
the rigid and elastic conditions forming one simi-
lar pair and the flexible and liquid conditions
another. But for <p> Iel, while it could be said
that the liquid and flexible continue with some
similarity, it is obvious that the elastic diverges
from the rigid and, in fact, begins to resemble
infinitely flexible boundary conditions. The gen-
eral trends toward increasing or decreasing
values are perhaps more significant in this ap-
praisal than the absolute values. In any event,
it apparently is necessary to carefully specify
the boundary conditions appropriate to a given
experiment.

We will return to the discussion of tube-to-
crystal radius ratio b/a as a parameter later; for
now we shall direct our attention to absorption.
Figures 15 and 16 indicate that for rigid bound-
ary conditions neither <P>rel nor <O>rel are
particularly affected by the inclusion of a realis-
tic intrinsic absorption in the contained liquid.
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TABLE 22
Comparison of Average Relative Pressure Values

(<P> rel )E Obtained Using Orthogonal Assumption and Actual KErn Values
(Calculated from Eqs. (16) and (38), Respectively) in Eqs. (20) and (24)
for the Elastic Boundary Condition [Characteristic Eq. (89)] and b/a = 1.0

z 2-l r1) (<P>rel (Actual) Relative Error
E (re Actual)

(Dimensionless) (Orth. Assump.)

0.0 0.0865885 0.1149452 -0.2466977
0.1 0.0837691 0.0885871 -0.0543867
0.2 0.0819398 0.0837064 -0.0211038
0.3 0.0816765 0.1026259 - 0.2041334
0.4 0.0791261 0.0844068 -0.0625626
0.5 0.0771040 0.0703626 + 0.0958097
0.6 0.0778171 0.0967713 -0.1958666
0.7 0.0755567 0.0841316 -0.1019345
0.8 0.0742354 0.0670090 + 0.1078425
0.9 0.0754615 0.0907023 -0.1680305
1.0 0.0738765 0.0857666 -0.1386335
2.0 0.0810237 0.0763331 + 0.0614479
3.0 0.0739906 0.0652305 +0.1342936
4.0 0.0757399 0.0779204 -0.0279841
5.0 0.0794552 0.0935181 -0.1503765
6.0 0.0741046 0.0896573 -0.1734676
7.0 0.0840508 0.0966090 -0.1299905
8.0 0.0717685 0.0660596 +0.0864209
9.0 0.0825636 0.0740020 +0.1156933

10.0 0.0742248 0.0820247 -0.0950918

TABLE 23

Comparison of Average Relative Phase-Difference Values
(<O>rel)E Obtained Using Orthogonal Assumption and Actual K E mValues
(Calculated from Eqs. (16) and (38), Respectively) in Eqs. (21) and (24)
for the Elastic Boundary Condition [Characteristic Eq. (89)] and b/a = 1.0

X (<O>rel /() )(cul
rel) E <O>i-l) Relative Error

a2  jE (re Actual)
(Dimensionless) (Orth. Assump.)

0.0 0 0 0
0.1 0.1164774 0.0123768 10.4109544
0.2 0.2429197 0.3906022 0.3780892
0.3 0.3374536 0.3773222 0.1056622
0.4 0.4170587 0.2355805 0.7703445
0.5 0.5266520 0.6172168 0.1467309
0.6 0.6133799 0.6556577 0.0644815
0.7 0.6812442 0.4752492 0.4334463
0.8 0.7721171 0. 7757266 0.0046530
0.9 0.8697393 0.9672980 0.1008569
1.0 0.9410286 0.7772928 0.2106489
2.0 1.7700447 1.6318643 0.0846764
3.0 2.8077192 2.9059464 0.0228021
4.0 3.5623730 3.6924945 0.0352395
5.0 4.5911729 4.6815573 0.0193064
6.0 5.3566908 5.3429339 0.0025748
7.0 6.3399993 6.2022560 0.0144352
8.0 7.2382555 7.0272994 0.0300195
9.0 8.1288061 8.1732742 0.0054407

10.0 9.1389897 9.3734856 0.0250169
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For the rather large value of C = 10 the effect
on <p> I is only an additional loss, similar to
that found for free-field conditions in the imme-
diately preceding report of this series. The ef-
fect on <0>rel may appear somewhat startling;
apparently at zX/a 2 = 10 the phase difference
with respect to a plane wave is materially re-
duced by the inclusion of this large absorption
value. But this should not really be surprising.
We recall that the higher order modes are the
least nonplanar in the sense that they are asso-
ciated with increasingly larger errors in wave-
length (but their group velocities are increasingly
smaller than plane-wave velocity). And the effect
of intrinsic absorption is to preferentially attenu-
ate the higher order, more complex modes. We
also recall here that absolutely rigid boundary
conditions are the only ones considered in this
report for which a plane wave is one of the family
of modes possible of propagation.

Figures 17 and 18 indicate that the effect of
including absorption in the contained liquid for
infinitely flexible boundary conditions is similar
to that for rigid boundary conditions, but because
the plane-wave mode does not exist for the
former, the decrease in phase "error" is not as
pronounced. The effect is one of general smooth-
ing in the nature of the curves.

For the liquid boundary conditions as shown
in Figs. 19 and 20, not much more can be said of
the effect of intrinsic absorption other than that
there is a general trend toward smoothing of the
curves to a more monotonic variation. For the
shorter range of zX/a 2 the relative magnitude de-
crease is generally greater, and the relative
phase increase is generally smaller, for the
larger absorption, but for larger distances z it is
obvious that the only real effect is one of smooth-
ing of the oscillations.

Figures 21 and 22, for elastic boundary condi-
tions, indicate that the statements made above
concerning the effect of intrinsic absorption in
the liquid for liquid boundary conditions could
generally be made also for the elastic boundary
conditions. But there is one obvious difference
in that, while the smoothing characteristic noted
for the other boundary conditions is maintained

for the overall trend of the curves, the introduc-
tion of absorption into the elastic boundary con-
dition case results, for the larger absorption co-
efficient considered, in a much more rapid de-
crease in <P>rel over the larger z/a 2 range.

As has been stated, the limiting boundary
condition of absolutely rigid walls (devoid of
thermal conductivity and perfectly smooth) does
result in one permissible mode being a plane
wave. Moreover, as indicated earlier, the situa-
tion for b/a = 1 (i.e., the transducer completely
filling one end of the tube) results in the plane-
wave mode being the only permissible one. Fig-
ures 23 and 24, with b/a as the parameter, show
that <P>rel - 1 and <O>rel - 0 for this situa-
tion (b/a = 1). But even so small a change as
b/a = 1.1 results in a drastic change in the
plots of <P> rel and <0>rel. (Here we should
stress that one does not have uniform piston
motion when a transducer completely covers the
opening of a hollow right-circular cylinder, so
that the ratio b/a would necessarily be greater
than unity, even if rigid walls were attainable.)
For the shorter range of zA/a 2 we find <P> rel

decreasing faster than free field and then oscil-
lating about free field, while <0>rel initially in-
creases like free field and than levels off some-
what about 0.05 radian. For the larger zX/a 2

range we find that <P> rel is oscillating about a
value of 0.8 while <O>rel is oscillating about 0
radian. For b/a = 1.2, however, we find <p> rel
decreasing faster than free field and then demon-
strating a general leveling off, while <0>rel
starts off like free field, levels off at about 0.15
radian near zk/a 2 = 1, and then, like the curve
for b/a = 1.1, oscillates about 0 radian. At this
point it should be remarked that these last two
plots for which <O>rel becomes negative are the
only ones as yet which could result in an ap-
parent phase velocity being smaller than (or an
apparent group velocity being greater than) the
plane-wave sound speed. For b/a = 1.5 as with
b/a = 2, both <P>rel and <O>rel approximate
the free-field curves over the short zX/a 2 range.

But <P> rel portrays a sharp minimum near
zA/a 2 = 5.5 and then climbs sharply; <0>,el
simultaneously climbs very sharply near zA/a 2

5.5 before assuming its gradual increase.
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Figures 25 and 26, with b/a as parameter, are
plotted for infinitely flexible boundary condi -

tions. Over the short range and for b/a = 1,

KP>rel decreases faster than free field, but for
the larger b/a value it generally shows increas-
ing resemblance to free field (b/a = 1.2 appears
to be an exception). The behavior of <0>rel
over the shorter zX/a 2 range is more regular with
the parameter b/a. Here we find the curve for
b/a = 1 portraying the greatest ratio of increase
in <0>el, with the curves for successively
larger values of b/a showing a monotonic tend-
ency to closer agreement with free field. Over
the larger zA/a 2 range we find the relative phase
behavior continuing in the same manner, and the
behavior of KP>iel for various values of b/a ap-
proaches bedlam but generally remains above the
free-field value, except for b/a = 2 where KP>rel
is beginning to resemble free field.

Liquid boundary conditions with b/a as param-
eter are shown in Figs. 27 and 28. These figures
are not sufficiently detailed to note differences
between the curves as calculated by the erron-
eous, but simplifying, assumption of orthogonality
and by the correct (actual) procedure. Here again
we find a general tendency for Kp>rel to oscil-
late about a constant value after an initial de-
crease (except for b/a = 2, which again is be-
ginning to resemble free field), while <0>rel
tends to separate for the various values of the
b/a parameter. The trend in <0>rei is again for
the b/a = 1 curve to be the most different from
the plane-wave curve, with increasing b/a values
leading to <0>el converging on the free-field
plot.

The last boundary condition considered is the
most realistic for a metal tube, that is, the elas-
tic solid boundary condition. Figures 29 and 30
show the effect of the b/a parameter for this
case. For the first time the differences between
the correct (actual) curves and the ones calcu-
lated with the assumption of orthogonality are
apparent in the curves for which b/a < 1.5. We
also note that the differences are greater for
these elastic boundary conditions. Here we find

K P>rel generally assuming a constant value for
each b/a, with the variation increasing with

zA/a 2 and the constant value increasing with

b/a. For the phase plots, however, we find that
<O>rel has the greatest rate of increase for the
smaller values of b/a; that is, b/a = 1 has the
largest phase correction to a plane wave, with
the correction decreasing with increasing b/a
until, at the value b/a = 2, it begins to approxi-
mate free-field conditions over the distances
plotted. Obviously those individuals who attempt
to minimize the apparent sound speed discrepan-
cies with respect to plane-wave values by pur-
posely choosing b/a = 1, in the mistaken as-
sumption that their boundary conditions approxi-
mate absolutely rigid walls and thus permit only
the plane-wave mode, could not have selected a
worse b/a parameter. These plots, it should be
recalled, are for a realistic metal wall with a
density seven times that of the contained liquid,
a sound speed four times that of the contained
liquid, and Poisson's ratio v = 0.325. All cal-
culations, except for the parameter being varied,
are for the standard reference conditions in
Table 1.

The next parameter varied is the wavenumber
(or unconfined plane-wave sound speed) ratio
k1 / k 2 of the contained liquid to the wall material.
We select values of k1/k2 = 3, 4, and 5. Fig-
ures 31 and 32 are for liquid boundary conditions.
Obviously the variation of this parameter has
very little effect on the curves, which cannot be
distinguished over the major portion of the zk/a 2

range and, as usual, oscillate about the free-field

curve.

Figures 33 and 34 are for the parameter k 1 /k 2

for elastic boundary conditions. Unlike the
liquid boundary condition, the effect here is pro-
nounced and can be summarized by noting that
the <p> Iel plots are generally similar, with the
curves for the larger parameter values beginning
at lower <pr> iel values and then all tending to
merge toward the end of the zk/a 2 range at a
value well above free field, showing the effectof
coherent reflections. The K0>rel plots are like-
wise generally similar, roughly approximating the
free-field curve until the reflections become im-
portant, and with the phase relative to a plane
wave increasing with k 1/k 2.

Varying the density ratio p 2/PI of the wall
material and the confined liquid again results in
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little differentiation for the values p2 /p 1 = 6,
7, and 8 in the case of liquid boundary conditions
(see Figs. 35 and 36).

The density ratio parameter variation for elas-
tic boundary conditions is shown in Figs. 37 and
38. Here we note that the behavior is similar to
the kl/k 2 variation effect for elastic walls.
Again KP>rel begins with values that are de-
pendent on the parameter values; the curve for
the larger density ratio is the farthest below free
field. All the curves end with general merging at
zA/a 2 = 10 at a value above free field. The
curves for KO>rel tend initially to oscillate about
the free-field value but appear to be heading for
phase differences (from plane-wave values) that
are greater than the free field is from the plane-
wave value at z/a 2 = 10. The greater density
apparently has the greater anomoly.

Figures 39 and 40 indicate the effect of vary-
ing the Poisson's ratio parameter , for elastic
boundary conditions. Here again we find minor
differences in <0rel over the shorter zA/a 2

range and an eventual merging at the greatest
distance considered. Conversely, KOWrel values

show little difference up to zX/a 2 = 1, beyond
which there is a gradual divergence of the v pa-
rameter plots, with the smaller Poisson's ratio
contributing a slightly larger phase discrepancy
from plane-wave values.

As discussed in Ref. 4, the intrinsic absorp-
tion coefficient a of the contained liquid can be
experimentally determined most readily from the
equation

a - 1 I nAi

where X 2 - X 1 represents a

distance interval and
sufficiently small

is obtained from the measured amplitudes N and
the diffraction amplitude D. T1he latter two
quantities are obtained from

N 2 = N1 e-v(X2X1)

and

D2 = D1 e- 8 (X2 -X1)

where we have assumed no interaction, i.e.,

a = v -,

and we note that both v and 8 may be either posi-
tive or negative depending on the distances
involved.

Similarly, the application of these current
calculations to sound speed measurements is
adequately detailed in the immediately preceding
report of this series. In the case of guided prop-
agation, however, the advantages accruing from
increasing path in free-field propagation are non-
existent, and the utilization of differential path
techniques must be applied with even more judi-
cious selection of operating distances.

Of all the boundary conditions considered in
this report, the one which is believed to most
adequately approximate a thick-walled metal tube
containing a liquid is the formulation for an elas-
tic solid wall. For this situation we find the
choice of b/a = 1 to be an unusually inept se-
lection, and for values of b/a > 2 the predicted
effect is essentially the same as that for free-
field propagation from a similar source (for
ka - 2077) up to at least z/a 2 

- 10, which
corresponds, for a = lOA, to z - 150 cm. It
should be recalled that the formulation in this
report deals with nonterminated situations or
with terminations wherein the effects of such
may be time-separated, such as by the use of
pulsing techniques.

CONCLUSIONS

As was shown also for free-field diffraction
(finite size, plane-parallel source) in an earlier
report (4), appreciable errors in the measurement
of sound speed and sound absorption may be at-
tributed to either neglect in applying appropriate
corrections to guided mode propagation measure-
ments or to improper selection of geometric pa-
rameters so that corrections are not precluded.
In particular, the elastic solid boundary condi-
tions, which are considered to be those most ap-
propriate to the situation of a liquid contained
within a thick-walled metal tube, are shown to
result in maximum anomolies in sound speed
determination for the situation of a transducer
completely filling one end of the tube. For tube-
to-transducer radius ratios greater than 2, the
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effect for this boundary condition closely ap-
proximates (to ranges of zA/a 2 

= 10) that of
free-field propagation from a finite transducer.

FUTURE WORK

The next report of this series will deal with
propagation within liquid cylinders contained in
shells, both liquid and elastic. Subsequent re-
ports will (a) introduce viscosity in order to more
precisely specify appropriate boundary conditions
and deal with viscous absorption, (b) introduce
an elastic termination to the open end of the
liquid cylinder, resulting in iterative reflections,
especially for continuous waves, and (c) correlate
the theoretical predictions with recent experi-
mental findings. A report on a more adequate
representation of free-field phenomena at z = 0,
including point-source approximations, is also
anticipated.
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APPENDIX A

TIME CONVENTION FOR AN OUTGOING WAVE

The function appropriate to an outgoing wave
with the time convention e - iwt is I{(") = I +0 0i0 when r > 0. This leads directly, for exam-

ple, to the characteristic equation (Eq. (62)) fora
liquid boundary condition:

P2

Pi

y K2 ( y2)

-x y2 Kv 2 -Y2 )

The requirement that the velocity potential it
second (boundary) medium vanish as the dist

r perpendicular to the acoustic source axis a
proaches -, plus the fact that J(l) vanishes0
an infinite complex argument with the imagin
part positive, since

2 iy- T (M+)
-e7try

as the distance z parallel to tne source axis ap-
proaches -, requires that

y 2 > X 2 .

So we write

The appropriate characteristic values X for the
standard reference conditions (Table 1) are given
in Table 4. We note that the Hankel functions

f(' ) and f (m2 ) have complex values for real argu-

ments, but ig 11 )( i y), _ ( l)(iy), - K()(-iy), and

R(2 )(-iy) are real for positive y. Also

and

(97)

the

4(1l)(iy) =_ Yg2)(_ iy)0 1 (iy) -

R(' )(jy) = f2(j)

(103)

(104)

ance The Hankel functions are the only unmodified
p- Bessel functions that vanish for an infinite com-

for plex argument. The modified Bessel Functions
ary K are real and vanish exponentially at infinity.

They are defined in terms of R"() only and are
sometimes called hyperbolic Bessel functions.

If we had chosen the time convention e i ")t, an
outgoing wave would apparently be represented

by

(105)

where

0 y X 2

i y2 X 2  (1)( y 2 K2 ) 
"

(99)

0{2 _ 40 - i)1o-

This would lead directly to another characteristic
equation for a liquid boundary condition:

P2

P1

K (x)
X ( w

(100)

y 2  y2)

(106)

(y )  T e -Y as z -* cc,

we may rewrite (89) as

(101)

(102)
P2 v - -

1 VY
2 KX

2 j(Xy2K2)

W"l (z) ---> ez V rr
0 177Z

for infinitely large z, so also does

lR(2 )(z) e zV 7 as z-- oo.

(107)

(108)

But here we note that J{(2) vanishes for an infinite
complex argument with the imaginary part nega-

o ()
X C, mx

J-((y) --

X (X)
P2

P1

Since

771 i i m rr
(Y) - e 2 () (iz),

in- 2 rn

Ko

1 1" 11 | 1 •

i6o t -iqo, z 4(2)
(r Xom

b

with



NRL REPORT 6133

tive. If we choose the same limits as before,
i.e., y 2 > X 2 -which corresponds to qor > k2

and further requires that C 2 > C1 (or k1 > k 2 )

for Y real-we have a pure imaginary argument
which is positive, so

P2

P1 X 2 - 2 4{(2)( Y2 X)

The simplest way to rectify this is to substitute
-i for i, which amounts to defining the argument
of W 2) in (105) as negative. This step leads
directly, using (107) and (108), to

X o(X)
K ' X

P2

P1 X2y KJ(1)(i y2K2)

which is just the characteristic equation we used
for the e - l oo t time convention. Thus, the set of
roots X would be identical to that shown in

Table 4, and the succeeding calculations based
on these roots would follow exactly as before.

At this point, it might prove enlightening to
not change the sign of the argument in (109) but
to follow the calculations blindly from this point
on. The resulting roots are given in Table Al,
along with the correct roots repeated from Table
4. With this wrong time convention, then, <P>rel

is calculated both by (erroneously) invoking
orthogonality and by the correct procedure and is
listed in Table A2; <O>rel is similarly shown in

Table A3. With the time convention used both
correctly and incorrectly (<p> reXI )L values for the
orthogonal assumption are calculated for outgoing
waves and are compared in Table A4, and

(<O>rel)L values are similarly compared in

Table A5. Finally, (<P>rel )L values for the
actual case with the time convention handled cor-
rectly and incorrectly are compared in Table A6,
and ( <O>rel)L values are similarly compared in

Table A7. Without belaboring the issue further,
the effect of careless handling of the limits of
functions is obvious.

LABLE Al

Comparison of Characteristic Values XLm < Y Obtained by

Using the Correct [Eq. (62)] and Incorrect [Eq. (109)] Time Convention in the

Characteristic Equation. Calculations are Based on Standard Reference
Parameters Shown in Table 1

XLm- xLm-incm nX L r-correct XLmincorrectX ~n Lm-incorrect m m

(From Table 4) (From Table 4)

1 2.2716377 2.5456742 21 63.8405807 66.5372263
2 5.2211344 5.8345490 22 66.9679868 69.6927184
3 8.2022980 9.1249658 23 70.0963105 72.8473568
4 11.2055952 12.3981611 24 73.2254264 76.0012595
5 14.2292985 15.6518249 25 76.3552248 79.1545308
6 17.2712781 18.8875996 26 79.4856088 82.3072641
7 20.3289243 22.1082122 27 82.6164906 85.4595453
8 23.3996145 25.3163963 28 85.7477895 88.6114550
9 26.4809976 28.5145236 29 88.8794289 91.7630717
10 29.5710924 31.7045325 30 92.0113338 94.9144750
11 32.6682830 34.8879669 31 95.1434277 98.0657501
12 35.7712728 38.0660457 32 98.2756279 101.2169937
13 38.8790273 41.2397301 33 101.4078399 104.3683248
14 41.9907212 44.4097812 34 104.5399468 107.5199028
15 45.1056940 47.5768059 35 107.6717908 110.6719660
16 48.2234141 50.7412913 36 110.8031348 113.8249268
17 51.3434505 53.9036324 37 113.9335679 116.9796742
18 54.4654514 57.0641517 38 117.0622018 120.1393156
19 57.5891272 60.2231152 39 120.1859282 -
20 60.7142374 63.3807447

K0m
X '(x)
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TABLE A2

Comparison of Average Relative Pressure Values

( P-rel) L Obtained Using Orthogonal Assumption and Actual Values of KLm
and the Incorrect [Eq. (109)] Time Convention. Pressure Values are for the
Liquid Boundary Condition and are Based on Standard Reference Parameters
Shown in Table 1. (See Table 10 for Correct Time Convention Values.)

k (<P> rel) (<P>rel)

L r Relative Error
aZ - incorrect - incorrect (re Actual)

(Dimensionless) (Orth. Assump.) (Actual)

0.0 0.9893119 0.9894439 -0.0001334
0.1 0.9306673 0.9307352 - 0.0000729
0.2 0.9021680 0.9022147 -0.0000517
0.3 0.8828351 0.8828814 -0.0000524
0.4 0.8716027 0.8716449 - 0.0000484
0.5 0.8557258 0.8557640 -0.0000447
0.6 0.8381940 0.8382258 -0.0000379
0.7 0.8307657 0.8307995 -0.0000406
0.8 0.8248261 0.8248644 -0.0000464
0.9 0.8053215 0.8053477 -0.0000325
1.0 0.7863048 0.7863138 -0.0000115
2.0 0.7524726 0.7525081 -0.0000473
3.0 0.6416083 0.6416015 + 0.0000106
4.0 0.6750847 0.6751106 -0.0000384
5.0 0.5406173 0.5406127 +0.0000085
6.0 0.4759966 0.4759698 + 0.0000563
7.0 0.5544776 0.5544712 +0.0000117
8.0 0.7111028 0.7.111316 -0.0000404
9.0 0.7762329 0.7762875 -0.0000703

10.0 0.7352137 0.7352249 -0.0000152

TABLE A3
Comparison of Average Relative Phase-Difference Values ( K0>rel)L

Obtained Using Orthogonal Assumption and Actual Values of KLm and the
Incorrect[Eq. (109)] Time Convention. Phase-Difference Values are for the
Liquid Boundary Condition and are Based on Standard Reference Parameters
Shown in Table 1. (See Table 11 for Correct Time Convention Values.)

X (<0>re1) L  (<0>el)

z 'k L Relative Error
a2  - incorrect - incorrect (re Actual)

(Dimensionless) (Orth. Assump.) (Actual)

0.0 0.0000006 0.0000006 0
0.1 0.0770320 0.0770624 -0.0003940
0.2 0.1109370 0.1109651 -0.0002535
0.3 0.1378661 0.1378951 -0.0002106
0.4 0.1603679 0.1603884 - 0.0001276
0.5 0.1836590 0.1836803 - 0.0001159
0.6 0.2128278 0.2128556 -0.0001307
0.7 0.2161217 0.2161328 -0.0000513
0.8 0.2450991 0.2451190 -0.0000810
0.9 0.2568528 0.2568658 -0.0000505
1.0 0.27 57060 0.2757279 - 0.0000795
2.0 0.4586840 0.4587147 -0.0000670
3.0 0.6006214 0.6006454 - 0.0000398
4.0 0.6731474 0.6731453 + 0.0000030
5.0 0.8388133 0.8388583 -0.0000537
6.0 0.6892981 0.6892698 - 0.0000410
7.0 0.7115613 0.7115412 +0.0000282
8.0 0.7916429 0.7916281 + 0.0000186
9.0 1.0351496 1.0351467 +0.0000029

10.0 1.1512997 1.1513039 -0.0000037
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TABLE A4

Comparison of Average Relative Pressure Values

(KP>rel)L Obtained Using the Orthogonal Assumption Values of KLm and
the Correct [Eq. (62)] and Incorrect [Eq. (109)] Time Convention. Pressure
Values are for the Liquid Boundary Condition and are Based on Standard

Reference Parameters Shown in Table 1.

z (<Prel )L (<P>rel ) L-correct Rltv roz- L Relative Error
a 2  - incorrect (Orth. Assump.;a2  (h (Orth. Assump.; (eCret

(Dimensionless) TAssump. Table 10)

Table A2)
0.0 0.9893119 0.9895775 -0.0002684
0.1 0.9306673 0.9306396 +0.0000298
0.2 0.9021680 0.9018492 +0.0003535
0.3 0.8828351 0.8832659 -0.0004877
0.4 0.87 16027 0.8747904 - 0.0036440
0.5 0.8557258 0.8601329 -0.0051237
0.6 0.8381940 0.8296854 +0.0102552
0.7 0.8307657 0.8454234 - 0.0176436
0.8 0.8248261 0.8156356 +0.0112679
0.9 0.8053215 0.8024712 +0.0035519
1.0 0.7863048 0.8094636 -0.0294527
2.0 0.7524726 0.7535671 -0.0014545
3.0 0.6416083 0.7475792 -0.1651645
4.0 0.6750847 0.5320858 +0.2687516
5.0 0.5406173 0.5033542 +0.0740296
6.0 0.4759966 0.3703530 + 0.2852511
7.0 0.5544776 0.2964656 + 0.8702932
8.0 0.7111028 0.4134798 +0.7198006
9.0 0.7762329 0.3812747 + 1.0358888

10.0 0.7352137 0.5912150 +0.2435640

TABLE A5
Comparison of Average Relative Phase-Difference Values

(<O>rel)L Obtained Using the Orthogonal Assumption Values of KL, and
the Correct [Eq. (62)] and Incorrect [Eq. (109)] Time Convention. Phase-

Difference Values are for the Liquid Boundary Condition and are Based on
Standard Reference Parameters Shown in Table 1.

Xk ( P> rel)L ( <1' rel )L-correctz m Relative Error

a2  - incorrect (Orth. Assump.; (re Correct)

(Dimensionless) (Orth. Assump.; Table 11)
Table A3)

0.0 0.0000006 0.0000006 0
0.1 0.0770320 0.0770784 -0.0006020
0.2 0.1109370 0.1104181 +0.0046994
0.3 0.1378661 0.1358862 +0.0145703
0.4 0.1603679 0.1639416 - 0.0217986
0.5 0.1836590 0.1836409 +0.0000986
0.6 0.2128278 0.2061965 + 0.0321601
0.7 0.2161217 0.2209007 - 0.02,16342
0.8 0.2450991 0.2617586 -0.0636445
0.9 0.2568528 0.2418164 +0.0621811
1.0 0.2757060 0.2425141 +0.1368659
2.0 0.4586840 0.3661808 + 0.2526165
3.0 0.6006214 0.7017445 -0.1441024
4.0 0.6731474 0.7916116 -0.1496494
5.0 0.8388133 0.7776839 +0.0786044
6.0 0.6892981 1.0905651 -0.3679441
7.0 0.7115613 0.6155605 +0.1559567
8.0 0.7916429 0.6405180 +0.2359147
9.0 1.0351496 0.4942622 + 1.0943329

10.0 1.1512997 0.5903329 +0.9502550
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TABLE A6
Comparison of Average Relative Pressure Values

(<P>rel)L Obtained Using the Actual Values of KLm and the Correct
Eq. (62)] and Incorrect [Eq. (109)] Time Convention. Pressure Values are

for the Liquid Boundary Condition and are Based on Standard Reference
Parameters Shown in Table 1.

z A(< P> rel )L  ( orel) L -correct
a -incorrect (Actual Relative Error

(Dimensionless) (Actual Table 10) (re Correct)
Table A2)

0.0 0.9894439 0.9894456 -0.0000017
0.1 0.9307352 0.9305719 + 0.0001755
0.2 0.9022147 0.9018035 +0.0004560
0.3 0.8828814 0.8832215 -0.0003851
0.4 0.8716449 0.8747423 - 0.0035409
0.5 0.8557640 0.8600888 - 0.0050283
0.6 0.8382258 0.8296640 +0.0103196
0.7 0.8307995 0.8453774 - 0.0172407
0.8 0.8248644 0.8156078 +0.0113493
0.9 0.8053477 0.8024510 + 0.003610
1.0 0.7863138 0.8094384 - 0.0285687
2.0 0.7525081 0.7535548 -0.0013890
3.0 0.6416015 0.7475292 -0.1417038
4.0 0.6751106 0.5321009 +0.2687643
5.0 0.5406127 0.5033521 +0.0740249
6.0 0.4759698 0.3703732 +0.2851086
7.0 0.5544712 0.2964915 +0.8701082
8.0 0.7111316 0.4134609 +0.7199489
9.0 0.7762875 0.3813003 + 1.0358953

10.0 0.7352249 0.5912050 +0.2436040

TABLE A7
Comparison of Average Relative Phase-Difference Values

(<0>rel)L Obtained Using the Actual Values of KLm and the Correct
[Eq. (62)] and Incorrect [Eq. (109)] Time Convention. Pressure Values are
for the Liquid Boundary and are Based on Standard Reference Parameters

Shown in Table 1.
Z ((0>rel)L (<o>rel)L -correctR

a~~ -correcteca 2  
-incorrect Relative Error

(Dimensionless) (Actual; (Actual; (re Actual)
Table A3) Table 11)

0.0 0.0000006 0.0000006 0
0.1 0.0770624 0.0770483 +0.0001830
0.2 0.1109651 0.1103926 +0.0051860
0.3 0.1378951 0.1358591 +0.0149861
0.4 0.1603884 0.1639192 - 0.0215399
0.5 0.1836803 0.1836184 +0.0003371
0.6 0.2128556 0.2061710 +0.0324226
0.7 0.2161328 0.2208823 - 0.0215024
0.8 0.2451190 0.2617183 -0.0634243
0.9 0.2568658 0.2418140 +0.0622454
1.0 0.2757279 0.2425331 +0.1368671
2.0 0.4587147 0.3661959 + 0.2526484
3.0 0.6006454 0.7016980 -0.1440115
4.0 0.6731453 0.7916051 -0.496451
5.0 0.8388583 0.7777139 +0.0786207
6.0 0.6892698 1.0904750 -0.3679178
7.0 0.7115412 0.6156242 +0.1558045
8.0 0.7916281 0.6405112 + 0.2359317
9.0 1.0351467 0.4943238 + 1.0940661

10.0 1.1513039 0.5903391 +0.9502416



APPENDIX B

REDEFINITION OF VECTOR DISPLACEMENT
POTENTIAL T'

In the formulation for elastic solid boundary
conditions we have used the displacement vector

s = + V X '

where, because of axial symmetry, we have only
the single 0 component of I, denoted by the
scalar T. Our T is a solution to

and

2*
arz = 2P 2 Cs2 (O

P 2 -r ( t 2

Writing again the expansions in
form, i.e.,

024' 1

Or2 r

09 T 02 T 1+
r r2  Oz 2  C 2

S

024'

Ot2 '

which we call a pseudo-wave equation because
of the extraneous term - T-. (The development

r2*

in the text utilized this potential T and carried it
through straightforwardly.)

An alternate procedure consists of redefining

the potential used, such that

+ - 0 (r q - k2) e .i,,o z

and (114)

- K K0l(r qgrn -k 2 ) e - i W e iq~mz'

we obtain from the vanishing of tangential stress

at the boundary (i.e., arz I = 0)

T =-
Or

where T' is a solution to the wave equation

-i(2q 2 - k 2) /qgr - k2

2 qom/ \q2 - k 2 JK'(b

1 ~b -qgr - k 2)

Nq 2 - k2)

The scalar potential (F remains unchanged. The
displacement vector components then become (cf.
Eq. (78))

- Or + zr

Z F
sZ - Oz

1 (f ar
(112)

Using the stresses as defined in Eq. (79), the
displacement components as defined above, and
the relation between Cs and Cc, we then obtain

(cf. Eq. (81))

Orr = 2P2Cs 2 K Or2 + drz

+ P2 (1- V) O2*

(cf. Eq. (82)). (115)

Following the same steps we then find (cf.
Eq. (83))

01rr I r be i(60t-qomZ) =

2p 2 Cs 2 (q2m - k2)(o K/(b Aqr - kc )

+ i2p2 C 2 qom(q2m - k 2) To K'j(b qgrm - ks2)

-P 2 (1 ) (Do K(b q0rn - kc )

(116)

(113)

a ( a27 \"

(9 (9 Z2)

their correct

(110) I 0

o2-W 12  
r

(9r2 r
o9 a 2 -T
r + Z2

1

c2

02 -i

t2 (111)
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and (cf. Eq. (84))

ei(wt-qo..z) -

r=b

ik 2 2o/qgr - k 2 K1(b qrn- k52)

2%m

(117)

Up until just before this last equation, the
various relations obtained using I could be re-
lated to those obtained using T' by the simple
substitution of the original redefinition

Or

or by the equivalent relation

where we eliminated (D by the relation shown in
Eq. (115). Finally (cf. Eq. (86))

or
rr

5 r
r~b

To -Nq2 k 2
V m STo

- 2Pc22

/qgm - kC (2qgm - k5 )

4 22 Cs2)
2 2 2qorn qrm

Ko (b qgr kc)

K, (b qgr k)

Kb qgr k Si2

K(r Xqg - k 2)

(119)

From Eq. (118), which is obtained from art and s r

whose respective two forms differ only by the
relation given in Eq. (119), we find that the two
forms of

r

r=b

can be equated only if, in addition to the relation
(eq. (119)), we have

+ C 2 (2qm ks 2)2 S2 om

(1- ) Ko(b q2m - k )

qrn - k
2 Kto(b -Nq2rn - k )

K,1

(118)

(120)

It is rather easily shown that such a relation,
with the primes referring to differentiation with
respect to the entire argument, is not generally
true. Quite irrespective of the validity of Eq.
(120), we may simplify Eq. (118) to (cf. Eq. (87))

p 2 o2(2q r-k22 Jo(b Vqrnkc2)
+)

4 qgr c 1 (bqr kc

2 q24P2 6-) 0oM

+ bk 4
-

2 q 24PWom

bk 4
S ( (b 2 qgm-b 2 k5  2) Kl(b qr-k 2 

) +b2qgm-k 2 K0 (b qm-k2 ))Kl(b qgrn-k2) +b Vqg_-k KO(b qgmk 5 2) 

(121)

and using the second boundary condition-i.e.,

a
Tr

sr
rb

p
---

r=b

U

rr
S

r=b

2 P2 (92

bk 2
S
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we obtain

(Ko)2 2 +

b2 k 2
S

(b2qgm-b2 ks2 +2) K1 (b qg)-ko 2 
) +b qg" K(b 2 q 2)

K(b q0 m k2 ) +b Vq2 - 0k 2  
0 (b qMrks2) (2)

which becomes, by the previous definitions,

o (Xon)
X o 0 M l9 (X 0m)

This is finally
two terms to

J (Xom)
Xom il (XoM)

2

b2k 2
S

( 2 k 2) 2 K 0( Yg 2X )

2 -LK -Xm

k Y2 -K 2 K( 2-2 )

4q 2
+

b
2 ks

4

2

b2k 4

X"M) + Orn_

(b q (m-b k2 +2) l~ )±-X2 ) K 0 Y2 - K (123)

simplified by combining the last

2

b2 k 2
S

2gk2 ) 2 K 0 ( y 2x)

k 4 y 2-K 2 Vo(Xy 2 _X2)
S C 0r 1 rM)

4q_2m (Y+ 2 -Kgm 1) K1 ( y2Kg) r)

bak-- ( Yy- 2 - X 2--- -X K O 2 2
(124)

Obviously, our unwarranted desire to modify

the potential used so as to obtain "true" wave
equations did not simplify the resulting expres-
sions.

We note that Eq. (124), as compared with Eq.

(89), implies for equality that

K 12 + X2 K12 - X KKK - X2 K02 = 0 (125)

where the argument of the Bessel Functions is
X. Equation (125) is the equivalent of Eq. (120).

No physical reason demands that this equation

be satisfied. However, the intuitive expectation
exists that identical <0k> rel values would be ob-
tained from the solutions XO to Eq. (124) when

used in Eq. (24) with the Kom from Eq. (38) or

Eq. (16), as appropriate, as were obtained from
the solutions XKm to Eq. (89).

Additional tables have been prepared to dem-
onstrate the degree of validity of this intuitive
expectation. Table BI compares the roots ob-
tained from the redefined potential equation with
the original potential equation for the standard-

ized parameters, including b/a = 2. Obviously
the roots have not been appreciably changed and
consequently, as indicated in Table B2, there is

little difference between the original and modified
potential in the tabulated values of(<P> rel)E

calculated by invoking orthogonality. Similarly

the orthogonal assumption values for ( <o>rel)E

are essentially the same for both potentials, as

seen in Table B3. Finally, for this comparison

of results for both potentials for b/a = 2, we see
in Table B4 that the actual values of(KP> rel)E
for both potentials show close agreement and in

Table B5 that the same holds for the actual

(2qg _k) K.(b Vqgo- 2

b qgF-k! 1 (b q2 0 -k)

24 qo m

b2k
b 2k 

4

S

4qg 2
2

b 2k
4

S
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( <o>rel )E" The roots for both potentials ob-
tained for b/a = 1 are shown in Table B6, where

again only a slight difference is noted. Tables

37 through B1O again compare solutions obtained
for both the original and the redefined potentials

and are, respectively, for the orthogonal assump-

tion ( <p> rel )E' the orthogonal assumption
( KO>rel )E' the actual ( <P> rel )E' and the ac-
tual ( <0>reIe)E. While somewhat larger differ-
ences may be found in these latter tables, there
is generally satisfactory agreement in the results
obtained for the two potentials.

TABLE BI

Comparison of Characteristic Values
XEm < YS Obtained by Using the Original

Potential Characteristic Equation(Eq. 89)and the
Redefined Potential Characteristic Equation (Eq.

124). Calculations are Based on Standard
Reference Parameters Shown in Table 1.

Original K Redefined

PEm Potential Em - Potential

3.0416401
6.5286045
9.8275617

13.0559227
16.2519678
19.4307297
22.5992045
25.7610685
28.9184315
32.0725888
35.2243777
38.3743623
41.5229351
44.6703767
47.8168911
50.9626290
54.1077017
57.2521910
60.3961552
63.5396328
66.6826438
69.8251902
72.9672536
76.1087898
79.2497194
82.3899096
85.5291399
88.6670328
91.8029004
94.9353582
98.0611503
101.1703499
104.2123242
106.5583070
107.9532132

107.95 10042 107.9532132

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

3.0413911
6.5283908
9.8273980

13.0557922
16.2518595
19.4306369
22.5991233
25.7609959
28.9183657
32.0725284
35.2243216
38.3743096
41-5228853
44.6703291
47.8168454
50-9625847
54.1076584
57.2521485
60.3961139
63.5395907
66.6826014
69.8251471
72.9672093
76.1087436
79.2496705
82.3898569
85.5290817
88.6669664
91.8028211
94.9352565
98.0610040

101.1700866
104.2115035
106.5524618
107.9510042
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TABLE B2

Comparison of Average Relative

Pressure Values (KP>rel)E Obtained by Using the
Original Potential and the Redefined Potential with
the Orthogonal Assumption KEn. Calculations are

Based on Standard Reference Parameters
Shown in Table 1.

X (<P>rel)E - (<P>rel)E -
zA

a 2  Original Potential Redefined Potential
(Orthog. Assump.) (Orthog. Assump.)

0.0 0.9717788 0.9717451
0.1 0.9141165 0.9140872
0.2 0.8860098 0.8859779
0.3 0.8667967 0.8667604
0.4 0.8564165 0.8563953
0.5 0.8415938 0.8415637
0.6 0.8190483 0.8190046
0.7 0.8225790 0.8225615
0.8 0.8094269 0.8094015
0.9 0.7846205 0.7845758
1.0 0.7762643 0.7762408
2.0 0.7059880 0.7059790

3.0 0.7464714 0.7465071
4.0 0.7666435 0.7667065

5.0 0.6782722 0.6783703

6.0 0.7197391 0.7198947

7.0 0.8061243 0.8063043
8.0 0.7915121 0.7916595
9.0 0.7181985 0.7183433
10.0 0.8622688 0.8624221

TABLE B3

Comparison of Average Relative
Phase Difference Values (<O>rel)E Obtained by
Using the Original Potential and the Redefined
Potential with the Orthogonal Assumption KErn.

Calculations are Based on Standard Reference
Parameters Shown in Table 1.

z (<O>tel)E - (<O>rel) -

a 2  Original Potential Redefined Potential
(Orthog. Assump.) (Orthog. Assump.)

0.0 0 0
0.1 0.0778414 0.0778460
0.2 0.1151891 0.1151897

0.3 0.1422784 0.1422912
0.4 0.1659318 0.1659428
0.5 0.1894090 0.1894081
0.6 0.2217272 0.2217426
0.7 0.22,28230 0.2228506

0.8 0.2655853 0.2655847
0.9 0.2644061 0.2644171
1.0 0.2681320 0.2681761
2.0 0.4333332 0.4334086
3.0 0.5311679 0.5312887
4.0 0.8584935 0.8586492
5.0 0.9762409 0.9764162

6.0 0.9276615 0.9278846
7.0 1.1607084 1.1609503
8.0 1.4857913 1.4859755

9.0 1.6592534 1.6594026

10.0 1.7931229 1.7933139
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TABLE B4

Comparison of Average Relative
Pressure Values (<P>rel)E Obtained by Using the
Original Potential and the Redefined Potential with

the Actual KEm. Calculations are Based on
Reference Parameters Shown in Table 1.

X (<P>rel)E - (<P>rel)E -
z2

a2  Original Potential Redefined Potential
(Actual) (Actual)

0.0 0.9713188 0.9712871
0.1 0.9142742 0.9142407
0.2 0.8864551 0.8864216
0.3 0.8662562 0.8662263

0.4 0.8562606 0.8562317
0.5 0.8420237 0.8419908

0.6 0.8186038 0.8185737

0.7 0.8221697 0.8221424
0.8 0.8097581 0.8097230
0.9 0.7844757 0.7844519
1.0 0.7759440 0.7759159

2.0 0.7055973 0.7055677
3.0 0.7462238 0.7462155
4.0 0.7664073 0.7663907
5.0 0.6783252 0.6783201
6.0 0.7197888 0.7198243
7.0 0.8058819 0.8059145
8.0 0.7917809 0.7917614
9.0 0.7187899 0.7187712

10.0 0.8627789 0.8627850

TABLE B5

Comparison of Average Relative
Phase Difference Values (<O>rel)E Obtained by

Using the Original Potential and the Redefined
Potential with the Actual KErn Calculations are

Based on Standard Reference Parameters

Shown in Table 1.

Xv (<O>rel)E - (<O>rel)E -

a 2  Original Potential Redefined Potential
(Actual) (Actual)

0.0 0 0
0.1 0.0784568 0.0784571
0.2 0.1146869 0.1146956
0.3 0.1418842 0.1418927
0.4 0.1665204 0.1665249

0.5 0.1893459 0.1893578
0.6 0.2213196 0.2213288
0.7 0.2230320 0.2230467
0.8 0.2657002 0.2657190
0.9 0.2635660 0.2635845
1.0 0.2679827 0.2680016
2.0 0.4338638 0.4338799

3.0 0.5318601 0.5319063
4.0 0.8591407 0.8592388
5.0 0.9768278 0.9769499

6.0 0.9286576 0.9288154
7.0 1.1611076 1.1613348

8.0 1.4862842 1.4865431
9.0 1.6596663 1.6599775
10.0 1.7934281 1.7938050
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TABLE B6

Comparison of Characteristic Values
X Ern < Y Obtained by Using the Original

Potential Characteristic Equation(Eq. 89)and the
Redefined Potential Characteristic Equation (Eq.

124). Calculations are Based on Standard
Reference Parameters Shown in Table 1

except b/a = 1.

XE m- Original XEmn-Redefined
Potential Potential

1 3.372720310 3.371880142
2 6.759933220 6.759426420
3 9.994916218 9.994554980
4 13.185228852 13.184944867
5 16.356399672 16.356162144

6 19.517557338 19.517349637
7 22.672755116 22.672566964

8 25.824039488 25.823863699
9 28.972516566 28.972347402

10 32.118778351 32.118610445

11 35.263071969 35.262899253
12 38.405321481 38.405135553
13 41.544976097 41.544762561
14 44.680410535 44.680138032

15 47.806349335 47.805921469
16 50.894362149 50.893176539
17 53.284213185 53.269740691
18 54.370414311 54.366793115

TABLE B7

Comparison of Average Relative
Pressure Values (KP>rel)E Obtained by Using the
Original Potential and the Redefined Potential with
the Orthogonal Assumption KErn.* Calculations are

based on Standard Reference Parameters
Shown in Table 1 except b/a = 1.

X (<P>tel)E - (<P>rel)E -
2 Original Potential Redefined Potential

(Orthog. Assump.) (Orthog. Assump.)

0.0 0.0865885 0.0862226
0.1 0.0837691 0.0834574

0.2 0.0819398 0.0815891
0.3 0.0816765 0.0813158
0.4 0.0791261 0.0788915
0.5 0.0771040 0.0767549
0.6 0.0778171 0.0774220
0.7 0.0755567 0.0753886

0.8 0.0742354 0.0739218
0.9 0.0754615 0.0749993
1.0 0.0738765 0.0737429
2.0 0.0810237 0.0810802
3.0 0.0739906 0.073.7786
4.0 0.0757399 0.0749529
5.0 0.0794552 0.0781979
6.0 0.0741046 0.0732354
7.0 0.0840508 0.0843517
8.0 0.0717685 0.0729076
9.0 0.0825636 0.0832128

10.0 0.0742248 0.0732788
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TABLE B8

Comparison of Average Relative

Phase Difference(Ko>rel)_ Obtained by Using the

Original Potential and the Redefined Potential with

the Orthogonal Assumption K Ern Calculations are

Based on Standard Reference Parameters
Shown in Table 1 except b/a = 1.

z X (<o>rel)E - (Ko>rel)E -

a
2  Original Potential Redefined Potential

(Orthog. Assump.) (Orthog. Assump.)

0.0 0 0
0.1 0.1164774 0.116596D
0.2 0.2429197 0.2425264

0.3 0.3374536 0.3382476
0.4 0.4170587 0.4173054
0.5 0.5266520 0.5256253
0.6 0.6133799 0.6148207
0.7 0.6812442 0.6821635

0.8 0.7721171 0.7702584
0.9 0.8697393 0.8713507
1.0 0.9410286 0.9430995
2.0 1.7700447 1.7694259

3.0 2.8077192 2.8010887
4.0 3.5623730 3.5561345

5.0 4.5911729 4.5958849
6.0 5.3566908 5.3725154
7.0 6.3399993 7.0155598
8.0 7.2382555 7.2433562
9.0 8.1288061 8.1185271

10.0 9.1389897 9.1231125

TABLE B9

Comparison of Average Relative
Pressure Values (KP>rel)E Obtained by Using the
Original Potential and the Redefined Potential with

the Actual KErn. Calculations are Based on
Standard Reference Parameters Shown in

Table 1 except b/a = 1.

X (<P>rel)E - (<P>rel)E -

a2 Original Potential Redefined Potential
(Actual) (Actual)

0.0 0.1149452 0.1143217
0.1 0.0885871 0.0886270

0.2 0.0837064 0.0828748

0.3 0.1026259 0.1019088
0.4 0.0844068 0.0855379
0.5 0.0703626 0.0692773
0.6 0.0967713 0.0952813
0.7 0.0841316 0.0860895
0.8 0.0670090 0.0664880

0.9 0.0907023 0.0880094
1.0 0.0857666 0.0880855

2.0 0.0763331 0.0826905

3.0 0.0652305 0.0657404
4.0 0.0779204 0.0688498
5.0 0.0935181 0.0781585

6.0 0.0896573 0.0802315

7.0 0.0966090 0.1057441

8.0 0.0660596 0.0903985

9.0 0.0740020 0.0925368
10.0 0.0820247 0.0671322
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TABLE B1O

Comparison of Average Relative
Phase Difference Values (<o>rel)E Obtained by
Using the Original and the Redefined Potential
with the Actual K Ern Calculations are Based on

Standard Reference Parameters Shown in
Table 1 except b/a = 1.

)k (<O)rel)E - (<0)rel)E -

z
a 2  Original Potential Redefined Potential

(Actual) (Actual)

0.0 0 0
0. 1 - 0.0123768 - 0.0121608

0.2 +0.3906022 +0.3845634
0.3 0.3773222 0.3867991
0.4 0.2355805 0.2383487
0.5 0.6172168 0.5959548
0.6 0.6556577 0.6736168
0.7 0.4752492 0.4887624
0.8 0.7757266 0.7343813
0.9 0.9672980 0.9886973
1.0 0.7772928 0.8038792
2.0 1.6318643 1.6129921
3.0 2.9059464 2.7563164
4.0 3.6924945 3.5702522
5.0 4.6815573 4.7394374
6.0 5.3429339 5.5420472
7.0 6.2022560 6.4038979
8.0 7.0272994 7.1159801
9.0 8.1732742 7.9348692

10.0 9.3734856 9.0432620



APPENDIX C

SELECTION OF APPROPRIATE
BESSEL FUNCTION SOLUTIONS

Reduced wave equations are obtained
Eq. (70) by separating out a harmonic tim
pendence e -ico t so that the axial depende
outgoing waves is eiqOmz . The remaining
dependence for axial symmetry then is

02r 1

Or2 r
O9q) [ ( 2 2\02

Or C2 n r2
c- i -

and

024 1 Oq0 [7w- q

Or2 r r L\FCS fq / 2

where we note that we have only the sing
component of the original vector potential
Equation (126) is Bessel's equation with
eter

and order unity; its general solution is

T= C 3 .11 (0 2 r) + C4 K1 (132 r), (129)
from

e ae- and C 3 - 0 for our second (wall) medium, which
nce for includes r = cc. We note in passing that K - cc

radial as r -, 0, but our wall material does not extend to

r = 0. Thus if our region were the cylinder, we
should set C 4 - 0 and retain C 3 .

D = 0 In the liquid boundary case considered earlier
in the report, we had only a scalar potential for

(126) the wall material, which did not extend to r = 0,
so that we kept both solutions to Bessel's equa-
tion. But for ease of handling, we chose the

0 (1 97\ particular combination of constants

le 0

p.

param-

C 1 = 1 and C 2 = i

using

S= 0o(f r) + iYo(~31 r) J{(/'(1r). (130)

2

C

and order zero; its general solution is

(D = C1 A0(013r) + C2 )I0(f31 r), (128)

and C 2 = 0 for our liquid cylinder, which in-
cludes r - 0. Equation (127) is a modified

Bessel's equation with parameter

2 n
C:S

Noting that

le- Vkc2 _ q 2 = i q2 - kC2
- iYn,

we may write

2i K°(ynr}" (131)

Thus for the outside region we choose K (or
R.(l)) for the scalar potential solution and for
the vector potential solution when it exists.

- M Jl)(iynr)



FIGURES

The following figures illustrate the effect of changing the parameter values shown in Table 1 on
calculations of the average pressure relative to plane-wave values <P> rel and of the average phase
difference <0>rel from plane-wave phase. The calculations of <P>rel and <O>rel are compared for
four possible conditions that might exist at the boundary of a cylindrical cavity and for the free field
associated with the radiating piston. In this report, a liquid cavity in the form of a right cylinder is
assumed to be the medium and the geometry for guided mode acoustic energy propagation.

Comparison of each boundary condition with the free field for the standard reference parameters shown
in Table 1:

Fig. 3 - <P>rel vs A/a 2 for
(a) 0 < zA/a 2 < 1
(b) 1 zX/a 2 i 10

Fig. 4 - <0>rel vs zlX/a 2 for
(a) 0 < zk/a 2 < 1
(b) 1 < z/a 2 < 10

Fig. 5 - <P>rel vs z/a 2 for
(a) 0 A/a 2 < 1
(b) 1 zX/a 2  10

Fig. 6 - <0>rel vs A/a 2 for
(a) 0 <_ z/a 2 < 1
(b) 1 < zA/a 2 < 10

Fig. 7 - <P>rel vs zX/a 2 for
(a) 0 < zX/a 2 < 1
(b) 1 < z/a 2 < 10

Fig. 8 - <0>rel vs A/a 2 for

(a) 0 < z/a 2 < 1
(b) 1 zA/a 2 < 10

Fig. 9 - <P>rel vs A/a 2 for
(a) 0 zk/a 2 < 1
(b) 1 zX/a 2 < 10

rigid boundary condition

rigid boundary condition

infinitely flexible boundary condition

infinitely flexible boundary condition

liquid boundary condition

liquid boundary condition

elastic boundary condition

Fig. 10 - <O>rel vs zX/a 2 for elastic boundary condition
(a) 0 l/a2 < 1
(b) 1 z/a 2 < 10

Comparison of the four boundary conditions with the free field for radius ratios b/a = 5 and b/a = 10
(other reference parameters are as shown in Table 1):

Fig. 11 -

(a)
(b)

<P>rel vs A/a 2 for all four boundary conditions and b/a = 5
0 < zX/a 2 < 1

1 < zX/a 2 < 10
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Fig. 12 - <0>rel vs zA/a 2 for
(a) 0 < zX/a 2 < I

(b) 1 zA/a 2 < 10

Fig. 13 -
(a)
(b)

Fig. 14 -
(a)
(b)

<P>rel vs zA/a 2 for
0 < zA/a 2 < 1

1 < z/a 2 < 10

<O>rel vs zA/a 2 for
0 < zA/a 2 < 1

1 < zA/a 2 < 10

all four boundary conditions and b/a = 5

all four boundary conditions and b/a = 10

all four boundary conditions and b/a = 10

Comparison of each boundary condition with the free field for absorption parameter values CX = 0,
oU = 1.0, and (I = 10.0 (other reference parameters are as shown in Table 1):

Fig. 15 - p> Iel vs zX/a 2 for rigid boundary condition
(a) 0 zA/a 2 < 1
(b) 1 zA/a 2 < 10

Fig. 16 - <0>rel vs zA/a 2 for rigid boundary condition
(a) 0 < zX/a 2 < 1
(b) 1 < z/a 2 < 10

Fig. 17 - KP>rel vs z/a 2 for
(a) 0 zA/a 2 < 1

(b) 1 zX/a 2 < 10

Fig. 18 - <,9>el vs zA/a 2 for
(a) 0 < zX/a 2 < 1

(b) 1 zA/a 2 
< 10

Fig. 19 - KP>,el vs zA/a 2 for

(a) 0 z/a 2 < 1
(b) 1 < zA/a 2 < 10

Fig. 20 - <O>rel vs z/a 2 for
(a) 0 < z/a 2 < 1
(b) 1 < zA/a 2 < 10

Fig. 21 -
(a)
(b)

Fig. 22 -
(a)
(b)

infinitely flexible boundary condition

infinitely flexible boundary conditior

liquid boundary condition

liquid boundary condition

<P>rel vs zA/a 2 for elastic boundary condition
0 zk/a 2 < I
1 zA/a 2 < 10

<O>rel vs z/a 2 for elastic boundary condition
0 < z/a 2 < 1
1 zX/a 2 < 10

Comparison of each boundary condition with the free field for radius-ratio parameter values b/a = 1.0,
1.1, 1.2, 1.5, and 2.0 (other reference parameters are as shown in Table 1):

Fig. 23 - <P>rel vs zk/a 2 for rigid boundary condition
(a) 0 zX/a 2 < 1
(b) 1 z/a 2 < 10
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<0>rei vs zA/a 2 for rigid boundary condition
0 zA/a 2 < 1
1 _ z/a 2  10

P el vs zk/a 2 for infinitely flexible boundary condition
0 :! A/a 2 < 1
1 < zX/a 2 < 10

<O>rel vs z/a 2 for infinitely flexible boundary condition
(a) 0 : zA/a 2 < 1

1 zk/a 2 < 10

KP>rel vs zX/a' for liquid boundary condition
0 zk/a 2 < 1
1 z/a 2 < 10

KO>rel vs A/a 2 for liquid boundary condition
0 zX/a 2 < 1
I zX/a 2 < 10

<P rel vs z/a 2 for elastic boundary condition
0 < zX/a 2 < 1
1 < A/a 2 < 10

Fig. 30 - <0>rel vs z/a 2 for elastic boundary condition
(a) 0 zX/a 2 < 1
(b) 1 < zk/a 2 < 10

Comparison of liquid and elastic boundary conditions with the free field for wave-number-ratio param-
eter values kl/k 2 = 3, 4, and 5 (other reference parameters are as shown in Table 1):

Fig. 31 - <P>rel vs zX/a 2 for
(a) 0 < z/a 2 < 1
(b) 1 _ zX/a 2 < 10

Fig. 32 - <0>rel vs A/a7 for
(a) 0 zk/a 2 < 1
(b) 1 < A/a 2 < 10

Fig. 33 - <P>rel vs z/a 2 for

(a) 0 < zk/a
2 <, 1

(b) 1 < z/a 2 < 10

Fig. 34 - <O>rel vs zX/a 2 for

(a) 0 < z/a 2 < 1
(b) 1 _ z/a 2 < 10

liquid boundary condition

liquid boundary condition

elastic boundary condition

elastic boundary condition

Comparison of liquid and elastic boundary conditions with the free field for density-ratio parameter
values p2 /p 1 = 6, 7, and 8 (other reference parameters are as shown in Table 1):

Fig. 35 - (P> rel vs zA/a 2 for liquid boundary condition
(a) 0 < zA/a 2 < 1

(b) 1 < zX/a 2 < 10

Fig. 24 -
(a)
(b)

Fig. 25 -
(a)
(b)

Fig. 26 -

(b)

Fig. 27 -
(a)
(b)

Fig. 28 -

(a)
(b)

Fig. 29 -

(a)
(b)
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Fig. 36 - <0rel vs z/a 2 for
(a) 0 _ zA/a 2 < 1

(b) 1 zX/a 2 < 10

Fig. 37 - <P>rel vs zA/a
2 for

(a) 0 < z/a 2 < 1
(b) 1 < zA/a 2 < 10

Fig. 38 - KO>rel vs z/a 2 for

(a) 0 < z/a 2 < 1
(b) 1 < z/a 2 < 10

liquid boundary condition

elastic boundary condition

elastic boundary condition

Comparison of the elastic boundary condition with the free field for Poisson's-ratio parameter values
v = 0.300, 0.325, and 0.350 (other reference parameters are as shown in Table 1):

Fig. 39 - <P>rel vs zA/a 2 for elastic boundary condition
(a) 0 < zA/a 2 < I

(b) 1 < zA/a 2 < 10

Fig. 40 -

(a)
(b)

<0>rel vs zA/a 2 for elastic boundary condition
0 < zk/a 2 < 1
I < zA/a 2 < 10
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Fig. 3a - Average relative sound pressure <P> re vs ZX/a for a cylindrical liquid cavity with rigid
boundaries. Comparison is between free-field values and rigid boundary values for the standard parameters
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Fig. 4a - Average relative phase difference <0>,el from plane-wave phase vs zX/a 2 for a cylindrical liquid
cavity with rigid boundaries. Comparison is between free-field values and rigid boundary values for the
standard parameters shown in Table 1 and 0 <_ zV/a2 2 1.
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Fig. 6a - Average relative phase difference <e>rel from plane-wave phase vs zX./a 2 for a cylindrical liquid
cavity with infinitely flexible boundaries. Comparison is between free-field values and infinitely flexible
boundary values for the standard parameters shown in Table 1 and 0 21 zk/a 2 21 1.
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Fig. lOa - Average relative phase difference <K>rel from plane-wave phase vs zX/a for a cylindrical liquid
cavity with elastic boundaries. Comparison is between free-field values and elastic boundary values for the
standard parameters shown in Table 1 and 0 21 zX/a 2 2 1.

0.30

-1

'a

A 0.15
co

r --

/ .-...

0.3 0.4 0.5 0.6 0.7 0.8 0.9

FL-ure 10



2.0

1.8

1.6

1.4

1.2

V

/

0.8

0.8 - /- /
0.6

0.2-

0.0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 I0.0

zX/a 2 (DIMENSIONLESS)

Fig. lOb - Same as Fig. lOa except 1 <: zX/a 2 2__ 10

- - ELASTIC BOUNDARY
-FREE FIELD

-I



-j

A
CL.
V

0.88-

0.86 ____

LIQUID BOUNDARY
ELASTIC BOUNDARY
FLEXIBLE BOUNDARY

0.84- RIGID BOUNDARY
FREE FIELD

0.82-

0.801
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

zX/a 2 (DIMENSIONLESS)

Fig. la - Average relative sound pressure <P>rel vs zX/a 2 for a cylindrical liquid cavity for four boundary
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Fig. 12a - Average relative phase difference <O>rel from plane-wave phase vs zX/a 2 for a cylindrical liquid
cavity for four boundary conditions. Comparison is between free-field values and rigid, infinitely flexible,
liquid, and elastic boundary values for the standard parameters shown in Table I (except that b/a = 5) and
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Fig. 14a - Average relative phase difference KO<rel from plane-wave phase vs zX/a 2 for a cylindrical liquid
cavity for four boundary conditions. Comparison is between free-field values and rigid, infinitely flexible,
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Fig. 15a - Average relative sound pressure KP>rel vs z k/a2 for a cylindrical liquid cavity with rigid bound-
aries. The effect of changing the absorption parameter a on the values of <P>rel is shown for the rigid
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Fig. 16a - Average relative phase difference <OXrel from plane-wave phase vs zX/a 2 for a cylindrical liquid
cavity with rigid boundaries. The effect of changing the absorption parameter con the values of <O>rel is
shown for the rigid boundary condition. The standard parameters of Table 1 were used (except that a is not

restricted to 0) and 0 < zX,/a 2
< 1.
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Fig. 17a - Average relative sound pressure <P>rel vs z X/a 2 for a cylindrical liquid cavity with infinitely
flexible boundaries. The effect of changing the absorption parameter ax on the values of <P> rel is shown for
the infinitely flexible boundary condition. The standard parameters of Table I were used (except that cx is
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Fig. 18a - Average relative phase difference (0>rel from plane-wave phase vs zX/a for a cylindrical liquid
cavity with infinitely flexible boundaries. The effect of changing the absorption parameter a on the values
of 0>,rei is shown for the infinitely flexible boundary condition. The standard parameters of Table 1 were
used (except that a is not restricted to 0) and 0 _< zVa2 21 1. F
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Fig. 19a - Average relative sound pressure KP>rel vs z/a
2 for a cylindrical liquid cavity with liquid bound-

aries. The effect of changing the absorption parameter cxon the values of KP>rel is shown for the liquid
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Fig. 19a - Average relative sound pressure <P>rel vs Z./a2 for a cylindrical liquid cavity with liquid bound-
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Fig. 20a - Average relative phase difference <O>rel from plane-wave phase vs zX/a 2 for a cylindrical liquid
cavity with liquid boundaries. The effect of changing the absorption parameter c on the values of <0>rei is
shown for the liquid boundary condition. The standard parameters of Table I were used (except that a is not
restricted to 0) and 0 < z?,/a 2 < 1.
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Fig. 21a - Average relative sound pressure <P>re vs zk/ a for a cylindrical liquid cavity with elastic bound-
aries. The effect of changing the absorption parameterac on the values of <P> rel is shown for the elastic
boundary condition. The standard parameters of Table 1 were used (except that cis not restricted to 0) and
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Fig. 22a - Average relative phase difference K0>rel from plane-wave phase vs zX/a 2 for a cylindrical liquid
cavity with elastic boundaries. The effect of changing the absorption parameter (X on the values of <9>re is
shown for the elastic boundary condition. The standard parameters of Table 1 were used (except that cis not
restricted to 0) and 0 _ zX/a 2
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Fig. 23a - Average relative sound pressure <P>rel vs zX/a 2 for a cylindrical liquid cavity with rigid bound-
aries. The effect of changing the radius-ratio parameter b/a on the values of <P>reiis shown for the rigid
boundary condition. The standard parameters of Table 1 were used (except that b/a is not restricted to 2) and
0 < zX/a 2 < 1.
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restricted to 2) and 0 < zX/a 2 21 1.
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Fig. 25b - Same as Fig. 25a except 1 5 zX/a 2 21 10
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Fig. 26a - Average relative phase difference <6>rel from plane-wave phase vs zX/a 2 for a cylindrical liquid
cavity with infinitely flexible boundaries. The effect of changing the radius-ratio parameter b/a on the values
of < 0 >rel is shown for the infinitely flexible boundary condition. The standard parameters of Table 1 were
used (except that b/a is not restricted to 2) and 0 21 z?\/a 2 1 1.
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Fig. 27a - Average relative sound pressure <P>rel vs zX/a for a cylindrical liquid cavity with liquid bound-
aries. The effect of changing the radius-ratio parameter b/a on the values of <P> rel is shown for the liquid
boundary condition. The standard parameters of Table 1 were used (except that b/a is not restricted to 2) and
0 < zX/a

2 < 1.

Figure 27

0.91

103

-J
A

'N

0.7

0.6

0.51



104

z X / a2  (DIMENSIONLESS)

Fig. 27b - Same as Fig. 27a except 1 !1 zX/a2 21! 10



0.5

b/a = 1.0
_____- bla --I.Ib/a = 1.1

0.4- / .
b/a = 1.5

b/a =2.0
FREE FIELD

0.3- ..... .-.. ....

V

0.2-

o.1- ,,/--------, I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
z X/a2 (DIMENSIONLESS)

Fig. 28a - Average relative phase difference <O>rel from plane-wave phase vs zX/a 2 for a cylindrical liquid
cavity with liquid boundaries. The effect of changing the radius-ratio parameter b/a on the values of < 0 )rel
is shown for the liquid boundary condition. The standard parameters of Table 1 were used (except that b/a is
not restricted to 2) and 0 _< zX/a2 < 1.
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Fig. 29a - Average relative sound pressure <P>rel vs zX/a
2 

for a cylindrical liquid cavity with elastic
boundaries. The effect of changing the radius-ratio parameter b/a on the values of KP>rel is shown for the
elastic boundary condition. The standard parameters of Table 1 were used (except that b/a is not restricted
to 2) and 0 _< zX/a" <1 1. Light-weight lines indicate actual solutions; heavy-weight lines, orthogonal
assumption solutions.
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Fig. 30a - Average relative phase difference <O>rel from plane-wave phase vs zk/a 2 for a cylindrical liquid
cavity with elastic boundaries. The effect of changing the radius-ratio parameter b/a on the values of <6>rel

is shown for the elastic boundary condition. The standard parameters of Table 1 were used (except that b/a
is not restricted to 2) and 0 21 zX/a2 < 1. Light-weight lines indicate actual solutions; heavy-weight lines,

orthogonal assumption solutions. Figure 30
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Fig. 31a - Average relative sound pressure <P>rel vs zX/a 2 for a cylindrical liquid cavity with liquid bound-
aries. The effect of changing the wave-number-ratio parameter kj/k2 on the values of <P>rel is shown for the
liquid boundary condition. The standard parameters of Table 1 were used (except that k/k 2 is not restricted
to 4) and 0 21 zX/a 2 < 1.
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Fig. 32b - Same as Fig. 32a except 1 1 zX/a 2 21 10
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Fig. 33a - Average relative sound pressure <P>rei vs zX/a 2 
for a cylindrical liquid cavity with elastic

boundaries. The effect of changing the wave-number-ratio parameter k 1 /k 2 on the values of <P>rel is shown
for the elastic boundary condition. The standard parameters of Table 1 were used (except that k,/k 2 is not
restricted to 4) and 0 < zX/a
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Fig. 34a - Average relative phase difference <O>re 1 from plane-wave phase vs zX/a 2 for a cylindrical liquid
cavity with elastic boundaries. The effect of changing the wave-number-ratio parameter kj/k 2 on the values
of <0>,e is shown for the elastic boundary condition. The standard parameters of Table 1 were used (except
that k/k 2 is not restricted to 4) and 0 zk/a 2

< 1o Figure 34
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Fig. 35a - Average relative sound pressure <P>re vs zX/a 2 for a cylindrical liquid cavity with liquid
boundaries. The effect of changing the density-ratio parameter P2/P, on the values of <P>re1 is shown for the
liquid boundary condition. The standard parameters of Table 1 were used (except that p 2/P1 is not restricted
to 7) and 0 21 zX/a
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Fig. 36 a - Average relative phase difference <0>rel from plane-wave phase vs zX/a
2 

for a cylindrical liquid

cavity with liquid boundaries. The effect of changing the density-ratio parameter P2/p, on the values of

K0 >re is shown for the liquid boundary condition. The standard parameters of Table 1 were used (except
that p 2/lp is not restricted to 7) and 0 21 z ?/a 2 < 1.
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Fig. 3
7
a - Average relative sound pressure <-P>rel vs zX./a
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for a cylindrical liquid cavity with elastic
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Fig. 38a - Average relative phase difference 0>rel from plane-wave phase vs zX/a 2 for a cylindrical liquid
cavity with elastic boundaries. The effect of changing the density-ratio parameter P2/P, on the values of
K0>rel is shown for the elastic boundary condition. The standard parameters of Table 1 were used (except
that p2/p, is not restricted to 7) and 0 :1 zXa 2 -1 1.
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Fig. 39a - Average relative sound pressure KP>rel vs zX/a 2 for a cylindrical liquid cavity with elastic
boundaries. The effect of changing the Poisson's-ratio parameter V on the values of KP>rel is shown for the
elastic boundary condition. The standard parameters of Table 1 were used (except that v is not restricted to
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Fig. 40a - Average relative phase difference Kd)rel from plane-wave phase vs zX/a 2 for a cylindrical liquid
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