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ABSTRACT

Normal mode theory is applied to undamped linear elastic
structures represented as lumped parameter systems undergoing
translational motion in three directions. The derived equations
are primarily concerned with the response of such structures
subject to applied forces and base motions and the inertia forces
required to calculate stress in each mode of vibration. Additional
relationships are presented for special types of loading and for
the effective mass acting in a given mode due to base motion.
Similar equations are summarized in an appendix for structures
with six directions of motion, namely, three translational direc-
tions and three rotational directions subject to prescribed
assumptions.

PROBLEM STATUS

This is an interim report on one phase of the problem; work
is continuing on this and other phases.

AUTHORIZATION

NRL Problem F02-18
Project SF 013-10-01-2960 (BuShips)

Manuscript submitted September 2, 1964.



SYMBOLS

A dot over a symbol in the text indicates differentiation with respect to time.

D, (t) Duhamel integral for base motion, direction r

F r(t) applied force acting on mi, direction r
F.
r  inertial force plus applied force at m. in mode a, direction r

I ir impulse applied at mi, direction r

M total mass of a structure

M r apparent mass in mode a, direction ra

r

P participation factor in mode a, direction r

Qi inertia force acting on mi in the mode a, direction r

V0r velocity step, direction r

_ir absolute displacement of mi , direction r

Xi r  relative displacement between m and the base, direction r

X a relative displacement between m. and the base, for mode a, direction r

X.a normal mode shape for mode a, direction r

zr base motion, direction r

M. ith mass

qa(t) time function for displacement

t time

5 r influence coefficient
1j

Wa natural frequency of mode a for an undamped multi-degree-of-freedom system.



NORMAL MODE THEORY FOR THREE-DIRECTIONAL MOTION

INTRODUCTION

In recent years normal mode theory has become more widely used and accepted as

a tool for structural design and analysis. While the theory has been presented for uni-

directional motion by earlier works, including NRL reports (1-3), it was felt necessary

to extend the theory to structures undergoing translational motion in three dimensions.

While no claim is made to originality of the essential contents of the report, many steps

are included which often are not published in works dealing with the subject.

The primary concern of this report is to find the motions and inertia forces for cal-

culating stresses of undamped linear elastic structures which are idealized as lumped

parameter systems capable of undergoing translational motion in three directions. The

derivation of the equations is deliberately limited in the use of mathematical methods to

those which are no more complex than necessary. While this report is self-contained,
Ref. 3 is especially recommended as reading material to precede this report.

NOTATION
Z

2
(VERTICAL)

Figure 1 shows the orientation of
mass mi with relation to the possible
motions of the base of the structure. The
X axes, which describe the absolute mo-
tion of a mass, are parallel to the z
axes, associated with base motions. Note
that the origin of the z axes isnot located
at a particular point; hence no loss of
generality is made if the 1, 2, and 3 di-
rections refer respectively to the longi-
tudinal, vertical, and athwartships direc-
tions of a ship. It is assumed that m. is
a point mass with no rotational inertia
and that there are n mass points repre-
senting the structure.

-L

__________________Z (LONGITUDINAL)

Z
3

ATHWARTSH IPS

Fig. I - Orientation of mass m, xith
relation to the orientation of a ship
for the case of three-directional
motion

Representation of Displacements and Forces

The general rule of notation for displacements and forces is as follows:

A subscript refers to the mass point and the superscript refers to the direction of

the displacement or force. For example, 3j represents the absolute displacement of m.
in the rth direction; Fis represents the force applied at mi in the s direction. Note that
i, j = 1, 2 ... ,n while r, s= 1, 2, 3.

Raising a Quantity to a Power

The general rule of notation for raising a quantity to a power is as follows: Always

place the quantity inside brackets before raising to the power. For example, to square
Wa the rule requires (-' a) 2

.
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Summations

Unless otherwise indicated, all summations on i, j, and k are taken from I to n.
For example,

i i~l

All summations on a are taken from 1 to 3 n. For example,

3n2-=2.
a a=1

All summations on p, r, and s are taken from 1 to 3. For example,

3

r r=1

All double summations are abbreviated in the following form:

n 3

j , r j r j=1 r=1

Influence Coefficients
rs

The influence coefficient ij reads as follows: The deflection at i in the rth direc-
tion due to a unit force at j in the s direction. Thus, if a static force F.s is applied to a
linear elastic structure which is attached to an immovable base, the deflection due to
distortion of any point j on the structure in direction r is given by the relationship

,. r rs Fs

-j 3 ii I

For applied forces at each mass point of the structure, this becomes

r s s
Xj = . jiFi " (1)

Appendix A shows the influence coefficient written out in the form to be used for
finding natural frequencies and normal mode shapes by the iteration method (4).

For linear elastic structures, Maxwell's law of reciprocal deflections (5) holds,
namely, Sr = sit

FREE VIBRATIONS

Normal Modes

Assume that a weightless structure attached to a fixed base is carrying a set of n
concentrated masses which are attached at the n points i. Consider its free vibrations,
that is, the possible motions in the absence of external forces. This is done by D'Alem-
bert's principle, which states that a system in motion can be considered to be in
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equilibrium at any instant if appropriate inertia forces -miXir are applied to the system.
For the case of the freely vibrating structure, simply apply these inertia forces so as to
view the structure as being in a state of equilibrium. The set of forces on the structure
is now treated as a problem of statics.

Recall that for an elastically distorted structure in equilibrium

r ---- rsF (
S i's jii "

For free vibrations the only forces on the structure are the inertia forces, so

Xr rs M --- s(2Xr = - 22 8 7m. Xi  (2)
i's ji i-

This is a set of .n differential equations with constant coefficients expressing the xi's
in terms of the X 's. Since there is no base motion, _j = xr and Xr xjr. Equation
(2) is rewritten

r rs "
j i 8 m i i (3)

To obtain a solution try xj. = Xjr sin (awt + /8), which is usually done for the single-
degree-of-freedom system. Then

X (o)2 r 8S miX " (4)
i's

Equation (4) consists of three sets of n algebraic equations which are written out over
the range on r as follows:

i mXi + 8i mi Xi + 12 rn1 X3

-2 2 21 - 22 2 2 3 3
Xi = Nc) i mi X i + 

5 ji mi X j iX

-3 2 31 -1 32 -2 33 3)

Xj = (w) . IS. m.X. + 8.. mi X. + 8. miXi "

These equations can be further written out as 3n algebraic equations. Appendix A shows
these equations written in matrix form.

If a solution is to exist other than the trivial one where all the x.rs equal zero
(static equilibrium case), it occurs only for those values of w which make the determi-
nant of the coefficients of the jr 's equal to zero (6). This leads to an algebraic equation
of degree 3n in (W) 2 usually called the frequency equation. Since undamped structures
are considered, these roots are real and positive (6). These frequencies are called the
fixed base natural frequencies of the system oscillating in the absence of external forces.
For the systems where the roots of (W) 2 are all distinct, the ratio of amplitudes of the
masses can be found by the back substitution solution of the set of equations, which set is
defined by

r a 2 r M -SXja = 5 )2 E i mixia
i ,s
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The xj' are called the normal mode shapes and are defined by Eq. (5) for each mode a
in each direction r.

Those systems which have a pair or more of equal roots are called degenerate sys-
tems. Other techniques for solving such a set of equations treat them as an eigenvalue-
eigenvector problem, which is a characteristic value problem with latent roots. For the
degenerate systems, back substitution in Eq. (5) does not produce the set of mode shapes.
Other techniques such as matrix deflation or special forms of adjoint matrices can be
used. It is assumed that these mode shapes can be found in order to proceed.

Orthogonality of the Normal Modes

To establish the orthogonality of the normal mode shapes, multiply
(5) by ,jn ,rb and sum on j and r. This gives

both sides of Eq.

3 r r
j X j b j aj

r

(-"a) 2  
Z rj Xjb

Xs

( ',)
2  

Xsmi i a
I , s j

r s s rsince 5 r .. . Also,

Xib j(b)
2  

r X s j

by Eq. (5). Equation (6) becomes

_m r r
mj Xjb Xa

j, r

(a

Kb)
M. 5S --Sia Xib

i, S

Since i and j are now dummy subscripts as well as r and s,

21a/2\ r r

1- \7b) r m. X b Xja

There are two possible cases: b = a, or b { a. When b a the
becomes zero and the summation becomes

term in the brackets

jr mj ( ja ) "

This is a series of positive terms which cannot be zero. When b j a, the term in the
brackets is not zero, so that the summation term must be zero. This yields the orthog-
onality conditions

j mj(Xa) o (7jr

m r Xjb -r 0, a b
jr X

r iX X
31 1 la

SE r
i j 'j b
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Note that these orthogonality relationships include a double summation, that is, the
usual summation of all mass points as experienced in the unidirectional system and the
additional summation over the three possible directions of motion.

Type of Normal Mode Solution

The distortion of the structure is completely described if the set of Xi's is found.
Let the time mode response at point i be X' . The total response X r can be found by
superposition, that is, ia

r 
XrXi = ia"

At each i in each mode a there is a relative amplitude of x . There must be a function
which converts the xi a to Xia" That is, a solution will be sought in the form

r _r
Xa = X a qa

so that
r 5- r

i  ia qa (9)

and
"r ,-r

xi 2ia a (10)

If q . is found, the free vibration problem is solved.

Substitution of Eqs. (9) and (10) into Eq. (3) yields

' a am a ia a

By transposition

a a i jmX + Xacqa = 0

and by use of Eq. (5) this becomes

L + qa] Xj a 0.

Multiplication of both sides by mj Xib and summation over j and r yields

7' 4 a 17 -r -r
+ qa m. Xjb Xja = 0

a ( a) 2j , r

There is only one case when the summation over j and r is not equal to zero: when
a = b. The summation over the modes is then reduced to

qa + (a)a)2 qa = 0 )(I1)
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This has the solution

qa = qa( 0
) Cos Wat + sin aat

4
a

Returning to Eq. (9),

r 7 7' a()
X i  / Xia qa(0) cos Wat + / Xia - sin cot

a
(13)

Initial Conditions

r r r r
Assume that the general initial conditions at t = 0 are xi = Xi (0) and z xr(0).

Equation (13) yields

x(0) = 2 R' q a(0 . (14)

Upon differentiating Eq. (13) and introducing the initial condition on velocity, this yields

2(0) ia qa(0) (15)

(12)

The orthogonality relationship can now be used by multiplying
i r(15) by m i ib and summing on i and r

both sides of Eqs. (14) and

r Xr~o =--q ixr -r
2 m iXib X i (0) 22 qa(0) 2 mi Xib Xia
ir a I,r

Xib (0) = 4 .a(0) . In Xib Xia
Ir a i r

Therefore,

EM ra X (0)i,r iaq a(0) =

,r,)
ii

I • r

mi . ia Xi (0)

-(0) r )2

am a

(16)

(17)

Substitution of Eqs.
for free vibrations:

(16) and (17) into Eq. (13) yields the complete normal mode solution

r .- S
Xia . J XjaXj (0)

.... COS (Vat +
S a

Smj (kca) K
-r . s .s •sXia L, mj Xja X j (0)

- , S - s i n C w t
62a m a

i, s

rxXij = (18)
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RESPONSE TO AN APPLIED FORCE

Consider a structure which rests on an immovable base, and suppose a force Fkr,
applied to mk , is time dependent but independent of structural reaction. Using D'Alem-
bert's principle and influence coefficients, the distortion of the structure is described by
the 3n equations

X. 22 r m X + Fj i ii k k

A solution of the form
r

x r a jaq a

is sought. Substituting Eq. (9) into Eq. (19) yields

q R a 2 s s r s Fs
a a q a = a a S j i i X i a 

+
S j k F k "

(19)

(9)

Transposing,

r, .T rs -S2 a Xja + q . 8 m. Xia ) 22 rs sSjk Fk

Using Eq. (5) this may be written as

a (W a a Z rs S8jk Fk " (20)

Consider expanding the expression on the right side of Eq.
shapes. Let

(20) into a series of mode

jk2Fk  = X aZ ka"Sa p

rMultiplying both sides by mn Xj Rb and summing on j and r yields

(21)

( j r m Xb ik) k
a ( Xjb ja)

rs sr
Using jk - kj

(2r m Xb) Fk
j r Ji Ji i (22)

P ka (j j r "

The left side is reduced by Eq. (5), that is,

-Ssr -r Xkb

Z kjm Xjb - k2
jr (b

The summation over the modes in the right side of Eq. (22) reduces to simply a by virtue
of orthogonality. Thus, Eq. (22) is rewritten
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-s s

SXk a Fk( ) 2
k Aka Z mj(Xka)

2

p j,r

Therefore,

PK a
P

S-S S
Xk 2

aFk

(W a) 2 r m j(,ra)2
a j, r J

Equation (21) becomes

K rs S
jk Fk

(W. ) 2 m i Xi a)
2

aI , p pa

Since each component of F k is independent, that is, the magnitudes Fk, Fk2, and Fk3 are
separate and independent of each other, an expansion in s on each side of the equation
leads to

(24)

rs Xj a Xk a

;jk =. . . R

( p. n a

This defines the influence coefficient in terms of the normal mode properties of the
structure for translational motion in three directions.

Substituting Eq. (24) into Eq. (20) yields

K[ + qa I Xa - K X. 22i F
Ja ka k

Transposing,

a + qa -

AE-k a FkS

S-

2 f M i 3 (p a2 X j a 
=  0 .

a i,p P a)

Now the orthogonality relationship is applied. Thus,

F qa X aFk kr -- r

I ( 2 qa .. m X2ja 2b
(&a) i ia j,r

I 'p

Therefore,

(23)
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S S
SX;ko Fk

qa + (Wa)2 qa = j 2 (25)2mj(Xja)

Equation (25) is in the form of the equation of motion for a single-degree-of-freedom
system, thus having separated each normal mode. The particular solution is written by
sight, using the Duhamel integral form for the single-degree-of-freedom system. Thus

qa 2 fr [L Xka Fk (T) sin cVa( t - T) dT

,rr ,X

The desired solution is then

-r 
St

X K 22 a x Fk (T) sin (0a(tT) dT (26)

-p'a coa L i~ jpa) p 
(t(6

If more than one force is applied at different points throughout the structure at the
same time, say d points, superposition is used to solve the problem. Since the deriva-
tion assumed the force to be applied at m

k, sum the d applied forces. In this case the
particular solution is

r X 2 E 2Xa FkS(T sin a(t - T) dT (27)
IT , W -- 2o k=1 s (7

a a i,p Xpa

To find the general solution add the complementary' solution represented by Eq. (18)
to the particular solution of Eqs. (26) or (27).

RESPONSE TO BASE MOTION

Suppose a structure initially at rest is attached to some base. Assume that this
undergoes a translational motion Zr(t) which is a known time-dependent function.

Consider the equations of an elastically distorted structure:

r rsX i  .s 8 ij Fj •

Using D'Alembert's principle, this becomes

r s
j2 ij mj Xj (28)

r r r

Since xi = x. - z , Eq. (28) is written

xi = -22 ij j.j+2S (29)

where xj represents the components of relative acceleration. Let



r - s M S rS .SXia qa - j m Xa ia - i (30)

With use of Eq. (24), the last term of Eq. (30) can be expanded in its normal modes, that
is,

rs S6i j Mji K Xa S 5 j ja 2

aE 6(0a)2 M m(') 2

Substituting this into Eq. (30) and rearranging terms leads to

__ +

+ : mj Xja Z r22 -- Xia - 0.

((a) - mj( ja)j

The orthogonality conditions give

s 
j2 mj~Xa s

Cia + (coa) 2 qa =- _____s _

qp

This equation is in the form of the equation of relative motion
of-freedom system if there is a base motion and no applied force.
tion of Eq. (31) is

(31)

for a single-degree-
The particular solu-

q= - 2 2. mj Xja zS(T) sin coa( t - T) dT,
oat [. mjX

which gives the relative motion of mi in the r direction as

X r ... p 2 t m_ Xj a _(T sin coa(t- T) dT

a Wa ji E \ P M RPaf

The absolute motion of m. is

a ,smj R (T) sin coa-T) dT.a Wa. 1m Rja)2f j a

JIP

NAVAL RESEARCH LABORATORY

X r r qXi  E i a qa
a

and substitute this into Eq. (29):

K
j ,

(32)

(33)
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Recall that the origin of the z axes is not necessarily located at any particular ref-
erence point. This is due to the form by which base motions or inputs are usually pre -
scribed. The inputs may be given in one, two, or all three possible directions of motion.
For example, suppose the base disturbance is prescribed in the longitudinal direction
only. The motion of mi in the vertical and athwartships directions, each of which is per-
pendicular to the longitudinal motion, represents absolute motion. This agrees with Eqs.
(32) and (33), since each equation is the same for finding the absolute response in the
vertical and athwartships directions, while Eq. (33) gives the absolute response for longi-
tudinal motion.

SPECIAL TOPICS

Impulse

r
Consider the impulse Ik applied at mass k. The normal mode solution is

r K XkaIk
Xi = L2 Snca

a a j(p

1 2 3

where Ik% I k , and ik are the amplitudes of impulse in the 1, 2, and 3 directions, re-
spectively. Upon differentiating,

_r 2--S S

r X Xia X ka k
Xi  .. . Cos cat. (34)

SI P iMa

Since the structure rests on a base and the masses were assumed to be capable of inde-
pendent movement, the velocity of mi must be zero at t = o, so that

Rr X s I

Xia Xka Ik

a 2 mj( 'ja)

Suppose the impulse is applied only in the 1 direction, so that the above equation
becomes

K r -1 1
Xia Xka Ik

= 0

Since Ik is not zero, this reduces to

/ ia Xka
_-_ = 0.

E mjj 
2
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Likewise, if the impulse were applied in the 2 and 3 directions separately, there results

-r -2
Xia Xka-- 2= 0

-r -3
Xia Xka 0

a s mo j a)
2

These three expressions can be represented more generally as

-r - S

XK a X ka

5Cj)
2

a 0

i { k.

Similarly, the velocity of the mass which is struck by the impulse applied in the 1
direction is Ik'/mk in the 1 direction and zero in the 2 and 3 directions at t = 0. There-
fore, with reference to Eq. (34),

-1 -1 1
Xka Xka I k

P 2

-2 -1 1
xka Xka I k

j . mj

-3 -1 1
Xka Xka I k.mk k) 2

Jp i( p

Ik _

m 
k

a

a

a

Similar equations can be obtained for the
resulting equations in general form are

a

1
mk'

- 0

= 0

impulse applied in the 2 and 3 directions. The

r js (36)

r= s . (37)

Sudden Motion of the Base

Consider the response of a structure initially at rest to a step change in
velocity. Let zo1, 0o2 , and 03 comprise the components of this step change.
mode solution is

the base
The normal

(35)

-r -s
Xka Xka 0

M~ a( )'a)
-P
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r - r Xj * s
2 mj Xja Z0- M 2 (X)

2 iaa (38)

SI P

Thus, if the step change in base velocity occurs only in the 1 direction, Eq. (38) becomes

X 1
i r K Xia M a) os"at

1~ 2M

22 m(d

At t - o, the absolute velocity
base is -zo. Therefore,

of each mass is zero, so that the velocity relative to the

K
K

K

ia j j ja

2
J, mj( X Pa

X2 a m. X.
ja j ja

22Mj(Xa)2
i p

-3 j - 1

ia Xja

22 mI Xja)

Similar expressions can be obtained for a step change
rections. The general equations which result are

Xia .mj Xja

M 5Cp 
2

a P m( j)

= 0,

in base velocity in the 2 and 3 di-

r s (39)

= 1, r=s.

Define as the participation factor

P. mj X j a

a Mj(3a)

,P

(40)

(41)



14 NAVAL RESEARCH LABORATORY

so that Eqs. (39) and (40) can be rewritten as

,r 
s

22Xi P = 0 r s

S1, r S.

Now sum over r in Eq. (43), so that

S-r r

xi a Pa
a r

Equivalent Forces for Base Motion

r rAs a final special topic let Fk = -mk C (t), in whic
tional to that mass. Assume that such forces are appli
a function of k. Then Eq. (27) becomes

-r ftE
Xj a [ mk Xka

a d a m i ( XP a ) 0

a a p

h the force on a mass is propor-
.ed to each mass and C r(t) is not

CS(T)] sin wa(tT) dT. (44)

This is precisely Eq. (32), if C5 (T) - ZS(T). Therefore, the displacement response for
many applied forces can be converted to the relative displacement response due to base
motion by substituting FkS(T) : - m k zs(T) and summing over all k.

INERTIA FORCES

Single Applied Force

In order to calculate for stress, it is convenient to determine the inertia loadings
that the masses apply to the structure. It has been shown that each normal mode acts as
a single-degree-of-freedom system with certain characteristics. If the absolute accel-
eration of each mass point mi is found, the inertia forces can be added to the structure
as a loading by D'Alembert's principle.

Consider the case of an applied force at mk with no base motion. The q. equation is

qa + (Ca) 2
qa

R -S FSk a Fk

22 jmj r j a)

Solving for (a,

S ka Fk
s

21a  = j a) Ca) qa ,2 a
j,

(42)

(43)



NAVAL RESEARCH LABORATORY

Since

- a c
X i =ZXia q,

then

Xi=jj

Rewrite Eq. (45) using Eqs. (35),
(where the force is applied)

i a Xa k 2 Fk r
. .... . (cs)a)2X aq "

irm ja a a

(36), and (37). Thus, for any mass but the kth mass

-.r ..r--i = Xi = - 22 (a) 2 Xa ca
a 

iq

and for the kth mass

•r .. r Fk --r
_ R k  - Mk ) (°a2 Xka qa"

a

The inertia loadings are
r _

= 22 (W.a)2 mi Xia ca' (ik)
a

r r-r

Q = -Fk + A (&a) 2 
mk Xka qa"k k a

These forces describe the inertial loadings for each mass point. At mk there is an ap-
plied force F k . The sum of the forces on m k is the net applied force

r r -rQk + Fk = 22 (Wa )
2 mk Xka qa

The structure is therefore loaded in mode a by a force system of the form

Fia (ca) 
2

mi Xi qa , for all i (46)

where

1
cia M 2 I

a . mj(a) Xj 0
S Xka Fk (T) sin oa(t - T) dT

This force system described by Eq. (46) may be used to calculate
ture for each mode.

stresses in the struc-

(45)
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Many Applied Forces

Consider the case where there are many applied forces acting on a structure which
vary as different functions of time. The ii equation is

22 E2 X F
k=_ ka k

cia =

3,P m

- ( a) 
2
cia,

d-r F S
x. K 22 22kXia Xkk

• r .. r k=1 sx. -x. X
-ia ia 2

IP

- r
(Ca )2 X ia % a

Xla F 1 + 2 F 2 +
s

+2 xd F s) 2 _r
~a ) Xaq a

Upon summing over the modes all terms in the series expression are
r = s and d = i, according to Eqs. (36) and (37). Therefore,

zero except when

r .r FiXi = ia = 
m

a

- I (0a)2 ia qa
i

The inertia loadings are

r r Xia

Q =- Fi + a(Ca)2 m cia'

The net force acting on each mass is

r r 2 ,r

+ Fi L (Ca) 2  ia a

The structure is therefore loaded in mode a by a force system of the form

r 2 r
Fia = ((a)2 mi X ia qa for all i (47)

where

1
qa = 2

a 
P

S t [ ds 1
L Xka Fk (T) sin

0 k= s
W(t -T) dT.

This force system described by Eq. (47) may be used to calculate stresses in the struc-
ture for each mode in the case of many applied forces.

so that

-22 
2jp
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Base Motion

Consider the equation of motion in one direction for a single-degree-of-freedom
system subject only to base motion in that direction:

S+ ()2x -X .

The absolute acceleration is therefore

X = X+ Z - X

In an analogous manner, the absolute acceleration in mode a for the type of structure
under investigation is

x r r

a - a ia

and the inertia forces are

r r -rQ ia = (W~a) 2 mi Xi a = (W) 2
mi Xia qa

where

1
qa = - 2

a . m ij a)
i , P

1-P s FS(T)]

Xa Z(T)] sin (a(t - T) dT

sin (0a(t- T) dT

by Eq. (41). Let

r ..,rDa a f a Z (T) sin co,( t - T) dT .

Equation (48) becomes

q = I ' . S S 
ca = U~ 2 Da

The inertia forces in mode
can be rewritten

a, which are the net effective forces for calculating stress,

r r .r
ia = ia = -mi xia PaDa"

S (50)

EFFECTIVE MASS WITH BASE MOTION

To determine the effective mass present in a given mode of vibration for a structure
subject to base motion, consider the net effective force in mode a at mi

(48)

(49)

t

E
0f [j, S
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r r .r

Fia = Q i a -m i  E Pa Da •

The total force acting in mode a in the r direction is

r -r
Fa = - mi Xia L Pa Da

For the single-degree-of-freedom system this becomes

F = -MD

where M is the mass of the structure and
t

D= fo 2(T) sin ((t-T) dT.
0

Equation (51) is now expanded to give

r r 1 1 2 2
Fa a X i- P Da - 2 mi Xia Pa DaFa iaaaaa

i ia Pa Da

Since the components of the base motion are independent of each other, Eq. (52) gives
the mass acting in the r direction due to motion in the s direction for mode a as

rs - -r s

M m a Pa (53)

For example, a base motion in the longitudinal direction causes mass to act in a mode
in each direction as follows:

Ma M 
2 nX P

a  a Pa

mass in the longitudinal direction;

21 2 1
Ma = 2

i ja a'

mass in the vertical direction;
31 -3 1

Ma = "iXia Pa

mass in the athwartships direction.

The latter two terms, namely M
2 1

It can be shown that

31and Ma , might be called the cross-mass terms.

r s s r

Ma =Ma , r s.

If the masses are summed over the modes, there results

11 = 21
m i Z Xa Pa m ii a i

(54)

(50)

(51)

(52)
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M 21 2 P 1: 0

3 1 ia Pa=1
M z M. mi ia-3

i a

using Eqs. (42) and (43).

Similar statements can be made for base motions in the vertical and athwartships
directions. The summation over the modes of vibration can therefore be generalized as

rr M (55)

s... (56)
M = M =0. (6

Equation (55) indicates that the sum of all the effective masses acting in the r direc-
tion due to motion in the r direction for the total number of modes is equal to the total
mass of the actual structure. Since Mrr is always a positive quantity, a calculation of
the amount of mass remaining in the higher modes can be made after the lower modes
have been found.

SUMMARY

The essential relationships have been derived for studying translational motion of
three-directional lumped parameter systems based on normal mode theory. The ap-
proach used to develop these expressions is an extension of an earlier report (3) on uni-
directional normal mode theory. Appendix B summarizes the equations of normal mode
theory for the case of each mass having six directions of motion, that is, three transla-
tional directions and three rotational directions.
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Appendix A

MATRIX FORM OF LUMPED PARAMETER SYSTEMS

The relationship between normal mode shapes and fixed base natural frequencies is

-r rs s
Xja - ( "a)2 E ji mi X i a  (5)

The mode shapes in each of the three directions of motion are related as follows:

X_ ll -1 a 13 -3
xja2 ji i Xia + i + X i m (Al)

X j -a Z 21 2-1 Z 22

a 2 i j i Xia 
+  1

('ja

-2 T 23 -3
Xia + / , ji mi Xia

-3
Xja 31 1 + 32 -2 633 3

2 1 Xi M i + .. ji mi la

a i

Each of these expressions has a range of n, so that there are a total of 3n
represented by Eqs. (A1)-(A3). They can be written in matrix form as

1
a 2 { [ 1 '] [ i] { l }

1 {) 2 - [821] [m ] {X }

(U)a)

+ [812] [M] {f2} + [613] [M] {X3}

+ [822] [M] {X
2 

+ [623] [M] {3}

+ [832] [m] {fX
2} + [833] [M] {j

3 }

where, for example,

(A2)

(A3)

equations

(A4)

(A5)

(A6)

{k1 I

-1
Xla

-1
x 2 a

- na
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11 811 .. 11il11 12 "' in

[611]
11

©22

11

n2

0 0

m 2  0

0 • M
n

m

0

0

Equations (A4)-(A6) can also be written in matrix form as

r [3 11] [12] [313] FIn] 0 0 -
1 [31] [32] [323] 0 [ ] 0 { 2}

Lhis L re31] 3 ] [3n33]]e 0 0 [n] IL3x I
This expression written out in its entirety is as follows on the next page.
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Appendix B

EQUATIONS FOR SIX-DIRECTIONAL NORMAL MODE THEORY

NOTATION AND ASSUMPTIONS

1. The structure is attached to a fixed base and is represented by n lumped masses,
each mass being capable of translational motion along three mutually perpendicular axes
and rotational motion about each of these axes.

2. Each mass has dimensions, so that it has rotational inertia.

3. Figure B1 shows the' orientation of the ship by the primed coordinates (fixed axes)
and the axes of orientation for mass mi of the structure (moving axes). In addition to the
usual translational motions given by the 1, 2, and 3 axes, the 4, 5, and 6 directions repre-
sent the angular motions about each axis, respectively. Thus, Xi', Xi2 , and X1

3 are the
components of translational motion of mi , while Xi , xi , and x6 are the components of
rotational motion of in.

2
2 (Vertical) 5

5!

4

6

3 I

('(Longitudinal)

3'(Athwortships)

Fig. Bi - Reference axes for orientation
of a ship and mass mi for the case of six-
directional motion

4. For the purpose of developing the equations of motion of a body about a fixed
point, let e = 4xie 2 = X1.and i3 6 *

rr rs

5. Let I r be the moment of inertia of mi about its r axis and Ir be the product of
inertia of mi about its r and s axes.

6. It can be shown* that the angular momenta, Hi , of a body with respect to its mov-
ing axes are

*S. Timoshenko and D.H. Young, "Advanced Dynamics," New York: McGraw-Hill Book
Company, Inc., p. 332, 1948.
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1 11 * 1 12 ' 2 13 "3
Hi = Ii 0i - Ii 0i - Ii 0i

2 21 -1 22 '2 23 3
Hi = Ii ei - Ii 6i - Ii 6 (BI)

3 3 1 1 32 *2 33 *3
Hi = Ii 0i - I. 0i - Ii 0i

7. Select the 1, 2, and 3 axes of mi as the principal axes so that the products of
inertia are zero and Eq. (Bi) reduces to

1 11 1 1
H i  = Ii  0i

2 22 '2
Hi = I i 9.

3 33 *3Hi = 11 61

8. The principle of angular momentum states that the rate of change of the angular
momentum of a body rotating about a fixed point is equal to the moment of all forces
acting on the body with respect to the same point. After taking into account the rate of
change of the angular momenta with respect to the 1, 2, and 3 axes and the fact that the
1, 2, and 3 axes are also rotating about a fixed point, the following equations result:

dH i

dt

2
dH i
dt

"2" 3 *3 2
- i Hi - Oi Hi

. 1
= N i

" 3 1 " 1 3 2
- 0i Hi - 6i Hi = Ni (B3)

3
dH i  - 1 2

dt - i Hi

where N.r is the moment
(B2) into (B3) to get

.2 1 3
- 0i Hi = Ni

of all forces acting on the body about the r axis. Substitute Eq.

* 1
Ii dt +

Sdt

22 dO iI dt +

33 dO1

i dt +

133 2 .2 i2 *3Ii - Ii) €i

( -'33) 3 82

22 1 1i il i2 =

i 1 I i 0

These equations are called the Euler equations 'Of motion.

10. For small oscillations assume that the terms containing
are small compared with the other terms in Eq. (B4) so that

the product of the 's

- N i

2
Ni

3
Ni

(B4)
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11 "'1 1
Ii 6i = Ni

22 -'2 2
Ii Oi = Ni

33 53 3
I 0 = Ni I

Using the notation of Fig. B1 for mi, these equations become

4 -'4 4
Ii Xi = Ni

Ii 5 i  = Ni
5  (B5)

6 -.6 6

Ii  X i  
= N i

where, for example, Ii4 is the moment of inertia of mi in the 4 direction (or about the
1 axis) and xi is the angular acceleration of mi in the 4 direction. Equations (B5) rep-
resent the relationships between the inertia torques and the applied torques for equilib-
rium about a fixed point. These inertia torques along with the inertia forces will be used
for the free vibration problem of the structure under investigation.

11. Since the axes of each mass are the principal axes, the axes of different masses
are therefore not necessarily parallel to each other. This requires a new definition of
the influence coefficient 817 as the motion (deflection or rotation) of mi in the r direc-
tion of mi due to a unit load (force or torque) at m in the s direction of m. For exam-
ple, is the deflection of m. in the 1 direction of in due to a unit force at m. in the 1
direction of m. Note that the 1 direction associated with n'1 is not necessarily parallel
with the 1 direction of mi

12. It is assumed that the change in geometry of the structure is small during its
dynamic response under the action of external forces and torques. This means that the
influence coefficients calculated for statical loads on the structure with respect to the
principal axes of each mass are used to find the dynamic motions while the axes are per-
mitted to translate and rotate with each mass.

13. Define the direction cosine between the r axis and r' axis at mi as

rr'
{i = cosi(r, r')

Assume that during the structure's dynamic response the direction cosines remain
constant.

NORMAL MODE EQUATIONS

The equations of motion for the free vibrations of the assumed structure are written
using D'Alembert's principle and treating the inertia forces and torques as the applied
loads.



NAVAL RESEARCH LABORATORY

3 6
" rs ..s

X - 2 2 S i xi - 2 
i s= 1 i s=4

6
Z rs I S.-S

i S ji i i

rs S .- S
8ji Ii Xi

r=1 ... , 6 (B6)

where I i = mi for s = 1, 2, and 3.

Equation (B6) is precisely the same as Eq. (3) except that the range on the direction
of motion includes six independent coordinates for each mass. The normal mode equa-
tions for this case are now summarized from earlier results of this report, where sum-
mations on r, s, and p are from 1 through 6 unless otherwise indicated and the summa-
tion on a is from 1 to 6n:

Mode Shapes and Natural Frequencies

Xr : (Coa) 2 i Iis Xa, a= 1, 2. 6n
sa (B7)

Orthogonality of Normal Modes

, r 2Z I r X(,r j 0

i , r i ia

2 i, a xb = 0,
j,r

(B8)

(B9)a f b.

Response for Free Vibrations

rXiaj Ij Xj Xj (0)
Xi = 2 COS Oat

a ~ . i ~a)
K

Xr IS -- S S
a j I Xja Xj (0)

j' R sin cot. (BI)

°O 1 Ij ja)

Response to an Applied Force and Torque at mk

r r
X~. 4 2

a a ip 
i

ia
fS S0ka Fk (T)s=l

6

+ Xka Nk (T) sin O)a(t-T) dT.
s=4

Response to Many Applied Forces and Torques

Assume that there are d applied forces and h applied torques; therefore,

r r txr =L 
Xja t

a a 2
11P

[Xka Fk (T)
k 1 s=1

+ Xka Nk (T) sin cOa( t -T) dT. (B12)
k=1 s=4

(B1)
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Response to Base Motion

Consider the case where translational base motion is the prescribed input referred
to the axes of the ship, namely, the primed axes shown in Fig. B1. If each mass of the
structure is loaded with the set of forces -ink2 r , the response of each mass is the same
as for the case of many applied forces. However, this response is now the relative mo-
tion between each mass and the base.

Figure B2 shows the forces acting on mi oriented with respect to
ence axes. To transform these forces along the principal axes of mi ,
cosines between the axes r and r' at mi . The transformed forces at
tion are

3

-T
t=1

rr
i1

Vertical)

-m L Z 
s

the primed refer-
use the direction
mi in the r direc-

(B13)

I'(Longitudinal)
/

/

3 w/

3I(Athwartships)

Fig. B2 - Forces acting on mi for finding
the response due to base motion for the
case of six-directional motion

Use this summation to represent the forces acting on the structure. With reference to
Eq. (B12), the relative motion between mi and the base in the r direction is therefore

r Xja

S a . Ii Xi.)

3

ink ka k
S1=11

1
Z (T)I sin co(t - T) dT . (B14)

Special Topic - Sudden Motion of the Base

Consider the response of a structure initially at rest to a step change in the trans-
lational velocity of the base. It follows from Eq. (B14) that
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3 3'

_r Xk sS e s mk X S'"s
Xja k s ink ka k 0

k 2= __ - Ki P(ja)2

(B15)COS Wat

* I 2 .3
where z , z, and z0 represent the amplitudes of the base translational velocity in
the 1', 2', and 3' directions, respectively. The six components of velocity defined by Eq.
(B15) are now treated as two separate groups, namely, the three translational components
and the three rotational components.

The translational components of velocity response are treated first. At t = 0, the
absolute translational velocity of each mass is zero. To find the initial relative transla-
tional velocity of each mass with respect to the base motion, transform the base motion
into the direction of the principal axes of each mass as follows:

3

X (0) = - 4  Zo 0 r = 1, 2, 3.
r =1

(B16)

Substitute Eq. (B16) into the left side of Eq. (B15) for t = 0:

31

r ror . =
J

3 3'
-- r S- S .K-XjaI a L kka ok

a iP iP(Ra

(B17)

Since the components of the base velocity are independent of each other, it follows that

1. -.

3
r L S sr

Z ink ka k

P(pa

-s

S _ 
k Xk

Pka k 2
T~ I i 

Xia

so that Eq. (B18) becomes

3
r r L k s t r

i a k s =l1 k

(B18), r=1,2,3.

(B 19)

r = 1, 2, 3. (B20)

In the case of rotational motion, the rotation of the base is zero, so that the initial
relative rotational velocity of each mass is also zero; that is,

r 4ro)X i(O) = 0 = O, r =4, 5, 6. (B21)

Let
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Referring to Eq. (B15) at t - 0,

K
3 3i

-r S Z Sn a
1. XXk k 9 k 0o

-k s , "=S

P, (P/ a) 2

Since the components of the base velocity are independent of each other, this becomes

ss

r ks k

= 0 , r =4, 5, 6; s'= ', 2', 3'

using Eq. (B19).

STRESS CALCULATIONS

To calculate stresses in the structure, apply the net effective forces and torques at
each mass point for each normal mode of vibration. With these loads acting in each
mode, the stresses can be calculated for each mode throughout the structure, and the
final stresses are obtained by superposing over the modes. This approach is the
same as followed earlier in the case of translational motion in three directions only.
The net effect of forces and torques for special cases are summarized as follows.

Single Applied Force and Torque at mk

(B23)F
r  

r -rF. Z ( Wa)2: Ii, Xi. q .

where

q a - L{
CO P(RP~ 0 =

a. 3' i-

Xka Fk (T) +
6

22
S =4

Xk Nk (T) sin Cwa(t-T) dT.

Many Applied Forces (d) and Torques (h)

r 2 r rFia -- (a 2 Ii X a qa

where

1

a 2a /.p\.EI'p Xa

0 k=I 3

Xka Fk (T) +
s=1

6

22 Xa Nk (T) sin CWa(t-T) dT
s=4

Base Motion

F
r  

r -rFia. = ( W.a)2 1Ii X ia qa

(B22)

(B24)

(B25)
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where

1aP fot
a . Ij Xj a)

3

21
S I

1
1 ik k

Xka Z (T)I sin co(t- T) dT.
ka

EFFECTIVE MASS WITH BASE MOTION

To find how much effective mass is acting in each normal mode of vibration, first
consider the effective force in mode a at mi from Eq. (B25):

Fia = (a) 2 mi r qaFi :Xi aq, r= 1, 2, 3 (B26)

where, using Eq. (B19),

q a (601) 2L1 k'

3 31S= S = SS S stk Pk a Da (B27)

in which

tt
S a

Da I o

These forces are transformed
follows:

S
(T) sin wC(t- T) dT.

to the primed axes (orientation of the ship's motion) as

1r 13 ' f r rFia L t i  Fia

r=1

Substitute Eq. (B26) and (B27) into Eq. (B29).

Fia = -2 i i Xia
r= 1

This gives

3 3I

k s=1 s1=l'

SS 5 s

'k PkD

The effective force acting in mode a is

M, z: e- 'r Xr -.Fa = - m i Xia

i r=1 k

3 3

s=l s,=l,

ek P S Da
k ka a

(B30)

so that the effective mass acting in the r' direction due to motion in the s' direction is

1 Sr sMa (B31)= mi .r s--_ SS S

i r= 1 i a = k ka"

The cross-mass terms are again symmetrical, that is,

(B28)

r.' = 1', 2', 3' (B29)
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1 1 # "ss t ec mss o t

Consider the summation of the effective masses over the modes:

1 1 1 1 3 1

M = Mm 
a i r1

3 2

i k ka
a k s=l1

With reference to Eq. (B20) this reduces to

3 I

M S= 21m 21 S

i r'~l

It has been shown* that

1.i
= 1, r = s

r 1

= 0, r' s

Since

Ir r r r
{i = i

Eq. (B33) becomes

'MS
M = LiM i = M, r s

= 0 , r' # s' . (B34)

As in the case of three-directional motion, the total mass acting over the modes in the
r' direction due to a base motion in the r' direction equals the total mass of the struc-
ture, while the summation of the cross-mass terms equals zero.

The torques due to translational base motion are now treated. It is necessary to
introduce new notation for the angular acceleration and the moment of inertia. In addi-
tion, matrix notation will be used in transforming the torques from the principal axes of
each mass to the ship's orientation.

For angular acceleration, let

-4 = 61
?ia ia

"'5 a = 2
Xi 0i .=6 53Xi = ia (B35)

This is necessary since direction cosines are used which refer to the 1, 2, and 3 axes1 23

and the 1', 2', and 3' axes. Likewise, Ni , Ni , and N. now represent the torques at
about the 1, 2, and 3 axes, respectively.

The direction cosines are written in matrix form as follows:

*Herbert Goldstein, "Classical Mechanics," Cambridge:Addison-Wesley, p. 98, 1950.

(B32)

(B33)
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I -I; i(1 ,1) j,(1', 2) .'ji( 1', 3)

[
ts

' S = J.i(2 , 1) "f.i(2 . 2) "{i(2' 3)

,i(3', 1) ,i(3', 2) . t',i(3', 3)

(B36)

When using the direction cosines for transformations, these transformations are called
orthogonal transformations, and it can be shownt that

-1
.4J~ [.f'] = Ii]~

-1 *
1 - [I']

(B37)

(B38)

This last equation relates the inverse matrix to the transpose matrix of the direction
cosines.

The transformation of the torques due to base translational motion can now be made
as follows:

{Ns ' } = [J]i {N 1
i I s= 1, 2. 3 ; s' = 1'. 2'. 3' (B39)

The torques referred to the unprimed axes are written in matrix form as

(B40){NsI i = - [I s] L 1

where

11I. 0 0

22I.

33
0 0 Ii

Premultiply both sides of Eq. (B40) by [-i] i, which gives

(B41)

R~l W i H i I 6si

[,P~li lisli It{c.[, sI. (B42)

In general, the equation for the
terms and angular acceleration is

primed system relating the torque with the inertia

tRobert L. Halfman, "Dynamics," Vol. I, Reading, Mas sachusetts:Addison- Wesley, p.
207, 1962.

and

[I s ]i =
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{Ns'} i [I] { s'} (B43)

Comparing terms in Eq. (B42) and (B43) and using Eq. (B38) and (B39) leads to

[IS']i = [4]JI [IS] [.]J (B4

{sI} = [,g] i{sli (B4

Equations (B43), (B44), and (B45) are now written in the equivalent series form as

3

i= - ii Oi
sf= .

I

I 3

i  =
u= I

r . u sv uv

V=I

i4)

15)

46)

(B47)

(B48)
, 3 0

.. S S SOi = , s..s

s=1

Rewrite Eq. (B46) for the mode a as

r

Nia = -

31

r

Nia = - L
' = 11

1=11

Ii ia

3
r 1

Ii T
S=l

(B49)

(B50)
IS S "S

i [ ia

0. = - (a)2 Xia q'

3 31

(co)
2 s=1 s'=1'

s = 1, 2, 3 (B51)

(B52)S S PS DS
k ka a

-1 -2 3 -5
It should be noted that x. x, and Xi. in Eq. (B51) are actually - anda Xia Xia
respectively, due to the new notation for the transformation on the torques.

Substitute Eq. (B51) and (B52) into Eq. (B50) to get

3' 3 3

ia = E i i Xia
s f=l s=l k r=1

,rp 1r pkPka Da

-6
xi a

(B53)
3IL

where
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Sum over all the mass points to get

N1ra

3
'721rs

IS

I

i Xia
k

31

2Pka D

From Eq. (B54) the effective moment of inertia in the r' direction in mode
base translational motion in the p' direction is

(B54)

a due to a

3

- 2 2 iia T T Ii

i s ,=l

3

sil k

Sum over the modes to get

3
2 s s

S k
r r 1

It has been shown that for rotational motion due to a sudden translational motion of the
base

3S.Pr rp

2Ta 2 2 'ka k
a k r=l

= 0, (B22)

so that r p =0.

For the case where the principal axes of each mass are orientated parallel to the
ship's reference axes, Eq. (B55) reduces to

rp I r Pp
= ri ia a (B56)

Note the similarity between this equation and Eq. (53). It has been previously stated that
while the range on r in Eq. (B56) is 1, 2, and 3, the xi terms are in fact 4 a ,) and
X , respectively. Therefore, Eqs. (42) and (43), which were applied to Eq. (53) after
summing over the modes, cannot be used with Eq. (B56).

* * *
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(B55)
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