




An Application of Bose-Chaudhuri Error Correcting Codes
FRANK A. POLKINGHORN, JR.

Radio Division

This report proposes a solution to the problem of the use of error correcting codes on a particular
multichannel hf radio circuit with a slowly time varying probability of bit error and states in detail a
computer algorithm for this solution. The conclusion is reached that the single, double, and triple error
correcting Bose-Chaudhuri codes of block length 31, which have been stunted to a block length of 30,
should be used. A small general purpose computer will be used to decode the blocks, possibly to com-
pose a request for retransmission of uncorrectable errors, and to decide, on the basis of current error
rates on a particular channel, the type of code to be used on that particular channel.

INTRODUCTION

A problem has arisen which involves the encod-
ing and decoding of many channels, where each
channel has an assumed independent, binary sym-
metric, time dependent probability of bit error.
It is the purpose of this report to present a class
of possible solutions, the Bose-Chaudhuri codes
of block length 31, for this purpose. A general pur-
pose computer-decoder will be used, in which case
the time dependent situation can be handled by a
fixed code header on each message to instruct the
decoder that a particular code will follow and how
this code will be used.

TECHNICAL CONSIDERATIONS

The first technical consideration is concerned
with the criteria which a code must meet. Since the
code in which we are interested will be used on a
teletype system with a noncomputer backup mode,
the code must consist of 5N information bits fol-
lowed by 5M parity bits in a block. Next, the code
must be relatively efficient, where the total message
efficiency is the meAsurable quantity. Therefore, a
block code whose length is long with respect to the
variable message length is undesirable, as one ex-
pects to waste about one-half of the information
bits in the last block. There is also a problem of
decoding long blocks in real time, since the decode
time is approximately linear with the number of
bits in the block. For short codes the overhead time
becomes excessive, and the block efficiency is low;
hence, they too are undesirable, The third desir-
able feature would be the ability to correct the
largest portion of the bit errors and still make the
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probability of an undetected error extremely small.
Unfortunately, the statistics are not presently
available, and one is limited to an educated guess
as to the distribution of bit errors. Last, since it is
possible that a general purpose encoder may not
be available at the transmitter, the cost of special
purpose encoders should be relatively small.

The current length of messages which will be
used in the system narrows the choice of Bose-
Chaudhuri codes to those of block length 31, 63,
and 127 bits .as possible block lengths. The power
of the Bose-Chaudhuri codes on hf radio circuits
has been demonstrated by A. B. Fontaine (1); he
used a (255, 239) double error correcting code
solely for error detection. On one 800-mile tele-
type circuit operating at 28.4 bits per second (bps),
he estimated the undetected error rate to be one
error in two years. On an 8000-mile teletype cir-
cuit operating at 85.9 bps and equipped with
RCA's automatic request for repetition (ARQ) sys-
tem, the estimated undetected error rate was one
error in 0.31 year. It was expected that we could
achieve similar results with a shorter block length
and comparable detection capability plus some
error correcting capability and a computer-
decoder controlled ARQ system on a block basis.
Presumably, an upper limit to the undetected
error rate could be set, and that code which is
most efficient and still has an undetected error
rate below the limit would be used.

The above criteria were roughly weighed along
with the fact that codes of a fixed block length
would be desirable; thus the Bose-Chaudhuri
codes of block length 31 seemed most attractive.
Again, since the error statistics are expected to
vary with channel as well as with time, no particu-
lar code of this group has been selected, and each
channel would vary its code appropriately and also
independently of the other channels. The two low-
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est efficiency codes of block length 31 are of
sufficient decoding difficulty and small enough
efficiency that they would not be used. This leaves
the (31,26), (31,21), and (31,16) codes. When
the encoder-decoder agree that the first informa-
tion bit will be a zero and hence not transmitted,
these codes will now fulfill the criteria that both
the number of information bits and the number of
parity bits are divisible by five so the block will
consist of N information characters followed by
6 - N parity characters for N= 5,4,3. Then the
efficiencies will be .83, .67, .50, respectively. The
encoding problem, if a general purpose encoder
is not available, is relatively easy. In any cyclic
code the number of parity checks is greater than
or equal to the number of shift registers which in
turn is greater than or equal to the number of half
adders.

The literature (2,3,4,5) contains a detailed de-
scription of the nature of these codes. A few of
their more important characteristics are given here
along with a brief mathematical explanation. The
multiple error correcting Bose-Chaudhuri codes
are cyclic codes and are generalizations of the
single error correcting Hamming codes. The (N,k)
code of block length N = 2"--1, which corrects t
errors or less, has a number of parity checks
N - k <= mt. Because of their cyclic nature, they can
detect any burst of length N - k or less and can be
encoded by a shift register of length N - k or k,
whichever is less. The decoders, other than the
single error correct, multiple error detect, are of a
somewhat more complicated design (6); the single,
double, and triple error correcting codes can be
decoded in real time on a multichannel basis, using
a small general purpose computer. Mathematically
these codes are relatively easy to understand.
Consider an irreducible polynomial g (x) of degree
N - k of GF (2), i.e., the coefficients in the Galois
Field are taken modulo 2, and f(x) = aN-kXN - k +
aN-k+lX

N -
k+

l "... - aNXN. Thenf(x) =g(x) h (x)
+ r(x),' where r(x) is of degree N-k-1 or less.
Since we are dealing in the coefficient field modulo
2, f(x) - r(x) = g(x)h(x) =f(x) + r(x). If we
wish to transmit the information bits (aN-k,

aN-k+1, • • • , aN), where aj = 1 or 0, we need only
form the polynomial f(x) as above, divide this by
g(x) to find the remainder r(x) and actually trans-
mit the bits (ro, ri, . . . rN-k-1, aN-k .... , aN).

These bits are divided into groups of five and sent
as teletype characters. (Note we required pre-
viously that five will divide both N and N-k). Let a

be a root ofg(x); then g(a) = 0, and g(a) h (a) =
f(a) + r(a) = 0. Suppose we have a single error
in the mth bit (m = 0,1, ..., 29). We will denote
this by the polynomial e (x) =x m .Letfi (x) + rI(x)
be the received polynomial, and by the single error

hypothesis,

f,(x) + ri(x) = f(x) + r(x) + e(x)

or letting x = a, a root of g(x),

f,(a) + r,(a)=f(a) + r(a) +e(a) =e(a) =am.

Essentially, the problem is now solved. We can cal-

culate f, (a) + r, (a) on the received message,
search the table of powers of a to find the m such
that am =fl (a) + r, (a), and then change the mrth
bit.
The higher order Bose-Chaudhuri codes are

only slightly more difficult. Let us discuss the triple
error correcting code in detail. Let

g(x) = mI(x)m 3 (x)ms(x) ,

where if m, (a) = 0, then

m3(a
3 ) = ms(a 5 ) = 0

and

f(a) + r(a) =f(a3 ) + r(a 3 ) =f(a5 ) + r(a 5 ) = 0.

Again letf, (x) + rs (x) be received wheref, (x) +
ri (x) =f(x) + r(x) + e(x). Note that in general
e(x) is a polynomial with three nonzero coeffi-
cients. Now

f(a) + ri(a) = e(a) = $1= aJ + ak+a'

fd(a3 ) + r,(a 3
) = e(a 3 ) S S3 = a 3 j + a

3
k + a

3 1

fi (a 5 ) - ri5) ) - e5) ) = 5 - a 5 ± 5 k -- a51 .

It can be verified that

x3 + SIx 2 + X +S13 +S$3

S13S +S ilS2 S3+S~ 0
~S123 + $53

has three roots which are at, ak, and a'; thus the
jth, kth, and lth bits would be changed to correct
the message. Explicit shift register encoders,
computer encoding algorithms, and computer de-
coding algorithms are included in the Appendix



for the single, double, and triple error correcting
codes.

The error detecting capability of the Bose-
Chaudhuri codes is twofold. Since the Hamming
distance between two code words is at least 2t + 1,
then for a t error correcting code, any error of 2t
bits can be detected. In addition, in an (N,k) cyclic
code, any burst of length N - k or less can be de-
tected along with a high percentage of longer
bursts. For simultaneous correction and detec-
tion, we are presented with a trade-off. Again,
since the Hamming distance between two code
words is 2t + 1, we may correct any C errors and
detect any D errors for C + D = 2t and C =< D.
Table 1 summarizes this fact.

TABLE 1

Correction and Detection Trade-Off

Code No. of No. of Error
Corrections Detections

SEC I I

SEC* - 2

DEC 2 2

DECt 1 3

DEC* - 4

TEC 3 3

TEC* 2 4

TECt 1 5

TEC* - 6
*Used only for error detection.

tUsed to correct single errors at most.

TUsed to correct double errors at most.

There is also a limited amount of detection capa-
bility from two other sources. In order to shorten
the block length from 31 bits to 30 bits, both trans-
mitter and receiver have agreed that a30 = 0; if the
algorithm concludes that a30 is in error, we have

actually detected an error which is beyond the cor-
rection capability of the code. In addition, a poly-
nomial of degree N must have N distinct (except
for the zero solution) solutions; any other cases
are caused by error beyond the correcting capa-
bility of the code.

SUMMARY

The Bose-Chaudhuri codes were selected for
their high efficiency and elementary nature. A
class of codes of the same block length provides
great versatility at a very small increase in program
size, which in turn is due to the large amount of
common information. The expected message
length and real time requirement lead us to believe
that the code of block length 31 would be best.
Finally, a computer controlled ARQ system on a
block basis would be highly efficient and would
lower the net error rate to a negligible value.
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Appendix A
Implementation of Bose-Chaudhuri Codes

on a Digital Computer

The irreducible polynomials of degree 5 are:

ml(X) =1 + x 2 + x 5

m (x) = 1 + x2 + x3 + x 4 + x5

m,(x) =1 + x + x 2 + x4 + x 5 .

Note that if a is a root of m 1(x), then a 3 is a root
of m 3 (x), and a 5 is a root of m5(x). The parity
check matrix is formed by powers of a modulo a3

1.

a
0

ai
a 
2

a
3

a 
30

a
0

a
5

a
1 0

a
15

a9 0 = a 2 8 a 1 5 0
=a 

2 6
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If we chose a0 = a 3 ' =(10000), then the M matrix
is explicitly:

10000
01000
00100
00010
00001
10100

01010

00101

10110

01011

10001

11100

01110
00111

10111

11111

11011

11001

11000

01100

00110

00011

10101

11110

01111

10011

11101

11010

01101

10010

01001

0000
0010
1010
1011
1110
1111

1000

0011

1111

1010

1001

0100

0100

0110

1100

0111

1001

0110

1110

1101

0010

1000

0001

0101

0001

0111

1011

1100

0101

0011

1101

10000
10100
10001
11111
00110
10011

01001

00001

01011

10111

01100

01111

10010
00010

10110

00111

11000

11110

01101

00100

00101

01110

11001

10101

11010

01000

01010

11100

11011

00011

11101

If R (x) is the received function and R30 = 0 as
was previously defined, then(Ro, R 1.. ., R3 0) M=
(S1, S3, 5), where Si = R(a), S = R (a 3), and

S5 = R (a 5 ) are each five bits. All additions are
modulo two, i.e., no carry; for instance, a8 + a14 =

(10110) + (10111) = (00001) = a 4. All multiplica-
tions and divisions are in Galois Field code; as, for
example, aO9 2 4 

= (01100) (01111) =a 4 3 = a 4 3
-31 =

a 1
2 

= (01110). Alternatively, one can consider this
as polynomial multiplication modulo an irreduci-
ble polynomial ( 1 + x 2 + x5 ) whose coefficients are
taken modulo two. For example,

ai2=o 1 110
a24

-- 0 1 11 1

001100
01100

01100
01100

00 10001 00= (00100)+0a 5 + 1a 6+0a 7±0a

=(0o100)+(01010)

= (01110)= a 2 .

SINGLE ERROR CORRECTING CODE

For the single error correcting code, the genera-
tor polynomial is g(x) = mi (x) = 1 + x2 + x5 . This
polynomial describes the encoder,

I N OUT

where the feedback connectors from the fifth
stage go to the zeroth and second stage. To encode,
first reset all the registers to zero, put the switch
in position 1, feed the data bits into the shift regis-
ter and simultaneously to the output line. After
25 bits (the five data characters) have been trans-
mitted, put the switch in position 2 and shift out
the last 5 bits (sixth character) to the transmitter.
What we are actually doing is dividing the 25-bit
data polynomialf(x) = a5 x 5 + a 6x

6 +. . . + a29x29

by the generator polynomial g(x) = 1 + x2 + x5 to
get a remainder r (x) = ro + r x + r2x 2 + r3x

3 + r 4x
4

,

which in turn is added to the data to form the total
transmitted polynomial f(x) + r (x) = r0 +. . . + r 4

+ a 4x
4 + a5 x 5 + . . . + a29x

29
. Note that a 3 0 is

assumed equal to zero and not transmitted.
If a general purpose encoder is available, the

encoding can be done identically in a more efficient
manner. Each of the bits r0 , ri, r2, r 3 , and r4 is

simply the parity of the sum of certain information
bits listed below:

r0
= Parity (5,8,10,11,14,15,16,17,18,22,23,25,26,27,29)

r, = Parity (6,9,11,12,15,16,17,18,19,23,24,26,27,28,30)

r2= Parity (5,7,8,11,12,13,14,15,19,20,22,23,24,26,28)

r3 =Parity (6,8,9,12,13,14,15,16,20,21,23,24,25,27,29)

r4 Parity (7,9,10,13,14,15,16,17,21,22,24,25,26,28,30).



Since this is a single error correcting code, either
the Hamming shift register decoder or the more
general Bose-Chaudhuri decoder can be used. We
will discuss only the latter method. The received
polynomial R (x) in row matrix form is multiplied
by the first five columns of M to yield S,. If S, = 0,
no error occurred; if not, there exists an ak = S,.
If k # 30, a single error has occurred in the kth bit;
otherwise a multiple error has occurred.

DOUBLE ERROR CORRECTING CODE
The generator polynomial for the double error
correcting code is g(x) = m I(x) m,(x) = 1 + x 3 +

x 5 + x 6 + x 8 + x 9 + x 10 . The shift register encoder
has ten stages, where the feedback from the tenth
stage goes to the stages 0, 3, 5, 6, 8, and 9. The
encoding procedure is identical with the single
error correcting code with the exception that there
are only 20 data bits (aio through a29) and 10 parity
check bits (ro through rg).

The general purpose encoder is given by the
following parity equations:

r0 = Parity (10,11,13,15,17,18,19,20,23,26,28)

r, = Parity (11, 12,14,16,18,19,20,24,27,29)

r2 = Parity (12,13,15,17,19,20,21,22,25,28,30)

r:3= Parity (10,11,14,15,16,17,19,21,22,28,29)

r4 = Parity (11,12,15,16,17,18,20,22,23,29,30)

r 5= Parity (10,11,12,15,16,20,21,24,26,28,30)

r, = Parity (10,12,15,16,18,19,20,21,22,23,25,26,27,28,29)

r 7 = Parity (11,13,16,17,19,20,21,22,23,24,26,27,28,29,30)

r= Parity (10,11,12,13,14,15,19,21,22,24,25,26,27,29,30)

r9= Parity (10,12,14,16,17,18,19,22,25,27,30).

The decoding procedure is similar to the single
error correcting code. The received function R (x)
is multiplied by the first 10 columns of M. The first
five bits of the product will be S I = R (a), and the
second five bits will be S : = R (a 3 ). An error in the
kth bit will result in ak being a solution of the
equation:

SI' + Sa
x2 + SIX + S1 + S = O.

S,

If no error occurred, then S I=S 3 = 0. If only one
error occurred, then SI = ak, S:3= a3

k, S 1
3 +S 3 =0;

and the equation in x given here can be solved by
the single error correcting subroutine. Errors of'
more than two bits can be detected in three ways:

first, if S, = 0 and S3 # 0; second, if S ,$ 0 and
S3 = 0; third, if a 3 0 is a root of the above poly-
nomial. It is of interest to note that if two errors
did occur, say in the nth and mth bits, then S I=

am + aN, S3 = a
3

m + a
3

N, and the polynomial be-
comes x 2 + (am + aN ) x + am+N = 0, which obviously
has solutions am and aN as predicted.

The normal method of error correction would
be to substitute x = ak for k = 0,1 ... , 29 into this
polynomial. For some k = m, x = am is a solution,
and aN = S I + am is also. If the errors are random,
one must perform about nine trial solutions before
the first solution is found. A much faster method
exists.* If we note that

1 3 am
-

N aN
- m

S1 ' 1 + a
2
(m

-
N) I + a

2
(N

-
m)

is solely a function of Im-NI and remember the
cyclic nature of the code, we may say Im-NI <- 15.
Therefore, there are only 15 distinct values of
I + 5S/3, not including zero, and corresponding
values of am - N. With this information we may
calculate aN = (S1/1 + am N) and am = S + a'.

The following tabulation gives the distinct values
of m-NI and the corresponding values of 1 +
S3 /S 1

a.

Im-NI
1

2

3

4

5

1 + S3/S I
a

a 27  (1 1 0 1 0)

a 23  (1 1 10)

a7 (0 0 1 0 1)

a 15  (11 1 1 1)

a1 (0 1 0 0 0)

a14

a25 =

a 30

(1 0 1 1)
(10011)
(0 1 0 01)

a8 =(10110)

a 2 (0 0 1 0 0)

a
4 (0 0 0 0 1)

a
2 8  

(0

a
16  (1

a
19

(0

0 1)

11)

00)

a 29 = (1 0 0 1 0)

*R. B. Baneinji, "A Decoding Procedure for Double Erroi cm recting

Bose-Rav-(haudhuri Codes," Pboceedings 0q the IRE,49:1585 (Oct. 196 1)
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TRIPLE ERROR CORRECTING CODE

The generator polynomial for the triple error
correcting code is g(x) = m I(x) M 3(x)M5(x) = 1 +
X + X + X

3 
+ X

5 
+ x

7 
+X X

8 + x9 
+ x

10 
+ x" + x

15
. The

shift register encoder has a feedback connection
from the 15th stage to the stages 0, 1, 2, 3, 5, 7, 8,
9, 10, and 11.

The encoding procedure is identical with the
single and double error correcting codes with the
exception that there are 15 infoi nation bits and
15 parity bits. The general purpose encoder is
given by the following parity equations:

r0= Parity (15,19,20,21,22,27,30)

r, = Parity (15,16,19,23,27,28,30)

r2 = Parity (15,16,17,19,21,22,24,27,28,29,30)

r3 = Parity (15,16,17,18,19,21,23,25,27,28,29)

r4 = Parity (16,17,18,19,20,22,24,26,28,29,30)

r5 = Parity ( 15,17,18,22,23,25,29)

r6 = Parity ( 16,18,19,23,24,26,30)

r7 = Parity (15,17,21,22,24,25,30)

r8 = Parity ( 15,16,18,19,20,21,23,25,26,27,30)

r -= Parity ( 15,16,17,24,26,28,30)

ri0
= Parity (15,16,17,18,19,20,21,22,25,29,30)

r, = Parity (15,16,17,18,23,26,27)

r12= Parity (16,17,18,19,24,27,28)

r13  Parity (17,18,19,20,25,28,29)

rx4 = Parity (18,19,20,21,26,29,30)

The decoding procedure is to multiply the re-
ceived function R(x) by all 15 columns of M. The
first five bits are Si, the second areS3, and the third
are 5. An error in the kth bit will cause x = ak to
be a solution of the polynomial

x 3 + SIx 2 + S1 x3 SS1
3 + 3

+ (S13+S3 + S, (S2S3 +S5)) =0.

IfSi = S3 = S5 = 0, there was no error. For a single
error, S, + S = 0 and S12S3 + S5 = 0. A double
error will cause the constant term in the above
polynomial to be zero. An uncorrectable error has
been detected (a) if S12 +S3 = 0 but S12S3-+S5 A $0,

(b) if a30 is a root, or (c) if three distinct roots to
the above polynomial do not exist.

When three errors do occur, if the trial solutions
aN are selected randomly, one would expect to try

about eight trials before the first solution is found.
If the errors occur in thejth, kth, and Ith positions,
then S, = j + ak + a'; and if the first bit of S, is
zero, either one or all three of the solutions begin
with a zero. With this information we would try
only those trial solutions aN whose first bit is a zero,
thereby cutting down the expected number of trial
solutions to six trials before the first solution is
found. Obviously, these same statements hold if
the word zero is replaced with the word one. After
one solution, say a, has been found, we may divide
the third degree polynomial by x + ac to yield a
second degree polynomial which can be solved by
the double error correcting procedure. This can
be done most efficiently by simply substituting for
the terms S, and S3 in the double error correcting
program the values S, + aJ and S, + a' j , respec-
tively.

NUMERICAL EXAMPLE OF
TRIPLE ERROR CORRECTING

ENCODING AND DECODING

Suppose we wish to transmit the three letters
TEC: in teletype T = (00001), E = (10000), C =
(01110). The T would enter the encoder first, so to
agree with the notation for f(x): f= 01110 10000
00001, where the ones and zeros can be thought of
as coefficients of the polynomialf(x) = Ox15 + Ix1

6

+ lx' 7 + lxi8 +. . . + lx 29 . From the TEC encoding
algorithm ro = 1, ri = 1, r2 = 1, r3 = 0, r 4 = 1, r5 =

1, r 6 = 0, r7 = 1, r8 = 1, r9 = 0, r,0 = 1, ri = 1,
r12 = 1, r13 = 0, r1 4 = 1. So now the transmitted
message would bef(x) + r(x), 11101 10110 11101
01110 10000 00001, where. the right-hand 5 bits
would be transmitted first. Suppose an error oc-
curred in the 10th, 17th, and 22nd bits. Remem-
bering that the first bit at the left is bit zero, one
sees that the received message would be R (x) =
11101 10110 01101 01010 10100 00001. Again, since
both transmitter and receiver agreed that bit thirty
would be zero, this bit is now added to the right-
hand side of R (x) to make a I by 31 matrix which
is multiplied on the right by the 31 by 15 M-matrix
to yield a 1 by 15 matrix (11101 01110 01011).
Then

Si = 11101 = a26

53 = 01110 = a12

S5 = 01011 = a 9



S13 = = a 
78 -

62 = a 
16 

= 11011

$,' + S: = 11011 + 01110 = 10101= a" $ 0

SI2S, = a
5

2 a
12 
=a a 6 4 

= a2 = 00100

SI2S3 + S5 = 00100 + 01011 = 01111 a 24 $0

Sl (S12S:3 + 5) - a
2 6 

a
2 4 

a2
8

= 01101

S13 + S3  a22

S13 + S: + S1'(S12S3 + S5) = 10101 +S13 + SaI

01101 = 11000 = a i8 $ 0.

So we have at least a triple error

S 2S s -S5 
24

S1
3 
+S3 a'

22

Then the polynomial is

x 3 + a26X 2 + a2X + a 18 
=: 0.

Since the first bit of S. is a one, we try only those
solutions all whose first bit is a one, namely: a0 , a5 ,
a 8 , a 1, etc. x = aiO will be a solution since a 30 + a26

a20 + a2a 0 + a1 8 
= a30 + a1 5 + a2 + a18 = 01001 +

11111 + 01110 + 11000 = 00000.

We then substitute for the values of S, and Sa in
the double error correcting program the values
S1 + aIO = 11101 + 10001 = 01100= a 19 and SI+a 3

0

= 01110 + 01001 = 00111 = a 13 respectively. Now
following the procedure for the double error cor-
recting program with the new values of 5, and S,

.1 a"1+ --- = O.j = a0 -+r a62+13-57 -

S13 a 57

a +a18 = 10000+ 11000= 01000= a'.

From the table of m-NI and 1 + S31S I, we see

that

S a 19  19

1+ a-N a + a
5  (10000) + (10100)

- a 1 9  
- a 19 

-a1a" a" 17

00100 =O- 2

and

am = S + a17 = 01100 + 11001 = 10101 = (a22 .

The three solutions of the triple error correcting
polynomial are x = aiO, a 7 , a 22.The errors are
in the 10th, 17th, and 22nd bits; and these bits
would be changed.
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Subroutine for Partial Matrix Product RM

The equation for this routine is

Si = (Si-I " M'i + S-, " Mi) 8
Ri,1 + Si-l18 R,O

where i = 5k, 5k+1, . .. , 5k+4; and for a block
length of 30, k = 5, 4, ... , 0 for the first, second,

. sixth input characters, respectively. Here A'
equals the ones compliment of A, and A - B is a
logical end, and

if Ri= 1
if Ri = 0

8Ri,O={ 0ifRi=1
11 if Ri = O.

8Ril 
= I

to
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Single Error Correcting Code
with RM Premultiplied
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Double Error Correcting Code
with RM Premultiplied

START
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Triple Error Correcting Program
with RM Premultiplied

START


