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ABSTRACT

This report deals with theoretical methods for determining
the effective physical properties of suspensions or statistical
mixtures of spherical particles of different isotropic materials.
The methods are shown sufficiently general to allow estimates
of secondary physical effects such as the average optical
rotatory power, the thermoelectric power, and the acoustic
attenuation of appropriate suspensions. When particles have
sizes comparable with wavelength, the attempted average-property
estimates are less satisfactory, and no attempt is made to
obtain average-property estimates for anisotropic geometries
or particle-materials.

Addition formulas and other useful relations among
spherical scalar and vector wave functions are derived for these

applications.
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PREFACE

This report combines about ten years of the writer's
work in wave propagation in random media. Many of the ideas
originated in discussions with F. T. Haddock, E, O, Hulburt,
and M. Katzin on electromagnetic subjects, and with R. J. Urick
on acoustic topics. Valuable help was received from G. Raisbeck
in understanding spherical-wave mathematics, and from
H. J. Passerini in most of the heavy algebraic work underlying
many of the formulas here.

The original writing was done with various aims and at
various times; subsequent and spasmodic revisions to present
a connected whole have perhaps left irregularities in emphasis
and style. Parts of the material, notably Sect. IV and
portions of Sect. VII and VIIT have been presented orally at
technical meetings; partial versions of Sects. I and VIII ap-
pear in Naval Research Laboratory Reports Nos. 3238 and 3350.
For some years it appeared that the material did not deserve
further publication because the spherical wave formulas were
without sufficient application, and the physical results were
relatively negligible compared with the weight of the neces-
sary mathematics.

When the relatively concise and general theory of

Sect. VII was eventually discovered, the theory and a few of
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the results were submitted to the Physical Review. After some
months of perusal, the referee found himself unsble to believe
the heuristic justification given in the Appendix to Sect. VII,
although he must be thanked for clarifying suggestions incorpo-
rated elsewhere. As the more formal justification for ignoring
interactions among particles of the conceptual small scattering
sphere required much of the tedious mathematics of Sect. I and
all that of Sect. VI, the writer decided to collect all of the
physical applications into a single manuscript, sprawling but
connected through consistent concern with problems of wave
propagation in suspensions.

Although much of the work is completed, some deficiencies
and further developments might be pointed out: Final results
for the propagation of sound waves in experimentally realiz-
able suspensions are not deduced, for reasons of algebraic
complexity as well as those given in Sect. IX. The theory
of the properties of fine suspensions (Sect., VII) can now
be extended, concisely though heuristically, to mixtures,a)
through a generalization of an argument of R. Landauergb)
The extension to suspensions and mixtures of anisotropic
materials is also obvious although formal justification
along the lines of Sect. VI is lacking. Reciprocity prin-
ciples are used in Sect. I and especially in Sect. X, and

are latent elsewhere. Reciprocity principlesc) can be
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combined with the self-consistent formalism of Sects. II-V for
an approximate answer to the question, latent in Sects. IV and
VIII, where dées the randomly scattered component of the power
flux go? It is hoped that the present material will provide a
reasonably solid foundation for such further developments. An
extension of Sect. VII to mixtures is made in 'Notes Added in
Proof', pp 104-11k,
Henry J. Passerini is to be thanked for carrying out

the massive algebraic calculations necessary for several of
the results presented here, and for eliminating many errors

from the typescript.

a) '"Physical Properties of Fine Mixtures,'" Paper Q7 presented
at -the Washington Meeting of the American Physical Society,

May 1957.
b) R. Landauer, J. Appl. Phys. 23, 779 (1952).
c) '"Reciprocity and Scattering by Certain Rough Surfaces, "

paper presented at Session T-10, International Colloquium
on Current Problems in Wave Propagation, Paris, Sept. 1956.
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Section I. Some Formulas Involving Spherical Wave Functions.

The material in this section is an extension of Chapter VII
of J. A. Stratton's "Electromagnetic Theory", to which the reader
is referred for background. Our aim is to present tables of
useful formulas connected with spherical wave functions; ap-
plications of the formulas will be found in later sections.

We choose a fixed rectangular coordinate system, with
‘;,j,i being unit vectors in the positive x,y,x directions, re-
spectively. Then the position vector Rof a point P relative
to a point a can be expressed in spherical coordinates. R,@,¢
through
2 a4 < > 2

R:p—cb=uRsDn9cos¢-rJ'RS‘mesMcb-rﬁﬂwse. (1.1)

Solutions of the scalar wave (Helmholtz) equation
Y + *¥=0 (1.2)

can be expressed as superpositions of the spherical scalar

waves

£ )= 4~ g )= AP 952

where z,, is a spherical Bessel function, Pg an associated
Legendre polynomial, and the shortened notations will be used
where the omitted symbols are obvious.

Spherical vector waves satisfying the vector wave equation

V Vel - WXVXC + R =0 (1.4)



are: 1= Yf (1.5)
m=UX(RE) = 1 X R =VX n/k (1.6)
1 =YX n/k (1.7)

vwhere the vector waves'i,‘ﬁ,'ﬁ are understood to have the same
sets of indices as the scalar waves f in their definitions.
The vector waves have the further properties:
¥X1=0,pn=0,Ph=0 (1.8)
Thus i represents a dilatational or longitudinal wave and ﬁ, a

transverse waves,

PN S D
The i, j, k components of solutions of the vector equation

(1.4) satisfy the scalar wave equation (1.2). Through mathe-
matical induction using the recursion formulas for spherical
Bessel, Legendre, and trigonometric functions,one obtains the
general component formulas expressed in Table I. These are in
too general a form to be useful in the important case that the
n-index is small; we obtain the simpler component formulas of

Table II from Table I and the additional identities:

L ~n
‘Fffm,'ﬁ =0, 'Fg-l)'\ y\(v\4.])'Fg'1ﬂ) P“:O) w12 N ,(1.9)

= 4+
In the subsequent f,i;ﬁ,ﬁ will denote that a spheribal
Bessel function of the first kind (jn) appears in the place
of z, in the definitions while f',i';ﬁ',ﬁ' will denote that the
function h, appears. The functions jn(kR) are finite at R= O

(at q), whereas the functions h, ~ hy(kR) = hn(l)(kR) correspond



Table I - Rectangular components of spherical vector
wave functions. All functions have the same arguments.

—
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Table II (Part 1)

Rectangular components of £(p)/k. Entries are functions
of p:e00 = feoo(P) etc.

2/R i j k

e00 - ell - oll - el
3 e01 - el2 - 0l2 e00 1- 2 e02
3 ell e00 | + e02 |- .;. e22 - % 022 | - el2
3 oll - % 022 e00 | + e02 |+ %e22 - 012
5 e02 - ell - el3 - oll - ol3 2 e0l |- 3 e03
5e12 | 3e01|+ 3 e03]- é_ e23 - .21. 023 3 ell |- 2 e13
5e22 | 6ell| +e13 |- % e33 |- 6 011 | - 013 |- % 033 | - 23
5 012 -.21;023 3 e01 |+ 3 e03 +.;-e23 3 011 |- 2 013
5022 | 6011 | + o013 |- % 033 | 6 ell | + e13 |+ % e33 | - 023
7 e03 - el2 - el4 - 012 - ol4 3 e02 {- 4 e04

6 e02 |+ 6 e04
7 e13 -%022 -%024 4 e12 |- 3 el4
- .é. e22 |- .;. e24
7e23 | 10 el2 |+ 3 el4 |- .;_e34 -10 012 |- 3 o14 |- % 034 | 5 €22 |- 2 e24
7 €33 | 15 22| + e24 |- % ed44 | -15 022 | - 024 |- % 044 | - e34
6 €02 |+ 6 e04
7 o013 —.;._022 -%024 4 o012 |- 3 o014
+ % e22 | + % e24

7023 | 10 o012 |+ 3 014 |- % 034 | 10-e12 |+ 3 el4 |+ % e34| 5 022 |- 2 024
7 033 | 15 022 | + 024 |- % o044 | 15 e22 | + e24 |+ % ed44| - 034




Table II (Part 2)

Rectangular components of ®(p), n(p).

Fntries are functions

of p: e00 = f5o(p), etc.

m i i I

€00 0 0 0
3 e01 - 3 oll 3 ell 0
3 ell 0 - 3 e0l 3 oll
3 oll 3 01 0 - 3 ell
5 e02 - 5 ol2 5 el2 0
5 el2 - .g. 022 -15 €02 |+ 'f; €22 | 5 o012
5 e22 -10 012 -10 el2 10 022
5 012 15 €02 _:52. €22 ;-52 @22 -5 el2
5 022 10 el2 -10 o12 -10 e22
D i - Cd N k ‘

€00 0 _ 0 0 |
3 e01 el2 ol2 2 e00] + 2 e02
3ell | 2 e00| - e02 % e22 % 022 el2
3 oll % 022 2 00| - e02] - % €22 012
5 €02 -3 ell| + 2 e13 - 3011+ 2013 6 01| + 6 €03
5e12| 9e01| - 6 e03]| + e23 023 9 ell] + 4 e13
5e22 |18 ell| - 2 e13| + e33(-18 011|+ 2 013| + 033 | 2 23
5 o012 023 9 e01| - 6 e03 - e23 9 oll| + 4 013
5 02Z |18 olll - 2 ol3 + 033 18 ell | - 2 el3 - e33 2 023




to waves outgoing from a, the implied time-factor being
exp(-iwt) and Im(k) 2 O in physical applications.

When coherent sources of outgoing spherical waves are uni-
formly distributed in the z = O plane, their combined radiation
forms two plane waves, one in z>0, traveling according to
exp(ikz), and the other, in z <0, traveling aécording to
exp(-ikz). One can calculate the amplitude of the scalar
plane waves by the stationary-phase principle at large |z|;
this suffices to determine the amplitude of the wave every-
where, since the asymptotic plane-wave representation of a
plane wave is the wave itself. (Induction can also be used,
and there are probably other derivations.) From the scalar
plane waves, one obtains vector plane waves via Table I; all
non-vanishing waves of this type are given in Table III.

It is frequently convenient to expand a spherical wave,
originating at a, in terms of spherical waves for which a

-
second point t is origin. If the spherical angles implied in

- BN N - 2D [ S S N
the arguments R =D - q, Q =q-1t,€&€ =p -t are referred to
the same rectangular axes through relations formally identical
with (1.1), then such expansions are relatively easy to obtain.

-
For instance, the known addition formula for h (kR) = flyq (k,R)

can be written (fore >€)

'F(:,OO(EE) = Z,::OE NV\: o ["'\,V\]&"‘Pl,rm n(§)‘FEMA(g) + ‘F(")mr\V\(E> {0 wn (2)}

‘ o : 44!
where [rm,n] = (ﬁﬁfoﬂfoﬁp . (cose) Cos b (106 Jwécf) =



jfLOn

Table III

Plane Waves from Planar Distributions of

"

Sources of Spherical Waves

(X,y,z), q = (x'sy"o)v R = P~ q
® ®

.[ .[ dx' dy' flo. (R)

ew Ve

2{m(-1)" eikz/k2} 7 > 7'

2<ing e-ikz/k25 | 7z < z'

2ik{}k, z > z'; = -2ik<> k, z < z'
-n(ntl){}j, z > z'; = -n(n+1)<>j, z < z'

n(n+1){}i, z > z'; = n(n+1)<>i, z < z'

in(n+1){}i, z > z'; -in(nt1)<>i, z < z'

in(nt1){}j, z > z'; -in(n+tl)<>j, z < z'

For all other combinations of functions and indices,
the integral vanishes.

[Other formula of this type, for spherical
and cylindrical wave functions, are given
in NRL Report 4747.]



= [2- §em, 0] Can+1) (=)l /(nt )} (20)

When (><€, the primes on the right appear on functions of % in-
stead of-é . To obtain the similar expansion of feOl(k,ﬁ), we
take the E—components of the 1's given in Tables I and II to
regain scalar waves on both sides., The result is of course
rather cumbersome and its generalization to higher-order waves
on the left is even more so, Furthermore, the process does
not lend itself easily to obtaining addition formulas for the
transverse vector waves ﬁ;ﬁ. The vector'g is invariant with
respect to '13, and although the identity V?= -V% (on VR= ‘V(>>
could be used, the vector wave functions on the right would
have both 3 and'g as argument, and it would be tedious to
transform the result into the more desirable form in which?
is the argument of scalar waves, € of vector waves. Hence,
with physical applications in mind, we simplify the calculations
and resulting expressions by confining functions of ﬁ‘and 2 to
n-index two or less, carrying functions of ? with whatever
indices are necessary. The derivation proceeded tediously as
follows: First the addition formula (1.10) was written in

=S AN
tabular form as Row 1 of Table IV. Then i,g,k components of

qb = -ﬁh were taken, and entered similarly from Table II to
give the partial addition formulas for the fl(ﬁ). On these

the process was then repeated, an feoo(ﬁ) appearing in the



Table IV. Addition formulas for scalar spherical wave functions.

Entries are functions of p; €00 = fq0p(p), etc.

‘k
L"

—
fe)
£ (R) Feoo®) foo1(€) fe11() for1(€) fe02(e) fera(€) fea2(e) for2(€) fo22(€)
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left column was subtracted out by means of the original
addition formula, and duplicated entries for the same functions
of R vere compared as a partial check, Table IY presents the
results, Here, to get addition formulas for in(ﬁ), one uses
the faot that Vp =Vg , so that the f's in colunn and row head-
ings are merely replaced with the corresponding ?.“a.

A somewhat similar compresasion in presenting the partial
addition formulas for the transverse vector waves ﬁ,ﬁ is made
possible through eqs. (6), (7) and the fact that Vr =Ve ;
hence a table of expansions of ﬁ(ﬁ) becomes one for ﬁ(ﬁ) when
m(€), n(E) are replaced by the n(2), (E) baving the same in-
dices (Table V). To obtain the tabulated entries, we noted
first from Table II that with j (k€)->1 with € >0,

- - > - N = N N -

Moot (€) > 28/3, Ng(6) >2L/3 ) Nou(€) = 23/s  (1.11)
whereas all other M, n vanish. Hence the entries in the first
three columns are prescribed by the component formulas of
Table II. (The analogous property of t-he—?L1 was then used to
check Table IV.) Taking VR)( = Ve X in
the manner mentioned then allowed the next three columns to be
filled in from the N - rows of Table II. Then each component
of each expanded function was written out through fl(g) terms,
from Table IV. The known‘a(g) entries could be sub_tracted
away, leaving the remaining entries to be identified as coef-

-~ - >
ficients of n2(€)'s. The final'ﬁZ(E) entries were found
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TABLE V

P A Expansions of m(p) in terms of m(¢), n(e), and f(s). The usual forms are in terms of f(R) = f(-s); to
Rv E get these forms, use f(R=-s) = (-1)" f(s), i.e., change signs only of f's with odd last index.
f s € Cmn €mn
o °
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- e
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similarly, via VRX :Vg—x. Here it was necessary to extend
the first four columne of Table IV to include the fB(E).

For checking, Table V has been expanded componentwise,
using the scalar formulas of Table IV. The functions gB(é)

>
have component terms in fz(e). These were found and the
- -
f,(e) accounted for among the Hi(é),'ﬁz(g), and 33(€). The
-
1

f2 terms in the component-expansions of 3 were then found

and used in a similar check of Table IV. The entries

f4(€) were not touched in this, so that a scheme of 90° axis
rotations which fairly well scrambled all entries were used.
The probably well-known fact was rediscovered that all
spherical harmonics with n-index two are representable by

superpositions of the harmonics contained in fe X referred

0

to different axes. This means that in any linear problem the

quadrupolar scattering coefficients computed for incident

-

- - . .
waves £05, logos Mg Bgpp suffice to determine the scatter-

=~
ing coefficients for all incident waves f2, 155 ;2, 32,

respectively.
We notice, in Table IV, a symmetry about the main diagonal:
-
the entries at the 'intersection' of the £ (R) row, f (2)
xmn x'm'n'
Q
column are identical with those common to the fx'm'n'(R) row,
>
fxmn(e) column, except for a numerical factor which we now

discuss from the point of view of a reciprocity principle.

12



The wave
/

'FSMV\ U“)ﬁ)h““ﬁl) ) R<R

fsmn (BR) JnhR) | ROR

satisfied (1.2) everywhere except at R = R' (a spherical
surface centered on a) where F, but not its R-derivative,
is continuous. The surface R = R' thus contains a source
distribution for the wave, which is then 'outgoing' for

R > R', finite at R= 0, and satisfies

Vo F+4°F = PQ(cos e){ces mdfé“ S(R-R)

Sin ™M
everywhere, the right hand side expressing the sources.

Similarly, a wave

/

Fstom!n! (RE) hy (£ e’)) E<e
Fstmin/ (‘&)_é) ‘j“v(&él)) €7 €'
is the solution of ‘.
2 T, cos ' B f
VG +RG = T (Coso() S\ “N?} 4e'? (¢-€)

-
vhere the spherical surface €= €' is centered on t.

G =

- -

e S R R S
Again we take R=p - q,€ =p - t, p=a-t,p= (x,y,%x)
and stipulate that Q)\e’ + RY, so that the 'sources' do not
overlap. By Green's theorem and the orthogonality properties

of the spherical harmonics, we then calculate

13



0= f:f:fw dxdydz T, (Fe-6F)

- S
and find that the (-f )-dependent coefficient of fs'm'n'(R')
in the expansion of fsmn(ﬁ) about q, multiplied by the Dp,i}of
(1.10) is identically equal the ?— dependent coefficient of

£, |(€) in the expansion of f (R) about t, multiplied by
8'm'n smn

Em,nq.

Thus the symmetry about the diagonal of Table IV would be
complete (except for opposite signs when the n-index of fn(g)
is odd) had the column headings been multiplied by the appro-
priate {m,n). Similarly, entries in row X(E% column Y(g),
Table V, differ from the 'symmetric' entries in row Y(E),
column X(E} by factors which are demonstrably required by the
electromagnetic reciprocity theorem. These factors are system-

atically related through 'normalization' factors,

n(n +1) . (n_+ m), encountered in verifying the tables accord-
2n +1 (n - my

ing to reciprocity: the sign of the 'symmetric'! entries are
again the same or different according as the n-indices of the

a By
entries are even or odd: fn(e) = (-1)° fn(—f). (Relabeling the

column heading in Table IV, V to display these symmetries would

14



result in more complication in the important 'diagonal'! entries
and in the subsequent applications.)

We may regard the addition formulas of Tables IV, V as
giving the partial excitation of a particle T centered at "E =
(x",y",2") due to waves scattered by some particle at ’cz, as
function of the relative position vector-é‘ = E - % It will
be useful to compute the total excitation of T (through terms
with n-index 2) on the premises that the particles Q which
scatter waves to T are uniformly distributed through a spaceZ,
the half space 27 O minus some sphere of radius r centered
on 7:‘, and that the wave scattered by the particle at the
general point a = (x',y',2') in this region varies only

through some phase factor exp(ik'z!), We thus evaluate
— N ! - -
1= ”ﬁ;_ e.x\s(tﬁ.i){({,g) aL% (1.12)

el Lol
Now f' satisfies V%f + ﬁ -F = O vhereas E = exp(ik'z')
satisfies V2 E + k'°F = 0; we therefore have, by Green's

Theorem:
(£5-4MT = [ (ev*' = £ 7'E) d woe@)
D O
f—wdxalgl(b_;’ - ok ’C)Jz'zo+

[00

Mo (135 o350
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The first integral on the left may be evaluated by first
using the i-component of 1 from Table I, substituting
fn(g) = (-1)nfn(-€) end referring to Table III, For the
second integral, we uase the expanaicm of eik'“a and the
orthogonality relations of the apherical harmonics impiied in
f,£', Both integrals vanish unless the m~index of f' vanishes;
in this case, with @ = k'/k,
(02 - 11 = 12na™% + { (€4 1062 - 2078 e”‘""} (1.13)

Expanded in powers of r through r3, the Rn(r) have the forms

Ryn) = l+-§:(|-62)‘k’l}3+ L2603 + 0La%(1-0%)

=

, _ L ' 2% LN AL
Ral)= [+ 0= R0 /G + OLMI(1-6%) | nz (114

Lack of a cubic term in Rn, n2 1, is evident from h = jn + inn
and the forms of the power series expansions of the latter
functions, It can also be proved by induction that

R,- 1 is divisible by g% - 1, for alln O,

The symmetry properties of Table IV, discussed earlier, are
used in a similar calculation in which the space 2 is replaced by
7' the interior of a sphere S, of radius r', centered on 'E’ia
minus a small sphere s of radius r again centered on T and
interior to S,

- -

. N A N e S =
WithR=p -4, ¢ = p - t’€: q - t, we calculated

J

521 famn (k',R)f'a'm'n'(k,€ ) d vol (p). (1.15)

16



Via Green's theorem, the orthonormal properties of the spherical
harmonics, and the symmetry exemplified in Table IV, we find
that, except for a numerical constant,

@2 - 105 = R_(r)P(,P) - R, (r)F(KP) (1.16)
where, if Table IV were sufficiently extended, the F's would
represent the ,3 - dependent coefficient common to the

f'amn(i) row and fa (€) column except that the spherical

min!
Bessel functions (j's in this case) have argument kpor kip
according as k or k' appears in the F-symbol.

First (on physical grounds) we stipulate that Re(kyk')>0

so that k' + k £ 0. Then we use the fact that
R =1+ [terns divisiblety (@ - 1) = (k'* k%) /"),

With the quotient Q =k[F(k,"'5) - F(k',P)}/(x' - k) obviously
well behaved at k' = k, we conclude that J is analytic in
k,k' in all regions of physical interest.
With r‘;e, r' > r we now examine the magnitude of J
when max { \krv\ , \k"r‘\} = K4« 1, Since the F are
v

weighted sums of various j's, the ‘order' of F is K

(\) > 0) where Y is the smallest integer subscript of the j's

»

in F; X is then the order of J when )‘Z- 1, For

YV =0, F=0(1) but Q= 0(K°), as is [R_(r') -Rr_,(r)]/(1 -6,

so that J

O(KZ). Hence J £ 0(X), equality arising only from

fl(F) term in F(k,?).
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Section II: Illustrative Application to an Artifical Dielectric

We apply the formulas developed in Section I to the pro-
pagation of waves through suspensions consisting of small
particles randomly distributed throughout a fluid of known
properties.

The particles will be assumed describable through a set
of scattering coefficients, coefficients in the linear re-
lation between waves incident on an isolated particle and
the resulting waves scattered into the fluid. We shall assume
that a shape S is formed of some of the suspension, and immersed
in a bath of the fluid, and illuminated with known waves with
(suppressed) time factor exp(-iwt). Then the excitation of
any particle in S consists of the known incident wave plus
waves scattered by all other particles of the suspension. In
principle, our object is to calculate the average wave scattered
by S into the ambient fluid; we take this wave as the super-
position of waves scattered by all the particles in S, averaged
over all arrangements of the particles.

To calculate the particle's excitation, we make the self-
consistent assumption: we assume (a) that the particle lies
inside a small 'sphere of exclusion', s, into which the remain-
particles in S, however arranged, never enter; (b) that the wave

incident on the particle is the average wave found in s in the

18



absence of that particle; and finally, (c) that this average
incident wave can be determined as an integral over S-s, with

the excitation arising from a volume element dv at a point a

in S - s again an average, namely, Ndv times the average scatter-
ing (evaluated in s) of a particle located at'a, where N is the
average number of particles in a unit volume of suspension.

The radius of exclusion, r, (the radius of s) enters this
calculation through specifying one boundary surface of this
volume integral. Physically, r, is set by the dimensions of the
non-overlapping particles, and perhaps should depend on the size
of the particle in s, However, it will be convenient to take
a single To for all particles. Conclusions about the mode of
wave propagation in the suspension depend on the choice of r.,
but for sufficiently small particles, r, may be taken small
compared with wavelength in the fluid, and its influence
disappears.

We illustrate the method by calculating the propagation of
electromagnetic waves in a suspension of small particles in a
fluid of dielectric constant €, permeability/m, both constants
being those effective atw.

We assume that a unit volume of the suspension contains N

identical small particles describable, electromagnetically, by

dipole scattering coefficients A,B. Taking t as the center of

5N — - -
8, p as a general point in s, and At = p - t, the electric

19



vector of the incident wave (the average wave inside s in the
absence of a particle at %) can be expressed as & superposition
of waves of the form Ty ='Esmn(£%), ﬁn.= ﬁgmn(éi), where the
implied propagation constent k is that of the fluid: k = w(ue)L.
We assume that the particle responds only to the magnetic and
electric dipole excitations ﬁl and ﬁi respectively, so that 1f

-
the expansion (about t) of the incident field in s starts with

- - S Y - S
the terms (uyngyy + Uyneyy + UNeoy) + (Vylgiq + Vylorl + Valie01)

-
then the field scattered from t is of the form A(uxﬁ'ell +

- - AN - aY
un'yyy + u,n'eoy) + Blvym'aqg + vym'oq + v,m'co1), where A and

B are the appropriate scattering coefficients

For the geometry, we assume the suspension to fill the
half-space S = z »0, with fluid filling the space z < 0. We
assume the wave'ﬁi normally incident on S (from z < O) to be
plane with electric vector in the x-direction; this wave has an

- - S
expansion about t = (x",y",z",) of the form W, = iexp(ikz) =

- - A = A2
= exp(ikz") % {FellﬁAt) + imgqy;(2t) + (terms in m , n, , n > lil. (2.1)
- IEN
The total excitation W of the particle at t consists of this plus
-

excitation Wg due to the scattering from other particles in z > O:
QA Y
W=Wi+WS'

We now assume that the average wave propagating in the sus-
pension travels according to some propagation constant k', as
would certainly be the case had z > O been filled with a homogeneous

medium. In the present plane-wave geometry, we assume, corres-

pondingly, that
20



2 _ ik‘z"{.-s R IR P )
W=e Un'ell +ivm .| S e (_Un + 1Vm], (2.2)

other dipole excitations vanish by symmetry and higher-order
excitations are omitted as producing no scattering. To find U,V
we use the set of simultaneous equations implied in W ='ﬁi + ﬁs'
Now the scattering into s from a particle Q at a = (x',y',2'),
owing to Q's excitation-term exp(ik'z!') Uﬁell is found, from the
addition formulas of Table V, to be of the form: (2.3)

Uexp(ik’z'){A [f'eoo - (1/2)1"602 - (1/4)f'922’knell(at) +

(3/2)f! 01 ll(-ﬁt) + (other dipole terms) + (terms 1nf with

n-index > O)} where the arguments of the function f' is —f =

2

(9

S - s, to obtain the excitation at T due to scattering arising

AY
- t). We multiply this by N and volume-integrate on g over

from the excitation term exp(ik'z')Uﬁell.

General integrations of this type are given in (1.13); it
is seen from Table V that 'other dipole terms' have coefficients

f(P) with positive n-indices and vanish by symmetry on integration.

Similarly expanding the excitations of T due to the VR term of

—

W, and applying (1.13), we find:

’\7}3('[')- eb&z 4(71+Lwn>(uog *V@)/(l.. ) -

k(AL U(R, +1 € RYHEVL o R #[24)
=t P LRAMUZOR, +EV(Ry+ Ry 16 )]

where K = —ARNik A @ -4ARNik 3B, T = k'/k.
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From (2.1), (2.2), and (2.4) we see that the formal equation
-— N LN
W= wf+-ws amounts to four simultaneous equations, since
RSP - -
m(at) # n(é%) and exp(ikz") # exp(ik'z") for general at, z".

From coefficients of eik'z

, k' and the ratio U/V are determined,
the former through the vanishing of the coefficient determinant,

|D|, of the system
‘u{hr"»f «(Ro*rR;G"/z)}J« VieRp =0,

UBoRA + VI=6™+ g(Ro+R,7){ = 0. (2.5)
The two equations in U,V determined from coefficients of
eikz“ are linearly dependent, so that no contradiction arises
with the U/V determined by (2.5); from (2.1), (2.2) and (2.6)
we have
U + VP = 2(1 -¢). (2.6)
Now we discuss the suspension's propagation constant k',
obtained by solving (2.5) for ¢ = k'/k, taking R =1 as be-
fitting this case of small particles. The polynomial |D|
is now quadratic in<f2 and factors readilx one factor being
02 - 1. The conclusion k! = k from @T2 - 1) = 0 is rejected,

showing no influence of the suspended particles. Equating the

other factor to zero yields:

2 _ (KR T - | + R l...e;
*

Thus there is a single propagation constant k', the
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negative root having the usual interpretation as a wave, running
in the negative z direction, which is not excited in the present
geometry. Writing k!2 =w?e'u we regard the first and second
factors on the right of (2.7) as e'/e,/.\'//u, since the factors
arise from electric and magnetic dipole scattering, respectively.
The interpretation of (2.6) is reinforced when one calculates
ikz

(via Table III) the average wave 1 Re” scattered back into

z £ 0:
= (1/2)(vp - )/(L+4 ) = (1-2)/(1 +2) (2.8)
1

where Z = [ﬂé;»)/gp'e is the usual relative characteristic
impedance. This wave is identical with onelreflected at the

z = O interface when'ﬁi fs again incident and z > O is occupied
by a homogeneous medium with the above E'vM!.

Operationally, one determines/q', ¢' by measuring reflected
wave amplitudes under a variety of polarizations and obliquities
of ;;. We performed the entire calculation for the case of
oblique incidence, using the present method and the formulas
mentioned in passing in Section I; the reflected wave remained

that obtainable through the present e',/m' and the assigmment

is 'operationally' valid. Finally, the forms

K T PN
€ -3 —L
g o e (2.9)

are those required by the €lausius-Mossotti law,
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We see that the coefficients of e *!Z determine U/V and k!,
but that the influence of the boundary plane z = O appears as a
limit in the integrals used to calculate (2.6) and (2.8), Ws
therefore regard (2.6) and (2,8) as establishing the electro-
magnetic boundary conditions at z = 0, Eq, (2.6) may be regarded
as giving the amplitude of the wave tramsmitied into z > G, and
(2.8) of course establishes that of the weve reflected by z = O,
but in both it is necessary to have determined the effective pro-
pagation constent k' (i,e,,@ ) firsu,

Section III, Heuristic Theory of Ferromagnetic Exchange Effects
at Optical Frequencies

The equations governing electromagnetic weve propagation in
a magnetized ferrcmagnetic metal are Maxwell's equations plus the

(simplified) spin-wave equationss

—
1 oM oo = 2 2
394 = MXLH+(A/MS) 9 M G
which establishes the relation tetween the magnetic induction
D a

B = H + 4mM and the magnetic field ﬁ, The constant A represents
the 'exchange integral' and incorporates, for the ferromagnetic
continum, the effect of exchange forces between various atomic
spins of the actual metal, The effect of this generslly neg-

lected term has been worked cut in a special case by
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1) 2
Ament and Rado . They found (following Macdonald )) that for pro-

pagation normal to an applied d-c magnetic field, the metal was
triply refracting, and that at a plane air-metal interface, the
new boundary conditions Adﬁ/dﬁ = 0 had to be used to determine the
three relative smplitudes.

We shall treat this problem by the method illustrated in
Section II for the reasons that a continuum (i.e., a differential
equation such as (3.1)) is not needed, that the exchange integral
and the new boundary conditions enter naturally, and finally, that
the range of the exchange force enters explicitly and without es-
sential complication of the resulting algebra, (One might expect
to include a range effect as a fourth-order derivative term in (3.1):
this would give rise to & quintuply refracting medium.) The thin
magnetic films described recently are semi-transparent?)so‘that
it becomes possible to measure magnetic effects at optical frequencies;
the range of exchange forces, comparable with interatomie distances,
may no longer be insignificant with respect to electromagnetic
wavelengths in the metal, so that the following results may have

more than academic interest.

1) W. S. Ament and G. T. Rado, "Electromagnetic Effects of Spin
Wave Resonance in Ferromagnetic Metals", the Physical Review,
Vol. 97, No. 6, 1558-1566, March 15, 1955.

2) J. R. Macdonald, Ph.D. Thesis, Oxford, 1950 (Unpublished).

3) C. A. Fowler, Jr. and E. M. Fryer, "Magnetic Domain in Thin
Films by the Faraday Effect," Phys Rev, 104, 522, Oct 1956.
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We assume that the ferromagnetic metal is a suspension consisting
in an isotropic, non-magnetic fluid, of some appropriate metallic
conductivity, in which randomly imbedded particles are responsible
for the magnetic properties. Again we let theffuld fill z& O, and
the suspension fill z > 0, and let the plane wave with magnetic
vector h = Zhoexp(ikz) be incident from z < O. In addition, let
the static magnetic field 3Hé be applied. Now we describe the
particle at ﬁi by the vector 3('&1), and endow S with the properties
that the magnetic field ﬁ(;S) at an arbitrary point p = (x,y,z) in

the fluid is given by

- -

SN L N = a =
HP) = Hy(p) +C 2y S(gdeT (3,3, w)
(3.2)

and such that

-

J_'DS(QL\ - -
¥ 2t -

—5\@:) =

= &@xﬁ(z‘}) +DZ§ F(l%;ﬁtﬁ({c\“(ﬁ) (3.3)

Ao
Here T(B,q;w) represents a 'dyadic Green's function', depending on

4[5'

the frequencyu} so that‘§ acts as a radiating magnetic dipole.

Eq. (3.3) is the dynamical equation for the spin §; the first term
representing a torque due to the local magnetic field and the second
representing the exchange forces, with F containing the range de-
pendence of the forces. The constants C and D are parameters

amounting to scattering coefficients,
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o -
Now we replace the general vectors H and S by

BN N o CWT
H = 9He +he “t) JHe + ke

3 —is iUt

- -— - RN - -

h = H*L +kz& ) 4= 4L 4-42'&.)

and will linearize the resulting (3.2) and (3.3) by ignoring terms

quadratic in the lower-case quantities. Then, assuming a uniformly
random distribution of the Eij in z » O, we replace the sums by in-

tegrals over z > O minus small spheres centered on '§ and §i° Omit-
ting e MW v than have with = ?--Cg;_

hB) = Lh(p + Neff T (3) hyy, (4,7 + 42§ R, (6, 1)] 4

i X +5($)X§HQ_ T
N ([ FU3-30STx 3G - 36143 6.0

In order to apply the results of Section I, it now becomes

—tw 4
%

convenient to let F(r) = f'eoo(k*r) = exp(ik*r)/(ik*r) (where

. * N
k=1 lk | to make F real), and to assume that the wave wn & >0
varies as exp(ik'z), where the propagation constant k' is now to
be determined through a secular determinant. From the exp(ik'z)
dependences in the above equations, we obtain four simultaneous

homogeneous equations in hx’ hZ s S5 8,3
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hye + C'«Q;C’L-M‘l)/(l——al) =0
hy T lclAe =0
Shg +(Lw/x)dy +4z]-He+ D' /(1= = 0

=Shy *4x{He‘D.‘1/("f)‘13 Hupdar =0,
where: (' = -4T‘NCC/<3‘Q")

D'z -t aTNIn/48
M= '4L/HQ¥

and where we have again taken¢ = k'/k, and assumed R, = 1.
% Here D' is essentially the conventional exchange integral,
and the effect of finite exchange range is incorporated in the
/M? appearing explicitly in the last two equations.

The expansion of the secular determinant of this system
gives a polynomial cubic in 0'2 » S0 that there are three propagation
constants k' = kl’ ky, k3.

To determine the amplitudes of these three waves, we need
analogues of boundary conditions applicable at the interface
z = 0. For this purpose we notice that the integrals on the
right of (3.4) imply, from (1.13), that waves can propagate in
z » 0 according to exp(ikz) and exp(ik*z). The amplitudes of
these waves are necessarily zero, since the presence of the 3;

is ignored in exp(ikz) and the surrounding 'fluid' is ignored in

exp(ik*z). Setting the amplitudes of these unphysical waves
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to zero yields three non-trivial scalar 'boundary condition equations'

0= hy %—_CI[‘IM/Q' a,) + ALX/(\"UR) '\"ozx/("fzﬂ (3.6)

0= A A(-pa) s g [(1ope) + Agdyr[(1op ) (3.7)

0= 'Q‘A\g/(\-/l\d")-* *fé\,d»(/(h/ug})4%343,(/(1-/40'3) (3.8)

from the two vector equations (3.5).
The quantity of experimental interest is the impedance ratio
Z = (h, - b.)/(hy + h,.), where h  is the amplitude of the wave re-
flected back into z < 0. From Table III, following the method used
toward (2.8), we find that the reflected wave is polarized in the
x-direction and has amplitude

hy= - ’%-c'[/i\,/(u-r,) FAL g [OF6) +A3,{/(\+63)] . (3.9)

Equations (3.6) and (3.9) are equivalent to the standard electro-

magnetic boundary conditions (continuity of tangential components of
% and ﬁ), in the same manner as were (2.6) and (2.8). The 'new!
boundary conditions are (3.7) and (3.8). These are identical with
dﬁ/dz = 0 for A= 0, but differ slightly as m becomes finite, i.e.,
as the range of exchange forces becomes comparable with the skin
depth. (More precisely dﬁydz = 0 holds in the approximation that

M= k'/k* becomes small compared with unity, i.e., that exchange

is small compared with actual wavelengths in the metal.)
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For a given k*, one can-now assign C',D',S, and He so that when
)k=k/k* is ignored, the physical significance of the present equations
is identical with those used previously.l) Then with/y~¥ 0, the
calculation of the roots of the secular polynomial and of Z can be
carried out, by methods formally identical with those previouslyl)
used, to show the effect of/A# 0 on the previous results. These
identifications and calculations will not be given here., What has
been verified 1s that the previous formal result for ﬁ-[pq. (2.5),
ref. (1)] 1is obtained when one sets M = 0 in all equations follow-
ing (3.6).

Section IV. Frequency Dependence of Certain Artificial Dielectrics.

In this section we treat the problem of Section II for the case
that the randomly suspended particles are small identical spheres
of some radius r, and will be concerned with the r-dependence of
the effective propagation constant, k', The r-dependence occurs
in several ways. The dipole scattering ccefficients of the spheres,
expanded in powers of K = kr, lead to replacement of the d,@ of

(2.4) by expansions of the form
/ 1 - 3
2 - ‘
B = B4 b K Bt (4.1)
The constants &,d, , Az, (%, F,L, (_’>3 depend on the properties of

fluid and sphere-material. In the absence of ohmic losses,(XB is

related to X, @3 to 8, as required by Rayleigh scattering (see
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Section VIII). Only the leading terms of these expansions are valid
in the @lausius-Mosgotti formulas (2.9) as derived there. The effect
of K > 0 will appear as a 'real’ effect) O(Kz%and a lossy term, re-
lated to Rayleigh scattering, of order KB.

Thus to obtain an effective loss in k', due to random scatter-
ing, we need to carry terms through K6 in the scattering coefficients
of the spheres (through %> in A7, P'). The quadrupole coefficients
85, by of the Appendix have expansions starting out C'K? +O(K7), 80
that their leading terms must also be included. Higher-order coef-
ficients start out Kn, n > 7, and can be neglected consistently.
Finally, the centers of any two spheres are separated by distances
> 2r, so that the 'radius of exclusion’ r, is finite and the Rn of
(1.14) must enter the calculation.

We let the suspension fill the half-space z > 0 and let the
plane wave ;exp(ikz) be incident from z < 0 as before. For the
excitation exp(ik'z) (Agoll + Bﬁell + 05;12 + D;elz) we get the

teri ik 4] + e’ + Csmt + ¥
scattering exp(ik'z) Agm ol BX'n 1l Cgm 012 D¥n 012 .

1
Higher order scattering is negligible and other dipole and
quadrupole excitation will vanish by symmetry. We then calculate
the total excitation on a sphere at (0,0,z'), again using the ex-
pansion of the plane incident wave and table IV followed by (1,13)
From the coefficients of the four linearly independent functions

=

. s 4
exp(lk'z')(ml,nl,mz,pz) we find k' determined through the secular
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1

determinant 0=

: ! \ ) ) 18 .3
(egn)€eme 3ing (RO 1o
- ' _ L o (27 18 -3
=31 A /o (T°+'}§Tz)($+l—f de7% ‘*(TE‘*._O‘-")S

T 2 :
e S AT LS R Y S (P T PRI ET A G SRR

; ~ ; 3 %, 34 L
- S - Uzt +3h)p -t +2e0)Y (H‘%e +-7-6’)§-H 6

(4.2)

where «', @' are as in (4.1), where

X= -—4TNLlQ, /4> § = -4TN b, /43

)
and WL\Cre Th = R“o‘n) R.\ as ln (I.H-).

When the Rn's are carried to requisite power in Ke = kre, this ap-

pears to give a polynomial of high order ino‘z, but (0’2 —1)3

factors out and the result is quadratic:

0= 3,1\'(1—01)z + B'(1-¢") + BC’) wheve
A’: 1(\’4»5)(80’0(?)4-7 K*e‘l(dé-“‘@)‘f“}(%\”‘?é)'go(b(g 'f_(ﬁh’))

COe8)(190p = 195) =237 (XY4pS) - 300EE +PY) + 420+

!

b= X
+io5(ap -2k -2p )42 K:(ok{s Hns riig)- g0l Kej(oaé'o« -#)

2 (vrs) (175 +52ap) + 215 (A +pS) +320 (a5 + pY) +

4105 (o p 474 k2P ) F126 KSwp + 1oL Kfoqa
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Thus there are two propagatiem constants k', We examine that k'
which 18 a 'perturbed’ versiem of the k' = k*  of (2.7)3 expanding
in powers of K and omitting terms of relative erder K v get, with

e e’
) (T ey upOf ¢ PR -lar'+
ﬁ =6 = £
s R+ Lk i) V) (oK ¢ iy K21V , (49

wheve Ll @)= \(gr-ﬁg(::))‘)

_ 3
Ve = L(a=a)( 1+a)

19Q = a*Va) +p‘\l(f)

%3(53 - Ibd}?‘(id»e) + t«u“.“,?‘p
3¢+ 509091 .4..6(‘!,,93\ -24 ¢e(‘..°)_

- &4 (27+pY) - 40 ap
26 (1+a)(1+ o) (2=a)~(2- MO

P =

Now we interpret the terms of (4.4) for the case of no ohmic
losses, where « , @ are proportional to the volume fraction fl occupied
by spheres; for the case of mo ohaic losses, they are real numbers
lying between -1 and 2. Hemee, in the lossless case, it is seen
that the coefficients Q and V are non-negative, 8o that with
®37 O the iVKjOK3 is positive imaginary and eorrespords to atitenuation
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in a wave propatating as exp(ik'z), whereas fiQKe3 represents

a negative attenuation, The attenuation due to the V-term

seems attributable to Rayleigh scattering by the randomly ar-
rayed spheres, whereas the negative attenuation from the Q-term
appears to arise from the decrease in randomness caused by the
finite radius of exclusion. This interprstation is supportec

by the fact that o, V = o£.), & = o<f12), for small f . For
large fl< 1 and for reasonable values of re/r 22 2, physically
realizablecﬂ,? are readily found so that the Q-terms exceed

the V-terms and the total ‘attenuation® Im(k') is negative.

The reason for this breakdown of the theory is nct clear to

the writer. The U and P terms are real in the lossless case,

but can change sign for suitable X, {i.e., For suitable
lossless electromagnetic constants of the fluid and the spheres).
These and the KZV terms then affect only the propagatior velccity
implied in k'.

The second propagation constant k' is O(Kul); the leading
term is real, but it would be inconsistent with the present ap-
proximation to calculate higher-order t=rms. The physicai signi-
ficance of this second k' is not cliear: perhaps a parallel analysis
of a cubic lattice of finite-sized spheres would shed light here.
It is believed that (7.4) expresses the kr-dependence of reasonably

dilute suspensions of identical small spheres,
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Appendix: Scattering Coefficients.

The coefficients here are expansions of the general formulas

(10) and (11), page 565 of Stratton's "Electromagnetic Theory! The

expansions there suffer from inaccuracy and lack of symmetry between

€ and/..

a, =

where primes refer to the material of the sphere, and N = k! /k.

KR A R e el
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Coefficient b| is obtained by replacing )A, /A' with ¢ )e' ; the same

holds for b, with respect to a

aq

2 2

For perfectly conducting spheres we have with f = kr

a,

b,
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For intermediate conductivities (finite skin depths) one must proceed
from the general formulas.
For lossless media, the scattering coefficients are found,

from the boundary condition equations, to have the structure

o= -LL3.(40)
L[ 4, (4]

where L is a linear differential operater with real coefficients.

From hn = jn + inn, the expansions of jn(x), nn(x) in powers of
12, and the asymtotic forms for small x, one finds |a]2 = -Re(a);
The expansions above have this structure which, for ag, bl’ is a
mathematical equivalent of the theory of Rayleigh scattering.
(See Section VIII, 2).

Section V. Sound Waves in Suspensions

To calculate the propagation constant, k', effective for
dilatational acoustic waves in a suspension is vastly more dif-
ficult than for the electromagnetic case just treated. First,
three kinds of waves (atWw) can exist in the fluidy dilatational,
thermal, and shear. For only the first two kinds have propagation
constants been calculated exactlyA) in‘terms of fundamental physical

properties of the fluid. Only the coefficients for dilatational

4) C. Truesdell, "Precise Theory of the Absorption and Dispersion
of Forced Plane Infinitesimal Waves according to the Navier-
Stokes Equations," J. of Rational Mechanics and Analysis,

Vol., 2, No. 4, Oct. 1953.
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incident and scattered waves of order O and 1 (monopole and dipole)
are found explicitly in the literature, and these have been calcu-
lated with approximaste propagetion constants and impedances. For a
small volume-fraction of spherical particles in the suspension,
where interactions are ignorable, the discussion of Section IV shows
that coefficients of order 2 (quadrupole scattering coefficients)
must be kep{to give an academically correct k' in the limlt of the
fine dispersion. Presumably, those of order 3 are required to give
k' correct to order r2. As dilatational excitation causes thermal
and shear scattered waves (and vice-versa), the matrix analogous
to (7.2) would be 12x12, except that there are no shear waves of
order O, and thermal waves of orders 1,2,3 may be unimportant.
Finally, most suspensions have a variety of particle types and radii.
Consequently we give the general argument in outline only,

then make certain simplifying approximations, and close with the
specific formulas that have been obtained. We suppose that the
average excitation of type i (e.g., monopole-thermal) of a particle

. . = ik'z ; b
of type ¥ is given by<x€,iwie . This results in scattering W'j
of type j, according to the appropriate scattering coefficient
AT;ij' The resulting excitation of type k of a particle of type
@ {to be calculated through the addition formulas expandinglﬁ’j
and eq. (1.13)] has the typical term NoXy 184 13 Idur,jkeik'ZﬁL

where the I<ff 3k represents the last factor of (1.13) in which the
J
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radius of exclusion T, and hence the R of (l,lh) depends on both
types T and 0, and where N, is the number of type-4 particles per
unit volume. Summing over all types of particles and excitations,

we have the set of simultaneous equations

dm"zﬁ:gédvz N, An’:‘ Irf,i& =0 (5.1)

in which the &('s are the unknown amplitudes. The vanishing of the
coefficient-determinant of these amplitudes determines the possible

values of k'.

To decrease the order of the detefminant, the most obvious
assumptions are that r,, = r, or r,, or r, = constant; the last
approximation, that a single radius of exclusion applies to &ll
particles, produces the great simplification that the excitation
Wy, and IWT;jk are now independent of particle type, so that the

relatively simple
det [ 4, -Zm' N,A ;L] =0 (5.2)

determines the various k'. Here it is seen that one may sum (on7)

over the variety of particles first, so that we may write, for (5.2)
det ‘Siﬁ - Zf ALJ Ilﬂ = O (5-5)

where Aij represents the weighted average of the scattering coef-

ficients Ay ;5. Thus the simple generalization of (4.2) to a
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variety of spherical particles is now obvious.

The Aij’ Iij

matrix multiplication. In the acoustic case the scattering-coefficient

may now be regarded as matrices and the j-sum as

matrix (used by us) is

0 (o]

”Aij“ = |IB, B © O (5.4)
0 0 A AN
o o ¢ o

The scattering (excitation) in row (column) 1,2,3,4, is di-
latational, thermal, dilatational, and shear, respectively, and the
order of the coefficient (i.e., monopole, dipole) is indicated by the
subscript. (Also A = ZyN.A o’ stc.) The interaction matrix I= I,

is found via Table IV and the right hand term of (1.13).

€ =\ Y -%%f%* o
‘ 0 w 0 0
I I
6% 6%-1
0 0 0o X zsﬂiif?): _z‘,s’fzm@eﬂ

(5.5)
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where if k, ki, kg, are the fluid's dilatational, thermal, and shear

n/(163), ¥ = ¥k, 7 = kg, by = kT,

propagation constants, X
Ce = ksre, and where O = k'/k as before, The diagonal elements
are perhaps obvious; the entry in row 1, colurn 3 comes from the
coefficient of an exciting wave 1 -;(k, € ) in the expansion of a
scattered wave léOl(k’R)‘ (We have assumed that kr <<l, dilatational
wavelengths in fluids being much longer than thermal or shear
wavelengths, )

We now perform the matrix multiplication, expand and solve

(5.3) for 0. Having made the further simplification (approximate

for very small particles) b, <<1, c, <<1 we obtain

3, 1
o { (1 +XAOX1+X;}3BON)“‘X1‘} A, Bo}‘
1+Xf%’ (5.6)
. [(HXA.)(HXfC.") - ¥*2%A C ]
(1=-2CA1+X23c ) + 2x?23A)C, |

Since k'z/k2 = .{p'/m}[QVQ] we have a natural interpretation for the
two complicated factors in (5.6) [m = compressibility, P = density].
When the explicit scattering coefficients (7,33)ff and (9.1) are
ingerted, the interpretation is completely verified if m' and m are

adigbatic compressibilities and @' is given through the usual additive
laws of composition, We have not verified the interpretation by

computing a reflected wave, Neither have we considered by1Ce= 0o(1),
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feeling that the neglect of order-2 scattering and the difficulties
discussed earlier would make the result meaningless. The finite-ce
assumption would make no substantial change (a slight modification
of z3) as it appears in (5.6), since it is seen from (1.14) that the
numerator of the lower-right element of (5.5) is divisible by the
denominator, with the disappeararice of’d‘2 in this element.

Section VI. Order of Magnitude of Interactions for a Small Sphere
Suspension.

Now we take the shape S of Section II to be a sphere of radius
r' with center at a, and will consider the r'-dependence of the
average waves scattered by the sphere into the ambient fluid. A
wave _130 incident on S can be expanded about a in terms of spherical
waves. The resulting total excitation ﬁ incident on a typical
particle P at ﬁ in S is then assumed (in the present self-consistent
formulation) to vary with 3 in the same way that a physical wave-

field depends on P when the material of S is homogeneous; i.e., the

-

P-dependence of the excitation of P is that of solutions of the
scalar wave equation with some effective propagation constant kf.
(We take k' as representing, in general, any of the possibly several
propagation constants of the equivalent homogeneous medium.) Thus
the general term in the excitation of P is of the form

£(x',p - a)ﬁ(k;Z$), where 35 is the position vector, with respect

to P, of a general point in the neighborhood of p. ‘W?k:Zﬁ) in
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turn causes P to scatter a set of outgoing waves, which excite T at
f, the general term in the expansion of this particular excitation
being of the form Af'(k,p -'%jﬁ(k,E%) where At is position vector
with respect to %, and A is some scattering coefficient.

Thus the excitation of T due to scéttering from P has the

- - a 2 a -

general term AW(k,at)f(k',p -q)f'(k,p - t). To get the average
excitation of T, in accord with the self-consistent formulation, we

then multiply the above by Ndv and volume-integrate, with respect to

-
P, over S - s, where s is a small sphere of radius re interior to S,

and centered on %. The order of magnitude of this wvolume integral
is discussed in the last section of Section I: when |kr'l<< 1,
\k‘rﬂ << 1, the integral depends on r' as r”n, n > 2, except when
the excitation of T depends on ? as fl(k,g — §) or fl(k‘;g —a).

We now consider the magnitude of the effect of T's 'exceptional!
excitation which is of the form k—BNAﬁ(k,Z%)fl(k or k', t - 7).
(This is of the order kr' or k'r' because of the fl factor.) The
general term of the resulting séattering to the observation point
U outside S is of the form k_BNAA'ﬁm(k;ﬁ —'%)fl, where A' is a
scattering coefficient possibly different from A. The total wave,
arising from this term, is found by again multiplying it by Ndv and
integrating with respect to ? over S, For this purpose we then ex-

—_
pand W'(k, T -t) about a; in this expansion the sole term that will

survive the integration is of the form fl(k, t - ajﬁw(k,'ﬁ - ).
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Therefore the resulting contribution to the average scattering at ﬁ
..32 - - Y
is different by a numerical factor only from k "N AA'Wi(k, u - Q)
’

ojgsl(kr)jl(k"r)rzdr (k" = k or k'); the integral is O(k"kArﬁ‘. (6.1)

For comparison, we determine the scattering when T is assumed

. = < 2

excited by the incident wave Wo(k,S% + %t - q) oply. This wave has

an expansion with terms:

(k, § - Q) W (6,38 + 0(ier')” (6.2)

£ (x, % “)’ﬁ<)k'2%)+f
00" ETANSS 1

o~
where ﬁo(k,E%) is formallyidentical with the incident Woa Re-

L4

SN P
placing the Ho’ W, by the appropriate scattered waves, expanding

1
them about §, mﬁltiplying by Ndv and integrating on E over S, we find
that the first term®(6.2) yields [1 + O(kzr'25] times (Nv'= NAnr'B/B)
times the average scattering to ﬁ of ‘particles placed individually
at a and illuminated by ﬁo,lbeing of ‘order' Nv'A. By the analysis
leading to (6.1), the fi? term of (6.1) yields scattering of order
NA(er'Z)v' and the remaining terms of (6.1) clearly give contri-
butions of this order or less.

Gathering results together, we find that, for r' small, and
for a fixed incident wave in the ambient fluid, the sphere S of
suspension scatters, on the average, a wave equal to (&nNr'B/B)
times the average wave scattered by the individual, isolated
particles, placed one at a time &ta , the locus of the center of S.

2
This statement is in error by terms of relative order (kr')  or

2
(k'r")” where k' is any one of the propagation constants effective
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for the suspension, Consequences of these conclusions are explored

in Section VII,
Section VII, Physjcal Propert of Fine Suspensions
A, General Theory

To measure the properties of some substance, one would form a
simple shape of the substance, immerse the shape in a fluid of
known properties, illuminate the shape with a known wave of
frequency w, and measure the fleld scattered by the shape, Then,
in the linear reletions (scattering coefficients) between the inci-
dent and scattered fields given in terms of the properties of the
fluid and of the substance, one substitutes the measured scattering
coefficients and solves for the properties of the substance, One
theoretical procedure is to compute the average scattering
coefficients for a simple shape formed of the suspension, in terms
of the scattering coefficients of the suspended particles; these
average scattering coefficients then play the role of those
measured experimentally in the inference of unknown (effective, or
average) properties of the suspension,

For computational purposes, the simplest shape, formed of the
suspension, is a small sphere; this sample-sphere is immersed conceptu-
ally in a bath of the fluid constituent, so as to avoid introduction
of an irrelevant set of physical properties, We are dealing with

rendomly distributed, small particles, so that the radius r' of
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the sample sphere can be quite small also (r"/L << 1), The ex-
citation of a typical particle in the sample sphere consists of
the original incident wave plus scattering from all the other
particles in the sample. Since the sample is small, the number of
other particles is small, and heuristically, the scattered ex-
citation appears negligible (of order r'/L or r"2/L2, say) compared
with that of the incident wave. (In Section VI, it was shown,
through a self-consistent formulation and the use of addition
formulas for spherical waves, that the scattered excitation is
indeed relatively negligible for small particles. We give in the
Appendix an alternative heuristic demonstration that scattered ex-
citation can be ignored;: the argument also holds for anistropic
media in which spherical waves are inapplicable.)

All particles in the sample are close to its center (which is
at p, say), and the scattering from any particle (to the 'measuring
probe! at some fixed distance from the sample) can be regarded as
having originated at p, with a small relative error of order (r'/L).
It follows that, with small error, the total wave scattered by the
sample sphere is the sum of waves scattered by the individual par-
ticles of the sample, where the wave scattered by each particle may
be measured' by placing the particle by itself at ﬁ and illuminating
it with the common incident wave. From the finite radius r' of the
sample-sphere arises the small error (of maximum order r'/L,

heuristically) owing to interactions and eccentricity. The
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magnitude of these errors is discussed in Appendix
We may express these conclusions quantitatively., Let Nt be the
number, per unit volume, or particles of type t in the suspension,

let A .o. be scattering coefficients, effective at w, for the

t’Bt’
particle of type t relative to the fluid, and let A', B', ... be

analogous scattering coefficients for the sample sphere relative to

the fluid., Then
A' = (zmr'B/a)thtAt (1 + o(rt/1) (7.1)

Equation (7.) expresses the scattering coefficients A',B',...
of the sample sphere of radius r!, in terms of corresponding
scattering coefficients At’Bt for the particles. To deduce the
bulk physical properties (a',b',...) of the suspension, we use the
formulas for the scattering coefficients in terms of r', of a',b',...
and of a, b, ..., the corresponding properties of the fluid. For
small spheres, the dominant scattering coefficients are generally

volume proportional.

AY = (Aﬂr'3/3) GA(a,b,...)FA(a,b,...;a', b',...) (7.2)
where the subscript A denotes that the factors G, F are those ap-
propriate for scattering of the type to which the coefficients
AT, At pertain. (The error in (7.2) will be ignored; it is of

2
order (r!'/L). See Appendix .) From (1) we therefore obtain

FA(a,b,...;a'b'...) = (l/GA)ZtNtAt. (7.3)
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If the particle of type t is a sphere of radius ry and physical

properties at’bt""’ then its scattering ccefficient A, (relative to
the ambient fluid) is of the form (2), with subscripts t replacing the
primes, The volume fraction f, occupied by the spherical particles of

type t is then Nt(AﬂrtB/B); in this case we therefore have

F,(ybyeens ahb'yeis) = EOF, (8yby000s apsbysees)

vtaA (7.48)

Thus we have deduced for each volume proportional scattering coef-
ficient A,B,..., a relation connecting the bulk properties a',b',...
of the suspension of the fluid, and with the analogous properties
and volume-fractions of the various kinds of spherical suspended
particles,

If all particles are of the same material, with constants
al’bl”‘°’ then the right side is independent of the distribution
of radii and we have

F(a,byuee; a',b',.00) =2 £1 Fla,byuens al’bl”") (7.4b)

Bach type of volume-proportional scattering gives a relation of
the form (7.2) or (7.4) among the relevant constants of the sus-
pension, the fluid, and the spherical psrticles, A full set of
such relations then provides a number of simultaneous equations
which may be solved for the constents of the suspension, Similarly,
one can solve a set of relations of the form (7.3) for the constants
of the suspension in terms of the scattering coefficients of the

particles, if the point=~particles scatter only those waves for which
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A' is volume-proportional; otherwise the sphere's volume (Aﬂr'B/B)
cannot be factored out of (7.2) to obtain (7.3). This fact appears
to exclude the assignment of effective constants to the suspension
when the particles produce higher-order scattering.

The formulas (7.2), (7.3), (7.4) are too general for fruitful
discussion of such composition laws, and we therefore turn to par-
ticular cases, considering first the case of electromagnetic

waves,

B. The Electromagnetic Case

In the electromagnetic case, we consider, as the fluid, any
homogeneous medium described by the complex dielectric constant,€ ,
and the complex permeability%/L, both constants being those effective
at angular frequencyw. Then plane waves propagate in the pure fluid
according to exp(ikx - iwt) where the propagation constant k is
given by kz':*ﬂikeo Let the suspension have the similar constants
€' and/¢ﬂ and let some of the suspension be formed into a small
sphere of radius r. Let Bs be the scattering coefficient, of the
small sphere, connecting the scattered electric dipole wave with an
incident electric dipole excitation, and let As be the similar co-
efficient for magnetic dipole waves. Let Bt’ At be similar
scattering coefficients for the particles. The two types of

waves are linearly independent, and we finds) that

5) J. A. Stratton: "Electromagnetic Theory" (McGraw-Hill 1941), Ch.7,
and Sect. 9.25. In Formula (39), p. 571, the right side of the
first equation should be multiplied by 2.
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B = 2ik’r . €' € 3 A =2ikT oM =, (7.5)
3 e r2e ° 3 oy

Hence, from (2) we have

€' —¢ = —Zik—Bﬂ ftNtBt; M =M = -Zik—BI\ ZtNtAt (7.6)
' + 26 3 P20 3

If, in turn the scattering particle of type t is a sphere of

radius Ty constants 6t9“t’ then we have, from (7.3%

¢ -¢ =3 r €t € LM =35, Mt - M
g +26 ™ €, + 26 fA+ 2 M+ 2u )

(7.7)

where ft = AnrtBN/B is the volume-fraction occupied by the particles
of type t.

The 'composition laws' (7.7) will be recognized as the
Clausius-Mossotti laws for dielectric constant and permeability,
rearranged for convenience in handling differences among the
properties of the suspended spherical particles. If the particles
are all of a single type, these laws become rearrangements of the
formulas of LeWiné). (The same may be said of (7.6), if allowances
for differences in notations are made. Lewin arrays his particles

in a cubical lattice but replaces sums over the lattice with in-

tegrals; this replacement removes the lattice spacing from the

6) L. Lewin, "The Electrical Constants of a Material Loaded with
Spherical Particles," Inst. of Elec. Engr. Journal, Part IIT,
Vol. 94, pp 65-68, 1947.
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resulting formulas, and is equivalent to an assumption that the
particles are randomly arrayed.)

The laws (7.7) must be interpreted as relations among these
€'s and M's which are effective at angular frequency w. To use
them for information about the statically measured dielectric
constant and premeability leads to incorrect inferences., To
illustrate this point, let the materials have finite conductivities,
¢ and - The fluid's dielectric constant, effective at w, is
then (in MKS units) €, + io/where €  1is some dielectric constant
necessarily measured under the time-varying conditions owing to
the non-vanishing relaxation time 0/%bu (fn a steady-state

measurement, one necessarily measuresd.) Relation (7.7) now

becomes
/ L(c! (5, - )
wlé, -€,)+L(0-¢) - w(ém-éo)fb \
u)(éo/+1eo)+\l(o"+16> VW€ tue ) (G 1)

(7.8)

When conductivities are finite, a steady voltage gradient applied
to the material results in the flow of current of amount determined
by the effective conductivity, ¢ ', obtained from (7.8) by setting
W= 0. Setting W =0 yields an expression for e"o in terms of éola
But the equality in (7.8) fails for general W if these values of 4
and*ﬁé are inserted. Hence we conclude that the general formulas

(7.3) and (7.4) apply only among the effective constants.
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With highly conductive particles, it is possible that ka << 1

for particle radius a commensurable with wavelength in the particles.

Here the scattering coefficients depend on the particle radii5), and
the application of (7.3) and (7.5) leads to
' 26§, (k,2) - €[(x,a) 3, (ka)]"
€
€ _ qu(a) 19171 177 "1™ (7.9)
1+ 0€ '
e 26,3, (ka) + 26{(k1a) jl(kla)]

/A' A =S () 31 () ')‘[(kla) Jy (kpa)]!

a

A2 243 (kja) + ?7"{1‘15‘) jl(kla)]'

where f(a) is the volume concentration of the particles of radius a,

andZEaf(a) =f Formulas (7.9) are required in computing the losses

ll
1 .
arising from a skin depth (4;%,)”% comparable with particle radius.

In the limit of & 7% [ka|> 2, we get

€' €= ¢ 1M o= A
l, 2 1.
C' +2€ /ﬁ' +2/“ (7.10)

Heuristically, the two expressions of (7.10) differ in form be-

cause of the fact that electric lines of force end in the perfectly
conducting particles, whereas magnetic lines of force must pass
around the particles. |[One sets e‘t =00, but/u«t = 0 in (7.7) to obtain

(7.10)]. A similar visualization applies to the conductivity relation
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obtained by setting w = O in (7.8):

/
r-9 _f G-C (7.11)
Tle2l ! 0, + 20
which yields
o'-a _ {Ft?m':w (7.12)
, - B .
'+ 20 -2L~-F1.)a*,—0

When Ui = 0© , lines of current-flow end in the particles, but when
g =z 0, current flows around the particles, Finally when
51/0' >>1, (11) may be rewritten as ¢' = d(1 + Zfl) (1 - fl)
80 that g'-> 0 when ¢ - 0, a result required by the fact that, for
current to flow through the suspension, it must somewhere flow through
the fluid,
C. Acoustic Case

We turn now to physl cal properties important in the propagation
of small-amplitude acoustic waves, The scattering coefficients to
be used here are those found or implied in the recent paper of
Epsteia and Carhart7). In this work, the relevent physical parameters
appear to be density (), shear viscosity ('] ), bulk viscosity ()
thermal conductivity (7/), the usual specific heats (Cp,Cv), and oX,

the temperature coefficient of volume expansion at constant pressure.

7) P.S, Epstein, and R,R, Carhart, "The Absorption of Sound in
Suspensions and Emulsions, I, Water Fog in Air,"™ J, Acoust,
Soc, Amer,, Vol, 25, pp 553=565, 1953.
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In the usual treatment, one takesi= O a priori, and the thermal
effects are ignored or lumped phenomenologically in a compressibility,
m = Q'WDC/CDP ), where p = pressure., For isothermal conditions ? can

be neglected and we may deduce an B

-1
| = 07 @p/or), = T/ (ee g0 ).
(Toh= mean, or 'undisturbed! temperature.) Likewise, under adiabatic
conditions,? can have no effect; here we deduce the compressibility
my = mTCv/Cp = mT/z{ .

Epstein and Carhart deal primarily with the propagation of
dilatational waves in suspensions; for this purpose they compute two
scattering coefficients, Aj and Al' The coefficient Al relates di-
latational dipole scattering with dilatational dipole excitation.

Some of these scattering coefficients are given in Section IX.
Here the particle moves relatively to the viscous fluid, so that
shear waves are also scattered; the scattering coeffieicnt is Clo

One may also assume a shear-wave dipole excitation, and compute

the scattering coefficients Al" and Cl" for the resulting scattered

dilatational and shear waves, All four of these coefficients are
volume-proportional and arise from essentially the same set of four
simultaneous boundary condition equations. One might reasonably
expect that the application of (7.4) would lead to the determination
of the composition laws for four of the physical parameters, or at
least forp andr], the two parameters most relevant for the dipole

scattering. The only constant of the particle material which appears
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explicitly in the leading, volume-proportional, term in each of the

four coefficients is P, and the application of (7.4) leads to

o' = £,p, + £P (7.13)

in each of the four cases, without contradiction or further information.

From the four simultaneous equations expressing the boundary
conditions for monopole (spherically symmetric) waves, one can com-
pute the volume-propertional coefficiernts Ao, Bo’ Ao“, Bo". The first
two pertain respectively to the radial dilatational and thermal waves
scattered when a purely radial dilatational wave is incident, and the
last two have similar meanings for radially incident thermal waves.
By systematically applying the approximations of the Epstein-Carhart
paper, carrying only terms of lowest order in the particles's radius,
one obtains the four monopole coefficients in reasonably compact form.

Applying (7.4) first to BOU, one obtains

e'Cp' = fpCp + £,0.Cp. (7.14)
This result simplified the application of (7.4) to A and Ao"; both
coefficients yleld
LI— . .1
o = fH £l (7.15)

After using both (7.14) and (7.15) to simplify the application of

(7.4) to A one obtains
mp' = fmg + fymyy (7.16)

We gain further information by calculating the scattering
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coefficients appropriate to incident thermal waves of a dipole character,
Here the coefficient for scattered thermal dipole waves yields the com-

position law for thermal conductivity.

= 4
Il'_:_'t_ = fl%l_z_*c (7.17)
T'+2r7% 1

The coefficients for scattered shear and dilatational waves yield no
new laws, being combinations of (7.17) and (7.13).

The angular frequency sppears explicitly in the dielectric law
(7.8); to obtain analogous acoustic expressions would require carrying
the relevent propagation constants without approximation. Acoustic
analogues of the 'skin-depth' formulas (7.9) may also be obtained
at the expense of algebra; this case, however, is not so interesting
as the case where the suspended particles are relatively rigid and
of sizes comparable with thermal and shear wavelengths in the field.
[See Section VII, E.]

The truth and significance of the four "additive" composition laws
(7.13) through (7.16) are obvious. The association of the density
composition law (7.13) with dipole scattering coefficients seems to
arise from the fact that except in the 'thermal' case the dipole
scattering coefficients are volume-proportional only if \Pl - P\? 0.
For the force tending to move the particle relative to the fluid in
the oscillatory acceleration-field is of the nature of a buoyancy
proportional to the mass of the particle minus the mass of the dis-

placed fluid, a force vanishing if fﬂ = ?. The composition law
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(7.14) essentially gives the heat necessary to raise a unit mass of
suspension a unit temperature at constant pressure; the law seems an
appropriate deduction from the coefficisnt connecting between thermal
incident and scattered waves. Analogously, the &('s, connected through
the law (7.15), are physical constants relating a thermal cause and a

mechanical effect, in keeping with the derivation of (7,15) from A;’
and Bo’ Both of these coefficients relate thermal with dilatational

waves, and the fact that both lead to the same composition law sug-
gests some underlying reciprocity principle. Only mechanical effects
are associated with A and the resulting law (7.16). The reason this
law concerns mT‘rather than mA seems to be that the particles have
been assumed small enough so that they are in local thermal equili-
brium with the fluid.

Finally, since steady-state electrical and thermal conduction
are entirely similar, the formal identity of the Clausius-Mossotti
laws (7.17) and (7.11) is not surprising. It is interesting to
note that (7.17) is derived from the scattering coefficient connect-

ing thermal dilatational incident and scattered dipole waves, whereas

(7.11) was derived indirectly from a scattering coefficient for

electric, transverse, dipole waves,

For acoustic waves in homogeneous substances, the dilatational
propagation constant k is given by k :LO(mQ)%' to an accuracy im-
proving withW¥0. If one ignores thermal waves (by setting ¥ = 0),

the dipole scattering coefficients A, Cy, Ay", C1" remain
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practically unaltered, while the sole monopole coefficient is Ao,
In the small-redius limit, this 4 would lead to the composition law
m', = fgﬂ + £;m,,. The law (7.16) is the pertinent one, The thermal
equilibrium is reached by the flow of heat between particles and fluid,
On thermodynemic grounds, this flow of heat should lead to an energy
loss from the wave propagating through the suspension. But the im=
plicit assumption has been that the suspension is passing through a
series of reversible equilibriums, so that no heat losses are entailed,
For a strictly rotational incident velocity field, the mrticle's
moment of inertia, rather than its mass, determines the magnitude of
the scattering, so that the scattering coefficient is of order r5.
For a shear velocity field, the scattering coefficient is volume-

proportional and leads to a composition law for viscosity, This law

is derived in Sub-section VII, D.

D, Composition Lews for Elastic Constants and Viscosities

For the spherical scatterers, we have so far encountered only, two
formally different composition laws; Those for €, p, ¢ , and T, of
which the laws (7.7) may be taken as typical examples, and those for
P and m, of which (7.13) may be taken as typical, The first law (7.7)
is simply the Clausius-Mossotti law, rearranged algebraically in a
manner convient for taking into account suspended particles of
differing dielectric constants, The additive law (7.13) states simply

that the mass of a unit volume of suspensions is the sum of the masses

of the component materials in the unit volume, a law probably well
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known to Archimedes. If we visualize non-oscillatory measurements
(W=0) of the various properties, the Clausius-Mossotti composition
law appears when in the visualized measurements, the particles affect
a vector field of force or steady flow, whereas the additive law ap-
pears when they affect some scalar property, such as a pressure-
volume relation in the case-of m, (It might be objected that a
density measurement requires an acceleration-field, but the dense
particles do not disturb the field in any way, so that their effect
can be construed as scalar)

When the viscosity or shear modulus of the suspension is being
measured, the particles affect tensor relations and the corresponding
composition laws are not expected to follow the additive or the
Clausius-Mossotti form. The scattering coefficients required in
finding these laws by the present method do not seem to be given
explicity in the literature, and will now be derived.

We now compute the volume-proportional scattering coefficients
pertaining to scattering by a solid sphere embedded in a second
solid, thermal effects being ignored. Prom these coefficients,
we deduce the composition laws for density, Q, and for the Lamé
constants, A and/&. From the law for the shear modulus, X, we
deduce the composition law for fluid viscosity,rv; the particular
reason for this roundabout derivation will be given subsequently.

For axially symmetric motions, the dilatational and shear-wave

scattering coefficients (An and Cn’ respectively) are to be computed

58



8)

through four simultaneous boundary-condition equations
aj '(a) +A ah '(a) - n(n + 1)Ch (c) = A 'a'j '(a') ~ n(n + 1)c_ ' (c")
Sn(a) = A b (a) =C [h () +eh "(c]] =4 '3 (a') -C 'l (c*) +e'j *(c')]
(7.19)
. 2 2 -
a12dp'(a) =i (a) +A [ah '(a) -h_(a] -(1/2)cn§_c h1*(e) +(n” + n-2)n (c)
2 .
= g A 1ty (ar) -3 (an)]) - (1/2)0 '(er?y tr(e) + (a0 + n-2)y ()]
(7.20)
20 . 2 ¢
2" [Nip(a)-2p3p "' (a)] +a%4 A by (a)-2un, 17 (a) +pun(n1)C, [eh *(c)-h (c)]
= at?A LAV (a1)-2pr) (2] +p2n(nel)C_1Tetd, () - § €.
(7.21)
The first two express continuity of (radial and tangential) velocity
at the surface of a sphere of small radius r and of substance de-
scribed bye', ) /4', and the last two express the balance of (tangen-
tial and radial) forces across the boundary. Here the outgoing and

spherical Bessel functions hp(x) = hn(l)(X) and j, (x) both satisfy

Jp = x[jn—l +jn+ﬂ /(2n+1)

xiy' = x[nj ;) - (0+1)i] /(2n41) (7.22)

2 2
X j 'V 4 2xj '+ x5 -n(ntl)j, =0
n n Jn n (7023)

8) P. Epstein, "On the Absorptions of Sound Waves in Suspensions and
Emulsions," (Eq. 25), Theodore von Karman Anniversary Volume, 1941.
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Also, for |x| &« 1,

J (x)p x"nt 2" (x)~ =1 & (2n)! (7.24)
R 75 ) P ) = m32”§)I

Pinally a% = Wor'p /(N + 2, o =w°rp e (7.25)
with similar definitions for a', c'.
We are interested here only in the limiting case |a| << 1,|c|<« 1.

For the spherically symmetric case n = 0, only dilatational waves are
involved, and the ‘tangential’ equations (7.19) and (7.20) do not apply;
setting n = 0 in (7.18) and (7.21) and applying the identities (7.22),
(7.23) we obtain

. : . 2,2 o

5 (a) + gy(a) + A [n (a) + hy(al] = &_t(ar*/a”) [§_(a') + ,(a")]

3c2j0(a) - Aaz[jo(a) + jz(a)] i Ao{ﬁczho(a) - Aaz[bo(a) + hg(&ﬂ}
= R/ 3erig(a) - 4a® [ (ar) + gp(ar)]]

respectively. Applying the expansions (7.24), we have

e \
1 - 3ia Ay = (at /a) AO“) (7.26)
2 2, 2 - 2 2
(3c - 42 ) + 42 3ia 3 A, = g;ﬂ{}o (3¢ - 4a17] A" (7.27)
Solving for A,, and applying (7.25), we obtain
31a40° = (3N + 2M0) - (3N+ 210 (7.28)
NI

For n > 1, we find that, with the identities (7.22), the combinations
(18) + (n + 1)(19) and (18) - n(19) yield, respectively, the 'new’

velocity equations

60



aj__,(a) + Ajan (a) = (n¥1)G ch  (c) = A ta'j ,(a') -
-(n#1)C 'c'jy_1(c") (7.29)

3 - gt ? ? 3 §
a3n+l(a) * Anahn+l(a) + nCnchn+l(c) An a jn+l(a ) + nC_ cVJn+l(c ).

(7.30)
In the force equations, we first eliminate the second de-

rivatives through (7.23), then in (7.21), use (7.25) to eliminate

the explicit appearance of . Then (7.20) - 2(n+1)(7.21) and

(7.20) +n2(7.21) result in the simplified force equations

)A{czjn(a) ~ 2(n-1)ajy_1(a) + A 0 (a) - 2(n-1)ah_; (a)]
- Cﬂ(n+l)[gzhn(c) - (n-l)chrvq(c) =
)Al{An'chjn(a') - 2(n-1)ary (e1)] - o () ey (e )-2(n1)ers, (o]
(7.31)
Ak{czjn(a) - 2(n+2)ajn+l(a) + An[pzhn(a) - 2(n+2)ahn+l(aﬂ
+ nCn[pzhn(c) - 2(n+2)chn+1(ci] =
/ﬂ{%n'[?zjn(a') - 2(n+2)a'jn+1(a'a *-nCn'[ézjn(c) ﬁ&n+2)c'jn+l(cvﬂ}
(7.32)
For a general solution, it might be convenient to subtract
[2n + 1)c® - (2n + 2)](7.30) from (7.32); in the present small-

radius case, after this step and the substitution of the expansions

(7.24), one obtains a consistent set of four independent equations in
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which A,C,A',C' are of order a3, c3, 1, 1 respectively, for n = 1,2.
This last equation is not required, however, since (to the present
order of approximation) the right-hand side of (7.30) vanishes, and
those of (7.29) and (7.31) differ by a constant factor. To obtain A,C
we then need only the first three equations, with (say) the A' terms
eliminated.

For n = 1, in (7.31) we then factor out )Acz, then apply (7.22)
and substract (7.26), and then substitute //\'c"?'/ (}Acz) =€'/€. With
the expansions (7.24), equations (7.29), (7.30), and (7.31) become

0 - 31&’2Al - 31c-2cl =0

a - iA, + 2iC

== ! = 2! 1
1 1 = 2e'Cy (or a 2e'Cy )

0 - Bia—zAl + 6ic—201 =R -1l (=2et)c) .

Solving, we have A & 1&3(3' —g)/(9g), c, = -iacz(g' -e)/(9e). (7.33)
For completeness, we compute the scattering coefficients Al" and
Cl" for the case that the incident excitation is the axially symmetric
shear wave of order n = 1, As may be obvious, the last set of
simultaneous equations is changed only by the appearance of -2¢ in

place of a as the leading term of the second equation, so that

”

Ay = _gcAl/a, c.n = -2cCl/ao

1
For n = 2, we again omit (7.32) and obtain from (7.29), (7.30),

(7.31) respectively
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2 -1 . -1 2 . ~3 -3 _ A,
- * = _C ‘¢! O+Ag°+2Cc” = 0;
2</3 iAZa 31020 2 c 3 2 5

2 . 2 24 =3 . -1 _ 2
- 2a /3 - 1A2[}c - 2a Ja + 31C20 = ZC'Z(fU/yoc'

Including the case of shear excitation {again with doubly primed

2 2,2 )
coefficients) we have A2" = (-302/a )AZ’ Gyt = (=3c"/a )02532 =-(1/2)Ag,

A, = Aadupp - M/
(N + 2/,0.(2/,\: + B)A) + 4 (/w -/A) (7.34)

Now we apply the theorem (7.4) (using for simplicity, particles

of constants p., >‘1’/‘1’ with2 £, = fl) to obtain the composition

laws
(GA' + 2u') - GA+ 20) = £ (g *+24) 3 3+ 2
Chrapl Bt Ohy + )+ ipt
(7.35)
Q'-Q = £(p -P) (7.36)
QA M - £ M- M
3(X+2)«)(2/u+3/*) + A)A(,u'—/u) 3(M2R) (g +3p) + Al =10
(7.37 )

from coefficients of order n = 0, 1, 2, respectively. The law (7.36)

is the familiar density law (7.13).
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The conversion of these laws into composition laws for emulsions
of viscous fluids (in which thermal effects are to be neglected)
proceeds via the scheme 3/(3)\+ %ﬁ&;»m (m = compressibility),

M ~ivn (rl = viscosity), f-) e (€= density). Here \Orl<< 1/m for
practical substances and frequencies (i.e. a2<3L c2) and we may
simplify the composition laws through ignoring terms of order
.az/ cz~ mu)q:

m' -m=f(m -m) (7.38)

A-n f1"'\1 -1

20 + 37\ 20, + 31 (7.39)
The law (7.38) is identical with (7.16); (7.39) is the sought-for
law of combination of viscosities,

The viscosity law (39) arcse from the fact that the 'quadrupole’

scattering coefficients A2, CZ’ Az“, Co" are volume proportionsl.
In the simultaneous boundary-condition equations for the fluid
sphere, Epstein'sg) analogue of the present (7.21) differs from
the corresponding equation of Epstein and Carhartlo) by terms of

2
relative order az/c . In neither case does the analogue of the

italicized step leading to (7.31) and (7.32) appear possible;

9) See footnote 8 on p. 59

10) See footnote 7 on p. 53
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the consequence is that A2, etc., are not volume proportional unless
further judicious use of a2/c%=’0 is made. Hence the present round-
about derivation of (7.39) via the ‘elastic' laws.

Properties of composite media containing completely rigid sus-
pended spheres are to be found by setting A, =c»,/ﬁ%:‘(ml = 0) in
(7.35) through (7.39). For bulk pfoperties when the suspended
particles are completely soft, one sets)\l = 0,/141 =0 (ml = o0) on
the right sides of these equations. 1In particular, the viscosity WV

of a suspension of rigid spheres may now be written as

L 1+ (3/2)
' = F 1o f)[l + (5/2)1‘l + (5/2)‘12] (7.40)

Comparison should be made between this viscosity law and the

Einstein—Hughesll) law
1+ (1/2)f :
n' = g 1 ~ (ﬂ:l + (5/2)0, + 5f12] (7.41)
1- 2fl

The assumptions of the present derivation include that of negligible
physical contact between particles, a situation approximated in
viscous flows only for small volume-fractions of particles. Thus

the difference between the composition laws is probably academic.

11) A. J. Hughes, "The Einstein Relation between Relative Viscosity
and Volume Concentration of Suspensions of Spheres," Nature,
Vol. 173, pp 1089-1090, June 5, 1954.
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The same is true of a preference for the denominator 1 - fl of

(7.40) to the 1 - 2f. of the Einstein-Hughes formula; the latter

1
denominator yialds perfect rigidity as 50% concentration, and
negative viscosities for higher concentrations, which are achiev-

able without particle contact only on paper. The measurements

cited by Hughes compare about equally well with both (7.40) and

(7.41):
100f1 Observed (7.40) (7.41)
0.88 1.022 1.022 1.022
1.76 1.042 1.045 1.045
3.5 1.087 1.091 1.094
7.0 1.195 1.188 1.204
14.0 1.512 1.407 1.486

The writer believes that solid suspensions would be more convenient
for experimental verification of the analogous formula (7.37); at
least, the problem of colliding particles would be avoided. A
prediction for/Lﬁ should also be derivable along lines closely
paralleling the Einstein-Hughes derivation of r]“O

12)

Mackenzie has computed the elastic constants for a solid
containing spherical holes. We set‘klapl to zero in (7.35) and
(7.37). The former yields Mackenzie's result (7.7) if his holes
had been of uniform radius, while the latter agrees with eq. (7i19)

3 e
when our fl is small and/u 7“.

12) J. K. Mackenzie, Proc. Phys. Soc. Lond., Vol. 63B, p. 1, 1950
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To obtain the viscosity of a suspension of fluid spheres which
retain spherical shape owing to surface tension, we equate each side
of (7.18) to zero, (19) and (20), but ignore the radial force equation
(7.21). After some care with the approximations a «« ¢ & 1,

a'llc' & 1, we obtain an A, which, via (34), (4) and )\)7/\/\—)-\'.*3*])

2
yields
NN =p, Sht2N
2q' + 31) 10(N +1) (7.42)

For small f, where q'g'\, this becomes the result (Mackenzie's
eq. (26)) derived by G. I. Taylor.lB)

When & fluid has a finite coefficient of bulk viscosity, ¢ , the
value of qW) = 1/m(W) is effectively complex: for small vibrations
according to e’iwt, q(W) = q(0) - 1wW§. We have taken§ =0
previously, so that q, q; are independent of W. But an imaginary
term may be deducedfor q' when s ~1wn is retained in (7.35), which
now becomes (q' - q)/ (q! -4107/3) = fl(q,' q)/(ql— Aiuq/B). From

this we obtain

Ton(g) = -iwg’ = o h -0t oqm_f;g,w_q]"ﬂj

34 (1 +4,44)*

(7.43)

where y = Q/ql = ml/nm) f + £ =1 and vhere (7.38) gives m

13) G. I. Taylor, Proc. Roy. Soc. A. 138, 41, 1932,
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The formula becomes identical with the result of Taylor and Davieslﬁ),
vhen y >> 1, f1<K-l, the error term is small, and when m; is con-
strued to include surface tension effects, Our 3” -» 0 vhen y— 1, in
consonance with the idea that ?' depends on rl and must arise from
shear flow in the ambient fluid surrounding the particle: the flow
should be strictly dilatational when m) = m.

Even when computed exactly, our $'->so¢when m = O and £, - 0,
as does Ta ylor's. It therefore seems reasonable to explore the
attenuating effect ofi waves propagating through the suspension. To
get the propagation constant k' = k(w) =w(m(w) g')%, we therefore
compute m(w) = 1/q(wW) exactly, obtaining

vent & UW £ Cn, = om )P o TS n (0, A - /)
t +'W1(Ym‘+ m = ' )%

vm(b.)) =
(7.44)

where m' is as in (38), W= ALOY)/B. Hence

1 2 T 1 L9048, G e 00T
(7.45)

so that the attenustion per centimenter (2Im(k)) is proportional to

2
wWf, for small f1, and m > O. When m = 0, the attenuation per cm,

goes as {}021'13/2. Intuitively, for small f;, we expect Im(k) to be

14) Proc. Roy. Soc. 226A, pp 34-39, 1954
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proportional to the number of scatterers per cubic centimeter, i.e.,
to fl; thus the case m = 0 is either unsatisfactory, or it is
meaningless to talk of sound waves in an incompressible fluid.

For suspensions of very small spheres in fluids of finite com-
pressibility, we have obtained a reasonable,w-dependent acoustic
attenuation which arises from the fluid's viscosity and vanishes
when all compressibilities are the same. It should be pointed out
that equally important thermal effects have been ignored.

E. Acoustic Scattering by Particles of Finite Size

With regard to obtaining anu)—de;!)endence in some of the
acoustic composition laws, one original purpose of this paper was
to obtain a viscous loss term in the effective density of a suspension
of rigid spheres of radius a., It is well known that the viscous

loss depends on the parameter fa = a(we/2?)(l/2) 20 that (unless

one included the small effect probably obtained when all propaga-
tion constants are carried without approximation) scattering coef-
ficients showing viscous losses cannot be strictly volume-proportional,
and the present method is inapplicable. If however, we treat a as

an effective radius of a point particle, the ccefficient Ay leads to

pr = (fp + £,0,) + ik)(fl‘e)zo (97\'1.1'}_&&%(&) + o((sa)3 (7.46)
where f(a) = ZaNaA‘ﬁa:}s , and fl = Zaf(a), f = l—fl (Similar

derivations of E' from A", Gy, C{" differ from (7.46) and mutually
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by terms of order pa, unless further assumptions are made regarding

a).

The writer has a number of reservations concerning the applic-
ability of the previously derived 15516 o0 mla (7.46). The loss
term (on the right) is significant only whenfaa = 0(1), in which case
the interactions among the (finite) particles of the suspension are
not negligible, as assumed in the present derivation. A proper self-
consistent calculation of the interaction requires the assumption of
some radius of exclusion ae::2a, a minimum distance between interact-
ing particles. No such radius of exclusion appears in this or
previous derivations. (In deriving (7.46) the assumption of point-
particles also entailed the assumption ?an_4< 1.)

Finally, it is clear from the Epstein-Carhart paper17 that thermal
waves and viscous shear waves (in fluids) are of commensurable wave-
length, so that thermal losses should be commensurable with viscous

losses; thus the acoustic attenuation in suspensions is not predict-

able through a 'lossy! (' alone.

15. R. J. Urick and W. S. Ament, J. Acoust. Soc. Am., 21, p. 115
1949

16. W. S. Ament, J. Acoust. Soc. Am., 25, pp 638-641,(1953)

17. See footnote No. 7
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APPENDIX

We assume that an average unit volume of the suspension con-
sists of the fluid plus total of N point particles, defined through
scattering coefficients. We then select at random a number of small
spherical pamples of the suspension, insert the samples one at a
time in a bath of the fluid, measure a given scattering coefficient
of a similar sphere of some ‘'equivalent homogeneous material' having
physical properties equivalent to those of the suspension. With
randomly located point particles, the Poisson statistics apply, so
that the probability P(n) that n particles will be found in the
volume v' = 4ﬂr'3/§ of the sample-spheres is given by P(n) =
(Nv')ne -Nv’/n!. Then the average scattering S is determined
through S = E:ns(n)P(n), where S(n) is the scattering, on the av-
erage of those sample-spheres containing precisely n particles.
Since the samples containing no particles are continuous with the
surrounding fluid, they produce no scattering: S(0) =¢. With

r' at our disposal, we take it additionanysmall so that Nv'<&K 1;

we then have

S = (Nv') S(1) (7A.1)
(If r' is now taken so small that the scattering from any particle
may be considered as arising from the sample's center, to relative
order (r'/L), eq. (7A.1) is recognized as substantially identical

with eq. (7.1) of the text.) The error in (1) is seen to be of
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order (Nv')2(2). The relative error thus hinges on the magnitude
of S(2)/S(1); i.e., on the average magnitude of the net scattering
by two interacting particles separated by a distance less than 2r';
compared with the scattering by one of the particles. With small

interaction §(2)/8§(1)®2; with interaction producing some sort of

resonance in the two-particle scattering, one might have S(2)/S(1)
0(l/r'); but S(2)/s(l) = O(l/r'z) still leads to a negligible error,

.3n) the n > 2 terms are seen

since v' = 0(r'3). With P(n) = O(r
to contribute to the average S even more negligibly.

For finite particles, we can choose some fixed point, say
the center of gravity, of the particle, and say that the particle
is or is not in the sample sphere according as the fixed point is
or is not in the sphere. Then the probability P(n) that exactly
n finite-sized particles are in the sample is obviously smaller
than P(n) for point particles, so that the foregoing argument
again leads toNS 2 S(LYP(L)=(Nv')S(1).

The foregoing argument is heuristic, but is simple and to
the point. We have shown in Section VI that if a self-consistent
theory applies to propagation in the suspension, the error in (1)
is of relative order (k”r’)z, where k' is the propagation constant
of greatest magnitude effective for the fluid or for the suspension.
This error estimate includes both interactions within the sample-
sphere and the possible eccentricities of particles there.

It follows that any scattering coefficient A for the sample

sphere has a power series development in powers of r' starting out
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like

3 2
A =8 (1L+ecr') (7A.2)

where ¢ is a constant and where S, is a constant for a 'dominant'
volume-proportional scattering coefficients, but should be taken as
zero for the higher-order scattering because the physical particles
must be assumed small and therefore incapable of producing 'higher
order' scattering. It can be shown that (7A.2) is also the form
of the dominant scattering coefficients of a homogeneous sphere
(again of radius r' and immersed in the fluid), so that the error
estimate in (7A.2) is of the order of'magnitude required for an
equivalence of the suspension's properties with those of an equiva-
lent homogeneous material,

(Suppose one chooses sample-volumes having fixed ellipsoidal
shape and orientation. The present argument would suggest that
small ellipsoids made of a homogeneous substance have volume-
proportional scattering coefficlents which are independent of
eccentricity and orientation. But the scattering of a small
dielectric ellipsoid depends on its shape and orientation.

Hence the present argument is suspect, as is the Section's
main argument which would appear to lead also to shape-
independent scattering. This matter is treated more con-

structively in the 'Notes Added in Proof'.)

3



Section VIII - Approximations Va1id for Dilute Suspensions

A, Dilute Suspensions of Small Particles,

Following Rayleigh,18 we assume the suspension to fill a slab
between the z = O and the z = d planes, with kd << 1, and with the
remainder of space filled with the fluid, A plane wave transmitted
normally through the slab emerges with a relative amplitude equal to
unity (as if there were no particles in the slab) plus a plane wave
formed from the scattering of the particles, If the particles of
the slab interact negligibly (as is the case in the dilute limit),
the excitation of each particle is that from the expansion of the
incident wave Eeikz about the particle, From the scattering
coefficients and Table III we then compute the total plane wave

Eteikz in 2>d, Assuming no reflections at the slab's boundaries

3 ' 2 g
and a wave inside traveling as elk Z, we set Ereikd - Eelk d,

expand in powers of d, and obtain from the coefficients of at

¢ =k/k=1 -iwk % (20+1)(a *+b) (8.1)

G =k'/k=1 - 2niNk_32n‘o (2n + 1)a_ (8.2)

for the electromagnetic and acoustic cases, respectively, Here

N = number of (identical) particles per unit volume of suspension,

the scattering coefficients of (8,1) are given in Strattonl, those

18) Rayleigh, Scientific papers, Cambridge Univ. press, V. 4,
p. 397-405 (1892-1920); also in Phil, Mag. 47, 375-384, 1899,
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those of (8.2) in Epstein and Carhart7, and one can generalize to

a variety of particle types by replacing NA K by ZQ:NtAi;r , etc.

9, 19

i

The writer noticed that the superimposed scattering of

particles of the slab should also form in z { O a reflected plane

ikz’ where R (like T) may be calculated

wave traveling as ERe
through Table III., He then chose the effective physical proper-
ties of the suspension as those of an equally thick slab of

homogeneous material which would have produced the same R and T.

By expanding in powers of d and equating coefficients of dl, he

obtained
' -3
AL')% =\ - LAAN A g§odc| nyaartn (an+)Cp +
4 (8.3)
+2 QVCM\\OOMY\(MW\))O,\%)
TN .

%)‘E‘ = |~ L‘r“N £'3Zew.w V\) odd n (““H) An

(8.4)

for the electromagnetic (k2 =103M€) and dilatational acoustic

(k2 =l62m?) cases, respectively.

20 21
Darwin and Twersky apply a self-consistent calculation to

'suspensions! filling z > O, In place of the present 'sphere of

19. NRL Report No. R-3238
20. C. G. Darwin, Trans, Comb. Phil Soc. 23, 137-167, 1924

21, Verbal Communication
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exclusion' they assume (essentially) that a particle at (x,y,z')

receives no excitation from any other particle in z' - d' ¢ z ¢ z' + 4!
(kd" «< 1), Thus the particle's total excitation is deducible from
the expansions of forward and backward-traveling plane waves, For
normal incidence, the most general results of these assumptions are
identical with those derivable by the "method" just described. In
the electromagnetic case, the results (8,3) do not express the
Clausius-Mossottl laws, but give the leading terms of these laws
when they are developed in powers of N,

The acoustic case is more interesting. We note that the theory
of Section V gave k'/k as the product of two factors which were
verifiably m'AﬁmA and g'/g. The adiabatic compressibility of the
suspension m'A was computed as if fluid and particles in a small
region of the suspension were at the same temperature, a condition
valid under our assumption that the particles were extremely small.
This result was obtained by substituting the scattering coefficients
of (9.1) into (5.6). When the same coefficients [i.e., A, of (9.15]
are used in the low-concentration formula (8.14), we find that the
m' cannot be interpreted either as an adiabatic or as an isothermal
compressibility for the suspension, owing to the complicated de-
pendence of A on the physical constants. If we had included the
volume-proportional A2 in (8.4) the m' would not have been improved
as A2 involves the viscosities explicitly. On the other hand, terms

suggestive of the 'bulk viscosity' found in (7.43) might have appeared.
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A better deduction of m' by the 'thin slab' method leading to
would have been to compute the R and T of the slab for a plane

thermal incident wave as well as for the dilatational wave, Then the
m' would be computed as one of the properties of an equally thick slab
of homqgeneous material producing the same thermal as well as dilata-
tional R's and T's. Shear waves, which are transverse, would not

be encountered for normal incidence. (This seems to be the reason that
' of (8.4) is correct.) We have not performed this thermal wave
calculation and therefore cannot’say that the "thin slab’' method

gives a wrong m'. On the other hand, the acoustic k' of (8.2),
calculated by Rayleigh's method, is also incorrect when regarded

as an expansion of the 'correct' k' in powers of N. The error again
arises in the compressibility and is due to the structure of AOo

But this k' has generally been used in former theories of pro-
pagation in suspensions, The writer feels that theories of acoustic
waves in suspensions in which all coefficients of order O, 1, 2

are not taken account of are oversimplified, although in many

cases practical results may sgree closely with experiment.

B. Extinction and the Meaning of k'.

The 'average' plane wave in the present suspension travels ac-
cording to eik'z where k' is a complex-valued effective propagation
constant. To determine k' by the simple theory of part A, one
must measure a slab-thickness d and a plane-wave transmission co-
efficient, T. For the necessarily interferometric measurement of

the complex number T, we imagine an interferometer (immersed in
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the fluid) with which one measures the transmission coefficient

T! of a sample-slab (of thickness d) of some homogeneous sub-
stance of properties approximating those of the fluid. The
measurement is also possible when stray radiation from random,
fluctuating sources is added to the transmitted field. Forming
a set of sample slabs of suspension, we similarly measure a
complex Tg for each sample, and obtain T as the average of Ts
over the set, Alternatively, we visualize the particles in the
sample slab as swining randomly about in the sample slab and

measure T for the time-varying transmitted field just as T°'
was measured in the presence of stray radiation. This power
counts as so much receiver noise, (Similar conceptual inter-
ferometric measurements of average reflection coefficients R
and scattering coefficients Ai are obvious and will not be
described.)

Thus eik'z describes the propagation of an average coherent
(interferometrically measurable) plane wave in the suspension.
In the electromagnetic case, the power carried by this average

coherent waves is attenuated according to exp(-2zIm(k‘)); from

(8.1) we have (for k real)
NQ, = LTwm(£") = N§- e Z,:‘ (n+1) R._(a..\*rbn)}

where Qt is the 'extenction cross-section', or relative power

removed per particle from the aversge coherent plane wave. Part
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of the 'power removed' is converted into randomly scattered power such
as the 'stray radiation' of the interferometric measurement. Com-
puting in the usual way relative power randomly scattered per par-
ticle (when the exciting wave is plane and k is real) we have:
Q = Zﬂk'zz:;;l (2n + 1)(\an\2 + lbn\z ). When there are no ohmic
losses all 'power removed' sppears as randomly scattered power and
we must have Qg = Qt, by replacing h, by j, + inp in the general
electromagnetic scattering coefficient, one finds |anl2, |bn\2 =
-Re(an,bn) so that Q_ = Q; follows as a methematlcal identity.

(We suppose the particles in the slab of note (1) are opaque
and large compared with wavelength, and each has projected area A
on the z = 0 plane, and finally that NAd << 1 so that shadowing
of one by another can be ignored. Computed by Huygens' principle,
ray theory, or otherwise, T = 1 - NAd so that k'/k = 1 + iNA/k
and Qt = 2A, the well-known result that the extinction cross-
section of a large opaque object is twice the area of its geometric
shadow. About half of the 'power removed' by the opaque particle
is scattered in a cone subtending KA steradians, with center
parallel to the positive z-axis in the positive z direction. The
angular width is calculable by antenna theory (physical optics) and
the phase is such that the incident plane wave is canceled immediately
behind the particle, to form its shadow. If the particle were com-
pletely absorbing ('black', or 'matched to space') the forward

radiation remains, and we have an analogy to the fact that a resistor
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connected across a constant-voltag> generator dissipates maximum
power when equal power is lost in the generator's internal resistance.
We conceptually measure T and hence Qt interferometrically to dis-
criminate scattered power flowing at finite angles with the z
direction; this power has random phase if the particles swirled,

and would count as stray light, Van de Hulstzz) discriminates

against this stray light by measuring power remaining in the coherent
transmitted plane wave with a properly trained telescope of aperture
A'; the stray light's fractional contribution to the measured power

is made arbitrarily small by taking A'/A sufficiently large. The
large A' is obtainable as the area of a hole in a mask in the z = d
plane, with the discrimination A'/A being realized when the fixed-
aperture power-measuring device is placed at sufficient distance
along the ray through the hole's center; the results of Sinclair

and LaMer,zB) obtained with substantially this geomstry, confirm

Qt = 2A. Finally a relative power flux 1 - NAd flows (the principal
portion rectilinearly, by ray theory) through the slab, of which 1 -2NAd
retains phase-coherence with the originally incident plane wave. If

the particles were reflectionless half-wave plates (parallel to z = 0)

22) H. C. Van de Hulst, "On the Attenuation of Plane Waves by
Obstacles of Arbitrary Size and Form," Physica XV, No. 8-9,

Sept. 1949.

23) Sinclair, D., Light scattering by spherical particles, J. Optical
Soc. Am. 37, 475-480.
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the relative power flux is unity, the coherent portion is 1 - 4NA4,

and Qt = 4A; the forward-scattered radiation has the same phase but
twice the amplitude as that producing the shadow of the opaque particle,
It is hoped that misunderstandings of Van de Hulst's exposition will

be clarified by these supplementary remarks.)

We derive Qt as the imaginary part of an effective propagation
constant k', At least in the electromagnetic case, the writer
believes that an appropriate version of the Kramers-Kronig relation
should apply to k' = k'(W), so that Re(k') should be deductible from
Im(k') and vice versa, for all particle concentrations. For dilute |
suspensions, Q therefore should imply a perturbation (linear in N)
in propagation velocity.

The cross-sections Q, Qs do not apply for high concentrations
where interactions are important. The area Q;-Q  might be termed the
'cross-section for heat generation' and is the cross section required
for calculating the decay of energy in a reverberation chamber filled
with a dilute suspension. For the acoustic case, only dilatational
waves are measured (or propagate across the chamber) and we have

(power attenuation exponent) =

W) = ATEE 7, neLReh) + 1AV

(which has the same significance as eq. (13.3), ref. 7). With small

particles of radius r, the dominant scattering coefficients Ao, Al’ Ay
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are of order r? and their real parts are also of this order, owing

to shear and thermal losses. Therefore, as observed by Epstein and
Carhart, Qg = O(ré) (Rayleigh scattering) is relatively neglible.
Section IX - Critigque of Acoustic Methods and Results

As our methods and results in acoustic propagation problems

are incomplete and scattered through the text, we summarize them
here, point out the remaining difficulties, and close with remarks
on related problems.

The chief block toward more complete results in the acoustic
cases is the lack of accurate, sufficiently general scattering
coefficients. In the notation of Section VII C, Henry Passerini

and the writer have found the following coefficients;

! | / |
3A, = —iel {‘ ol (X-')[—Q—Sﬁ 24 +(‘(—|)MAB

3 p PCp A (X=1)rma

2B = —La*) (\‘d)[_f_‘gl ___OL']

° 3 PCp & )

' _: 3 v
3= 3b U— K_%z]
()' ) 5 (9.1)
3AJ':‘“°1Q[?'C’P _ z]
3 r C:15 A 1y

3B, = -1b> {(v'-1)/C2'+ 2],
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where Ag,Ac",Bo,Bo" are as in (5.4), where a (b) is sphere radius
times dilatational (thermal) propagation constant, and where use
has been made of the thermodynamic relation (Y -1) ma = "/(GC?).
The coefficients of orders 1 and 2 were found essentially as in
Section VII D, thermal effects being ignored in the calculations.
Some efforts were made to develop the coefficients of order O and 1
in powers of radius; the results have been remarked on in Section
VII E but are not reported, both because of lurking doubts &s to
the accuracy of the results and because, as menti§ned in Section V,
one needs similarly developed order-2 coefficients, and probably
the leading terms of the order-3, for consistency in applications.
(The derivations were made routinely from equations [9.i1 of the
Epstein-Carhart paper7; in addition to difficulties with this paper
mentioned after (7.39) and the use there of approximate propagation
constants, mentioned implicitly in Section V, Passerini's calcula-
tion differed from their result [}O.é] in the sign of the last
term. We have used Paséerini's sign, which is the minus before
the last term in curly brackets in the form of A,, above; this
choice of signs is responsible for the clean interpretation of (5.6)
in terms of adiabatic compressibilities.)

We have used available scattering coefficients here in three
theoretical approaches to acoustic propagation in suspensions. The

first, in Section V, should be regarded as illustrating the self-
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consistent method since we have not included the volume-proportional

eoefficients of order 2 in the formulation, nor have we properly
treated the variety of exclusion radii in practical suspensions.
Furthermore, the formulation should have produced the suspension's
thermal propagation constant., No doubt this would have occured had
the thermal dipole scattering (coefficient Bl" of (9.1)) been con-
sidered in (5.4), as now seems proper; what effect this might hawe
had on (5.6) is hard to imagine, The second method uses the general
theory of Section VII to achieve the results of VII C and VII D.
The latter contain some novelties, but one feels that explicit
w-dependencies would be found from exact scattering coefficients.
The third simple ‘thin slab' method of Section VIII is valid for
dilute suspensions; even here the results could be made moré
satisfactory by separating thermal and dilatational effects, a
separation ultimately worthwhile only if exact coefficients are
used.

Now we discuss the present theories against the background of
four incompletely explained experimental results. First, observations
at 1 Mc/s of the attenuation in a kaolin-in-water suspension versus
kaolin concentration, showed maximum attenuation at roughly 20% as

24), 25)
compared with a theoretical 38% concentration. ’ The feeling

24) R. J, Urick, "The Absorption of Sound in Suspensions of Irre§ular
Particles", J. Acous. Soc. Am. Vol. 20, No. 3, 283-389, May 1948

25) W. S. Ament, "Sound Propagation in Gross Mixtures", J Acous. Soc.
Am., Vol. 25, No. 4, 638-641, July 1953
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is that the losses are due to the kaolin particles' slipping with
respect to the water, and that thermal effects are relatively small.
Physically, attenuation would be reduced if, with increasing con-
centration, some mechanism made the variously sized particles move
in unison, which would happen if the viscosity of the water increased.
We altered the 'old' theory (apparently properly) by assuming that
the fluid's resistance D to motion a rigid particle of radius r
wes, instead of D = 6“%?’ D= 6nvrr, where t\ is the viscosity

of water, and ' the viscosity of the suspension given by (7.40).
The albebraically convenient epproximations ?l = 2.5, my =0 and
rzwp'/q << 1 then led to an attenuation maximum at 20.5% by the
modification as compared with 36.5% by the 'old' theory. If the
above modification q—a*fv is valid, then the present theories must
include the order-2 coefficients which led to (7.40), as these
theories (in Section VII E in particular) at best give substan-
tially the same prediction as the 'old' theory.

The second experimental resultzu) is an observation that the
attenuation of a kaolin suspension did not change substantially as
the water's viscosity was increased over a 100-to-1 range by addi-
tion of methyl cellulose. The strange negative result might be
explained by proper account of thermal losses; but then our
explanations of the first experiment are questionable.

In the third experiment,26) acoustic heat losses due to fogs

26) ?nudsin, Wilson, and Anderson, J. Acoust. Soc. Am. 20, 849
1948
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were measured in a reverberation chamber. (This is partially dis-
cussed in Section VIII)., Observed sound absorbtions were higher than
theoretical.7) Here it is possible that surface tension in the
droplets played some role; again an exact calculation of the
revelant scattering coefficients is called for.

Surface tension plajs a definite part in the fourth empirical
observation,zv)’ 28) that bubbles move to preferred positions in
standing sound waves in fluids. Here the problem of radiation
pressure is foreign, but the ’'thin-slab' method of Section VIII
gives a heuristic explanation. We take N identical bubbles per
unit volume of *thin-slab', of thickness d, placed parallel to the
wvave fronts of the standing plane wave system. It is easy enough
to calculate the radiation pressure F per unit area of slab from
its effective density ?9 and compressipility m': the result is,
with particle velocity = Vcos(wWt) cos (kx)

= Lovidad o jﬁ} in(% &
F &E £ [WM - aen( x)

where m,p represent properties of the fluid as usual. Then we use
the approximate equations (8.4), N being arbitrarily smalljand divide

by Nd to obtain the force on one bubble. More simply;for vanishingly

27) D. E. Goldman and G. R. Ringo, "Determination of Pressure Nodes
in Liquids," J. Acoust. Soc. A., Vol. 21, No. 3, p. 270, May 1949

28) F. G. Blake, Jr. "Bjerknes Forces in Stationary Sound Fields,"
J. Acoust. Soc. Am. Vol. 21, No. 5, p. 551, September 1949
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small bubbles, the additive laws apply for p', m' and m'/m - q'/% =
flEnl/m - 91/?], with f, being the volume fraction of air in the slab,
and with ?l’ my the properties of air. The result is that the bubble
migrates toward a pressure node when my = 0 or 1is effectively nega-
tive. Through a combination of surface tension and high compressi-
bility, bubbles resonate when much smaller than wavelength in the
fluid. The sign of Im(Ao) changes across resonance so that larger,
more visible, bubbles have effectively negative compressibilities

and are driven to pressure nodes, in agreement with observation.

This approach to radiation pressure is based on coherent
waves; the energy carried in random scattering is not used. The
error is unevaluable in the absence of a rigorous treatment of
radiation pressure on the bubble. Rigorous calculation would again
require rigorous scattering coefficients.

In sum, theories of acoustic propagation in suspensions where
particle sizes are comparable with shear and thermal wavelengths
remain in an unsatisfactory state. According to the writer, the
best hope of improvement lies in a rigorous application of the
methods of Section V; the chief obstacle here is lack of satis-
factory scattering coefficients including surface tension effects,
Section X - Optical‘Activitx

Now we introduce a volume-proportional effect which follows
no previous law of composition. This effect pertains to the iso-

tropic optical activity for electromagnetic waves. To introduce
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the new constant, Q , we first require some general statements
about optical activity.

A solution of sucrose in water is optically active, by which is
meant that a beam of linearly polarized light traveling through this
solution will have its plane of polarization rotated. This optical
activity is isotropic because of the rotation, per centimenter of
travel, is independent of the directions of propagation and of
original polarization. The effect may be explained by postulating
that the sugar molecules have certain peculiar scattering properties,

and are numerous, small, and randomly oriented.

We now consider simple model molecules which, in cumulative
effect, would produce optical activity. To produce activity, the
models must scatter, in the forward direction of a plane-polarized
incident wave, waves with polarization at some finite angle with
that of the incident wave. We first choose optically active particles
composed of isotropic materials shaped in such a way as to be char-
acterizable as right or left-handed. A turn of a right-handed
copper helix serves as an example. These shaped particles are
suspended in an isotropic but inactive ambient medium. For any fixed
arrangement of the particles, the suspension is everywhere describ-
able through the isotropic scalar electromagnetic constantsé&x,y,z),
/(x,y,z) (effective at angular frequencyw). For waves propagating
an inhomogeneous medium with space-varying tcalar constants, there
holds a reciprocal relation

NN N
[ E-Jy d(woty = [E,-J dvol),  (20.1)
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where'$ and § are the electric fields produced by the respective

! 2

2 S
current distributions Ji and Jé, and the volume integrals extend
over all space, If jl and 3; are fixed, but the shaped particles

- -—
are arbitrarily rearranged, so that new fields El‘, E2', are pro-

N N - -
duced, then _fEl"Jz, = _fE2'°Ji. For any particle rearrangement
- - Y -
(and fixed I Jé) the resulting fields E, and E, must likewise
satisfy (10.1), Hence the electric fields, gveraged over all
arrangements of the particles, must satisfy (10,1). We now regard
these average fields as those that would have been produced by the

homogeneous, isotropic, optically active medium to which the sus-

pension (suspension I) is equivalent, when the fixed source-

Y Y
currents are J,, Jé.

&lectromagnetic wave propagation thus takes place in the
homogeneous medium, I, equivalent to suspension I, according to
a versinn of Maxwell's equations in which there are new constants
producing optical activity, and for which the reciprocity relation

(10.1) holds, At angular frequency w the equations

- -~ -
VUXE —LWOMH - U)G.E =0
2 (10.2)

SN N LY "J

IXH + e E - we H=0

contain added isotropic constants @, @“ and have plane wave solu-

tions with rotating polarization. But (10,1) holds if and only if

g" = G. (The proof of this statement for e = F(x,y,z),

89"



mo= u(x,y,2), p"(x,y,z) = @(x,y,z) is a slight generalization of
the proof in the case of ﬂ” = @ = 0 and will not be given.) Hence
medium I satisfies the Maxwell's equations
- - - S
VXE -\.\«.\/J‘H - WRE =0
(10.3)
Y . = =
TAH + LWEE ""UF\E:O
where the time-factor exp(-iwt) is again suppressed. These equations

are satisfied by the two circularly polarized plane waves

E /'{I-‘i(t *ti)e‘*'a(”@ﬂ

Lo £, wlge )k 5t
He= L€ (T+11) 0l £,2)

and

E \'l‘(f—ﬁ"\ exp(L&-2)
4 3 "0[(eu)’“|)lz '(’l]

e le3(T-if)enp(ik-2)

"

Thus the constant ﬁl measures the optical activity of the medium I,
since it appears with opposite signs in the two propagation con-
stants; wﬁi measures the rotation, in radians per unit distance of
travel, of the plane of polarization of a linearly polarized plane
wave ,

If ™ and 7 are spherical vector wave functions (See Stratton,

loc. cit.) having the same indices, it is readily verified that

the fields
— - - \ — ~—
E‘.‘./j\"l-(yvy\*q- n*_ ) H:-L€‘1<Y\++M+)
- - - - . _\_ -—
'§=/»\»(M_—V\..) , R= Le\t(ﬁ-—wm)



satisfy the Maxwell's equations (10.3) where the subscript + (-)

denotes that k+ (k-) is the propagation constant appearing in the
spherical BRessel function. (From the foregoing equations, it is

perhaps apparent that for@ # 0, electric modes of ascillation of

a spherical cavity are accompanied by waves of magnetic¢ type, and
vice versa; this fact suggests a method of measuring § at micro=

wave frequencies,)

Now we form some of the substance into a small sphere of
radius g, Iimmerse the sphere in an optically inactive fluid with
constants &, p, kz w4epn, and let the waves E =—'=e11 and? = :ell
be incident. Applying the usual boundary conditions of con-

- W - -
tinuity of RXE and RxH across \R\ = a, we find the scattering co-

-
efficients A, P, B, Q of the resulting outgoing waves Am'ell +

Pﬁ'ell and Bﬁ'ell + Qg'ell’ respectively. The results are
- - - . A 2
A= Lppie 2 = 1 2 ]
\ (10.4)
Pras (peip e {f
B = [(e\‘e)()"\“lj")‘ F\q] .{ }

Now we form medium I into a number of small spheres of radius
a, and suspend these spheres in the fluid in such a way that an
average unit volume of the new suspension II contains an average

of N of the spheres of medium I. Letting f1 = 4nNa3/3, we apply
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(7.4) and (10.4) to find the constants ¢', u', F' of the sus-

pension II, obtaining,after some algebra

(¢'- (_)(I)A/‘w]r)_f/z _ Ceu'é\()h’r%/*)“ﬁ\m (10.5)
<(€’+1€')(/“' A1p) — P'2> ‘ i(e\ﬂé)(/«n‘n/-\)-ﬁ.‘}

Cp'- p)(e'+2€)-p'"
4 / < > A

i

¢ (AcpE Q) B
! { } (10.6)

8 - _£.8 (10.7)

These simultaneous expressions can be readily solved for
E's 1’y p', but the resulting expressions are complicated, re-
latively unsymmetrical, and seem to contain no further physical
information. When @1 = 0, @' = 0, and equatiomns (10.5) and
(10.6) becomes identical with (7.7) if Z{ft = f1 in {(7.7), so
that when Wy = Hs then u' = p. But when By =k and
1> ".’e‘z/(eu)ll>0,p,'g T f1€12/(36), a conclusion perhaps ob-
vious from (10.6)., Thus gl acts as a property coupling electric
with magnetic effects, and the composition laws (10.6), (10.7) are
qualitatively different from the special 'Clausius-Mossotti"

laws (7-7).
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Hoekzg)has obtained a formula for the 'non-specific' (non-
chemical) effect of concentration of active molecules on the
rotation per centimeter:; @' = Cfl (n2 + 2), where n is the
average index of refraction of the solution at molar concen-

tration fl’ and C is a constant. To obtain a similar formula,

we solve (10.7) for B';

(10.8)

e fLs e gppe e £

For small lel’ this gives essentially @'-_- Cfl(p' 4+ 2u)e
«(€' + 2€)/(3u€) which is identical with Hoek's result provided
that the dissolved molecules produce no appreciable changes in
the permeability of the solution (i.e., ' = p), and that his

n is interpreted as the refractive index of the solution
relative to that of the pure solvent, or fluid.

As pointed out in Hoek's paper, chemical (or specific)
effects of increasing concentration are highly important in

determining how the observed value of ﬁ' varies with concen-

tration (with N or £ in the present case). Such effects are

1’
apparent in the fact that, for an optically active solution

of sucrose in water, the density of the solution is a non-

linear function of either the molar or the molal concentration

29) H. Hoek, '"General Theory of the Rotatory Power of Isotropic
Media'', Physica VIII, No. 2, pp. 209-225, Feb. 1941
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of sucrose, The specific, or chemical effects would be minimal
in an optically active gas, if one could be synthesized., For
the purpose of experimentally verifying the present formulas one
could construct an artificial dielectric. consisting of paraffin
(say) containing randomly distributed and oriented sections of
right-handed wire helices of diameter and length small compared
with wavelength,

Hoek's last paragreph deals with resaons why one can negleqt
the quadrupole moment of the active molecules, We now rejustify
this neglect, With the present assumption that the active
'molecules' of suspension II are small spheres of redius g (and
composed of medium I) the dipole scattering coefficients A,B,P,Q
are volume proportional, i.e., proportional to a3. It can be veri-
fied that the quadrupole scattering coefficients. are of the
negligible order a5, as is the case when medium I is inactive,
For the 'molecules! of suspension I, which are composed of
isotropic, inactive materials and produce rotation by virtue of
their shape, the molecules (or scatterers) must have some finite
dimension d to produce the optical rotation, and the finite
dimension also implies a quadrupole moment, In the example of
the Appendix we show that the scattering coefficients corres-
ponding to P and Q (of (10,4)) are of the order da, whereas
quadrupole scattering is of order d5. W2 may regard the 'volume

fraction! fl occupied by the active scatterers as proportional
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to Nd3; increasing N and decreasing d3 proportionately (so that fy
remains constant) decreases the optical activity of suspension I
according to N-B/4 but decreases the effect of the quadrupole
moment at the greater rate N-(2/3>. Thus a 'quadrupole effect'

can be made negligibly small compared with the optical activity,
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APPENDIX

In deriving (10.5) through (10.8) it was mathematically con-
venient to suppose that the scatterers producing the optical
acticity of suspension II were small spheres composed of some iso-
tropic, optically active material, called suspension I (or medium I).
Suspension I, in turn consisted in an dnactive fluid in which were
suspended scatterers of some isotropic, inactive material, having
structures such as to produce, on the average over all orientations,
scattering similar to that of the spheres. In this Appendix, we
describe a physically realisable scatterer having the requisite
properties. In terms of a characteristic scatterer dimension 4,
this scatterer will be shown to have a scattering coefficient com-
parable to the B of (10.4) of order (kd)>, those comparable to A, P
and Q or order (kd)h, all other scattering coefficients being of
order (kd)? or higher.

The ‘volume-proportional' coefficients, those of order (kd)5,
produce no optical activity. But the analogues of P and Q vanish
more slowly with 8 ~> O than any non-dipole scattering coefflcients,
so that with a fixed 'volume-fraction' of sufficiently small par-
ticles, suspension I will have some optical activity (F) of order
kd, Due to neglect of gquadrupole and higher order scattering, the
error made in ascribing bulk constants to .he suspension is of

2
order (kd) . Relative to the optical activity, however, this error
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is now of order kd; thus the fractional error made in neglecting
particle size is far more serilous in the computation of p than in

the computation of € or u, where the fractional error is of relative

2
order (kd)

In order to describe the scatterer we assume two rectangular

coordinate systems, with common origins, one with the unit vectors

PN .y
X i =1,2,3, the other with unit vectors x',

A
= a,.x,. (The Einstein
i ij7]

summation convention is used here.,) The scatterer consists in two

- Fn SR
rigidly connected identical passive dipoles, Pl’ Py, P1 being

- -
parallel to x'1 at the position c'

—Al -> 1 ‘Al
rix i’PZ parallel to x 9

1). (Call this scatterer

- .
/ / 2
at p' + d.‘ '—‘eixi‘; + dﬂj_xi (Z o
right-handed; we obtain a left-handed scatterer by changing any sign
in the coefficient of d.)
a -

The vector Q' is the position vector of the dipole P, with
respect to the origin of coordinates; the average scattered field
should be independent of the choice of the origin and hence ine
dependent of %'. If there is a preferred origin, however, it has
some fixed geometrical relation with the scatterer, so that we
may take Q'i = uid. We may take the dipoles as copper wires of
length ad, diameter bd, with a and b/a being sufficiently small
so that at distances of order ¢, the scattered field produced by
each wire may be regarded, within any preassigned fractional error,
as that of a point dipole. The electric field incident on this

L a > 2
scatterer has the sufficiently general form on1 + Fijr’ + 0(kd)

J
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where=? is a dyadic fixed in the unprimed system and T measures
distance from the origin.

The volume of each wire being proportional to d3, the dipole
moment of each is proportional to (kd)3; each dipole causes a field
parallel to the other proportional to the common dipole moment
p(kd)3 times a distance-dependence be having as (kd)—3. Hence
the 'Interaction' is independent of kd for ‘kd[<< 1 and may be
incorporated as a constant Q. Then, if e, e, are the electric

2

Y
and P_ respectively, we have

PN
field components along P1 2

e = Ea, +H¢Q\LFE}/A{ Apd +Q e, +O(&L))

e, = Ea, +da, Fil(/‘k”‘k)a*i 1Qe +oid,

Solving, we obtain

((d QI)Cl = (q'n'f' Q&n)e + A(Q‘\i+QGLL>"—,_'1/-‘,k aki"'

-+ aQa)_L F;a Oﬁkc\ﬁ}" +O(&l> )

(-8, = (8,4 QA E + d(a,j Fa%}) Frg iy g F
b dQaL Frpdg gy oY)
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. AN
Maltiplying ey by dex'l, and e

5 by pd3x'2 yields the two dipole

- -
moments Py and pz.
We shall now compute the average scattered waves rather than
-
the scatterer's multipole moments, The magnetic field M(R) at
position R = IiU}i; (G'i2 = 1) arising from an oscillating

electric dipole p at position T is given asymptotically (kR >> 1) by

LkR tﬁﬂ‘ .
M= Moe R ‘P*P\ i E-[’LJ«O(/L,/R)]3 or

LER
M, M, Mg = MoeR RCSIE UM N N Pugy e

L1+ lk(nr) + O(n})]{ 1+O(n/r<ﬂ

Hence we wish to compute the average components <m,> of the scattered

i
magnetic field MR): m = my, m, My =
déR
e o b

(1 - 14 0y pipm G omel
-l +Qa)E +d(ay, +Qa ) Fr 0] +dQay; By L gyt
+{ %‘[(Qn‘z‘aza‘&))(awﬁ‘au 63);(%1‘&"%169]'
L 1 (6 M Bone) = T2 (0, oy Q)]

ey +0a)E +d(agp+aa,)) FL g Ggg + d0a0 F\f}akam]
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for (large) R and arbitrary direction cosines ¢i’ where the average
is to be taken over all orientations of the primed coordinate system,
the common origin remaining fixed.

We now require averages of products of the aij' Through terms
of order (kd)4 in the expansion of'(ﬁ), averaged products contain no
more than three factors. Here the only non-vanishing averages are
A4y =1, <aij2>= 1/3, <aij'ake‘ amr> = +1/6 or -1/6 according as
the product appears in the formal expansion of Det(aij)gglg with

positive or negative sign. Applying these averages, we obtain,

ST (my =0-i4dQ By (66, ) + Ao (6 (7, - Fﬂ)*‘s(“‘z\‘ﬁa\]

U-\é(m\;}: -16,E + L RAQE W, 6, + 4G, €5 (Fy2-Foa) +6,(Fiam F’-‘i

§ {'GQVM%»" WL E +LRUGE Wy 6,00 4 dQdy [0, (Fiy- Fy) 46, (Faz-Fa '*ﬁ

— — — AN
oL <~m)= Mg + TN + Mp

We have now calculated the leading terms of the average

scattered magnetic field (ﬁ) at a point many wavelengths away in
-
a direction ¢ from the scatterer. These are the only terms through
4

order (kd) which do not vanish on the average. Since the by do
not appear, the choice of origin is unimportant.

The partial field E%, composed of the three terms in (k&)a,
is clearly the magnetic field of an electric dipole oriented along
- . . - . . .
X;. The partial field m having components quadratic in the

direction cosines, might appear to be 'quadrupole', but it is
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-
actually the field of a magnetic dipole parallel to X To see
this, we let € = cos®, €, = sin@cosd@, 65 = sin@sin@ and compare

the result with a dipole field evaluated at Vﬂﬂ‘)? 1. As function

-

-
of direction'g, the field m. has the form & x P/R and hence is

D
=
the magnetic field of an electric dipole determined by Fij’ i.e. by
the incident magnetic field. If the fluid is slightly conductive,

then a steady current flowing through suspension I will have a non-
vanishing curl, owing to the right- or left-handed character of the
two-wire scatterers. (The present discussion in terms of dipole
moments does not bring out this fact.) Generalizing, one suspects
that a steady current through a real optically active solution may
produce a parallel magnetic field, or that a varying magnetic flux
may produce a parallel comp_onent of electromottive force.

All the scattering through terms of order (k'd)4 is of dipole
character. We further note that the magnetic dipole field'ﬁk is
parallel to the incident electric vector and does not depend on the
propagation direction of the incident wave (on ?ij)' Finally, if
we take the incident field as a plane wave travelling with pro-
pagation vector §2, electric vector E?i’ we have Fl2 = ikE and
other F-components vanish. Then, in the direction 6 , = -1,

2

A
g, =6, =0, the m and the m_ fields cancel; the electric polar-
1 3 k D

. . . = . BN
ization of the remaining scattered field m 1is parallel to X
o
This result is a necessary consequence of the reciprocity

relation (10.1).
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The term ﬁk or'ﬁD relates incident electric or magnetic dipole
excitation with magnetic or electric dipole scattering, respectively.
Each has amplitude proportional to ng. In the present case, the
factor Qd3 is, for fixed d, proportional to di.dz.x3, and maximum
when the three direction cosines are equal.

These results are in disagreement with the statements of
Volkenshtein7 to the effect that there must be quadrupole scatter-
ing of the same order of magnitude as that producing optical ac-
tivity, and that the magnetic incident field produces no electric
dipole scattering, except to a degree gquadratic in the amplitude
of the incident field. This last fact suggests that Volkenshtein's
scatterer is of an electromechanical nature, with scattering there-
fore not strictly comparable with that of the present motionless
scatterer.

The writer conjectures that all electromechanical scatterers
producing optical activity will be found to depend quadratically
on the field amplitude. A model consisting in an electret, which
serves as axis for a rotating massive charged disk, produces optical
activity through precession; here the required interaction of
various parts of the model is of a mechanical nature. This model

has some steady precession at a rate proportional to the square of

7)

M. V. Volkenshtein, '"on the Theory of N.:tural Optical Activity"
Journal of Experimental and Theoretical Physics, USSR, Vol. 20,
No. 4, pp. 342-6 (1950). ©Naval Research Laboratory Translation
No. 423,
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the amplitude of the oscillatory incident field. As with the
present passive scatter, the activity of Volkenshtein's general
model appears to depend (at least partially) on electromagnetic
interaction between various parts. For any interactions depend-
ing on distances between moving parts, the motions would alter
these distances and hence perturb the interactions., The am-
plitudes of the motions are approximately proportional to the in-
cident field's amplitude, as are the interactions; thus perturb-
ations of the motions would give rise to quadratic terms in the
interaction. (For incident waves of angular frequency w, these
effects would be found at angular frequency 2w or 0.)

Analogous quadratic effects are found in the phenomenon of
ionospheric cross-modulation, Non-linear phenomena connected
with acoustic waves, such as hydrodynamic streaming, are also
somewhat analogous. Numerous observations of non-linear effects
of magnetic precession have been made in recent years in experi-
ments with ferrites at high microwave power levels. Probably
all 'natural' interactions producting activity are of an
electromechanical nature; The artificial dielectric described in
Section X shows, however, that activity may be produced by
strictly electromagnetic interactions. There the requirements
of reciprocity produced the simplifying restriction @" = F
in (10.2). It is not clear to the writer that the necessary
reciprocity relation (10.1) is satisfied for electromechanical

interactions, even if the conjectured non-linearities are neglected.
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Notes added in proof

We discuss matters relating to the extension of Section VII to
statistical mixtures, The physical properties a',b',,,. of & suspension
formed by volume fractions fi of small spherical mrticles Py with
volumes v, and properties ai’bi""’ in a fluid with properties &a,b,...,
were given Implicitly through the set of equations
Fyla,b,ui5a",b000) = ZifiFj(a,b,..;ai,bi,...) (7.4a)
where AJ =V Fj(a,b,...; ai,bi,...) are volume-proportional scattering
coefficients of 2 isolated in the fluid,

For a homogeneous mixture, such as a two-phase alloy, there is no
ambient fluid; the problem is to find some substitute for the fluid so
that the method of (7.4a) applies, Here Landauerl argues that each
granule may be regarded as immersed in a 'fluid' having the average
properties of the mixture, Alternatively, we regard all particles of
the mixture as spheres of graded sizes; the space between particles of
any finite size is packed withmrticles of the next smaller size, with
the same volume fraction as that obtaining in the final mixture. Thus -ny
finite spherical particle is surrounded by a fluid having the average

properties of the mixture,

1) Rolf Landauer, "The Electrical Resistance o Binary Metallic Mixtures",
J. Applied Physics, Vol, 23, No, 7, 779-784, July 1952,
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Thus in (7.4a) above, one sets a,b,...equal to a',b',... . The
Fj on the left then vanish because a particle physically identical
with its surroundings produces no scattering. Hence, with ziifi = 1 for
the mixture, we have
0z Z,5F, a'ybty s agsbse..) (w1)
as a set of formulas implicitly determining the bulk properties
a',b',,.,, of the mixture.
But here we have an inconsistency: Let the property b be dielectric

constant, permeability, electrical or thermal conductivity, Then for

two materials of volume fractions fl, f, in a fluid, (7.4a) gives

b' -k by -
biah - M, o+ £y b o
+ +2b b1+2b
When fl + f2 tends to unity, the suspension should approach a mixture end,

by (N1), we should have

0 = 1, _L".‘OT+ by = b
by + b + L

in the 1imit; the properties of the fluid being squeezed out of the formula
as the fluid is squeezed out of the suspension, But the b' of (N2)
depends on b in the no-fluid 1limit, This casts suspicion on the validity
of (7.4a) for high particle concentrations, and hence on the validity of its
derivetion,

In deriving (7.4a) for dielectric constant, €', in the static case, we
would have a sample sphere S (of volume V) embedded in fluid, the typical
particle P in S being in a small sphere s containing no other particles,

Then a potential Bz applied to S would result in a scattered potential
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Az/rB, A to be computed as if S hacd s:meef and some r to be measured
from the center of s, It was then ggsumed that Bz is the potential
incident on each particle, so that the ith particle scatters AiZ/rB.

Since

“SS - i—d_‘—l—‘?g oLiz_ - const,

 inside s, the average potential scattered by other particles in S

has vanishing gradient at 3 and the assumption is Justified. Furthermore,

g“s g_ } &i - VZ/r3 for D outside S,

so that the average scattered potential is Z}'ALZ,/TB . Bquating A with
ZAi vields (7,4a) (for E’) when the dependence of 4,A; on €, ¢, €
and V, v, is taken into account,

Here it was implicitly assumed that P scatters as if it were isolated
in the fluid, so that no waves are rescattered by other particles back to
P to form part of P's excitetion, But if a wave incident on S 'sees' an
€ ', should not waves leaving s also see €' at the boundary of s and be
reflected? To celculate this reflection and the consequent excitation
of P caused by its own scattering appears difficult but we may accomplish
the same end by borrowing Landauer'é idea that P is to be regarded as
surrounded by the average-material,

General boundery condition equations at the surface of S have the

form Bb + A(a/V) z B'b', where b is a two element row vector with

elements functions o the fluid's properties and for standing, or
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exciting waves; a is a similar vector for outgoing, or scattered waves
and b' is for standing waves but with elements depending on the
properties of S; B, A, and B' are weve.amplitudes, with & proportional
to V, 1In the previous example, it was proved that the waves exciting
P were independent of P's position (except perhaps for P's self=-
excitation); we similarly assume that the internal wave of amplitude
B' is the exciting wave so that B'b' + A;(ai/vi) - Bibi are the
boundary condition equations, determining the fields inside P, But in
the fluid actually surrounding P we must have B'b + Ai(a/ﬁi) = Bsbs,
where B* is an undetermined exciting wave, Superposing the waves
scattered into the fluid as before, we have Z4; = &, With |ba| re-
presenting the determinant formed from the two indicated row-vectors,

the three boundary condition equations become

VB _ _VvB' _ _A
et 7 Tobl b6l
*
VB - b - AL
il — Tale' T {bief]
»®

ANl VR I
le bl 7 ekl T [y

Now we ignore the undetermined starred terms and among the others,

solve for 4; and A in terms of B; 4 :'ElAi holds if
{
be'| _ sp bkl (%)
' - L l AN
loJ h‘ \Ck bu\
where f; = Nivi is the volume fraction for type i, as before, The
previous assumption was that B¥ = B; using this and ignoring the middle

equation, we get Z A; = A& holding when
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lkbl - 74 bbbt
l bi ) N
lob| ‘0~ | (N4 )
this is equivalent to (7.4a),
&4t low concentrations, 2fy << 1, a',b' ~ a,b, and the two formulas
are nearly equivalent, When Ziﬁ.: 1 and there is no fluid, the ad hoc
substitution of a',b' for a, b in (N4) to represent the "average fluid"

surrounding each particle results in

b b
o= Z fi b (N5); (N1)

but this follows identically from (N3) und an inherent improvement has

been made,

For dielectric constant, b = (1,€), a = (1,=2€) and (N3) becomes

/

E G.L"G
36’ Z‘F 26"+ €, (N6)

Ll
This is a slight generalization of Boettcher's result?‘derived by
essentially the same reasoning about fields inside Lhe particles,
When two kinds of waves are required in computing scattering

coefficients, the equation=-sets are of the torm

2) €, J, F. Boebttcher, "The Dielectric Gorstant of Crystalline Powders",
Rec, Trav, Chim, Pays-Bas 64 P. 47,1945, :
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(Bb or Cc) + Aa/V + D1/V = B'™d' + C'c!,

(B'b! or C'c!) + &F n'/ary + D4 /= Byby * Cyey

(Bibi or cici) - b+ Fe w ;—,ia//v‘i + Did//\ri}
here C and D are amplitiudes of the second typs of incident and scattered
wave, respectively, and a,b,,.., are now four-element vectors, Setting
C = 0 and solving tor A,D,A;,D; in terms of B, we find that & =ZA;, D =3D
when

[brdbe| = Zf, {:bj_dbcua'd'b'cil + e dbel la'd'bib'l}/(a“d'bici\

lab'be| = 5 £4 {_|abibc\ la'd*tel +  lacybel ('a'd“bib'l}/ la'd"pe, |,
When B = 0, C £ 0, similar steps yield

letdbe] =7 4 {_lbidbcl latd'e'e;l + |eydbel Ia'd'bic'|}/la'd”bici|

lac'be]| =3 £, { lab;be| Ja'drete,| + [acsibel [a'd'bic'[}/la’d'bici]

(¥7)
Ignoring the middle equation and setting B'.*‘ c¥* . B,C yields
lbabre!) (foab; e,
' .
{abbte] . |adb'c'|:2.‘;\< labblcil . [adbici‘
[eabret] [ L] Jeabsesl | - (7.4a)
lacb'c'\} Jacbicii
Whenjf; = 1, we have
|b'dbsc,
0=3 £y la‘b'bzcj —  Ja'd "bsey (N8)
lc'd'bici]
[a'c'bicil



as an identity from (N7) or by ad hoc replacement of a,b,c,d by a',b',c',d!?
in (7.4a).

Landauer's method for mixtures seems to have been developed by
Odelevskii3 and to have been applied to the thermoelectric properties of
two-component sintered materials by Airapetiants[‘. We now apply the
present (N8) as the natural generalizations of Odelevskii and Landauer's
method to the thermoelectric problem,

In the standard treatment5 of thermoelectricity, a material is
described by coefficients X,Y¥,4, such that electric current ? and heat

current.a are given by

~3 =& [T +Y 9(1/T)

Q= (Y/T)Ipu +ZT(1/T)
where p is the electrochemical potential and T is absolute temperature,
For steady state conditinons it is necessary that Vi and 'V-§ vanish
everywhere; assuming small potential and temperature gradients, we apply
Ve to the above, write 1/T = l/TO + 8, and ignore terms of second order in
S

p and © as small to obtain an equation linear in 'j), Q, By 9 in which p and

2
8 satisfy § a=0, 7%6 = 0. &t boundaries between different materials, p,

3) V.I, Odelevskii, J, Tech, Phys, (USSR) 21, 678 (1951),

4) €,V, Airapetiants, "Thermal Electromotive Force and Additional Thermal
Conductivity of Statistical Mixtures", Soviet Phys, (Tech, Phys,) 2,
429 (1957)

5) Encyclopedia of Physics (Springer 1956) Volume XIX, page 271-274.
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® and the normal components of 3 and a are continuous, Thus we solve for
the amplitudes of scattered p, © fields of the form 2/r2 when waves in the
X,Y,%2 medium are incident on a sphere of volume V of an X',Y',24' medium,
and form the equivalent of (N8):
o = 74 LOX-X0G2'v2) ~ (v - Y)Y +¥0))
§(2x/+x)(22+2) - (LY + Yi)*}
0= sf LOT-YiXzz'+2) = (-2 +YI)I/{ 3

)

0= 24 LOY'= X2 r $30) - (K A+l /1]

0= £; [(B-Z)(2X +X0) = (Y- Y+ YO/{ 1. o)
These are four equations for three unknown:X',Y',Z' but they prove to be
linearly dependent so that no inconsistency occurs,

For more direct comparison with Airapetiants' work, we convert these
via X = T G‘/ez, Y= -TekX, 4 = Tf’/’t + \(z/‘x ) where ¢ and ¢ are the
usual electrical and thermal conductivities, o is thermoelectric power,

and e is the electronic change, to

1= 2 PLG’L(I'K'+TL)/']:()
1= Z (6 +6L))

I _ s Lo LXy
T TTieem (10)

wnere Ty = 3¢t & §2e'v 02T +¥0) + 276 € 6 (0~ &Ko)

For all &« the same, (= oL), there are no thermoelectric currents and the

first two equations are equivalen® to the Odelevskii-Landauer result,
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0 = Z8 (/- 0)/as+0) | 0= 340, -N) et ).

For general o(,;) v/ > 'ZO/ and 6"( 0‘0' in accord with the intuitive
idea that thermoelectric currents provide extra channels for carrying
heat and therefore jncresgse thermm 1l conductivity, whereas heat
generated by the thermoelectric effect at particle boundaries is dis-
sipated through heat flow and therefore increases the work done by
electric currents traversing the mixture, hence decressing electrical
conductivity, Airapetiants predicts a different increase of thermal
conductivity owing to o{yand apparently ignores the resulting decrease
in ¢'from 6, .

Airapetiants compares his prediction with measured values of o(/
for varisus volume=fractions of a two-component sintered mterial,
(his Fig. 2). The experimental points appear to lie about midway te-
tween his prediction and the present o' calculated for his data, his
prediction lying closest to the line « = 'F, %, + 'F')_dl .

The calculation of the present scattering coefficients is
different from Airapetiants', so that it is not clear that he was not
attempting to use the present general method; our expression (N10) for
oL s formally identical with that of his eq (12).

For the boundary condition equatiuns pertaining to the Lamé&
constants, two types ofwaves are involved (7.18) and (7.21) (i.e.,

dilatational and shear) with two types of piysical constants, Our
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tedious algebra (if correct) gives, with z = (3N + 2u)= 1/(compressibility),

Z,—E = ZL-FLMI(Zt—i) ) (N11)
Zr+ g
(pi-w15 (N+aphp

FON+ 2)")(2/"”3/")*4/“'(/‘.:-/4'7 .

These should apply to solid aggregates like concrete or granite, The

pmp = 2 (nz)

small-f, agreement with (7.35), (7.37) 1is almost obvious, When Z,f, = 1,

/

Z¢ 2 C"il =0= . A =M

When z >> p as in a liquid, (N11) becomes the additive law (7.38, 7.16)

for compressibility and (N12) yields

-1 - P
50 2 2.+ 30

for the viscosity ?’. This again has the right limiting forms. In
particular, for concentration fl of rigid particles, we have Q':'?/§|*%;¥%>
to be compared with (7,40) and (7.41), where the irrelevance of q' for
high concentrations was already discussed.

In summary, we have developed, in (N3) and (N7), general formulas
for the properties of suspensions which (to judge from the examples)
agree with the result (7.4a) at low concentrations and tend to the pure-
mixture laws (N1) for high concentrations, [Thus the results of Section
VII, stemming mainly from (7.4a), are to be replaced for high
concentrations with those from (N3), (N7).] & further application would

be to a mixture of materials X and ¥, in which the interfaces tended to
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be convex on the X-side. Then the role of fluid would be played by
some subfraction of X; how to assign this subfraction in terms of
the convexity of the Y particles is unclear. Finally, the present
reasoning would introduct an effective viscosity into the acoustic
attenuation calculation of p 95 in a natural way; but the real
problem there is that the particle sizes are comparable with shear
wavelength and the present formulas do not apply.

Odelevskii's ergument properly includes the assumption that
the granules of the mixed substances are of comparable sizes; if
the X granules are systematically smaller than the Y, the resulting
bulk properties would appear affected as if the particles v .re of
about the same sizes, and surface effects caused the Y particles
to-be the more nearly spherical, as in the foregoing discussion.

Recent orally presented papers of V. Twersky deal with propa-
gation in suspensions of particles of dimension comparable with
wavelength. The typical particle is also considered surrounded
by an average medium, ‘but Twersky's subsequent argument differs
interestingly from the present one. For future comparisons, it
should be easier to apply his method to our small-particle gecmetry

than to try to extend our argument to his large-particle problems.
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