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OCEANIC HORIZONTAL RANDOM TEMPERATURE STRUCTURE

INTRODUCTION

Over the last decade, a considerable amount of effort by a number of researchers has
been devoted to the measurement of the random horizontal temperature structure of the
oceans. This effort has produced a variety of power law* characterizations of this struc-
ture. The following references provide an indication of the scope of the disparity in the
empirical power law representations.

Hecht and White (1) studied temperature fluctuations in the frequency range 3-30
cycles/hr with their ship drifting midway between Madeira and the Azores and with
temperature sensors at depths of 5, 15, 25, 35, 45, and 112 m. Least-squares analysis
gave power laws ranging from -2.6 to -3.4.

Neshyba, Neal, and Denner (2) obtained temperature profiles (at successive 4-min
intervals) between 200 and 250 m in the Arctic Ocean with a thermistor. Results from
their 30-hr time series at depths of 212 and 247 m reveal a power law of -3 for fre-
quencies greater than the Brunt-Viisdla frequency.

Temperature data gathered by a self-propelled underwater research vehicle in the
North Pacific at various depths between 40 and 2500 m were analyzed and reported by
McKean (3). In the wavenumber range 0.03 m - 1 < k < 3.14 m - 1 his temperature spectra
"behave approximately like k 2 . '

While towing a chain of thermistors, E. C. LaFond (4) obtained data on the displace-
ment of isotherms in the North Pacific. He reports power laws ranging between -1.75
and -2.65 for the 15 0 C and 18 0 C isotherms in the frequency range of 0.6 to 24 cycles/hr.

Black (5) towed this same thermistor chain over the continental shelf off California
and performed structure function analyses at 34 depths evenly spaced from the surface to
750 ft. His results, when converted to power spectrum notation, show power laws be-
tween -1.66 and -2.23.

Temperature data obtained by Moseley and Del Balzo (6) from a towed platinum
resistance thermometer at depths between 500 and 1100 m in the North Atlantic provide
power laws between -1.97 and -2.26 for 0.02 m - 1 < k < 0.64 m 1 .

Note: Manuscript submitted October 16, 1973.
*When power spectral density T as a function of wavenumber k has the form T = akb, the exponent b is
commonly referred to as the power law.
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The large-scale thermal structure was studied by Voorhis and Perkins (7) with a towed
thermistor at 100 m depth near Bermuda. They saw a p 2 13 dependence in their structure
function formulation which corresponds to a -5/3 power law for 0.0002 m - 1 < k
0.06 m - 1 .

The works cited above were deliberately chosen because they are concerned with
spectral ranges not usually associated with the more established low-wavenumber, linear,
internal wave range or the high-wavenumber, isotropic turbulence range. This intermediate
range is treated in great detail both theoretically and experimentally in this report. It is
shown that buoyancy forces have a depth-dependent effect on a certain size of scales of
the temperature microstructure spectrum which can result in a wide range of power law
representations. The form of the temperature power spectral density curve, which is
developed and verified throughout the intermediate wavenumber range, is strongly in-
fluenced by the Brunt-Vaisia** frequency.

HISTORICAL BACKGROUND

Theoretical analyses of random temperature structure have often been made under
the assumption that temperature is a passive additive quantity; i.e., it is carried by but
does not contribute to the water motion. It is therefore appropriate to discuss briefly the
velocity spectrum of the underlying dynamic mechanism, the fluid movement.

Velocity Spectrum*

The three-dimensional velocity spectrum of a turbulent nonstratified fluid can be
described (see Fig. la) in order of increasing wavenumber by (a) a low wavenumber range
wherein the turbulent energy is established, (b) a range dominated by large stable eddies,
(c) an inertial range (assuming a sufficiently large Reynolds number) where the turbulent
motion is homogeneous and isotropic and where energy cascades toward higher wave-
numbers, and (d) a viscous energy dissipation range where shear forces damp the motion.
The form of the velocity spectrum in the inertial range (as derived by Kolmogorov (8) is

yI(k) = a e2/ 3 k - 5/ 3, (1)

where a is an absolute constant, e 0 is the total rate of energy dissipation, k is the wave-
number, and the subscript I refers to the inertial range. Batchelor (9) and Hinze (10)
give thorough accounts of homogeneous isotropic turbulence.

Now, consider a stably stratified medium, such as the ocean, where turbulence is
assumed isotropic in horizontal planes only. The velocity spectrum in the inertial range
may be modified by the mean density gradient. In fact, an internal wave range and a
buoyancy range exist in the velocity spectrum between large stable eddies and inertial
turbulence (see Fig. 1b). The velocity spectrum of the turbulence throughout the com-
bined buoyancy-inertial range is given by

*The velocity spectrum is often denoted energy spectrum since it refers to kinetic energy fluctuations.
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Fig. 1-Velocity spectrum (a) of an unlayered turbulent fluid, (b) of a
turbulent stratified ocean, (c) theoretical and experimental contributors.
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VBI(k) = e[(k)] 2/3 k-5/3, (2)

where

[e(k) 2/3 = + , 
(3)

k b = C 3 /4 N 3 /2 C1/2 (4)

C is a positive constant, N is the Brunt-Vaisala frequency, kb is representative of the
transition range between buoyancy and inertial effects, e is the net rate of spectral energy
transfer from wavenumbers less than k to wavenumbers greater than k, and the subscript
BI refers to the buoyancy-inertial range. These equations were first derived by Lumley
(11). A more complete discussion of the velocity spectrum of ocean turbulence is given
by Phillips (12).

Several facts about the buoyancy-inertial range should be noted. It is the basic
anisotropy of the stably stratified medium which produces the buoyancy and thus the
statistical properties of the motion in the range are anisotropic. Two basic underlying
assumptions are (a) the rate at which energy is transferred through wavenumber k 0 (and
not through distant wavenumbers) is a determining factor of the stratistical properties of
the motion at the same wavenumber; and (b) in a stably stratified ocean, the buoyancy
spectrum is assumed proportional to the local mean density gradient or N 2 .

The buoyancy-inertial formulas are applicable when k is large compared to wave-
numbers associated with large stable eddies and small compared to dissipation wave-
numbers. Energy considerations require that buoyancy-range motion is turbulent and
cannot be regarded as an ensemble of interacting free internal waves.

Shur (13) has experimentally observed the spectral division between buoyancy and
inertial effects for high-altitude aircraft measurements of turbulence in a stably stratified
atmosphere. Observations have been made in the high-wavenumber inertial and dissipation
ranges with a hot film flowmeter in a tidal channel by Grant, Stewart, and Moilliet (14)
and in the open ocean by Grant, Hughes, Vogel, and Moilliet (15). Current meter mea-
surements in the inertial range were taken by Webster (16). Figure ic summarizes the
various ranges of the velocity spectrum, along with the theoretical and experimental con-
tributors.

Temperature Spectrum

One might suspect a direct relationship between the thermal environment and the
turbulent velocities. The theoretical development of the fluctuating temperature structure
in a turbulent medium has, in fact, followed directly the analysis of the fluctuating
velocity field. The power spectrum of random temperature fluctuations in a nonlayered,
turbulent environment can be described (see Fig. 2a) in order of increasing wavenumber
by (a) a low-wavenumber range wherein temperature variance is established, (b) a con-
vective range (assuming a sufficiently high Peclet number) where temperature variance
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cascades toward higher wavenumbers, and (c) a dissipation range where the temperature
variance is eliminated by conduction.

The form of the temperature power density spectrum in the convective range was
derived by Obukhov (17) and Corrsin (18) in a fashion parallel to that of Kolmogorov for
the velocity spectrum. Batchelor (19) has given a thorough, lucid treatment of the subject
as well as of the spectral limits of applicability and extension into the dissipation range.
The basic assumptions in the development of the power density spectrum of homogeneous
isotropic temperature fluctuations are listed below.

1. Temperature is a passive quantity; that is, neither the mean temperature nor the
temperature fluctuations have any appreciable effect on the velocity structure.

2. The statistical properties of both temperature and velocity in the spectral interval
of concern are homogeneous, isotropic, and stationary.

3. With the exception of scaling and dimensionalizing factors, the statistical proper-
ties of the temperature fluctuations in the spectral region of interest are determined solely
by the velocity field.

4. The concepts of local similarity and cascade of variance apply equally well to
temperature as to velocity.

5. The only mechanism for dissipation of thermal variance is molecular conduction,
and all of the dissipation occurs in the conduction dissipation range.

6. The Reynolds and Peclet numbers are sufficiently large that an inertial range
exists in the velocity spectrum and an intermediate range exists in the temperature
power density spectrum where temperature variance is transferred across wavenumbers
with no appreciable dissipation by molecular effects. (Batchelor called this intermediate
range the convection subrange.)

Corrsin particularized assumption 3 to the postulate that the temperature power
density spectrum depends only upon (a) the temperature variance flow rate through the
"convective" range and (b) the energy flow rate through the inertial range. The tempera-
ture variance flow rate is equal to the total rate of dissipation of temperature variance Do,

00

Do 2=yf k2 T(k)dk, (5)
0

with dimensions temperature-squared divided by time. The energy flow rate through the
inertial range equals the total viscous energy dissipation rate e0,

C - 2v J k2 V(k)dk, (6)

0

with dimensions length-squared divided by time cubed. The symbols represent the
following:
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T is temperature power density spectrum,

-Y = K/PCP, (7)

K is thermal conductivity,

p is mean density,

Cp is specific heat at constant pressure,

V is velocity spectrum,

v is kinematic viscosity.

This postulate restricts the analysis to wavenumbers common to both the inertial and
convective ranges.

A dimensional analysis for the spatial power spectrum of the temperature fluctuations
in the convective range gives

Tc(k) = ODeo 1 /3 k - 5 /3  (8)

where j3 is a dimensionless constant and the subscript C identifies the convective range.
Corrsin notes that Tc(k) could be determined alternatively if postulate (b) were replaced
by the assumption of a dependence on V,(k) and use were made of the form of the
equation for VI(k). Observations of the temperature convective range described by TC
have been made in the laboratory by Gibson and Schwartz (20) and in the ocean by
Grant, Hughes, Vogel, and Moilliet (15), where results extend into the dissipation range.

In a stably stratified ocean, the mean density gradient eliminates the isotropy of
velocity fluctuations in the vertical direction. One well-known consequence of this
gradient is the presence of internal waves whose influence on the temperature spectrum
is felt in a low-wavenumber range between sources and convection. Temperature fluctua-
tions which appear to have been caused by internal waves were seen by McKean (3).

Due to the mean density gradient, one might suspect (as in the case of velocity
fluctuations) the existence of a buoyancy range in the temperature spectrum. It is shown
in the next section that the buoyant velocity spectrum induces a buoyant temperature
spectrum exibiting a -3 power law for an interval of wavenumbers between internal waves
and convection. This phenomenon has received little attention, possibly because of the
recent surge of interest in the study of internal waves and dissipation. The various spectral
ranges of temperature variance are shown in Fig. 2c along with the theoretical and experi-
mental contributors.

THEORETICAL DEVELOPMENT

The preceding background section suggests the existence of a buoyancy range in the
power spectrum of random temperature fluctuations. This section is devoted to the de-
velopment of the form of the horizontal spatial temperature spectrum in the wavenumber
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range between internal waves and conductive dissipation (see Fig. 2b). Dimensional
analysis is used to develop the form of the temperature spectrum in the presence of
buoyancy forces.

The first step in the theoretical treatment of horizontal spatial temperature fluctua-
tions in a layered medium throughout the buoyancy-convective range consists of a care-
ful review and modification of the assumptions applicable in an isotropic medium. The
assumptions listed below apply in the stratified ocean.

1. Temperature is no longer passive. Although the temperature fluctuations are
still so small as to have no appreciable effect on the velocity field, the mean temperature
gradient, through its effect on density, does directly influence the velocity structure.

la. The mean density gradient is statically stable.

2. The statistical properties of both temperature and velocity in the spectral range
of interest are homogeneous and isotropic only in horizontal planes and are stationary.

3. With the exception of scaling and dimensional factors, the statistical properties
of the temperature fluctuations in the spectral range of interest are determined solely by
the velocity field.*

4. The concepts of local similarity and cascade of variance apply equally well to
temperature as to velocity.

5. The only mechanism for dissipation of thermal variance is molecular conduction,
and all of the dissipation occurs in the conduction dissipation range.

6. The Reynolds and P'clet numbers are sufficiently large that a buoyancy-inertial
range exists in the velocity spectrum and a spectral range exists where temperature variance
is transferred across wavenumbers with no appreciable dissipation. This will be denoted
the buoyancy-convective range.

In order to perform a dimensional analysis on the temperature power density spec-
trum TBc(k) in the buoyancy-convective range, one must particularize assumption 3. It is
postulated that TBC(k) depends only upon (a) D,, temperature variance flow rate through
the buoyancy-convective range; (b) eo, the total viscous energy dissipation rate; and (c) the
form of the velocity spectrum VBI(k) in the buoyancy-inertial range. Since the velocity
spectrum in the buoyancy-inertial range is not completely determined by 60 , portions b
and c of the postulate are not redundant and interchangeable as they were in Corrsin's
analysis of the convective range.

It should be noted that v/y > 1 in the ocean, and Batchelor (19) has shown that con-
ductive dissipation will begin at a higher wavenumber than viscous dissipation. Thus, the
range of validity for the present analysis is the buoyancy-inertial range.

*A similar assumption was made by both Lumley and Phillips in their investigations of buoyancy effects
on the velocity spectrum.
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The dimensional analysis, based on the above postulate, proceeds in the following
manner. Let

TBc(k) = G(D o , Co, VBI), (9)

where G is an unknown universal function of its arguments. By writing the equation as
an equality of the dimensions one has

(L) 2) (3)P ,(10)

where the dimensional units are q, temperature; 9, length; and t, time. The exponents h,
m, and p are to be found so that the equality is satisfied. A set of three simultaneous
equations (one for each dimensional unit) can be written from the dimensional equation:

0: 2 = 2h (11)

t: 0 = -h - 3m - 2p (12)

k: 1 = 2m + 3p. (13)

Solving the set of simultaneous equations gives as the solution,

h = 1, m =-1, p = 1. (14)

Thus

TBC(k) = B D o co1 2/3 k- 5/ 3 , (15)

where B is a dimensionless constant and the form of the velocity spectrum in the buoy-
ancy-inertial range has been utilized. Substitution for E from Eq. (3) in the above equa-
tion gives

TBC(k) = B ~o 01/3  + ()]k - 5/3 (16)

With TBC written in the form of Eq. (16), it is obvious that for k >> kb (i.e., k in the
convective range) TBC reduces to T. as would be expected. Using the definition of kb
(Eq. (4)) in Eq. (16) gives

TBC(k) = B Do eo 1 /3 k - 5 /3 +BCDoN2c0 o k- 3 ,  (17)

which can be rewritten as

T(k)=Ak - 5 /3 + k-3
TBC1 Al A2k (18)
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where

A 1 =BDO C1/3 (19)

A 2 =BCDoN 2 eo 1. (20)

Based on the notationally simple form of TBC in Eq. (18), one can give an explanation of
temperature power spectral laws varying between -5/3 and -3.

If one chooses to analyze an intermediate wavenumber range, a power law between
-3 and -5/3 will result. As the analysis range is extended into the larger wavenumbers,
convection begins to dominate and the power law approaches -5/3. On the other hand,
as smaller wavenumbers are included in the analysis, the buoyancy effects are felt and the
power law tends to -3.

Another aspect related to the power law determination concerns a physical property
of a density-stratified fluid, the Brunt-Vaisala frequency N. The ratio of the two coeffici-
ents A 1 and A 2 in Eq. (18) and consequently, the relative importance of the -3 and -5/3
power laws, is a function of N. Therefore, in a fixed k-range, one can observe power
laws between -3 and -5/3 due strictly to physical causes. For example, see Fig. 3 where
the transition wavenumbers kb and k'b (above which inertial turbulence is the dominant
influence) correspond to large and small values of N, respectively. When the Brunt-
Vaisdl. frequency is large, the ratio A 2 /A 1 is also large, and consequently the -3 region
expands. Power law analysis in the fixed interval kL - kU for the two curves in Fig. 3
will yield considerably different results.

Once A 1 , A 2 , and N have been determined, they can be manipulated to form
estimates of c0 and D. using the fact that the constants B and C are of order unity (18).
From Eqs. (19) and (20), one can form the quantity

A 2  (BCD0 N 2 E 1 ) C

A 1 N 2  (BDoeo1 /3 )N 2  C2/3 (21)

so that

CO = ( 2 (22)

Similarly, one has

AN 2 _ (BD0 o1/3 )3 N 2  B 2D 2

=1 (23)
A 2  (BCDoN 2Co 1 ) C

so that

A 1CN2 /21
/ 2

D0 A2 " 2 ) A- 2 ) (4

It is interesting that one need not go through velocity spectrum calculations to arrive at
an estimate of the total rate of viscous energy dissipation c0 .
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In summary, this development shows a two-term power law for temperature fluctua-
tions in the buoyancy-convective range of wavenumbers. The spectral decay associated
with buoyancy is shown to be proportional to k - 3 . Contributors to the development of
the velocity and temperature spectra in the intermediate wavenumber range are shown in
Table 1 for completeness.

Table 1
Contributors to the Development of the Velocity and Temperature Spectra

in a Wavenumber Range Between Internal Waves and Dissipation

Wavenumber Range Formulation Contributor

Inertial V(k) = - 5/ 3 Kolmogorov

Buoyancy-Inertial VBI(k) =  2 - 5/ 3 + oXCN 2 k 3  Lumley

Convective To(k) =Doeo 1 /3 k- 5/3  Corrsin

Buoyancy-Convective TBC(k) = BDoeol/3k - 5/3 + BCN2 Doeo1k - 3 Moseley & Del Balzo
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DATA ANALYSIS

If one were to conduct a temperature microstructure experiment in the open ocean
at a variety of depths, one should find a buoyancy-convective range of wavenumbers
where (a) power laws span the interval [- 3, - 5/3]; (b) the Brunt-Vaiald frequency has a
strong influence on the form of the temperature spectrum; and (c) power laws tend
asymptotically toward -3 for increasing N. If one's observation interval extends suffi-
ciently far into the convective range, a -5/3 region will be clearly evident. A least-squares
analysis in the convective range on the equation TC = pkq can be performed, where p will
be an estimate of A 1 and q will be - -5/3. In order to "see" the buoyancy effects, one
could next subtract the convective portion of the spectrum throughout the entire
buoyancy-convective range. Then, a least-squares analysis on TBC - pkq = rks would
yield r, which is an estimate of A 2 , and s which will be -3. At this point, one could
obtain estimates of co and D o by using p, r, and N via Eqs. (22) and (24).

The temperature spectra presented in Appendix B were obtained from horizontally
sampled temperature data taken during the open ocean experiment described in Appendix
A. The least-squares method was used to fit these spectra according to the power law
formulation TBC(k) = akb, for kL < k < kU. The lower end of the wavenumber range
kL is set by the spatial transform length, while the upper end ku is limited to that region
for which the squared coherency spectrum* is less than 0.2. This judgement was made
to minimize depth-related pseudotemperatures which can not be fully removed due to
medium instability and nonlinear temperature-depth correlations. Some further analysis
along these lines is presented in Appendix C. Although limited by ship movement at
swell frequencies, kU is large enough to permit analysis in the buoyancy-convective range.

The method of least squares, should not be applied directly to the equation TBc(k)
- akb, since TBC has a variance which is proportional to its mean. However, on a loga-
rithmic scale the confidence interval about TBc(k) is constant with wavenumber. There-
fore the proper equation to least squares fit is log [TBc(k)] = log a + b log k. This fit
yields unbiased estimates of log a and b.

The results of this least-squares analysis are presented in Fig. 4 and in Table 2, where
b is the power law and a is the power intercept. As predicted, b varies between -3 and
-5/3. The power law as a function of depth strongly suggests a dependence of b on N,
the Brunt-Vaisala frequency. This is no surprise due to the form of TBC in Eq. (17);

TBC(k) = BDo 1/3k - 5/ 3 +BCD N 2 &olk-3 (17)

There also appears to be an asymptotic dependence of b on GT (temperature gradient);
i.e., b -+ -3 for very large GT. Again, this is anticipated from the form of Eq. (17) since
GT is proportional to N 2 . These relationships will be discussed in greater detail in the
coefficient study section.

*See Appendix A
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Table 2
Least Squares Analysis on TBC = akb

Throughout the Observed Buoyancy-Convective Range (kL

Run k X 102 kU X 102 X1 90% Confidence b 90% Confidence]m - 1 ) (in -1) ; 0 Limits on a X 108 b Limits onb

1-150-1
1-150-2
1-150-3
1-300-1
1-300-2
1-300-3
1-300-4
1-400-1
1-400-2
1-400-3
1-400-4
1-550-2
1-550-3
1-550-4
1-750-1
1-750-2
1-750-3
1-750-4
1-900-1
1-900-2
1-900-3
1-900-4
1-900-5
1-900-6
1-1100-1
1-1100-2
1-1100-4
1-1100-5
1-1100-6
1-1100-7
1-1300-1
1-1300-2
1-1300-3
1-1500-1
1-1500-2
1-1500-3
1-1500-4
1-1500-5
2-100-1
2-100-2
2-100-3
2-100-4
2-300-1
2-300-2
2-600-1
2-600-2
2-600-3
2-900-1
2-900-2
2-1200-1
2-1200-2
2-1200-3
2-1200-4
2-1500-1
2-1500-2

0.63
0.64
0.65
0.65
0.63
0.71
0.68
0.73
0.65
0.71
1.31
1.41
1.45
1.62
0.97
1.24
1.28
3.68
1.23
1.28
1.14
6.63
1.29
1.01
1.58
1.20
1.39
1.07
0.98
0.99
1.13
1.14
1.04
1.79
1.12
1.57
1.38
1.40
1.28
1.28
1.36
1.46
1.61
1.21
1.21
1.57
1.51
1.12
1.30
1.44
1.25
1.21
1.11
1.34
1.42

14.75
12.09
11.71

8.81
13.46
16.60
14.51
11.33
18.69
15.59
38.52
19.04
21.79
33.97
17.53
20.50
23.73
14.73
25.15
21.20
33.74
22.10
28.38
10.65
27.56
35.36
36.73
20.41
30.00
21.23
25.46
36.56
23.40
48.44
22.48
25.96
35.77
26.59
22.96

6.39
27.29
30.62
22.59
17.49

9.10
18.09
15.81
33.11
18.17
34.53

8.73
17.54
33.16
20.13
50.40

8.2
33.6
15.2

5.9
6.7

13.1
9.0

11.1
6.3
4.5

17.8
34.2
32.9
57.8

116.1
247.2
383.4
153.1
184.8
62.7
96.9

125.3
172.2
340.0

9.6
62.8
15.7
13.5
16.3
63.3
14.3
27.5
14.4
86.9
93.6
37.1
50.0
60.7
14.8
24.6
57.6
25.1

3.0
3.3

34.3
49.4
89.9

149.2
86.9
46.3
10.0
31.3
14.8
13.3
19.4

6.1
26.0
10.7

3.9
4.9

10.5
7.2
8.2
5.4
3.6

14.8
27.2
25.5
49.8
90.1

203.6
325.0
103.8
157.3

54.3
85.5
81.5

153.6
166.1

7.8
49.1
12.5

8.8
13.0
48.9
11.7
24.3
11.5
76.6
63.1
23.7
41.9
51.7
10.9
17.0
47.4
20.0

1.9
2.4

23.9
34.8
65.0

129.7
70.5
39.1

6.2
22.0
12.7
10.9
17.3

10.9
43.4
21.7

8.9
9.2

16.2
11.2
15.2
7.4
5.7

21.5
43.0
42.5
67.1

149.4
300.2
452.2
225.9
217.2

72.5
110.0
192.6
193.1
696.1

11.9
80.4
19.8
20.7
20.5
82.0
17.3
31.0
18.0
98.6

139.0
58.0
59.7
71.4
20.0
35.7
70.0
31.3

4.7
4.6

49.5
70.1

124.3
171.7
107.0

55.0
16.4
44.4
17.2
16.2
21.8

-z.64
-2.49
-2.52
-2.29
-2.33
-2.20
-2.28
-2.30
-2.29
-2.33
-2.19
-2.81
-2.60
-2.53
-2.53
-2.58
-2.62
-2.62
-2.54
-2.54
-2.48
-2.55
-2.29
-2.26
-2.47
-2.38
-2.30
-2.31
-2.40
-2.25
-2.30
-2.28
-2.30
-2.15
-2.08
-2.24
-2.27
-2.23
-2.74
-2.61
-2.70
-2.64
-2.40
-2.27
-2.49
-2.54
-2.41
-2.37
-2.38
-2.26
-2.12
-2.22
-2.20
-2.10
-2.13

I- .L 1 1 1 1

-2.74
-2.57
-2.64
-2.41
-2.43
-2.27
-2.35
-2.40
-2.35
-2.41
-2.28
-2.90
-2.70
-2.60
-2.62
-2.65
-2.69
-2.77
-2.61
-2.60
-2.54
-2.76
-2.34
-2.49
-2.56
-2.50
-2.40
-2.48
-2.49
-2.36
-2.38
-2.33
-2.39
-2.22
-2.24
-2.43
-2.36
-2.30
-2.87
-2.72
-2.78
-2.75
-2.58
-2.39
-2.60
-2.67
-2.53
-2.44
-2.46
-2.35
-2.29
-2.35
-2.27
-2.18
-2.19

- ku)

-2.54
-2.41
-2.41
-2.16
-2.22
-2.12
-2.20
-2.20
-2.23
-2.25
-2.09
-2.72
-2.50
-2.46
-2.43
-2.50
-2.55
-2.46
-2.47
-2.48
-2.43
-2.34
-2.24
-2.03
-2.38
-2.26
-2.20
- 2.15

-2.30
-2.15
-2.22
-2.22
-2.21
-2.08
-1.92
-2.05
-2.19
-2.16
-2.62
-2.50
-2.61
-2.54
-2.22
-2.15
-2.37
-2.40
-2.29
-2.31
-2.30
-2.18
-1.97
-2.09
-2.13
-2.02
-2.06
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COEFFICIENT STUDY

A visual analysis of the power spectrum plots in Appendix B shows 19 runs with a
noticeable -5/3 region. These were chosen for further analysis in an effort to determine
the coefficients in Eq. (18) and estimate E0 , the total viscous energy dissipation rate, and
DO, the total temperature variance dissipation rate.

Each of the 19 runs was least-squares fit in the convective range according to the
equation Tc(k) = pk q . The results are given in Table 3.* The mean value of q is -1.68.
As anticipated from both the theory and visual analysis, q is essentially identical to the
classical -5/3 value.

Table 3
Least Squares Analysis on Tc = pk q in the

Convective Range (kL - ku)

Run kL X 102 ku X 102 107 90% Confidence 1 90% Confidence
(m- 1 ) (m-1 ) pX Limits on p X 107 Limits on q

14.12

18.45

15.98

13.21

31.02

39.23

24.84

23.32

27.62

46.44

26.37

16.29

39.57

32.07

27.30

35.40

35.69

24.95

33.16

1-150-1

1-150-2

1-300-1

1-400-2

1-550-2

1-550-3

1-750-1

1-750-4

1-900-4

1-900-5

1-900-6

1-1100-7

2-100-3

2-100-4

2-600-1

2-600-2

2-900-2

2-1200-2

2-1200-4

*Note the relation between the convective range and the Brunt-Viisilii frequency. When N is large (see Fig.

3), the convective k-range falls in higher wavenumbers than when N is small.

6.91

11.45

5.55

5.80

21.86

10.17

8.28

12.89

15.47

21.93

11.16

5.43

14.33

14.58

18.20

14.95

16.87

8.73

13.82

5.8

20.9

3.0

2.7

12.8

19.4

68.8

95.4

48.8

37.2

118.4

20.9

31.4

10.3

14.8

20.0

25.1

3.1

3.0

-1.75

-1.64

-L67

-1.69

-1.75

-1.66

-1.67

-1.68

-1.71

-1.69

-1.70

-1.72

-1.65

-1.66

-1.71

-1.67

-1.72

-1.64

-1.69

1.9

6.5

1.6

1.5

5.4

15.4

42.8

52.7

20.5

29.8

75.0

10.9

26.3

6.1

7.1

14.9

17.6

1.9

2.1

17.5
67.1

5.8

5.0

30.6

24.4

110.6

172.8

116.0

46.5

187.2

40.1

37.6

17.5

30.6

27.0

35.8

5.2

4.3

-2.24
-2.25

-- 1.95

-1.94

-2.40

-1.81

-1.93

-2.02

-2.27

-1.89

-1.96

-2.00

-1.78

-2.02

-2.20

-1.88

-1.98

-1.91

-1.94

-1.26
-1.03

-1.40

-1.44

-1.10

-1.51

-1.42

-1.33

-1.16

-1.49

-1.43

-1.43

-1.53

-1.31

-1.22

-1.4

-1.46

-1.37

-1.45
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To determine the power law in the buoyancy range, a least-squares analysis is per-
formed over the entire observed buoyancy-convective range on the equation TBC - pkq =

rks, with p and q as determined in the convective range.* The results, presented in Table
4t show the mean value of s to be -2.94, very close to the predicted -3. In fact, 12 of
the 19 individual runs have 90% confidence limits wnich include -3. The distribution of
s values, as a function of q for the same run is presented in Fig. 5 and no noticeable trend
is observed. Also shown are the one standard deviation (lu) bounds on the s-distribution
and the 90% confidence limits on the mean of the s-distributiont which includes the
value -3. Thus, we conclude that the mean is not significantly different from -3.

Table 4
Least Squares Analysis on TBC - pk q = rks through the Buoyancy-

Convective Range (kL - ku)

90% Confidence
Limits on r X 109

3.5

13.0

8.4

1.0

29.3

70.1

19.5

80.4

75.8

162.3

97.8

5.2

24.3

35.6

59.5

27.5

41.6

7.5

13.1

17.2

47.8

35.8

11.8

72.9

282.4

266.9

343.8

273.0

266.9

716.2

149.0

74.1

112.9

173.7

85.5

122.0

44.4

69.6

-3.16

-3.07

-2.44

-2.93

-3.39

-2.69

-3.09

-3.06

-3.15

-2.81

-2.76

-2.84

-3.37

-3.01

-2.74

-3.16

-3.01

-2.35

-2.52

90% Confidence
Limits on s

-3.40

-3.29

-2.65

-3.33

-3.58

-2.97

-3.57

-3.33

-3.41

-2.92

-3.17

-3.41

-3.60

-3.23

-2.96

-3.40

-3.25

-2.64

-2.82

-2.91

-2.85

-2.24

-2.52

-3.20

-2.41

-2.60

-2.79

-2.89

-2.70

-2.39

-2.28

-3.14

-2.78

-2.52

-2.92

-2.78

-2.05

-2.23

*In this analysis, pkq is considered similar to a noise level and only those data which are a predetermined,

fixed amount greater than pkq are retained in the least-squares analysis.
tAgain, the k-range of interest varies with N.
j:The assumption is made that the s values are distributed normally about the mean, and use is made of
Student's t-distribution.

1-150-1

1-150-2

1-300-1

1-400-2

1-550-2

1-550-3

1-750-1

1-750-4

1-900-4

1-900-5

1-900-6

1-1100-7

2-100-3

2-100-4

2-600-1

2-600-2

2-900-2

2-1200-2

2-1200-4

0.63

0.64

0.65

1.93

1.41

1.45

0.97

1.23

1.10

1.29

2.03

0.99

1.36

1.46

2.43

1.57

1.95

1.25

1.11

14.12

18.45

15.98

13.21

31.02

39.23

24.84

23.32

27.62

36.44

26. 37

16.29

39.57

32.07

27.30

35.40

35.69

24.95

33.16

7.8

24.9

17.3

3.4

46.2

140.7

72.1

166.3

143.9

208.2

264.7

27.9

42.4

63.4

101.6

48.4

71.2

18.2

30.2



MOSELEY AND DEL BALZO

z

z

-3.5
X

x X

30 - X 1 90/0 CONFIDENCE
- ------------------- -F- LIMITS

5In
Z

._j

r

o -2.C0_

-I

xxC a

5 -x

!I I i i J

.62 -1.64 -1.66 -1.68 -1.70 -1.72 -1.74 -1.76
POWER LAW IN CONVECTIVE RANGE

MDOUUI

Fig. 5-Least-squares analysis on power laws in buoyancy and convective ranges with
distribution mean y and lo

Since the theory indicates that q and s should equal -5/3 and -3, respectively,
another type of analysis is suggested. Perform the least-squares fits over the same regions
but force the theoretically predicted power laws and ascertain estimates of A 1 and A 2 .
The equations Tc =-p'k-5/3 and TBC - p'k -5/ = r'k 3 (using p' as calculated in the first
equation) are fit in the identical k-ranges as before and the values are plotted vs depth in
Figs. 6 and 7. The solid line was faired in by eye. The similarity to the shape of the
Brunt-Vaisdla frequency profile is unmistakable.

One further area of analysis concerns the physical parameters cO and D0 . Using the
estimates p' and r' of the coefficients A 1 and A 2 , respectively, together with the run-by-
run values of N for each tow, the quantities e 0 

C- 3 / 2 and BD, C - 1/2 are calculated via
Eqs. (22) and (24). The constants B and C are of order unity (18) and they are set equal
to one in order to estimate c 0 and Do directly. The results are presented graphically in
Figs. 8 and 9. Again, note the apparent influence of the Brunt-Vdisdld frequency. Web-
ster (16) predicted and verified experimentally a proportionality between the rate of
energy dissipation and N. Grant, Stewart, and Moilliet (14) have experimental evidence
of energy dissipation rates 60 between 1.02 X 10 - 4 and 1.5 X 10-7 m2 /s3 . Our data
show a range of values between 2.0 X 10 - 4 and 3.2 X 10-6 m 2 /s 3 which agrees well
with the values seen by Grant, et al.

Numerous combinations of parameters were least-squares fit and the results are given
in Table 5 for completeness.
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Table 5.
Least-squares Relationships to the Brunt-Vaisdla Frequency

Equation Results (MKS System)

p= UlNVl U1 = 1.45 X 10 - 3  v I = 1.24

r'= u2 NV2 u2 = 5.98 X 10 - 3  v2 = 2.21

e C-3/2 = U3NV3 U3 = 1.19 X 10 - 1 V3 
= 1.55

BDO C-1/2 = u 4 Nv4 U4 = 6.46 X 10 - 4 v4 = 1.75

AN OVERVIEW OF OCEANIC TEMPERATURE FLUCTUATIONS

The spatial spectrum of horizontal temperature fluctuations in a stratified ocean
may be divided into several regions as shown in Fig. 10. The lowest wavenumber range
is likely to be dominated by large-scale, weather-related thermal activity and ocean
currents. The underlying dynamic mechanism in the next higher wavenumber range is
estimated to be internal waves. At the high end of this range, the spectrum decays as
k- 2 due to a modulation of the sheet and layer structure by the internal wave field, as
developed by Phillips (21). This effect is predicted (22) to extend beyond the Brunt-
Vaiisila wavenumber cutoff. Experimental evidence of a -2 power law is given by
McKean (3). At larger wavenumbers, one finds the buoyancy and convective ranges with
-3 and -5/3 power laws, respectively, that were treated in this report. Finally, the
dissipative range lies in the highest wavenumber interval. Batchelor (19) predicted that
the spectrum between the viscous and conductive cut-off wavenumbers is proportional
to k- 1 and this was seen by Grant, et al (15). Above the conductive cutoff the spectral
decay is very rapid.

THEORISTS

I PHILLIPS '

IMOSELEY, DEL BALZOI

I BATCHELOR I

I CORRSIN I WAVENUMBER

jMcKEAN I IGRANT(OCEAN)I

IMOSELEY, DEL BALZOI
EXPERIMENTAL IS TS

Fig. 10-Major divisions in the spatial spectrum of horizontal temperature
fluctuations in a stratified ocean



MOSELEY AND DEL BALZO

CONCLUSIONS

The assumptions, postulates, and dimensional analysis lead to the formulation

TBC(k) = BDo 601/ 3 k-5/ 3 + BCDoN 2 colk - 3

for the horizontal spatial power density spectrum of random oceanic temperature fluctua-
tions in a wavenumber range called the buoyancy-convective range. This range corresponds
to the buoyancy-inertial range dealt with in the turbulence theory of stratified fluids.

Analysis of experimental data obtained during 54 horizontal tows with depths rang-
ing from 97.5 to 1454 m at two widely separated stations validates a number of theoretical
predictions. Both the -5/3 and -3 predicted power laws were observed; the mean values
were -1.68 and -2.94, respectively.

Upon fitting a single-exponent power law formulation over the entire observation
range, the expected power law variation between -5/3 and -3 was seen to occur along
with the anticipated asymptotic (to -3) nature of the exponent for increasing magnitude
of the negative temperature gradient or N 2 .

The values of the total energy dissipation rate are in good agreement with those
which are generally quoted. The new method of calculating e0 , and additionally Do ,
based on least-squares estimates of power law coefficients and the Brunt-Vaisala frequency,
appears accurate. A dependence of co and D. on N is also observed, where e0 ranges
from 3.2 X 10-6 to 2.0 X 10 - 4 m 2 /s3 and D. varies between 4.6 X 10 - 9 and 5.6 X 10- 7
0 C2 /s.

The theoretical predictions together with the experimental evidence in this report
provide a possible explanation for the disparity in experimental results in the field of ran-
dom temperature microstructure. A major accomplishment of this work is felt to be that
it fills the gap between the wavenumber ranges where internal waves and isotropic tur-
bulence dominate the horizontal spatial random temperature spectrum.
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Appendix A
INSTRUMENTATION, EXPERIMENTAL TECHNIQUES, AND DATA REDUCTION

In the fall of 1970, the USNS Mizar was deployed in the Bermuda Rise area of the
North Atlantic for the purpose of gathering data on random environmental fluctuations.
From October 29 until November 12, measurements were taken in the rectangle extend-
ing from 310 45'N to 320 15'N and from 630 55'W to 640 35'W (Station 1). During
November 13-19, the operating area was between 290 05'N, 290 35'N, 660 35'W, and
670 15'W (Station 2).

The Mizar is particularly well suited for this kind of experiment due to its center-
well towing capability. With the tow point located near the ship's center of gravity, the
rotational components of ship motion are partially decoupled from the instrument package.
Frequently, with the Mizar drifting, the instruments were raised or lowered over large
depth intervals in order to obtain vertical profiles. This was done at many locations and
the results showed no significant changes between profiles at various points within a
station. The average profiles for each station are given in Fig. Al.

At each station a series of straight-line tow runs was executed over a wide range of
depths, speeds, and distances. The important characteristics of each run are presented in
Table Al. Excessive cable fatigue due to strumming was encountered during the 4-knot
runs, and consequently an upper limit of 3 knots was set for the remainder of the tows.
Before and after each run, the instruments were raised and lowered several times around
the tow depth in order to obtain a "local" (run by run) record of the vertical tempera-
ture gradient and, with archival salinity data, the Brunt-VaisTha frequency. These results
are shown in Fig. A2, where each point represents an average over many runs at a similar
depth.

The instruments were attached to the front of a streamlined fish which was designed
and constructed at NRL. The weight of the tow body is adjusted for each operational
depth, since good towing stability requires more weight for the deep depths than for the
shallow depths. Throughout each tow run the pressure sensor output is monitored and
minor cable length adjustments are made to insure a relatively constant tow depth.
Figure A3 shows the tow body and four sensors.

The three environmental sensors are a platinum resistance temperature probe, a
velocimeter, and a vibrotron pressure transducer. Calibrations were conducted at NRL
both before and after the experiment and no statistically significant changes were mea-
sured.* The fourth sensor is a Savonius rotor current meter which is used to measure the
rate of motion through the fluid.

*For more details on the environmental sampling technique and explanations of the calibration and data
gathering procedures, see Moseley and Del Balzo (A2).
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Table Al
Run Statistics, 1970

Average Average Duration Distance Speed Depth Equivalent Noise Number of
Run Depth Speed Durtin Sampled Quality Quality Number of Level Data o

Rn Dp Speeds (ni((rs S d Q y Degrees of (X 106) Data Points
(n) (knots) (n.mi.) ( ( Freedom (OC2 -m.) in Average

1-150-1
1-150-2
1-150-3
1-300-1
1-300-2
1-300-3
1-300-4
1-400-1
1-400-2
1-400-3
1-400-4
1-550-2
1-550-3
1-550-4
1-750-1
1-750-2
1-750-3
1-750-4
1-900-1
1-900-2
1-900-3
1-900-4
1-900-5
1-1100-1
1-1100-2
1-1100-4
1-1100-5
1-1100-6
1-1100-7
1-1300-1
1-1300-2
1-1300-3
1-1500-1
1-1500-2
1-1500-3
1-1500-4
1-1500-5
2-100-1
2-100-2
2-100-3
2-100-4
2-300-1
2-300-2
2-600-1
2-600-2
2-600-3
2-900-1
2-900-2
2-1200-1
2-1200-2
2-1200-3
2-1200-4
2-1500-1
2-1500-2

142
145
142
290
286
315
310
387
355
382
390
626
650
551
721
718
730
727
870
872
875
875
872
1067
1067
1067
1071
1072
1066
1266
1260
1264
1453
1454
1452
1453
1453
98.3
97.6
97.5
98.4
292
292
583
583
584
875
875
1165
1164
1164
1165
1454
1454

4.7
4.7
4.6
4.6
4.8
4.2
4.4
4.1
4.6
4.2
2.3
2.1
2.1
1.8
3.1
2.4
2.3
2.4
2.4
2.3
2.6
2.7
2.3
1.9
2.5
2.2
2.8
3.0
3.0
2.6
2.6
2.9
1.7
2.7
1.8
2.2
2.1
2.3
2.3
2.2
2.0
1.8
2.5
2.5
1.9
2.0
2.7
2.3
2.1
2.4
2.5
2.7
2.2
2.1

2.4
3.4
3.4
3.2
3.4
3.2
3.0
3.3
6.3
3.8
5.3
3.5
4.6
5.2
3.0
5.6
5.5
5.2
2.6
5.5
4.9
2.8
5.7
2.3
1.6
2.7
1.3
1.6
2.2
6.1
4.8
4.8
4.1
3.3
2.3
3.4
3.3
2.3
6.0
6.3
4.0
7.1
3.8
5.5
6.3
7.1
4.9
5.7
5.1
3.2
5.2
2.4
5.2
5.8

11.2
16.0
15.4
14.7
16.4
13.6
13.3
13.5
28.8
15.8
12.2

7.3
9.6
9.3
9.2

13.4
12.7
12.4
6.3

12.7
12.9

7.7
13.1
4.3
4.0
5.9
3.7
4.8
6.5

15.8
12.4
13.9
17.0
8.9
4.1
7.4
6.9
5.2

13.9
13.9
8.0

12.7
9.5

13.7
11.9
14.2
13.4
13.1
10.8

7.6
13.0
6.5

11.5
12.2

5.6
10.3

4.2
25.2

7.7
12.4

5.8
5.2

10.7
17.0

3.6
7.5

13.1
2.6
2.9
7.7
4.1
1.0
3.7
2.8
1.4
1.0
1.3
1.9
1.9
1.4
1.9
1.4
1.5
1.3
1.0
1.4
0.7
0.6
0.2
0.7
0.2
0.5
0.4
0.5
1.0
1.4
1.0
0.9
1.2
0.9
0.7
0.8
0.8
0.4
0.9
0.3
0.6
0.7

39
57
51
39
57
49
49
55

104
39
63
51
61
79
49
63
65
79
35
87
81
43
96
28
26
43
22
26
35
94
81
81
69
55
33
53
53
37
96

102
59

106
57
92

106
110

83
96
87
53
83
39
89
94

3.3
3.2
3.5
5.1
5.6
2.1
4.8
1.9
2.4
3.0
1.3
2.7
2.5
1.9
3.2
4.8
4.8
3.2
3.5
1.9
3.2
2.5
2.1
1.9
1.6
2.1
4.1
2.4
1.9
2.4
2.4
2.4
2.2
2.1
1.4
1.9
1.3
2.1
2.1
2.2
1.8
2.1
2.1
1.9
1.9
2.2
1.8
2.4
1.9
2.4
2.1
1.4
0.8
0.6

40960
61440
53242
40960
61440
53248
53248
57344

110592
40960
65536
53248
65536
81920
53248
65536
69632
81920
36864
90112
86016
45056

102400
28672
28672
45056
24576
28672
36864
98304
86016
86016
73728
57344
36864
57344
57344
40960

102400
106496

61440
110592

61440
98304

110592
114688

86016
102400

90112
57344
86016
40960
94208

102400
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Fig. A2-Run-by-run profiles of (a) negative temperature gradient, and
(b) Brunt-Vaiseas frequency (0 = Station 1, x = Station 2)

The environmental sensors sample the medium five times a second and return FM
signals through a coaxial cable for shipboard processing and digital recording. The on-
line displays of data are Nixie tubes, Brush recorders, and oscilloscope traces. The analog
current meter output is recorded on a Brush recorder.

The data reduction process begins, through the use of the calibration equations, with
the conversion of the digital raw data into pressure in pounds per square inch, sound speed
in meters per second, and temperature in degrees Centigrade. Each pressure sample is also
converted into a depth in meters. Utilizing local temperature-salinity diagrams, each cor-
responding value of temperature and depth is used in Wilson's equation (Al) to calculate
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Fig. A3-Tow body showing three environmental sensors, current meter, and
battery pack

a sound speed which is compared to the measured sound speed. This provides a continu-
ing check on the functioning of all three sensors. The average depth and temperature
during each record (1024 data samples) is plotted against the record number so that any
trends or discontinuities will be apparent (see Fig. A4). The current-meter signal is con-
verted into a speed, averaged over each record, and plotted vs record number as in Fig. A5
(upper trace). The lower points represent consecutive overlapped segment averages (a seg-
ment equals four records). Unusual speed and/or depth discontinuities or trends are cause
for removal of data segments from further analysis.

The analysis* involves power spectral density computations as a function of spatial
wavenumber k. The power spectra are obtained by the direct method of power spectral
computation (A3) which utilizes the fast Fourier transform. A segment (4096 data
points = 13.7 min) is used as the basic time series for each transform. An analysis window
(A2) with extremely low side-lobe structure (first side lobe at -58.1 dB re main lobe) is
applied in a direct manner to 50% overlapped segments during the transform process after
removal of a mean and linear trend. The nearly independent transforms are then converted
into power spectral density estimates and averaged to give TsC(k) (caret indicates raw
estimate).

The raw estimates of the temperature power spectral density, TBC(k) are, to varying
degrees, contaminated by pseudotemperature fluctuations caused by depth variations in

*A detailed treatment of the analysis technique is given in Ref. A2.
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Fig. A5-Deviation from mean tow speed of run averaged over one record
(top trace) and averaged over consecutive overlapped 4-record segments
with error bars (bottom trace).

the presence of a complicated vertical temperature structure. A measure of the contamina-
tion is obtained through cross-spectral analysis between temperature and depth. In
particular, the squared coherency spectrum K 2  * which is a nondimensional measure of

TD'9

the linear correction between the two spectra,t is used to obtain a better estimate of
TBc(k), the true random temperature power density spectrum, given by

TBc(k) = TBC(k)[1 - K2D(k)].

The results of the analysis applied to the tow run are shown graphically in Appendix B.

REFERENCES

Al. W.D. Wilson, "Speed of Sound in Sea Water as a Function of Temperature, Pressure,
and Salinity," JASA 32, 641 (1960).

A2. W.B. Moseley and D.R. Del Balzo, "Temperature Microstructure of the Ocean Near
the Deep Sound Channel Axis," NRL Report 7729.

A3. W.B. Moseley, "Direct Computation of Power Density and Energy Density Spectra,"
NRL Report 7179, Mar. 1971.

•g D (k) = LCo 2 (k) + Quad 2(k)]/TBc(k)DBc(k), where Co(k) is the cospectrum, Quad(k) is the quadrature

spectrum, TBc(k) is the previously defined raw temperature power density, and DBC(k) is the depth
power density spectrum in the buoyancy-convective range.

tK2D is restricted to the interval [0,1 ], wherein

K 2  = 0 implies spectra completely uncorrelated
TD 1.1 implies spectra fully correlated.



Appendix B
TEMPERATURE POWER SPECTRAL DENSITY PLOTS

Contained herein are spatial power spectral density plots of temperature fluctuations
with 95% confidence limits. For ease in converting to distance (size scale) the power is
presented with units (0 C2 /cpm) and wavenumber is given with units (cpm). The run
identification is presented in the upper right-hand corner of each plot.
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Fig. B-Temperature power spectral density plots with 95% confidence limits (Continued)
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Fig. B-Temperature power spectral density plots with 95% confidence limits (Continued)
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Appendix C
INSTABILITY OF MEDIUM

On a small scale, the ocean is basically an unstable medium. The two dynamic
mechanisms, internal waves and turbulence, in the presence of "layers" and "sheets," are
probably the basic causes of this vertical and horizontal instability at depths greater than
100 m.

In the thermocline, the temperature decreases in a stepwise fashion with increasing
depth. There appear to be isothermal "layers" on the order of 3-10 m separated by
"sheets" of high gradient on the order of a meter or less wherein the temperature changes
by about 0.10 C. The entire structure seems to deform in the presence of internal waves,
so that if a temperature probe is maintained at a constant depth it will measure a series
of nearly discrete temperature changes. In the case of a towed temperature sensor where
the depth stability is related to the sea surface conditions, many extraneous temperature
"jumps" occur. This is the medium instability referred to in the body of the report.
The "sheet-layer" structure and temporal variability are shown in Fig. C1, which contains
profile "snapshots" of the same water column showing the structural change during a 3-
min period.

The steplike structure in the neighborhood of the towed temperature sensor changes
considerably during the 13.7-min data segment. The extraneous temperature "jumps"
encountered by the probe cause the squared coherency estimate of the temperature-depth
correlation to be contaminated near 0.1 cpm. How~er, the estimates of the squared
coherency at smaller wavenumbers are accurate, since it is the relatively stable mean
temperature gradient which causes the temperature-vs-depth correlation in this range.

If one were to look at a shorter time series, the lower wavenumbers would be
eliminated, but the squared coherency would better reflect the temperature-vs-depth
correlation since the spatial interval over which the statistic is computed is more homo-
geneous. An example of this type of analysis is shown in Fig. C2, where the basic time
series is 25.6 s. In this analysis, statistical significance is obtained by first averaging each
consecutive pair of spectra to form a mini spectrum, removing the squared coherency,
and then averaging 100 of these minispectra to obtain the grand spectrum.

In Fig. C3, the following information is apparent: (a) the raw temperature power
density spectrum is seriously affected between k = 0.06 cpm and k = 0.2 cpm (presum-
ably by vertical probe motion due to surface coupling); (b) the temperature and depth
spectra are highly correlated in the same wavenumber range; (c) removing the squared
coherency from the temperature spectrum reduces the overall energy in the affected wave-
number range, but not to a sufficient degree; and (d) the contamination in the tempera-
ture spectrum is virtually eliminated by means of the short (25.6-s) transform interval (at
the expense of losing information at low wavenumbers.)
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SYMBOLS

V Velocity spectrum in the inertial range

VBI Velocity spectrum throughout the buoyancy-inertial range

Tc Temperature spectrum in the convective range

TBC Temperature spectrum throughout the buoyancy-convective range

k Wavenumber

kb High wavenumber cutoff for buoyancy effects

N Brunt-Vaiisilai frequency

f Net rate of spectral energy transfer

c0  Total rate of energy dissipation

Do Total rate of dissipation of temperature variance

B, C, j3 Constants

A 1  Coefficient of -5/3 term in equation for TBC(k)

A 2 Coefficient of -3 term in equation for TBC(k)


