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Abstract: A representation by a summable, analytic Eisenstein series is given
for the standard Jacobian theta function. The result extends the known convergent
Eisenstein series representations of the kth powers of the theta function for k = 4,
.... 8, due essentially to Hardy, to the case k = 1 by introducing a suitable sum-
mability method.

1. We consider the standard theta function 2

+00
O(z)- . e- 7rz n 2  (z = x + iy , x >  )0(> ~ n (x i~> ), (1.1)

n= _00

which is holomorphic in x > 0 and has the imaginary axis as its natural boundary: namely, it is known
that on approaching a boundary point, say z-+-ip,

(z + ip)ll 2 0O(z ) -+ c(p) larg(z + ip)ll21 < < ,(1.2)

where according to Hardy-Littlewood or Weyl

cw(p) = 0 for irrational p, (1.3)

whereas if p is rational, co(p) is a Gaussian sum

2c

cO 1 (P) Z ei7pr 2 for p = a/c (c>0) (1.4)

r=1

and cw(p) vIc- is an 8th root of unity if (a, c) = 1 and a - c = I mod 2. This suggests trying to decom-
pose the theta function into a partial fraction series with terms o (p) (z + ip) 1/2 for the rational num-
bers p, where larg (z + ip)l/ 2 I < nr/4. The analogous case of a kth power of O(z) with natural k leads
to a corresponding Eisenstein series which converges absolutely (only) when k > 4. There even exist the
representations

1Dr. Arenstorf holds joint appointments at the NRL Mathematics Research Center and at Vanderbilt University.2 We write - to define the left expression by the right hand one.
NRL Problem B01-11; Project RRO03-02-41-6153. This is a final report on one pl-se of the problem; work is con-
tinuing on other phases. Manuscript submitted August 6, 1971.
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Ok(z)= 1 + , Wk(p) (z + ip)-k/2 (k = 4, .. ,8), (1.5)

p =a/c

which have been found by different motivations for the first time by Mordell and Hardy using the theory
of modular functions. For k = 4 the Eisenstein partial fraction series in (1.5) is only conditionally con-
vergent and has to be summed first over a (for fixed c) and then over c.

To overcome the convergence difficulties for k < 4, it is customary, following Hecke, to introduce
the convergence-generating factor Icz + ial-w and to use the modified Dirichlet-Eisenstein series (with
w = u + iv)

Hk(z, w) = 1 + Wk(p) (z + ip) - k12 icz + ial- w u > 2 - k). (1.6)

p =a/c

It has been shown by Maass that Hk(z, w) for k = 1, 2, 3 has a single-valued analytic continuation as
function of w to w = 0 with Hk(z, 0) = Ok(z) for k = 1, 3 and with H2 (z, 0) = 20 2 (z). Siegel [1] has
shown that Hl(z, w) is meromorphic in w and satisfies a simple functional equation relating it to
Hi(z, 1 - w). By (1.4) and the well-known reciprocity formula

co(p) = (ip)112 cw(-1/p) (p #t 0) (1.7)

for the Gaussian sums, (1.6) implies H,(z + 2i, w) = H,(z, w), in particular, and

h(l/z) = zl/ 2h(z) for h(z)-xw/ 2H,(z, w), (x=Rez>0) (1.8)

so that H1(z, w) is essentially a (nonanalytic) modular form in z (at first for u > 3/2 and then, by
analytic continuation, for all w), this being the motivation for the particular form of Hecke's factor.

The relation O(z) = Hi(z, 0) shows that in its entire domain of existence, the right half plane
x > 0, 0(z) can be characterized by and constructed from its singular main parts W (p) (z + ip)- 1/2
belonging to rational points -ip on the imaginary axis with p = a/c, (a, c) = 1, a - c -1 mod 2, and
c > 0. However, H1 (z, 0) cannot be obtained simply by letting w -- 0 in the right-hand expression of
(1.6) for k = 1, but only by analytic continuation of Hil(z, w) to w = 0, thereby exhibiting poles in
u > 0 (the first at w = 1) and in the process dissolving the terms Cw(p) (z + ip)- 1 1 2 ; compare with
Siegel [1] . When k = 3, for instance, the situation is more favorable, since the series for H3 (z, w) in
(1.6) converges conditionally for u > 0 (when summed first over a and then over c), and also H3 (z, w) -
03 (z) for w -* 0 (u > 0), as was shown by Bateman [2]. But 03 (z) still appears as the limit function
of a family of nonanalytic functions of z, which is a disadvantage for certain desirable applications of a
partial fraction series of 0 3 (z).

The main goal of this report is to derive the following result on the existence of a summable,
analytic, Eisenstein series for the theta function.

THEOREM. There exists an entire function p(r), with p(O) = 1 and p(T) = O(r-n) for every
natural n as T -* +- through the reals, such that
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O(z) l+ lir
2-'+O

-im

LP 'U/c

cp) (z + ip)- 1/ 2 p(rllpll) (x > 0) (1.9)

W(p) [(z + ip- 1/2 + (ipz + 1)- 1/2] p(r Ip IIj (summed over odd c only),

where lip II-(a 2 
- c2)1/4. The convergence as r->+0 is uniform in z on every compact set contained

in x= Rez >0.

The interest in the representation (1.9) lies in the fact that it directly exhibits one of the funda-
mental properties of 0(z), which is not immediately visible in (1.1), namely that 0(1/z) = z1/20(z).
ijowever, the periodicity O(z + 2i) = O(z) is not directly visible in (1.9), though it is obvious in (1.1).
The "surnmabdiaty furction" p(z) involves essentially only the Riemann zeta function, as expected, and
it wi be constructed explicitly in the following proof (clearly, it is not unique).

For the pioof of the theorem we introduce a series T(z, w) similar to (1.6) but with the convergence-
gcmeting factor lic + ia -w which is different from Hecke's, thus giving up the periodicity in z. Analytic.,,
con nuation via Fourier expansion again yields poles in u > 0 and the value O(z) at w = 0. We then intro-
duce a stitale contour integral (over w) involving T(z, w) and a parameter r, such that T(z, 0) appears
as its only residue in u > 0, and the remainder can be readily estimated. Calculating this integral, on
the other hand, termwise from the series T(z, w) leads to (1.9).

2. Agpin we let z = x + iy and w = u + iv (x > 0) and consider the Dirichlet series

T(z. w)- 2 . W(p) (z + ip) 1 2 , Ic + iaw

P'ff/c

(u > 3/2), (2.1)

which for fixed z is to be analytically continued with respect to w. The summation is extended over all
rational numbers p = a/c with c > 0, i.e., (a, c) = 1. Then Ico(p)I < c- 1/ 2 by (1.4), so that the series
in (2.1) converges absolutely for u > 3/2. Hence, rearranging and using the periodicity of co(p),

T(z, w) 2
pmod2

+06

(p)c-W 2
k=-o

(z + ip + 2ik) - 1 /2 I1 + ip + 2ikl - w

The inner series here is uniformly convergent on 0 < p -< 2, is periodic in p with period 2, and is holo-
morphic on 0 < p < 2, if we replace the absolute value according to

I1 + ip I = (1 + p2)1/2; [with larg (1 + p2)1/ 2 1 <-for IIm pI] <1

Thus it has a Fourier expansion, absolutely convergent for real p, and we obtain

T(z, w) = T,

pmod2

+00

w(P)c-W T
n=- oo

b(n; z, w)e - Pi n n (u (2.2)
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where
+00

b (n; z, w) . fi ei~rflt (z + ity)1/2 (1 + t2)-w1/2 dt (2.3)

These integrals exist for u > 1/2. If n : 0, it is seen, after partial integration and shifting the line of
integration into the upper or lower half plane (through t = (i/2) min (x, 1) sgn n; z = x + iy is fixed with
x > 0), that b(n; z, w) is holomorphic in u > -1/2 and that amply

b(n; z, w) = 0j(1 + iw) exp [-(7/2)ln I min (x, 1)]. uniformly for nl > 1, u >-q. (2.4)

Therefore the repeated series in (2.2) is absolutely convergent (only for u > 3/2), and by allowed exchange
of summations

+00

T(z, w)=

q(n, w)-

pmod2

b (n; z, w) q(n, w)

w (p)c- w e- irpn

From (2.3) for n = 0 (with F denoting the gamma function)

b (0; z, w) =J (1 + t2yW 2 [(z + it)- 1/ 2 - (it) - 1 /2 ]

so that b(0; z, w) is holomorphic in u > - 1/2, except for a simple pole at w = 1/2. For n f/0 we have
already seen that b (n; z, w) is holomorphic in u > - 1/2. Now we calculate for negative n

(n; z, I I
S00 -ic

ei rn t (z + it)- 3 12 dt = O(elrnc) for every c > 0;

b(n;z,0)=Oforn<0 (x > 0),

the case n = 0 following from (2.7). For positive n we get

z+i**

b(n; z,0 ) e-rrnz

Z-100

e rn ww - 3 / 2 dw = n - 1/ 2 e - rn z. (n >0, x >0).

3. We now turn to the analytic continuation and estimation of the expressions q(n, w), defined in (2.6),
to the left of u = 3/2. By (2.6), (2.4), and absolute convergence,

where

(u > 3/2), (2.5)

(u > 3/2). (2.6)

r (-I) q2f --L)
4 2 4

dt + --

r T'(W) is-

1
(u >- )(2.7)

thus

(2.8)

(2.9)
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q(n, w) = c- w I (p)e- ilrp n = -1(w) c- w  co(p)e- irpn

c=l a= c=l a=1
(a,c)=1 (3.1)

-l(w) T .N(n, 2c)c- w with N(n, m)- 1,

c=1 r=1

r 2 =n mod m

where " denotes the Riemann zeta function. Since N(n, km) = N(n, k)N(n, m) whenever (k, m) = 1,
we have (certainly for u > 2)

2-w 1 N(n, 2c)c-W = r7 N(n, 2k) 2-kw1F p -7 N(n, pk)p-kw7 , (3.2)

c=1 k=

the product extended over primes p. The enumeration of the solutions of quadratic congruences modulo
a prime power is known (it follows from the structure of the prime residue class group modulo pk);
namely, if n 0 0, let n* be the discriminant of the algebraic number field generated by vrn- (over the
rationals), let m = m(p, n) be the largest integer such that p2m divides 4n/n*, and let

x (r, n r

be the Kronecker symbol (X = 0 if (r, n*) > 1). Then from the factorization

n = n0 4n H p2m(p, n) with squarefree no and m -m(2, n) - X2(2, n)
p>2

we have

N(n,2k)2-kw = 2 [k/2]-kw + 2m-(2m+l)w If+2X2(2,n) -W+(l+x(2,n))T 2-kw

k=1 k=1 k=2

= 2-w(1 - X(2, n)2- w)- h(2, n; w),

where
2m-1

h(2, n; w) 1 + X(2, n) + [21-w - X(2, n)] T 2 [k/21 -kw, m = m(2, n), (3.3)

k=O

and for odd p

T N(n, pk)p-kw = ,,k/2l-kw + pm-(2m+)w(1 + x(P, n)) + x2(p, n) P-k

k=0 k=o k=1

= (1 + p-W) (1 - X(P, n)p-w)-lh(n, p; w) (m = m(p, n)),
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where m-1

h(p, n; w)- pm(l-2w) + (1- x(p, n)p-w) IT, pk(-2w) (p >2). (34)

k=O

Finally, if n = 0, we clearly have N(0, pk) = pfk/2] for all k > 0, p > 2. Thus

SN(0, 2k)2 - k w = 2- w 1+2-1 2 1-w

N(0 =2 1 - 2 1-2w '

k=1

and

Noppkw 1 +p-WN(O,pk)p- 1 +p-2w (p > 2).

k=0

Using (3.1) and (3.2), we obtain for n = 0

(1+2 l w  '2 -1

q(O, w) = + 21w) (2w - 1) (3.5)
(1 + 2

- w ) (2w)

and for n =A 0, since by (3.4) h (p, n; w) = 1 when m(p, n) = 0,

q(n, w) = L(w;n) 1 h(p, n; w) (n 4 0), (3.6)
(1 + 2- w )  '(2w) p12n

where (for u > 1)
o0

L(w; n) - (1 - x(p, n)p-w)-  = I X(k, n)k - w = L(w, n*). (3.7)
PL

k=1

Now the Kronecker symbol is the principal character only when n* = 1, i.e., when n = k 2 (k an integer),
and then L(w; k 2 ) = '(w). Therefore, by (3.5), (3.6), and the foregoing, q(n, w) is holomorphic in u >
1/2, except for a simple pole at w = 1 when n is a perfect square, including 0.

The further analytic continuation of q(n, w) to the left of u,= 1/2 follows from the functional
equations of the L-series

g(w + en) L(w; n) = In* ( 1/ 2 )- w g(l - w + en) L(1 - w; n), (3.8)

where

1
g(2w) - irr- w F(w), en - (1 - sgn n) (n =f 0)

(since X(k, n) is a primitive character modulo In*l), and from the relations

h(p, n; w) = pm(1-2w) h(p, n; 1 - w) with m = m(p, n) (p > 2),

which follow from (3.3) and (3.4) by elementary calculation. Thus using (3.6) and the definition of
m(p, n), we obtain the functional relations
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q*(n, w) = 2Inl(1/)-w(2i)-WrF(w) q*(n, 1 - w) sin fr(w + en) (n =A 0), (3.9)

where

q*(n, w) - q(n, w) (1 + 2- w) p(2w), p(w) - g(w) (w) = p(1 - w). (3.10)

Collecting the information from Eqs. (3.3) to (3.10), we get the following lemma.

LEMMA 1. q(n, w) and q *(n, w) are meromorphic functions of w for each n. In u > - 1, q *(n, w)
has poles (and then of order 1) at most at w = 1 (if n = k 2 > ) and at w = 0 (if n = k2 or n < 0),
whereas q(n, w) has infinitely many other poles but is holomorphic at w = 0 for every n, assuming (in

particular) the values

q(k 2 , 0) = 2k > 0, q(n, 0) = 0 for n > 0, n / k 2 . (3.11)

Equation (3.11) follows for n = k2 , i.e., n* - 1, from (3.6), (3.3), and (3.4), since h(2, k 2 ; 0) -

2 m+1 especially, and for n = k 2 from (3.8).

Next we establish some needed estimates.

LEMMA 2. For n * 0 we have, uniformly in n and w = u + iv,

q(n, w) = O(nl(1 + v))for u >-L, v > 0, n k2,
1 (3.12)

(w - 1) q(n, w) = O(InI(1 + v) 2 )for u > 2  v >0, n = k 2 ,

and
q*(n, w) 0(InIb ( + v)b e- 1r/2) for - < u < 2, v > 0,

1 1 3.3
lw- lI>-, Iwi > 4 with a suitable constant b > 1,

and

(w - 1) q*(n, w) = O(Inlb) in Iw - II , <(3.14)

wq*(n, w) 0(inlb) in 1w 4.

The constant b has not necessarily the same value in its four appearances here, and the estimates
given are ample for convenience. To prove (3.12), we look at (3.6) and use the known estimates for
the L-series of (3.7):

1

L(w; n) = O(in* 1I 2 (1 + v) 1 ! 2) for u >-, v > 0, n* 4- 1,
1

(w - 1) L(w; n) = O((l + v) 3/ 2 ) for u >--, v > 0, n* = 1,

(see for instance [3]), -- (2w) = O[log (2 + iv1)] in u > 1/2, and finally, from (3.3) and (3.4) with
m = m(p, n) for the various prime divisors of 4n/n*,

I H h(p, n; w)l < 3 2m pr[(1/2)-u] < 3 dl(1/2)-u=o[(.n)l

p 12n pLT..[..
r=0 d 1(4n/n*)
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for u > 1/2. Equation (3.13) follows for u > 1/2 from (3.10) and (3.6), for u < 1/2 from (3.9), using
(3.12), or the estimates leading to it, and from Stirling's asymptotic formula for 1(w) on vertical lines.
Equation (3.14) follows from (3.12) using (3.10), respectively (3.9). Thus the lemma is proved.

4. With regard to (2.5), (3.5), (3.6), and (3.10), we introduce the function

+00

T*(z, w)- (1 + 2- w) so(2w)T(z, w) = T b(n; z, w)q*(n, w).

l=-o

(4.1)

LEMMA 3. For every z in x > 0 T*(z, w) is a meromorphic function of w in u > - 1/4 (at least)
where it has poles exactly at w = 0, w = 1/2, and w = 1, each of order 1. Its residue at w = 0 is 1 -
O(z) = - T(z, 0), and away from the poles

T*(z, w) = 0 [(1 + Il)be - 'IvI /2] for -<u< 2, (4.2)

with a suitable constant b > 1, uniformly in x > x 0 for any x 0 > 0.

This lemma follows from (2.7), (3.10) for n = 0, (3.5), and Stirling's formula, and further from
(2.4), Lemmas 1 and 2, and, since 2w~p(2w) -+ - 1 as w -+ 0, from (3.10), (3.11) and (2.8), (2.9).

Next we consider the integral with a parameter r 0 0

2+i00

I(z, T) -" 
2i

2-i-
T*(z, w) sin 7rw F(2w) (1 - 2w) r-2w dw,

which exists by Lemma 3 for r in the angle I arg r I < 7r/4. Again by Lemma 3 (and Stirling's formula),
we move the contour to u = - 1/4, pick up the only residue at w = 0, and estimate the resulting integral
to obtain

I(z, T) =1 [0(z) - 1] + 0(Irl1/2),larg rl- (4.4)

uniformly in every half plane x > x 0 > 0. On the other hand, by absolute convergence in (2.1)

T(z, w)= - Tn(z)n - w / 2, Tn(z)

n=1 a 2 +c 2 =n

(a,c)= 1

cw(p) (z + tO)-1/2 (4.5)

for u > 3/2, and

a
2

+c
2

=n

Icz + ial-1 1 2 = O(n-(1/ 4 )+,E) (C >0, x > 0),

so that the Dirichlet series in (4.5) converges uniformly on u = 2. Moreover, for I arg T I < r/4, and
observing the definition of po in (3.10) and (3.8),

(4.3)
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f+00 I(1 + 2
- w ) p(2w) sin 7rw I(2w) (1 -,2w) r-2W I dv < o (w = 2 + iv).

Therefore, on substituting from (4.5) into (4.1) and (4.3), exchange of integration and summation is
justified and yields

2z ,"=' T(z)p(rnl/4),

n=1

larg rl< (4.6)

where
2+i0-

-io

(1 + 2
- w ) p(2w) sin irw P(2w) (1 - 2w) -- 2w dw. (4.7)r (T)- 

2

In this integral we may move the contour to the right and obtain

Ip(r)l < Kn lr I- n in Iarg rl < T for every n > 4,

where Kn is independent of r. If we move the contour to u = -N < 0, we encounter
w = 0 and w = -m/2, 0 < m < 2N, m odd. Hence

2N- 1

lrp(r) = 7r - (1 + 2 m/2) p(-m) sin ff M) I + M +

m=1

Since for w = -N + iv

2N
Isin 7rw r(2w)I = i1(2iv) sinh v1 i I k - 2iv- 1- = O[ ]

k=1
and

p(2w) = p(l - 2w) = O[(1 + v)Ne - irv / 2] (v > 0)

uniformly in N and v, we obtain IN = 0[12rl2N P(N + 2),- 1(2N)] for fixed r in
Letting N -+ cc, we get

00

S( + 2n(1/2)) (-1) n n' ( 2 n

p() = + (2n- 1)! 7r
n=1

(4.8)

simple poles at

larg rI < 7r/8.

(4.9)

an entire function of -, whose coefficients can be expressed by Bernoulli numbers. From (4.4), (4.5),
and (4.6) we obtain

O(z) = 1 + p(rn/ 4 )

n=l a 2 +c2=n

w(p) (z + ip)- 1 / 2 + O(rT / 2 ) (r > 0)

uniformly in every half plane x > x 0 > 0. This implies (1.9), since the double series over (a, c) is
absolutely convergent by (4.8). Observing (4.8) and (4.9), the proof of the theorem is thus complete.

(4.10)



10 R.F. ARENSTORF

It is clear that the idea to employ a suitable integral, like (4.3), to obtain a summable Eisenstein
series is applicable to other modular forms besides O(z) of (absolutely small) negative dimension as well.
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