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RANGE RESOLUTION OF TARGETS

INTRODUCTION

When attempting to resolve targets, one can either resolve them in angle or range or a combina-
tion of both coordinates. The problem of angular resolution has received considerable attention, but
the range coordinate is a much more powerful discriminate for separating targets, for example, two tar-
gets separated by 1000 ft are separated by two 1-As pulsewidths but by only 1/20 of a 2' beamwidth at a
range of 100 nmi.

The probability of resolving targets is not only a function of target separation but also a function
of their signal strengths and phase differences. However, it is usually assumed that if targets are
detected, they can be resolved if they are separated by a pulsewidth [1]. In practice this resolution
capability is rarely achieved. For instance, a commonly used resolution algorithm which makes no
assumptions about the shape of the returned pulse does not attain a resolution probability of 0.9 until
the targets are separated by a distance greater than 2.5 pulsewidths [2]. Skolnik [31 conjectures by
drawing an analogy with angular resolution that targets within 0.8 pulsewidth of one another should be
resolved. The purpose of this report is to generate and evaluate algorithms for achieving resolution
when targets are within a pulsewidth of one another.

We will approach the resolution problem as a binary-hypothesis problem where the two hypothesis
are:

" HI: One Target Present

* H2 : Two Targets Present

This hypothesis testing approach to the resolution problem was first considered by Helstrom [41 who
investigated the maximum-likelihood detector for the detection of two signals of known separation in
time and frequency, but with individual phases and amplitudes and time of arrival of the pair unknown.
Later, Allen [5] considered the problem of resolving targets whose positions are known but whose pulse
shape may be distorted. Our approach to the problem will be the generalized likelihood ratio test [6]
where the unknown parameters are replaced by their maximum likelihood estimates. Root [7] first sug-
gested but later rejected this technique. Although the approach cannot be used for an m-ary hypothesis
test (Hi: exactly i targets present) because Hm will always be the most likely hypothesis, it can be used
for the binary-hypothesis problem yielding a desired false-alarm rate. Then the m-array hypothesis
problem can be attacked by first performing a binary hypothesis as to whether there are one or two tar-
gets present. If one decides that two targets are present, one performs another hypothesis test deciding
whether two or three targets are present. One continues the testing until the null hypothesis is
accepted.

GENERALIZED LIKELIHOOD RATIO TEST - NONCOHERENT APPROACH

We now formulate the resolution problem as a binary-hypothesis test. The received samples are
sin (a (R1 - i)) sin (a (R2 - i))

Xi fI nx,+ Ai a(R 1 - ) cos 0 + A2  a(R 2 -s (0 +8) and
sin a ((R 1 - i)) sina (R2 - i))

Yi ny +- A Ii a (R1 I-) sin 0 + A2 sin (a (R 2 ),
-a(RI- s a(R 2 - i)
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where X and Y are the inphase and quadrature samples for the ith range cell, nx, and ny are the in-
dependent inphase and quadrature Gaussian noise samples with mean zero and variance 0 -2, A 1 and A 2
are the target amplitudes, R1 and R 2 are the target ranges normalized by the sampling interval, 0 is the
phase of the first target, 3 is the phase difference between the two targets, a = 2.7832/AR, and AR is
the 3-dB pulsewidth normalized by the sampling interval.

We have assumed that the targets of interest are point targets. This assumption will not affect our
results as long as the extent of the target is less than a 1/10 of the pulsewidth. Hence, the results of
this analysis do not apply to high-range resolution radars. The range resolution problem is equivalent
to deciding which hypothesis is true:

HI: A1 > 0 and A 2 = 0

or

H2 :A 1 > 0 and A2 '= 0.

If {A 1,A 2,R1 ,R 2,/3} are are known, the optimal detector (in the Neyman Pearson sense) given the ith
range sample is

f" P(X,,Y, H2) dO
1  - P (X, Y H1 ) dO

where P(X, Y IH) is the joint density of X and Y. given that hypothesis Hj is true. Appendix A
shows that the likelihood ratio A i reduces to

e-Z,2/20- 2 I r.2 '
A = (1)

e- ? w2/2a(2 ri i 1

where
i2 2A? W2 + 2 AIA 2 WiU cos f + A2 U2,

sin (a(R 1 - 0)) -

a(R 1 - i)

0 Ia(Ri - i) > 7r,

sin (a(R 2 - )) a(R 2 - ) (
a (R 2 - i)

0 ta(R 2 - i) > r,

r= (Xi2 + y 2)1/2,

and I(') is the modified Bessel function of the first kind. Hence the likelihood ratio is just the ratio of
two Ricean densities; under H2 there are two signals present and the resultant signal is given by Zi;
under H1 there is only one signal present with amplitude WI A,.
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Given the envelope detected samples ri, i 1. m, the optimal test statistic is

m
A =fA,,

i-I

or equivalently

A'- slog A,.
1-I

Since in the problem of interest, {A 1,A 2,R,R 2,/3,0) are unknown, we replace them with their max-
imum likelihood estimates. Specifically, we find the values of the parameters which minimize

m m-- .( -Wj-UpC 2 + . (y~i UD UE) 2,  (2)
i-1 i-I

where B = A1 cos O, C = A 2 cos (0 +3), D = A, sin 0, and E = A2 sin (0 +3). For any given
value of R, and R 2, W and Uj are known and the maximum likelihood estimates of B, C, D, and E
can be found simply by solving the equations

L = L = O L =
OB FiC =iD ='E

The solutions for the one target case (that is, assuming Hj is true) are

C= E= 0,
B I W X 1/ 1 W 2 P (3)

D I ff Yj,/ 12
where all sums run from i = 1 to m. The solutions for the two-target case (that is, assuming H2 is

true) are

B = [( U2)(WX) (X UX,)]/A,

C = [(Z W 2)(Z UK) - (E WU 1)(Z WX)/A,
D = [( U2)(I WY,)- (y WU,)(E UY,)]/A,
C= [(I W2) ( yt) XWU)ZWY.]

where

A-( Wi2 )(X U 2 ) ( WUi) 2 .

A direct search is used to estimate the target locations R1 and R 2. Appendix B outlines this procedure.

The threshold Tis set so that

Pr(A' > TIH 1) = PFA = a,

where PFA is the probability of false alarm. Since testing for multiple targets is only performed after a
target is detected, a fairly high false-alarm rate is permissible. In this report we have selected a -

0.01. Because of this high false-alarm rate, Monte Carlo simulations can be used to estimate T. One
thousand repetitions were run for the case where the sampling rate was 1.5 samples per pulsewidth, m
= 8 samples, a = 1, A1 = 14.14 (20 dB) and A 2 = 0. For each repetition the pulse location was
located randomly (uniformly distributed) with respect to the samples. The estimated value for the
threshold was 3.7. Essentially, the same threshold was obtained when A1 was raised to 30 dB. To
obtain information on the relationship between resolution and sampling rate, a higher sampling rate of
3.0 samples per pulsewidth will also be considered. For the parameters m = 10 samples, a- = 1, A1 =
14.14 (20 dB), and A 2 = 0, the estimated threshold was 3.5.
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PROBABILITY OF RESOLUTION

The probability of resolving two 20-dB nonfluctuating targets at a false-alarm rate of a = 0.01 was
found by simulation and Figs. 1 and 2 show the results as a function of target separation for 3 = 00,
450, 900, 1350, and 1800. Two targets are resolvable if they are separated by 1/4 to 3/4 pulsewidths"

depending on their phase relationship. In general, it is easier to separate targets if they are out of phase
(that is, 3 close to 1800). The reversal of the 1350 and 1800 curves is caused by the fact that the reso-
lution test between one and two targets is not applied until after a target is detected. When the targets
are 1800 out of phase, there is a large target cancellation. In fact the probability of resolution curve is
practically identical with the probability of detection curve; that is, when two 20-dB targets are 1800 out
of phase, they can be resolved as soon as they can be detected. The dashed curve in Fig. 2 represents
the resolution capability of deciding between one or two targets when the detection criterion is not
imposed. As expected this curve shows that it is easier to resolve targets when13 -- 1800 than when/3
- 135 ° .

0.9-z0 0.8- 1

0.7 -0
W06 1350
C-. 0.6 -
LL 0.5 - 900

F0.3 -

S0.2 -

0. 0.1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

TARGET SEPARATION IN PULSEWIDTHS

Fig. 1 - Probability of resolution as a function of range separation: Noncoherent likelihood pro-
cedure; sampling rate AR - 1.5 samples per pulsewidth; target strengths-nonfluctuating,
A1 - A 2 - 20 dB; phase differences - 00, 450, 900, 135, and 1800.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
TARGET SEPARATION IN PULSEWIDTHS

Fig. 2 - Probability of resolution as a function of range separation: Noncoherent likelinood pro-
cedure; sampling rate AR = 3.0 samples per pulsewidth; target strengths-nonfluctuating,
A1 = A2 = 20 dB; phase differences = 0', 450, 90, 135', and 1800.
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Next, we investigated the effects of unequal target strengths. Figures 3 and 4 show the results for
A 1 = 20 dB and A 2 = 30 dB. Figures 5 and 6 show the results for A1 = 20 dB and A 2 = 13 dB.
Comparing Figs. 1, 3, and 5, and Figs. 2, 4, and 6, there appears to be less variation with phase
difference when the targets have unequal target strengths. The A I = 20 dB and A 2 = 30 dB cases fall
in the middle of the A1 = A 2 = 20 dB cases, whereas the A1 = 20 dB and A 2 = 13 dB cases fall to the
right (worse performance) of the A1 = A 2 = 20 dB cases.

I next investigated the effects of sampling rate. In addition to the 1.5 and 3.0 samples-per-
pulsewidth case, I investigated 1.0, 2.0 and 4.0 samples-per-pulsewidth. Repeating the procedure for
estimating the threshold, thresholds of 4.3 (m = 7), 3.1 (m = 8) and 3.5 (m = 14) were found for a
false-alarm rate of ae = 0.01 for the 1.0, 2.0, and 4.0 samples-per-pulsewidth cases. The probability of
resolution curves are shown in Figs. 7, 8 and 9. Table 1 gives the range separation necessary to achieve
a 0.5-resolution probability. As the sampling rate is increased from 1 to 4 samples per pulsewidth (a
400% increase), the corresponding decrease in range separation averages only 41%. Therefore, while
increasing the sampling rate improves resolution, it does not appear that it is worth the cost of faster
A/D converters and increased memory and processing. The best compromise appears to be either 1.5
or 2.0 samples per pulsewidth.

1.0

z 0.9 -

.- 08180 -

.7- 1350 -
0
WC 0.6 0- 450 -

LL0.5 -0

0.4 --

co .3 -
D0.2 -

CL 0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
TARGET SEPARATION IN PULSEWIDTHS

Fig. 3 - Probability of resolution as a function of range separation: Noncoherent likelihood pro-
cedure; sampling rate AR = 1.5 samples per pulsewidth; target strengths-nonfluctuating, A] =
20 dB and A 2  30 dB; phase differences 00, 450, 90' , 1350, and 1800.

1.0

z 0.9
0 1350_o.8-

-JO.7 - 800 450
0i 0

En 0.w 0.6 -

0LLo.5 -
J

c 0.3

C) 0.2 -
Cr(a- 0.1-

0.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8

TARGET SEPARATION IN PULSEWDTFIS

Fig. 4 - Probability of resolution as a function of range separation: Noncoherent likelihood pro-
cedure; sampling rate AR = 3.0 samples per pulsewidth; target strengths-nonfluctuating, A1
20 dB and A 2 = 30 dB; phase differences = 00, 450 , 90% 1350, and 1800.
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S0.8

-0.7
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w 0.6
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0) 0.5

-0.4

0 0.3

mO0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7
TARGET SEPARATION IN PULSEWIDTHS

Fig. 5 - Probability of resolution as a function of range separation: Noncoherent likelihood pro-
cedure; sampling rate &R = 1.5 samples per pulsewidth; target strengths-nonfluctuating, A,
20 dB and A 2 = 13 dB; phase differences = 00, 450 , 900, 135', and 1800.

0

-J 0.7o
Li)

w 0.6

0 0.5

- 0.4

S0.3

00.2
CL 0.1

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

TARGET SEPARATION IN PULSEWIDTHS

Fig. 6 - Probability of resolution as a function o range separation: Noncoherent likelihood pro-
cedure; sampling rate AR = 3.0 samples per pulsewidth; target strengths-nonfluctuating, A, -
20 dB and A 2 = 13 dB; phase differences = 00, 450, 900 , 1350, and 1800.

0
p 0.8

-0.7
0~
Li)S0.6
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TARGET SEPARATION IN PULSEWIDTHS

Fig. 7 - Probability of resolution as a function of range separation: Noncoherent likelihood pro-
cedure; sampling rate AR = 1.0 samples per pulsewidth; target strengths-nonfluctuating,
A 1 = A 2 = 20 dB; phase differences = 00, 450 , 900, 135, and 1800.
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o 0.8
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00.7
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TARGET SEPARATION IN PULSEWIDTHS

Fig. 8 - Probability of resolution as a function of range separation: Noncoherent likelihood pro-
cedure; sampling rate AR - 2.0 samples per pulsewidth; target strengths-nonfluctuating,
A I = A 2 = 20 dB; phase differences = 00, 450 90, 1350, and 1800.

0.3 0.4 0.5
TARGET SEPARATION IN PULSEWIDTHS

Fig. 9 - Probability of resolution as a function of range separation: Noncoherent likelihood pro-
cedure; sampling rate AR = 4.0 samples per pulsewidth; target strengths-nonfluctuating,
AI = A 2 = 20 dB; phase differences = 00, 450 , 900 , 1350, and 1800.

Table 1 - Range Separation Required to achieve
a Probability of Resolution = 0.5

Phase Number of Samples per Pulsewidth
Difference

(deg) (1.0) (1.5) (2.0) (3.0) (4.0)
180 0.36 0.31 0.28 0.27 0.25
135 0.34 0.30 0.25 0.23 0.20

90 0.56 0.40 0.36 0.33 0.30
45 0.66 0.51 0.42 0.37 0.36

0 0.68 0.54 0.45 0.42 0.39
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MULTIPLE PULSES

I now consider the case of multiple pulses on target. There are several situations that one can
consider. These situations depend upon whether the parameters {A 1,A2,R 1,R 2, 0,3} remain constant or
change between pulses. Attention will be restricted to the situation when pulse-to-pulse frequency agil-
ity is used. In this case it is reasonable to assume that R, and R 2 remain constant for all pulses but
that A 1, A 2, 0, and 3 are independent per pulse. If X1, and Yj are the jth time samples of the ith
range sample, it is straightforward to show that Bj and Cj can be found from Eqs. (3) and (4) by
replacing Xi with X,, and similarly Dj and E can be found from Eqs. (3) and (4) by replacing Y1 with
Y.

The total likelihood ratio is just the product of the individual likelihood ratios. The thresholds for
a - 0.01 and a 20-dB nonfluctuating target for n = 1, 2, 4, and 8 pulses were found by simulation and
are given in Table 2.

Table 2 - Threshold Yielding a Probability
of False Resolution = 0.01

Number Sampling Rate

of 1.5 3.0
Pulses (m = 8) (m = 10)

n= 1 3.7 3.5
n 2 4.7 5.0
n 4 6.0 6.3
n- 8 8.5 10.0

Figures 10 and 11 show the results for two 20-dB Rayleigh fluctuating targets. The phase
difference was uniformly distributed between 0 and 1800. The reason for the poor performance of the
one-pulse case is because the probability of detection is only 0.9 for a 20-dB Rayleigh fluctuating target.
Tables 3 and 4 give the ranges at which two targets can be resolved at 0.5 and 0.9 probabilities when
multiple pulses are available.

z
0.8

0.7
0.6

L 0.5

0.4

O0.3

M 0.2
CL 0.1

0
0.3 0.4 0.5

TARGET SEPARATION IN PULSEWIDTHS

Fig. 10 - Probability of resolution as a function of range separation: Noncoherent likelihood pro-
cedure; sampling rate AR = 1.5 samples per pulsewidth; target strengths(emfluctuating, A1 = A2

= 20 dB; phase difference are independent and uniformly distributed per pulse, number of pulses
N= 1, 2, 4, and 8.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
TARGET SEPARATION IN PULSEWIDTHS

Fig. 11 - Probability of resolution as a function of range separation: Noncoherent likelihood pro-
cedure; sampling rate AR - 3.0 samples per pulsewidth; target strengths(emfluctuating, A, = A 2
- 20 dB; phase difference are independent and uniformly distributed per pulse, number of pulses
N-= 1, 2, 4, and 8.

Table 3 - Range Separation Required to Achieve
a Probability of Resolution = 0.5

Number of Number of Samples per Pulsewidth
Pulses (1.5) (3.0)

1 0.57 0.42
2 0.28 0.22
4 0.15 0.14
8 0.10 0.09

Table 4 - Range Separation Required to Achieve
a Probability of Resolution = 0.9

Number of Number of Samples per Pulsewidth
Pulses (1.5) (3.0)

2 0.50 0.45
4 0.30 0.23
8 0.18 0.13

AD HOC NONCOHERENT PROCEDURES

The generalized likelihood test involves a 6-parameter minimization implemented by a two dimen-
sional search (see Appendix B) and consequently, is very time consuming. Therefore, I investigated a
combination of 2 adhoc approaches. The first approach involves the generation of double peaks and the
second involves two small of a maximum amplitude for a fixed number of samples above the detection
threshold.

Figure 12 shows an example of a double peak. To have a double peak it is necessary for the
amplitudes to increase (first peak), decrease (null), and increase (second peak) again. Furthermore,
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10
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6
I--
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-
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2
1

12 3 4 5 6 7 8
SAMPLE NUMBER

Fig. 12 - Example of a double peak

both peaks must be above the detection threshold. There is no condition on the null between the two
peaks. When the sampling rate is 1.5 samples per pulsewidth, a double peak is a good indication of two
targets. For instance, in 10,000 repetitions of a 20-dB target, no double peaks were observed. On the
other hand, if the sampling rate is 3.0 samples per pulsewidth, a double peak is no longer a good indica-
tion of two targets. For instance, in 10,000 repetitions of a 20-dB target, 442 double peaks were
observed. Since this corresponds to a false-alarm rate of 0.044, the procedure was modified. A
modtfied double peak is the same as a double peak except that there is an additional condition on the
null depth. Specifically, the null depth AN defined by

AN = Minimum (First Peak - Null Value, Second Peak - Null Value}

must be greater than a specified value. The required null depth thresholds were found by simulation
and Table 5 gives the results. When there are multiple pulses, two targets are declared if any of the
pulses contains a modified double peak.

A double peak is most likely to occur when the two targets are 180' out of phase. On the other
hand, if the targets are in phase, one would expect a small peak value for a given number of samples
greater than the detection threshold. Simulations were run to generate histograms of peak return for a
given number of samples above the detection threshold. For instance, for 10,000 repetitions of a 20-dB
Rayleigh fluctuating target, 1302 times there were no samples above the detection threshold, 1210
times there was one sample above the threshold, 4703 times there were two samples above the thres-
hold, 2783 times there were three samples above the threshold, and one time four samples were above
the threshold. Figure 13 shows the amplitude histogram when there are two samples above the thres-
hold. If the resolution threshold is set at 5.95 a false-alarm rate approximately equal to 0.01 is
obtained. To obtain the resolution threshold when there are four samples above the detection thres-
hold, the simulation was repeated with a 30-dB fluctuating target. When there are multiple pulses on
target, the pulses are integrated noncoherently; then the same procedure is applied to the noncoherent
sums. The results for 1.5 samples and 3.0 samples per pulsewidth are given in Tables 6 and 7 respec-
tively.

Using the resolution thresholds of Tables 6 and 7, the probability of resolution curves were gen-
erated and are shown in Figs. 14 and 15. Comparing the adhoc results with the likelihood approach
results appearing in Figs. 10 and 11, one observes that the likelihood approach is superior; in fact, the
likelihood approach for 2 pulses at a sampling rate of 1.5 samples per pulsewidth is approximately the
same as the adhoc approach for 8 pulses at a sampling rate of 3.0 samples per pulsewidth.

X5

X3

DETECTION
THRESHOLD

X4

I IrIfI
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Table 5 - Thresholds for Null Depth
Necessary to Achieve a False Alarm Probability

of a = 0.01

Null Depth Threshold Values

Number Number of Samples per Pulsewidth
of ________

Pulses ... (1.5) (3.0)

1 0 1.25
2 0 1.40
4 0 1.60
8 0 2.00

'DETECTION THRESHOLD
RESOLUTION THRESHOLD

A = 20 dB

TOTAL OF 4703 OCCURENCES

50

40-

30

20-

10-

0
0 12 3 4 5 6 7 8 9 10 I1 12 13 14 15 16 17 18 19 20 21 22 23 24 25

'.AMPLITUDE OF LARGEST RETURN

Fig. 13 -Amplitude histogram of case where there are two pulses about
detection threshold: A1 = 20 dB and A2 = - co dB.

Table 6 - Resolution Threshold Yielding
a False-Alarm Rate of 0.01 when the Sampling Rate

is 1.5 Samples per Pulsewidth

Number of Number of Samples Above Threshold
Pulses (2) (3) (4) (5 and above)

1 5.95 7.35 33.65 0q
2 9.82 15.32 51.42 00
4 19.48 28.78 87.88 00
8 50.55 62.55 100.05 00

Table 7 - Resolution Threshold Yielding a False-Alarm Rate
of 0.01 when the Sampling Rate is 3.0 Samples per Pulsewidth

Number of Number of Samples Above Threshold
Pulses (2) (3) (4) (5) (6) (7) (8 and above)

1 5.65 6.45 8.85 15.05 46.75 00
2 8.92 10.82 14.92 24.32 56.42 W0
4 19.28 26.88 36.38 100.88 00
8 55.25 68.05 200.05 00

8 0 -

70 H
60k- I,1 .11i I -~ I ., J,1
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Fig. 14 - Probability of resolution as a function of range separation: Noncoherent likelihood pro-
cedure; sampling rate AR - 1.5 samples per pulsewidth; target strengths(emfluctuating, A1 - A 2
- 20 dB; phase difference are independent and uniformly distributed per pulse, number of pulses

N - 1, 2, 4, and 8.

1.0T
z 0.9-

0
0.8 -

0.7 -0(0
w 0.6 -

L 0.5 - N20 N=I -

0.4 -

C130.3
4
0 0.2 -
a. 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.

TARGET SEPARATION IN PULSEWIDTHS

Fig. 15 - Probability of resolution as a function of range separation: Noncoherent likelihood pro-
cedure; sampling rate AR - 3.0 samples per pulsewidth; target strengths(emfluctuating, A1 - A2
- 20 dB; phase difference are independent and uniformly distributed per pulse, number of pulses
N 1, 2, 4, and 8.

Table 8 - Threshold for
Coherent Likelihood Ratio with

a Sampling Rate of
1.5 Samples per Pulsewidth

Number of Pulses Threshold

1 12.4
2 18.5
4 26.7
8 39.0

).8

8
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GENERALIZED LIKELIHOOD RATIO TEST-COHERENT APPROACH

If all the signal parameters {A1,A 2,R1,R 2,'3} except 0 are known, the optimal test is given by the
likelihood ratio (Eq. (1)) involving the noncoherent samples. Since the signal parameters are un-
known, we estimated them and substituted the estimates into the noncoherent likelihood ratio. How-
ever, since the likelihood ratio of noncoherent samples now contains estimates instead of the true
parameters, it is no longer optimal, and it is possible that the likelihood ratio based on coherent samples
will yield better results. Consequently, we now consider the coherent likelihood ratio.

The coherent likelihood ratio for n pulses is
M/A n Il  ox f 1

.1-Ie - (Xu- W B1- Lc)2 ± + - W1Dij- BE)2]

-fiex ex+p (xi - W 1Bj)2 +(Yu- WDj)21

Equation (4) gives the maximum likelihood estimates for the two target signal parameters {Bj ,Cj,Dj,Ej)
appearing in the numerator, and, Eq., (3) gives the maximum likelihood estimates for the single target
signal parameters (Bj,Dj) appearing in the denominator. Taking the log of the coherent likelihood
yields as a test statistic, the square error residue (Eq. (2)) evaluated for one target minus the square
error residue (Eq. (2)) evaluated for two targets

log A= Min {L- Min (L}. (5)
R 1 ,Bj,D1j  RIR 2,Bj,Cj,Dj,E j

We now proceed as we did for the noncoherent likelihood. We first calculate the thresholds for
rmultiple pulses by using simulation techniques. The thresholds for n = 1, 2, 4, or 8 pulses are given
in Table 8. Next, again using simulation, Figs. 16-19 show the resolution curves for A1 = A 2 = 20 dB,
A1 = 20 dB and A 2 = 30 dB, A, = 20 dB and A 2 = 13 dB, and multiple pulses. Comparing the
coherent results with the noncoherent results of Figs. 1, 3, 5, and 10, one concludes that the coherent
results are uniformly better and are much better when the targets have different signal strengths.

1.0

0p-0.8 -

-J0.7 - 5180 0
Co 450

0.6 - 00

'0.5 -

0.4 -
._j

EO.3 -
00.'2 -
a 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
TARGET SEPARATION IN PULSEWIDTHS

Fig. 16 - Probability of resolution as a function of range separation: Coherent likelihood pro-
cedure; sampling rate AR - 1.5 samples per pulsewidth; target strengths-nonfluctuating,
A1 = A 2 = 20 dB; phase differences - 00, 450 , 90", 135', and 1800.
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Fig. 17 - Probability of resolution as a
cedure; sampling rate AR - 1.5 samples
20 dB and A2 = 30 dB; phase differences
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function of range separation: Coherent likelihood pro-
per pulsewidth; target strengths-nonfluctuating, A, =

- 00, 45, 900, 135, and 1800.
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Fig. 18 - Probability of resolution as a function of range separation: Coherent likelihood pro-
cedure; sampling rate AR = 1.5 samples per pulsewidth; target strengths-nonfluctuating, A1 =

20 dB and A 2 - 13 dB; phase differences = 00, 450 900, 1350, and 1800.
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Fig. 19 - Probability of resolution as a function of range separation: Coherent likelihood pro-
cedure; sampling rate AR = 1.5 samples per pulsewidth; target strengths(emfluctuating, A1 = A2
= 20 dB; phase difference are independent and uniformly distributed per pulse, number of pulses
N = 1, 2, 4, and 8.
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AD HOC COHERENT PROCEDURE

Although the previously discussed ad hoc noncoherent procedures are not very applicable to the
coherent data, the coherent likelihood ratio suggests another ad hoc approach: instead of using the
difference in square errors given by Eq. (5), use the square error associated with fitting one target to
the data. If only one target is present, the residue should only be noise and hence should be small. If
two or more targets are present, the residue will contain signal and should be large. This statistic only
requires a one-dimensional search and can be accomplished very quickly. In fact since the initialization
procedure given in Appendix B is fairly accurate, it is unclear whether or not the one-dimensional
search is required.

Using simulation techniques, the appropriate thresholds were calculated and are given in Table 9.
Next, again using simulation, the resolution curves for A1 = A 2 = 20 dB, A1 = 20 dB and A 2 = 30
dB, A1 = 20 dB and A 2 = 13 dB, and multiple pulses were calculated and are shown in Figs. 20 to 23.
Comparing the ad hoc coherent results with the coherent likelihood results shown in Figs. 16 to 19, one
concludes that the coherent likelihood results are only slightly better. Consequently, because of the
reduced calculations required, I would recommend the ad hoc approach.

Table 9 - Thresholds for
Fitting Single Target to the Data

\ with a Sampling Rate of
1.5 Samples per Pulsewidth

Number of Pulses Threshold
1 28.5
2 44.7
4 73.7
8 148.4

1.0

0.9
z
0 0 .8

-0.7

W 0.6

L 0.5

- 0.4
_j
d0.3

t0.2
a:

~-0.1
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
TARGET SEPARATION IN PULSEWIDTHS

Fig. 20 - Probability of resolution as a function of range separation: Coherent likelihood pro-
cedure; sampling rate AR = 1.5 samples per pulsewidth; target strengths-nonfluictuating,
A1 = A2 = 20 dB; phase differences - 0', 45', 90', 135', and 180'.
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Fig. 21 - Probability of resolution as a function of range separation: Coherent likelihood pro-
cedure; sampling rate AR - 1.5 samples per pulsewidth; target strengths-nonfluctuatirg, A,1 -
20 dB and A 2 - 30 dB; phase differences - 00, 450, 900, 1350, and 180'.
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Fig. 22 - Probability of resolution as a function of range separation: Coherent likelihood pro-
cedure; sampling rate AR = 1.5 samples per pulsewidth; target strengths-nonfluctuating, A1 -
20 dB and A 2 = 13 dB; phase differences 0', 45', 90', 135, and 180'.

z-
0
- 0.8

-0.7
Co

0.6

L- 0.5

- 0.4

S0.1
0.2

0.3 0.4 0.5
TARGET SEPARATION IN PULSEWIDTHS

Fig. 23 - Probability of resolution as a function of range separation: Coherent likelihood pro-
cedure; sampling rate AR = 1.5 samples per pulsewidth; target strengths(emfluctuating, A1 - A2
= 20 dB; phase difference are independent and uniformly distributed per pulse, number of pulses
N = 1, 2, 4, and 8.
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SUMMARY

The problem of resolving targets in range has been formulated as a hypothesis-testing problem
where the unknown parameters (target's location, amplitude, and phase) are replaced by their least-
square estimates. When the likelihood ratio test using either coherent or noncoherent samples is
applied to the range samples surrounding a detection, good resolution results are obtained. The proba-
bility of resolution is a function of the sampling rate, target amplitudes, target separation, and target
phase difference. Using a sampling rate of 1.5 samples per pulsewidth, two 20-dB nonfluctuating targets
can be resolved at a resolution probability of 0.9 at separations varying between. 1/4 and 3/4 of
pulsewidth depending on the relative phase difference between the two targets. This result can be
improved further by processing multiple pulses. The coherent likelihood is preferred because it yields
better results when the two targets have unequal strengths.

The likelihood approach was compared to an easily 'implemented ad hoc approach. The ad hoc
approach declared the presence of two targets if either of two conditions were met: (1) the return signal
was double peaked with both peaks above the detection threshold or (2) the peak amplitude was too
small in relationship to the number of samples above the detection threshold.

Unfortunately, while this ad hoc approach is easily implemented, the likelihood approach has
superior performance. A slightly more complicated approach involves fitting a pulse shape to the data
and comparing the residue error to an appropriate threshold. This procedure is only slightly less accu-
rate than the coherent likelihood ratio and hence is the recommended procedure.
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Appendix A
CALCULATION OF THE LIKELIHOOD RATIO A

The likelihood ratio is

<p(xyIH2)>o
<p(x,yIH2)>o

where the subscript for the ith sample has been dropped and the notation < ">0 indicates that the den-
sity is averaged over 0. We now calculate <p (xy JH2) >, and obtain <p (xy H1) >0 from it by setting
the amplitude A 2 of the second signal to zero.

The inphase and quadrature signals x and y can be written as

x = n. + A1 W cos 0 + A 2U cos (0 + p)
y = ny + A 1 W sin0 + A2U sin (0 +)

where

sin(a (R- i)) 1a(R 1 - i)< 7r

a(R 1 - i)
W-=

0 Ia(R 1- i)1 > r

sin(a(R 2 - i))[a(R2 - i)I < 7T

a(R 2 - i)

o a(R 2 - i) > r

Since x and y are independent, <p (xy IH2) >o can be written as

<p(xyIH)> = f fi exp { - [x - A1 W cos 0 - A2 U cos (0 + 8)J2/2 -2

- [y - A1 W sin 0 - A2 U sin (0 + 8)12/2-2)>g.

Performing the squaring operation and combining terms yields

<p(x,yIH 2)>0 = 2 2 exp {- [x2 +y 2 + AW 2 + 2A 1A 2WU cos3

+ A U2]/2- 2} < exp [ 1A 1 Wx Cos 0

+ A1 Wy sin 0 + A 2Ux cos (0 + 3) + A 2Uy sin (0 + P)1>9

Letting x = r cos 4, and y = r sin 0 yields

<p(r,4o[H2)> 0 = C exp-4r [A1 IW cos (0 -4) + A 2U cos (0 + - >0
oT-2
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where

C. exp(- [r2 + A 2W2 + 2A 1A 2 WU cos /3 + A2U 21/20-2}

Since the integral over 0 is from 0 to 21r, the value of the integral is independent of 4, and thus we can
set 4, = 0:

<p(r, JH2) >0 = C<exp {r[A 1 W cos 0 + A2U cos (0 +/3)1/o' 2}> 0

Expanding cos (0 + 3) and rearranging yields

<p(r,IH2) > 0 = C<exp {r[A1 W + A 2U cos/3)cos 0 - A 2U sin /3 sin 01/-2)>O

Letting (A1 W + A 2U cos p) = Z cos a and -A 2 U sin/3 = Z sin a yields

<p(r,,1H2)> 0 = C<exp(rZ cos (0- )/0.2}>0

The preceding expression is independent of a. Setting a = 0 yields an integral which is a modified
Bessel function:

<p(r,0H2)> -- 2r.2 exp {-[r2 + Z2]/20-2) 10 (rz/fT 2)

where Z2 = AW 2 + 2AA 2 WU cos/3+ AU 2.

Integrating over 4, and substituting into the likelihood ratio yields

A = exp{- Z 2/2 &-2} Io (rZ/ 
"2)

exp(- A 2 W2/20- 2) 1o (rA1 W/0-2)



Appendix B
SEARCH PROCEDURE

The square error is minimized by using a direct search* for the target locations. The initial start-
ing location for the first target is found by interpolating around the largest return. To do the necessary
interpolation, we assume that the pulse shape can be approximated by a Gaussian-shaped pattern

A (R) = e-a (R-RT) 2

where A (R) is the pulse gain at range R when a point target is located at range RT. The appropriate
normalizing constant a can be found from

0.5 = [e-"a(R3dB/2)2]2,

yielding
2 In(.5) 1.386a R- 2  2]

a R~dB R~dB

Now, assume that the target is detected and the corresponding ranges to the largest return and next
largest adjacent return are R1 and R1 + AR where AR is the sampling rate. Then, the corresponding
amplitude returns are given by

-" (R I-RT)
2

and

A 2 e-a(R I+AR-R T)
2

Solving these equations for the target range yields
AR 1

RT-- RI -R + I log (A2A 1).
2 2a (AR)

However, the above estimate need not lie between R1 and R1 + AR. Consequently, if

/RT < R 1 set RT = R1;

and if

RT > R1 + AR, set RT = R, + AR.

To estimate the starting location for two targets we first use the previous procedure to find the
location of the first target. We then noncoherently subtract out the first target and apply the previous
procedure to the residue.

*R. Hooke and T. Jeeves, "Direct search solution of numerical and statistical problems," J. ACM, 8, 212 (1961).


