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ABSTRACT

The intensity of second harmonic light generated by

reflection from a Gallium Arsenide crystal is calculated in

detail in four cases of polarization. Relevant properties of

GaAs are stated and an experiment is described. Based on this,

constitutive relations are written in the weak field approxi-

mation and the second and third order material tensors are

reduced using crystal symmetry. The nonlinear wave equation

is solved in the parametric approximation when phase matching

is not present. The boundary value problems for the funda-

mental entering the medium and for the second harmonic leaving

are solved. The only significant null solution is found to

be the Brewster' s angle extinction. Some numerical exploration

of the exact effects of absorption at both fundamental and

second harmonic are made. They are found to be small and are

negligible for qualitative purposes unless the imaginary part

of the dielectric constant exceeds the real part. Variation

of intensity with crystal orientation is described in detail.

The occurrence of phase matching as a null solution of the wave

equation is seen to offer a natural approach to the problem

of obtaining the geometry of phase matching for the most

general optical medium.
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SECOND HARMONIC GENERATION
BY REFLECTION FROM GaAs

1. THE GENERAL PHASE MATCHING PROBLEM

The onset of stimulated effects in nonlinear optics is quite

dramatic. Ordinary nonlinear effects arising from even the most

intense excitation are barely detectable whereas stimulated effects

may be of the same order of intensity as the excitation. It may

even be said that the extension of stimulated effects into the

optical region is the cause of the recent explosion of interest

in nonlinear optics. For the nonlinear effect, second harmonic

generation, a criterion of analogous importance is that of phase

match between the fundamental and second harmonic. When this con-

dition is met, the two waves proceed in the same direction, in step,

in principle allowing complete power transfer from the fundamental

beam to the second harmonic beam. If this condition is not met,

the second harmonic intensity remains very small even if a very

intense fundamental is used.

Often a medium is normally dispersive and the index of re-

fraction at the second harmonic is higher than at the fundamental.

Then it is not possible for the two waves to proceed in the same

direction and be in step for the magnitude of their wave vectors

is different. The most well known way of achieving phase match is

to use the birefringence of certain anisotropic, nonabsorbing,



nonlinear crystals.' In an anisotropic medium there are in general

two indices of refraction for each direction and they vary with

direction. Thus sometimes a direction can be found where an index

at the fundamental is the same as at the second harmonic. Recently

the use of optical activity has been advanced as a means of achieving

phase match.2 Both of these methods make use of linear optical

properties, which may be comprehensively categorized by the use of

matrix algebra. If A' is the 2 x 2 matrix obtained by projecting

A in E = AD onto the plane transverse to the wave vector, then

the 1) real symmetric, 2) real antisymmetric, 3) imaginary symmetric,

4) imaginary antisymmetric parts of A' contribute respectively the

following optical effects: 1) birefringence, 2) optical activity,

3) anisotropic absorbtion, 4) circular dichoism.3 In general optical

media exhibit all combinations of these effects. From this it is

clear that if the two methods above represent fairly the state of

results in the general phase matching problem, as the author believes

then it is not completely solvea.

This report is a calculation of the second harmonic intensity

produced by reflection from a Gallium Arsenide crystal, including

the effects of absorbtion at both fundamental and second harmonic.

1 D. A. Kleinman, Phys. Rev. 128, 1761 (1962).

2 H. Rabin and P. Bey, Bull. Am. Phys. Soc. 12, 81 (1967).

3 G. Ramachandran and S. Ramaseshan, Handbuchder Physik XXV/1
107 (1961).



Conceived of as an approach to the general phase matching problem,

second harmonic production by reflection is rather oblique. In

fact it is not even a true subcase since the parametric approxi-

mation used here is not capable of eliciting the effects at

phase match. Still it exhibits many necessary techniques and a

thorough understanding of it is no doubt a prerequisite for an

attack on the general phase matching problem. Thus while most

of the theory appearing here has appeared before,4 general methods

are used where known because of the above outlook on the general

phase matching problem.

The essential steps in the calculation of the reflected

second harmonic intensity, each giving rise to a section below,

are: describing GaAs and the geometry, solving the nonlinear

wave equation, solving the boundary value problems and obtaining

the intensities. The next to last section gives some numerical

results and the last section remarks on the general phase matching

problem.

4 P. Butcher, Nonlinear Optical Phenomena, Ohio State University
(1965)



2. GALLIUM ARSENIDE AND THE EXPERIMENTAL SETUP

An experiment with GaAs of the sort considered here was first

reported in 1961.5 Since GaAs is opaque, a reflection experiment

appears to be required. It has T3m point group symmetry. 6 This

point group is cubic so second order material tensors reduce to

scalars and linear optical effects become isotropic7 Furthermore

the point group excludes the antisymmetric part of a second order

tensor so optical activity and circular dichroism are absent. Thus

the linear optical properties of GaAs may be completely described

by a complex dielectric susceptibility

e ( + L K)
2  (2.1)

where v and A are the conventional index of refraction and absorbtion

coefficient. Suppose the illumination is ruby laser light at 6943A.

If the corresponding radian frequency is w0, then for present purposes

the linear optical properties are completely described by
8

5 J. Ducuing and N. Bloembergen, Phys. Rev. Letters 10, 474 (1961).

6 Wycoff Structure Tables Vol. I
7 The latter part of this section is a discussion of the effects of

symmetry on material tensors.
8 J. Davey and T. Pankey, J. Appl. Phys. 35, 2203 (1964). The accUracY
of these figures is probably a few percent of the largest figure.
They were obtained by a Kramers-Kronig analysis of reflectance data
of H. R. Philipp and H. Ehrenreich, Phys. Rev. 129, 1550 (1963).
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v = .79 .25

(2.2)

v = .89 2 =1.532 2

where v is written for v(nwo).

Specifically the experiment considered is the following.

A GaAs crystal is prepared with a (110) type plane as a reflecting

surface in such a way as not to damage the crystalline properties

of the surface layers. This is important since the absorption

depths are

44ooA , / = 361A.1 2

Ruby laser light of known intensity I and polarization, normal

n or parallel p, strikes the reflecting surface with angle of

incidence e. The reflected beam is filtered to remove the funda-

mental. The second harmonic intensity is then measured in two

polarization components Jn and Jp. The crystal may be rotated

about a perpendicular to the surface to expose different crystal

orientations. This orientation angle is Y and the = 0 reference

will be specified later. These points are illustrated in Figs. 1-3.

From the foregoing and from general considerations one may

write constitutive relations taylored to GaAs and the experiment.

For a medium at optical frequencies



B =.H (2.3)

and assuming no space dispersion one has locally

D(t) = E(t) + f dTR l ) (t - T)E(T)_ CO

+ Y dT Y C dT R(2)(t - T , t - T )E(T )E(T ) + ... (2.4)
_ O _CO 2 12 1 2

where R( I ) and R( 2 ) vanish for negative arguments and thus give a

casual relation. This is a relation between vector components with

component indices temporarily omitted. Thus R(l) is a second order

tensor and R(2), third. The use of the Taylor expansion excludes

hard nonlinearities (multivalued regions, jumps, infinities) in order

to avoid overly restrictive domains of convergence. Furthermore

truncating (2.4) after the last term written is allowed in the small

field approximation. In the frequency domain, this gives

D(u)) = E(w) + X(1)(w)E()

(2.5)

1 " 6 I (L - Lo- w (2)Y-0 - 2 2 2 ))X~, w 1 2)E(w),

ad(1) an (2)

and and are analytic when considered as functions of

complex arguments. In the time domain fields must be real and this

imposes, in the frequency domain



E (w) = ((-w)

For E(t) and D(t) simultaneously real

X(1).(W)=() (),

x(2)- ,(J) ) =- X(2)( - )1 , -w 21' 2 1 2

The discussion will now be restricted

case where frequencies present at one time

Let the incident beam be of the form

to the steady state

are always present.

E(t) = Ee- twt + cc,

where cc represents the complex conjugate of the preceeding

term. In the frequency domain,

E(w) = 2rr5(w - w)E + 2rT6(w + wo)E*

- 2ab(w - W)E + cc (2.9)

where cc implies that (2.9) satisfies (2.6). Substituting in

(2.5)

(2.7)

(2.8)

(2.6)



D(w) = 2ur(w - w )[l + X (1)(W ) + cc

+ 2ur(w - 2wo)X(2)(Wo, (f0)E 2 + C

+ 2r6()(2) (Wo , -co ) EE* + cc,

using (2.7)

be ignored.

and (2.8). Subsequently the w

Reverting to the time domain,

= 0 component will

holding w constant,

D(t) = e (w )Ee-'°Wot + cc + 4
TPNL(2wo, t)

where

(2.10)

(2.11)6(W0) = 1 + x(1)

is the usual susceptibility and

0t= (2) 2W)EjEke-2L°t +CCPNLi(~ 2 o, t) =Xijk ( )EEk LOt c (2.12)

Summation on repeated indices is implied. Henceforth NL will

be omitted since the linear polarization is not mentioned. Evi-

dently the incident wave excites second harmonic polarization

of the medium and, as will be seen in the next section, second

harmonic radiation is emitted.



It has been mentioned that reduces to a scalar because of

crystal symmetry, Likewise the second order susceptibility X(2)

having at most 27 independent components, undergoes considerable

reduction.9  As an example of reduction due to symmetry, consider

the symmetry

(2) (W W X (2)(W

oijk o 0 ikj 0'

obtained from (2.12). The 9 elements of the form Xij2 are

unaffected but the remaining 18 are equal in pairs. Thus it
(2)

should require at most 18 constants to specify Xijk . Applying

the elements of T3m to the remaining elements reduces them to

6 equal elements while the remainder vanish. There are several

listings of tensors reduced by crystal symmetry in the literature.

One such for third order tensors gives S = S = S 10 In this
14 25 36

"contracted" notation one writes the components symmetric in

the last two indices separately from those antisymmetric. Under

this convention the second index means l:xx, 2:yy, 3:zz, 4:yz,

5:xz, 6:xy. Thus in present notation

x ., 2 = XP(.,2 )

9 A general treatment of this problem is P. Erd6s, Helv. Phys.
Acta 37, 493 (1964).
10 J. Giordmaine, Phys. Rev. 138, A1601 (1965).



where P(123) is any permutation of 123. Henceforth X represents

X12. This reduction is performed in a special coordinate system

in which a simple representation of the symmetry elements is

possible. For many point groups, for cubic point groups in

particular, the axes of this special system are the same as

those of the conventional unit cell. 1 1 The result is for

(2.12), writing the complex amplitudes of the positive frequency

parts only

P1= XE E 31 2 3

P = XE 1E 3 ,
2 1

P3= X(E 1E 23 1 2

a local relation in crystal coordinates.

This relation will now be evaluated in experimental coordi-

nates by substituting components arising in two rotations. The

rotation equations are written as substitutions, i.e.,with old

coordinates on the left,

x = Rx'.

11 International Tables for X-Ray Crystallography, Kynoch Press,

Birmingham, England (1952) gives the convention for associating

coordinate axes with conventional unit cells.



In this way one may drop the primes immediately as there is no

further reference to the old coordinates. Let the first rotation

be

P, = -L-
R /!

( 1 0

0

1

0o= R

1

since then the new Z axis is a [110] type axis. This gives

P= -XE E
1 2 1

P = .1 22 2X(E3 - E 2)1

3= XE 2 3

Let the second rotation be

toosT - aint [0
R = siny CoOST 0 -Rz()

to allow general rotations about the [llO] axis.
This gives

P = - X[E E (cos 2 y - sin2 y) + (E 2 - E 2 ) sinYcosY] cosT
1 1 2 1 2

+ . X(E 2 - E 2 cos 2 Y + 2E E sinYcos - E 2 sin 2y) sin3 1 1 2 2



p :x[E E (cosy - si 12 y) + (E 2 - E 2) sinTcosy] sing
2 12 1 2

+ 2 X(E 2 - E 2 cos 2 y + 2E E sinYcosT - E 2sin2 ')cos3 1 1 2 2

P : XE (E sini + E cosY).3 3 1 2

The plane of incidence is the XZ plane and T is the angle from

the (100) plane to the plane of incidence. It is convenient

to reduce this to cases of incident field polarization normal

and parallel to the plane of incidence.

= 1 XE 2 sin(5cos2 T _ 1)
1 2

p = - . .E 2 sin2YcosY En(E 0 : E ) (2.15)
2 2 2 1 3

P =0
3

P = - ,XE 2 sinYcos 2 y + I XE 2 sin
1 2 1 2

2 xE 2 os'(5sin'{ - 1) + XE 2 cosy E P(E 0) (2.14)
2 1 3 P2

P= XE E sinYI
3 1.,3



3. THE NONLINEAR WAVE EQUATION

The Maxwell equations for media at optical frequencies are

1
Vx H 1 - B,

c

xE= -- D,
xC .

V B= 0,

V D = 0.

(3.1)

Applying (2.3) to (3.1) and eliminating B

equation

V x x E +-D:,2  =-

which gives in the frequency domain

V X V X E(un) - - D(cv) = 0.
c2

and H gives the wave

(3.2)

This equation is nonlinear since D is nonlinear in E so the

method of eigenfunctions, in which the general solution is

obtained by superposition, does not work. Thus E(w) must be

the total field. One anzatz for the form of the total field

is

E~)= 2TT E 6(w - nw_)En

n= -c



because once one frequency is introduced the sum and difference

effects of (2.5) may build up all harmonics. Introducing (3.3)

in (3.2) gives an infinite system of connected differential

equations for which the incident field E ±1 is known. An

iteration procedure may be set up based on

CO

E = E X r E (r)

r=a(n)

where r is the order of the iteration, X is an expansion parameter

to be set equal to one, and a(n) is the order of first appearance

th
of the n- harmonic. The zeroth iteration is

w2

, ( o ) W o 0o )

V X V x E - -C E (0) = 0 (3.4)
1 C 2 1-1

wheree e(r ). The first iteration is

2 2

V XVxE (1) - 4 o~- (1) - o~r2 PE()) 55
V xE2 4 2 2--2 2 )(2

c c

and there will be an u) = 0 contribution in this order also.

The next iteration gives a correction to the fundamental,

E (2) and the third harmonic appears, E (2) A correction

to the second harmonic does not appear until the third iteration

and it is third order in y(2), a very small quantity. Thus



(3.5) gives an accurate E . This approximation is called the

parametric approximation since E evidently may be thought of

as a source of energy which generates E via the parameter X (2)

If significant depletion of E occurs, the approximation is

invalid. Therefore phase matching for any harmonic actually

present must be excluded. As a result the incident wave behaves

as it would in a linear medium and the second harmonic is obtained

as the solution of a linear inhomogeneous wave equation with an

effectively known source term P(E ).

Using the complex amplitudes of the positive frequency

parts of (2.12), the source term has the plane wave form

Pie~~wo . E ~ k~wo) -x E k (wo) . XP'm e -( - x = Xi jk Ejje E lk e

hence k(2w_) = 2k(wo) (3.6)

and P= XijkEljElk

Because of homogeneity these amplitudes are constant throughout

the medium. Variation due to absorption is accomplished by

using a complex wave vector. For (3.5) then'2

12 Note that vector magnitudes are written Iki = k.



[(k 2 - 4 -.2- )I - k k ] E 1 =6TT
2 C 2 2 -2' 2 -2

2

- P

c
2

where I is the unit diadic. Since any vector may be decomposed

into parts longitudinal and transverse to a direction k ,

2

-2 x(PXk2)+ k .p.2 2 2

Decomposing E similarly,
2

verse parts.

2

- 4

one may equate longitudinal and trans-

ekk E
2'-;9-2 -2

2
0

16TT7- k k
C2 -;2 2
w

Wo 2

(k 2 -4 --2.- E)
2 02 2 2

X (E X k

k 2 x E 2
12 C2

13 Circumflex denotes unit vector.

k2

1 2
0

1 Gn- k
c2 -2

E - k 2 P

2

1 6 T%) 2
0

c2k 2 - 4W 2(
2 0 2

4-rT A
k x P.

1 2

X ( P X k

(3.7)

A
k 2x P

(3.8)



(e1 2 since phase matching has been excluded.) In the last

step (3.6) was used and (3.10) was anticipated. To complete the

solution any solution of the homogeneous equation may be added.

Homogeneous solutions are

k() . E () = 0, (3.9)

k2(W) ( 2(10)
C 
2



4. THE BOUNDARY VALUE PROBLEMS

In the coordinates set up in section 2, let the boundary be

the plane n" • x = 0 with n. pointing into the first medium which

is transparent and nondispersive. The second medium is described

by section 2. Given an incident uniform plane wave with linear

polarization, find the reflected second harmonic intensity. There

are three steps. Find: 1) the transmitted fundamental, 2) the

second harmonic polarization (section 2), and 3) the reflected

second harmonic. This section concerns the first and last steps.

Rays are designated in Table 1 and Fig. 4. The first and

second symbols on each line pertain respectively to the fundamental

and second harmonic. Angles are measured from the vertical in

the respective medium. In the boundary value problem for the

fundamental first the wave vectors will be determined before

dealing with the amplitudes.

Second
Harmonic

Table 1 Ray Nomenclature Fig. 4 Ray Geometry

o Ampli- Wave Angle of
2u) tude Vector Incidence

0

Incident or E k e

Source Wave S s 7

Transmitted F 4

Wave T t T

Reflected G m '

Wave R r p



From (3.10)

0
k =m=-

c

W20
= ,2,2 _, _ t + 2t ' ti t

where t = V' + Lt", ?' and V" real. Since the waves must be

the same function of position on the boundary,

k , x = ' x = m x n , x= 0

(4.1)

(4.2)

(4.3)

and

0 t1'" X, n ' x = 0.

The latter implies

A A

and

t' " = t't"coso

since the transmitted wave is nonuniform due to absorption and

decreases most rapidly in the direction -fl. Using the vector

identity

n x (xx n^) = x - n - x n

x = x (x x n), ftx = 0,

(4.3) becomes

k X n. x X n X' X fl - x X n^ = m x nt X x n.

But since a vector of the form A X ft is in the surface and since

x Xn is any surface vector

(4.4)

(4-5)

(4.6)



(4.7)k x fn= X n =m X n

ksine = X' sino = msin'y (4.8)

Being real, m is now completely determined by the magnitude

(4.1), the two components (4.7) and by knowing in which medium

it lies. Then

S= e. (4.9)

Also (4.7) states that k, V, m, and ft lie in a common plane,

defined to be the plane of incidence. To complete the deter-

mination of Xi define

n _ ctt

0
O

n . c
1 1)o0

(4.10)

Then (4.2) and (4.6) give

E = n 2 - n ,,2 + 2tn 'n "coso

and using (4.8)

COS = n' 2 _ sin2
0

n 1 1
sine < n1



taking the positive square root since by (and " lie

in the same quadrant. This gives

S= n 2 _ n "1 2 + 2tn n' 2 _ sin2O (4.11)

together with the restriction

sine < n', (4.12)

excluding total reflection. The inverse of (4.11) is

2n 2 = e' + sin2 a + (' -sin 2 e) 2 + E 1 2

1 1 1 1

~(4-13)

2n ,2 = _ 6 + sin 2e + t - sin e)2 + 6
1 1 1 1

giving the "refractive index" and "absorption coefficient"

in terms of the complex susceptibility and angle of incidence.

Since the definition (4.10) makes n ' and n " dependent on a,1 1

they are not strictly material constants but depend on a non-

material boundary condition as well. The usual convention is

(2.1) which is used here only to determine e from (2.2). Now '

and i" are determined by (4.10), (4.7), and (4.5) just as m was.

Because of medium homogeneity this determination of X and m

applies throughout the appropriate medium.



The amplitudes may be determined by the tangential boundary

conditions for electric and magnetic vectors,

(E + G - F) X n = 0,

(k X E + m X G - X X F) X fn = 0,

since according to (5.9) they are transverse,

k • E m • G • F = 0.

Using the experimental coordinates of section 2, one has

k =m =Xi = 0
2 2 2

and a system of 6 complex algebraic equations in 6 complex

unknowns, F and 0.

F -G 1 E1 1 1

F -G =E
2 2 2

XF -mG =kE
3 2 3 2 3 2

ZF - i F - mG +mG 3 kE - kE31 13z 31 13z 31 13s
(4.14)

tiF +XtF :01 1 3 3J

mG +mG =0

Before solving by Cramer' s rule it is necessary to see if the

system determinant has any significant zeroes.

1

0

0 = det iI 3

0 0 -1 0 0

1 0 0 -1 0

t 3  0 0 -m 0-3<

0 -i -m 0

it 0 t 3 0 0 0

0 0 0 m1  0
1 M

1 -1 0 0 0 0

t3  -m3  0 0 0 0

0 0 1 0 -1 0

=det 0 0 ti3 -Xi,-m3  m,

0 0 X 0&3  0 0

0 0 0 0 M I m3



Thus the system is block diagonal and separates into two inde-

pendent systems, one for y field components only and one for

x and z components. For zeroes of the y system determinant

1 -l
0= det -m

Xi -m 3 3
3 3

or

' = m and X " - 0
3 3 3

Using (4.5) the latter implies X" = 0 so from (4.10) either

w 0 or n "= . In addition

X' -X' coso
3

m = mcos7
3

so from (4.1), (4.2), (4.9), (4.10) and cose =-cosy

n 'coso = cose, 0 0 o

= n' 1- sin 20
1

=J " 2 - sin 2 8
ie



which implies either W 0 0 or n' = 1. Neither of these con-1

ditions, w = 0 or n ' = 1 and n " = 0, is of present interest.o 1 1

For the x and z system determinant to vanish

1 0 -1 0

0 = det , X s  0 0 = 3 m2 - m3X 2  (4.15)

0 0 m 1  m3

which implies either ti = 0 = m or m2/m = t, 2/t3 and the
3 3 3 3

former is of no interest. Since both sides of the latter may

be varied independently, its general solution is that both

parts are equal to a common constant, say K. For the left

hand side then K is real and

m2 =m 2 +m2 = Km

1 3 3

or

m 2 + (m K) 2 - 1 K 2

1 3 -4

thus possible m are Iml 1 5K. For the right hand side

X2 = X 2 + t, 2 Kt
1 3 3

and X is complex so
3

2 + t t2 - ,,2 KtI ' (4.16)



23 'X " = Ki ".
3 3 3

If X " # 0 then X ' = 1K and t 2
3 3 1

are I i I- K. From (4.16) this

- Xi2 = 'K' so possible X
3 1

inequality holds even if X " = 0.
3

The only solution compatible with both inequalities and (4.8)

is

im 1 = ±K = I t,1

With (4.16) this implies ti " = 0, the no absorption case.3

Then from (4.,), (4.2), (4.15), and (4.8)

t,2 M2

Xi =em
3 13

Xi = m

1 1

and eliminating 's in the first equation

m 2 + e 2 m 2 = E (M 2 + m 2)
1 138 1

( P - 1)m 2 + (C -- C1 2)m 2= 0



implying 6 1 i or m 1 2  M 2 ori 1 1i

tan 0 B 6 " =0. (4.17)
i 1

This is the condition for Brewster' s angle. For polarization

in the plane of incidence, the reflected ray vanishes at this

angle. It has been shown that this is the only significant

zero of the system determinant.

Perhaps this investigation of null solutions is only a

nicety in the present context. It does endow the calculation

with a satisfactory feeling of completeness. However in more

complicated cases this tool will still apply possibly to uncover

regions of significant departure from the general solution,

--regions which may be as useful as the Brewster' s angle extinction.

To proceed with the general solution, the y component

system gives by Cramer' s rule

k -m
F 3 E. (4.18)
2 M 2

3 3

Likewise for the x component

k2 m2

k m
k m

F = E , (4.19)
1 g2 2 1

Xi m
3 3



and from the transversality condition

F 1 F.
31

(4.20)

This completes the determination of the transmitted fundamental.

In the second harmonic boundary value problem the source

wave vector is given by (3.6) and is complex.

s = 2X (4.21)

The freely propagating wave vector magnitudes are from (3.10)

0r- (4.22)

4e W 2

t 2 2 0 (4.23)

Continuity of fields at the boundary requires equality of

phase functions, giving for the complex parts

s" • x = t" • x5 n • x = 0.

But by (4.4) and (4.21) s" has no tangential part, hence

=-n.



As before all wave vectors are in the plane of incidence and

the real tangential components are determined by

t' sinT = rsinp = s' sing. (4.24)

The reflected wave vector is now completely determined and in

particular from (4.21)

and by comparing (4.24) and (4.8) using (4.22), (4.21), (4.2)

and (4.1)

P= e.

Now define

ct'n =-

2 alo
0

(4.26)S" ct"0

so that

Sn'2 - n "2 + 2tn " tn2sin2e
2 2 2 2 2

(4.25)



and total reflection does not occur. Inversely

2n 2= ,2 + sin 2 e +
2 2

2n ,2 = _E: I + sin2 e +
2 2

- sin 2 e) 2 + 6 "2
2 2

6 _ sin 2 e) 2 + E "2
2 2

Thus t is also completely determined.

For the source wave amplitude one has from (3.7) and (3.8)

s • s= 4 S . P (4.

2

s S 4TT SxP

s - SS
1 2

(4.29)

where P is determined from F by (2.13) and (2.14).

boundary conditions are

(s + T - R) x n= 0

(s X S + t X T - r X R) X t = 0

and from (3.11)

Tangential

t • T = r • R = 0.

(4.27)

28)



Except for the longitudinal component in the inhomogeneous

term, (4.28), this system has the same algebraic form as before.

For the y component, using (4.29) and s 0,
2

s -t
R - s s

2 r - t s

3 a

4TT S -t

E -6 r - t 2
1 2 3 3

(4.30)

For the x and z components

r (t 2S - t St)

1 t r 2 - rt 2

3 3

R = - - R
3 r

3

(4.31)

where

St2=sS -s S
St2 S3 S1 S1 S3

(sP -sP),

- 31 13
1 2

the y component of (4.29). Solving (4.28) and (4.29) for S
1



s 4hr s 4Tr
S (sP +sP)+ 3 (s - sP)

1 S2 1 33 2 3 - 3 1 1 3

2 1 2

s 2 ( 2
2 1 2

[(E s2 S 6 s 2 )P -1 _ SP ]2 11 1 1 133

and using (4.21), (4.2), (4.25), and (4.24)

2 1 2

[(t 2
- s 2 )p - s s P ]

t2( E; L t 
2p - s sP].

3 1 3 31 2

Finally

41Fr

1 =6 -
1 2

( 1 t ) l

L

[t P + t P ].3 1 1 3
(4.32)



5. THE REFLECTED SECOND HARMONIC INTENSITY

A completely polarized beam can be analyzed by finding

the intensities of two linearly polarized components and their

phase difference. Arbitrarily limiting this calculation to an

examination of intensities leaves as the most general set of

measurements the four polarization cases listed in section 2.

Furthermore all four cases provide different information from

a qualitative standpoint. Thus in the last section the inde-

pendence of the y component and x - z component systems, shows

that in penetrating the surface, a ray preserves two special

cases of linear polarization, normal or parallel to the plane

of incidence. However the second harmonic polarization process

mixes these components as shown by (2.13) and (2.14).

The normal component second harmonic intensity is , from

(4.30)
4T 2 S t 2

n 6 - r 3 t 2

1 2 3 1

with P generated by F through either (2.13).or (2.14) according
2

to the incident polarization. Thus

2u 2 s - t 2

Jnn 9 ---- r3 t IX1 2 IF i 4 sin4ycos 2 y
i 2 3 3

2r 2 - t k -m 4

r - t 3 3 3  IX1 2 In 2 sin4 ycos 2 y (5.1)
2 3 3 t - m

3 3



where the second J index denotes incident polarization. Now

I P= JE 1~ 1 2 E 12
P 1

so by the tranversality of E

k 2JE l2 =3 1

k 2  P

Using also (2.14), (4.19), (4.1) and (4.2)

IP=2 4Il IF 2 oo (5n 2 Y - 1) + F 3colI

m k
2 - k m 2

3 3

m t
2 - Xi m2

3 3

I G1 12 1 2cos2 i{I
ti

2

1 + --- (3sin
2Y _2)12

t
2

hence

np

2rTP- 2

J 2

s -t
3 3

r -t
3 3

x l +
Xi

2 mk 2 - km 2 4

3 3 IXx 21 2
M z2 - t m2 P

3 3

2

2- (3 sin 2 y - 2) 1200S2T
2

From (4.31) and (4.32)

1 IX12

(5.2)



p 1 3

FT 2 t -s

t P t 1 + t1Pl
6-6 t r 2 

- r t 2

1 2 3 3

The case of normal component illumination simplifies because of

the absence of a z component in (2.13).

1- 2 t - s 2

jpn = 3 It 3 xF 2 2 sin2 Y(cos 2 Y - )2

6 - 6 t r2 
- r t 2

1 21 3 3 -

-- 7 1 2 t 3 3 It l 1 2 k m3 I1 2 X
6 -6 et r 2 

- r t2 1x1
1 2 3 3 3 3

x I 2sin 2 T(3cos 2 2i - 1)2n

For parallel component illumination, from (2.14)

(5.3)



Sx x(-3F 2sinYcs 2 y + F 2 siny)i 3

32

2X

k32

m k2 - k M 2

3 3

m t 2 - t m2

3 3

XL
2

E2 l - (3 cos 2 { + 1)]sinT{
1 X2

P XF F sin

(m k 2 - k M 2  91 -

X 3 t E 2 1 3 sinY
- t m 2  1 k 2

3enc3

hence

2 t -s
3 3

t r 2 - r t 2

3 3

m 2 - k m 2

3 3

m 2 _ 2

3 3

IX12I 2 sin 2y

2

t [l (3cos 2 y + 1)]
3 2

Xi 2
- 2t 13

1 t2

pp

2T 6

6 -e21 2

(5.4)



6. =UMRICAL RESULTS

The above intensities are functions of a number of parameters,

J = J, 6k, (W 0k , 2' ).

Also several factors are complex algebraic so one may feel it is

hard to extract information at a glance. For discussion purposes

define 4

f(e, T) = Ii -
ti 2  T t t
- (3 cos 2 y + 1) - 2 1 i38 12sin2,y 0 J (T) (6.1)
t2  T X2

3

g(8, ,') = 11 +
Xi 2

- (3 sin2  -
t
2

2)1I2COS2y Ccj p( y)

These two factors contain all the Y dependence of two of the inten-

sities and

f(o, - Y) c J

g(o, 2 - T) c J )
2 pn

contain the T dependence of the other two. By changing the

definition of T from a geometrical one to a physical one it is

possible to ascribe major features of the variation of intensity

14 The symbol az indicates proportionality.

(6.2)

(6.3)

(6.4)



with crystal orientation to crystalline features. Let y be the

angle from [100] to the projection of the incident electric vector

on the reflecting surface. Then in (6.3) and (6.4) fY = -_
2

since the incident polarization is normal but in (6.1) and (6.2)

T . The curve f(O, IYI) shows extinctions on the [00] and
i

[110] axes and a maximum on the [111] axis (T, = cos-13- = 54.7)

The curve g(0, Y') shows extinctions at the [100] and [i1] axes

and an absolute maximum at the [110] axis. These two curves

(see Fig. 5) are independent of e and the material constants.

IJ

4 1.0
C.)

.I

z
0
I,-

0

Z

0

a-
I--

C,)
z
I~l
I-
z

ORIENTATION ANGLE (1IOO] TOE) 90

Fig. 5 - Variation of Intensity with Orientation
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Using the frequency and material constants given in section 2,

f(e, Y) and g(O, Y) have been computed for a representative

sampling of points (e, T). The comparison of f(O, T) and f(e, T)

may be regarded as exhibiting the difference in shape between

Jnn( Y ' ) and J p(). Likewise comparison of g(O, Y) to g(O, y)

exhibits the difference between J n(TI) and Jnp (). Since the Y

dependence is arbitrary to within a constant multiple, the com-

parison in shape is made by normalizing the maxima. For e = 45 °

the maximum variation in shape between Jnn ( ') and J pp() is

60% based on f(O, Y) and the maximum variation in shape between

J pn(T') and J np() is 14%. In both cases the maximum variation

occurs when the projection of the incident electric vector falls

between the [100] and [111] axes. For larger e the differences

increase. Thus though J pp() and J np(T) look more complicated, they have

much the same shape as J(nn(') and Jpn (T) respectively. As to

specific details of difference J pp(Y) does not show a perfect

extinction at [110] and neither does J np() at [111]. Furthermore

the maximum of J pp() and the relative minimum of J np(Y) show a

small shift from [111].

In addition f and g were computed in the approximations

-x 0 and 1== 0 -- n which are convenient since they allow1 1 2

partial or complete shift to real arithmetic. At first glance

the last approximation seems poor since it means neglecting

= 1.53 by comparison with v = 3.89. The first approximation
2 2

changes f(45, T) by .05% near its maximum and the second by

1.01% at the same point. In these approximations the largest



changes relative to the exact values at the same points are 10.3%

at T = 90" and 24% near Y = 850. Both approximations are the same

for g(45", Y) and change it by .2%. It seems clear that once a

very small absorption is admitted, increasing the absorption

causes no qualitative change until the critical point n" = n' is

reached, at which point propagation ceases. The latter is vaguely

indicated above by failure of the analysis. Equation (4.13)

requires n ' > n " unless E 1 0 and the latter causes a funda-1 ]. 1

mental change in the character of the Helmhotz equation (3.4).

Furthermore, even the transition from no absorption to some absorp-

tion appears smooth. The only qualitative change indicated above

is the disappearance of the system null solution (4.17). Evidently

when there is some absorption, the Brewster extinction becomes

only a relative minimum.

The next most complicated factors in the intensities are

recognizable as transmission ratios--one for transmission of the

fundamental into the medium and one for transmission of the second

harmonic out. The exact evaluation of the intensity coefficients

for e = 45" gives the following.

J = 2.926 x l0 4lX12 I 2 f(0, V) (6.5)

nn '2 f0 65

J = 6.279 x 1041x1 21 2g(45 0 9 V (6.6)npp

Jpn = 4.348 X l0-41X 1
2 In 2 g(O, Y) (6.7)

Jpp = 9.329 X 10-41X121 p2f(450, y) (6.8)



The following table lists per cent errors in the numerical

coefficients in the approximations indicated.

J J J J
nn np pn pp

X 0 2.2 2.0 2.1 2.0

- 0 - 19.6 6.7 14.4 14.5
1 2

Table 2. Errors in Two Approximations of the Intensities

The conclusions of the last paragraph on the general effects of

absorption still apply. Thus absorption considerations can be

neglected if only qualitative behavior is sought.

Much of the behavior expected has been verified by experiment.

The variation of J and J with T on an arbitrary intensitynn pn

scale were reported in 1961 by Ducuing and Bloembergen. 15 Certain

aspects of the variation in 0 have been obtained including the

minimum near the Brewster extinction.16 Finally xi relative to

that of potassium dihydrogen phosphate has been obtained at several

frequencies and for other semiconductors and the phase of X for

GaAs has been obtained at ruby laser frequency. 17 The data on

lXi is sufficient to show its general dispersion characteristics

NL L
and it is seen that peaks of x (2) roughly match those in x (w).

is See footnote 5. The same results appear in N. Bloembergen,
Nonlinear Optics, Benjamin 1965, pp. 126-7 with better identification
of polarization cases.
16 R. K. Chang and N. Bloembergen, Phys. Rev. 144, 775 (1966)
17 R. K. Chang, J. Ducuing and N. Bloembergen, Phys. Rev. Letters 15,

415 (1965). For a review of reflected second harmonic experiments,
see N. Bloembergen, Optica Acta 13, 311 (1966).



7. REMARKS ON THE GENERAL PHASE MATCHING PROBLEM

In the first section the possibility that the output signal

might attain intensities of the same order of magnitude as the

pump signal was mentioned. When the output signal is the second

harmonic, phase match is known to be a necessary condition for

this possibility. 18 In this exposition of second harmonic genera-

tion by reflection, phase match occurred as a null solution to

the nonlinear wave equation, i.e., e = e in ( .8). Recause the1 2

concept of null solution is quite general, there is a strong

inference that it is an avenue for extending those implications

of phase matching which are contained in the above necessary

condition. Thus it should be possible to generalize the results

listed on pp. 1-P for anisotropic nonabsorbing media and for

optically active nonabsorbing media to anisotropic media exhibiting

the most general linear optical effects.

The character of this generalization may be sketched in outline.

It will be matrix algebraic and so will not differ much from

Kleinman's approach.1 If the indications of the last section on

the relative unimportance of absorptive effects hold, the generaliza-

tion of the work on birefringent media to include anisotropic

absorption or the generalization of the work on optical activity

to include circular dichroism is trivial. However, as a survey

of effects attributable to the imaginary part of the dielectric

18 J. A. Armstrong, N. Bloembergen, J. Ducuing and P. S. Pershan

Phys. Rev. 1P7, 19 O (1962).



constant, the present effort is incomplete due partly to the ex-

clusion of total reflection and partly to the lack of special

consideration of the relation between optical activity and circular

dichroism. Thus it will be necessary to complete the description

of the dielectric constant. These generalizations still leave

two classes of optical effects disjoint under the capability of

describing phase match in terms of material properties. The two

classes could be called symmetric and antisymmetric.19 Since the

dielectric constant for optical activity requires wave vector

dependence, perhaps these two classes can be merged by generalizing

the anzatz (2.4) to include spatial dispersion.
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