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ABSTRACT

In previous work it has been assumed the stress-
intensity-factor Y, from two dimensional elastic theory
analysis for an edge crack in tension is the same as that
for a double length completely embedded crack. The influ-
ence of the side boundary free surface upon stresses near
an edge- crack in tension was studied and evaluated. To an
accuracy of several percent the stress-intensity-factor Y, for
an edge crack of length, a, is ten percent larger than the Y,
value, cr, a, which pertains to an embedded crack of length
2a subjected to a normal tensile stress
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THE CRACK-EXTENSION-FORCE FOR A CRACK
AT A FREE SURFACE BOUNDARY

INTRODUCTION

A fracture "fail safe" strength analysis procedure has been developed (1,2) using the
concepts crack- extension-force and crack-edge stress- intensity-factor, designated q and
Y respectively. These parameters are associated by the equations

K
2 

_ E, for plane stress

and

K2 _ E) , for plane strain(1I - v2)7T

where E is Young's Modulus and v is Poisson's ratio.* In the domain of applicability of
the above strength analysis procedure it is permissible to ignore plastic strains. In this
report only homogeneous isotropic solids obeying linear elastic stress-strain relations
are considered.

Exact stress analysis solutions permitting calculation of q and K exist for systems of
colinear two-dimensional cracks (3) and for an embedded crack in the shape of a circular
disc (4). In the latter case, one axis of principal extensional stress remote from the
crack must be perpendicular to the plane containing the crack and the other two principal
stresses must be equal. Although it is possible to write general equations for the
stresses and strains (assumed linear) at the edge of any embedded crack (5), exact
equations relating q and K to the applied loads and boundary conditions are known only
for the above restricted group of problems.

A situation frequently evc2ountered both in laboratory test and in service experience
is that of a crack extending into a solid from a free surface where the stress state is
primarily one of tension parallel to the free surface. A straight crack extending inward
at right angles to a free surface possesses 9 and q values which are thought to be similar
to those of a larger embedded crack composed of the real crack plus its reflection across
the free surface. This equivalence is thought to be a good approximation. Because the
larger embedded crack is symmetrical about the free surface, the stress system will
subject that surface only to normal forces. It is believed the contribution of these normal
forces to the values of X and G, if calculated, would be small since, at the crack edge,
they primarily influence the magnitude of the stresses parallel to the crack whereas 9
and q depend only upon stresses perpendicular to the crack plane.

*Those who possess NRL Report 4956, "Crack-Extension-Force Near a Riveted Stiffener,"
by J. P. Romualdi, J. T. Frasier, and G. R. Irwin, October 1957, will notice that the
symbol K was used with the same meaning as the symbol K in this present report. The
symbol 9 is preferable because it emphasizes the close relation to Q and avoids confusion
with the symbol K = E_4 which has been used in other reports from this Laboratory and
from other laboratories.
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The work reported here was done in order to provide some quantitative support for

this reasoning. This report will discuss errors in YK and q which might result from

assuming an edge crack to be equivalent to the double size embedded crack as discussed

above. It is assumed that the edge crack under consideration extends inward at right

angles from a free surface, is two dimensional, and is remote from any other free surface.

THE EXACT SOLUTION

In the Cartesian coordinate system to be employed the free surface is the y-z plane

and the crack extends along the x-z plane from x = 0 to x = a. At points in the semi-

infinite solid remote from the crack the stress system is assumed to be

ory a, crx = 0, o z =- 0.

On the y-z plane

0r function of y

crx xy =  "yz =  0.

On the crack surface

xu = function of x

O-
Z  --- 70-

x

O'y - xy = Txz = 0.

Consider the stresses cr- along y = o due to a pair of line forces P applied to the free

surface at y= ±y, as shown in Fig. 1. From known solutions to the problem one obtains

(Appendix A)

y 
4P x yo2

Pry 7 (X2 +2)(1)

Y Consider next the stresses o-x along x = 0 due toa

double pair of splitting forces Q in a crack of length 2a

x as shown in Fig. 2. From known solutions one obtains

o 0(Appendix B)

... b v -2 
2  y 2  )

ax 7T(Y2+b2) 2y 2  + y2 - 2 (2)

Fig. 1 - Pair of line pres -

sures p a gains t f r e e The third stress system needed is the familiar one

surface for a crack of length 2a subjected to stresses -y = o- and

ax = 0 at points remote from the crack as shown in Fig. 3.

Along x = 0, from known solutions of the problem one

obtains (Appendix C)

crx 7 = _ _ 1]. (3)Ta2(y2 + a2) 3/ _
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Fig. 2 - A double

a

pair of splitting forces Q within
a crack

-- x
. . .. . . .

Fig. 3 -Acentral cracksubjected touniaxial tension

By suitable superposition of stress systems similar to those of Figs. 1, 2, and 3 it is
conceptually possible to satisfy free surface conditions on x = 0 and on the crack plane
for Jxj < a while having a constant stress cry = a applied remote from the crack. To do
this it is necessary to assume a system of line pressures Q(x) in the crack and P(y) on
x = 0 such that

f Q(b) 2 /a 2 -b 2 y / 2y2

0 < (y
2 +b

2
) y_+a

2 \y
2 +b

2
+ y 2 _2 db+ca 2y

+ 2 b+ a 2 ,y 2+_ a2
(y

2 +a2)3/2- 
) = p(y) (4)

p~)(-4) by 2
P(y) (-4b+y 2 ~2dy = Q(b).-T(b 2 + y2) 2

To see that this pair of integral equations solves the problem, consider superposition
of the stress a at mD as in Fig. 3 and of the pressures P(y) on the plane x = 0. Superposi-
tion of these two stress systems must result in the development of normal stresses equal
to Q(x) along the crack. If now one adds a third stress system by putting pressures in
the crack equal to Q(x), the normal stresses along the crack will vanish. At the same
time stresses equal to

g

Q

b-i
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P(y) - L - ___ _y___
'

-

will be added on x = 0. Thus the normal stresses originally applied on x = o also are can-

celled. Only normal stresses are cqnsidered in meeting free surface boundary condi-

tions, because -r-,y is zero on the coordinate axes in the above stress systems.

CALCULATION OF STRESS-INTENSITY-FACTOR K

Only stress systems which possess a singularity at the end of the crack contribute

to the X and q values. The contribution to the 9 value of the stress a- at infinity as in

Fig. 3 is vI'a-. The pressures P(y) on x = 0 add nothing to the 9 value. The contribution

from the pressures Q(x) in the crack is

, = 2Q(b) Vdb (6)

o0 a -b
2

The total X value then becomes

Y= + Y,. (7)

Thus it is the value of ' relative to ac/v'which is needed for the purpose of this report.

A first approximation Ki to the value of ' may be obtained by assuming Q(b) to be

zero in the first of the pair of integral equations. Then

P 0(y) =- y / (8)

1() Y = 3/Qj 0) (-4) bY2 dy (9)

and 7T(b2+ y2) 2

and

' fo 2Ql(b) -a db (10)

After carrying out the integration with respect to b one finds

0 - v/f du u2 u(2 +U2) (11, ;4- -d + - sinh 1 U5/

0 (l+u 2 ) [ + +u 2  (1 +

Estimation of this integral by numerical procedures gave the value 0.2337. Thus

X'1 = (0.2337) cr '

= (0.0947) cr/-.

Figure 4 shows the function Qj(x). The stress-intensity-factor corresponding to

this distribution of pressures in a crack of length 2a is Y,. The effectiveness of Ql(x)

upon stresses near x = a is equal to that of a constant pressure Cr extending from x = -0. 15a

to x = 0. 15a as shown by the dashed lines in Fig. 4.
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Fig. 4 - The pressure distribution Ql(x) as a function of position in the crack.

As one might anticipate, the introduction of a free surface bisecting a crack of length
2a results in a moderate increase of the stress-intensity-factor 3. The amount of the
increase from an exact solution of the problem would not be expected to differ from E, by
more than 10 percent.

An exact stress analysis is known for an edge crack with rounded corners from the
work of Neuber (6). To obtain values of X for stress systems around grooves simulating
cracks from notch stress studies it is useful to note that for a notch of nearly zero flank
angle

lir I
-> 0 2m

where om is the largest tensile stress at the root of the notch and p is the notch root
radius of curvature. Applying this relation to the expression for crm given by Neuber as
representing a shallow external notch under tension one finds

X= 3o-K -= 1.061 cr/ .2v'Y

For comparison purposes this result is only of qualitative value because the flank
angle for Neuber's shallow external notch with rounded corners is not small. Neuber
reasoned that the stress analysis for a narrow groove at right angles to the free surface
may be assumed to be the same as that of a double-length embedded slot along the same
lines as those discussed in the introduction of this report. It would appear, however,
from the calculation of X1' that the stress intensity from elastic theory near the end of
such an edge crack is underestimated both by the double-length embedded-crack approxi-
mation and the Neuber rounded-corner shallow-notch example.
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CONCLUSION

Fracture strength estimates and experiments are such that uncertainty in X and Q
values of 3 and 6 percent respectively would scarcely handicap the work. From the

considerations discussed it is concluded the X value for an edge crack of length a subjected

to tensile stress cy can be assumed to be

X = 1. 1 C/-

with sufficient accuracy for most experimental purposes. The corresponding plane stress

value of the crack extension force is

1.2 7c-
2 a

E
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APPENDIX A

Derivation of Eq. (1)

We will use the Westergaard equations for stresses derived from the Airy stress
function, Re 2 + y Im Z, (where 2, z, and Z' are successive derivatives of 2, a function of
x + iy):

If we choose

where

Txy 
=

" Y Re Z'.rx = Re Z - y Im Z', cy = Re Z + y Im Z',

Z -- .
Z = ( - x0 )

Z = Z( ), = x + jy

then the physical situation represented is one of a
localized pressure P (lb/in. inthe z direction) pressing
upward against the lower free surface of a semi-infinite
solid consisting of y > 0 (Fig. Al). If we choose

+ C+ i- ( 2_X2)

0

we add another line pressure P at x = -x,. The deriva-
tive is

2)

Along x = 0
2Py

Z(iy) = 2 +

+()Z - +X 2

0)

Z' (iy) = Zi(.+Y+)

yImlmZ' = Z 2Y2

o-x = Re Z - YImZ' = Z (2

-
I )

Thus

y

-x 0-:

Fig. Al - Line pressure P
against lower free surface
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2
4 Py x0

x  - 2 2
X '(y 2 

+ x
2 )

To convert to oy as in Fig. 1 we rotate the axes clockwise 90 degrees, which means we

must replace +y by +x and +x by -y. We also must write y0 instead of x0 .
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APPENDIX B

Derivation of Eq. (2)

The physical situation shown in Fig. 2 can be represented in terms of
2Q A!-b 2

,( ) - b
2
) 2

from which

= - b2 _ -8 .

Along x 0

Z(iy) - 2Qy a2 b2

1r(y2 +b 2 ) y+ 2

Z'(iy) = Zi - + 2  + yb---)

2y2  y
Rey2 

+ b"-"-' y2 +-a2"

Thus

2 2Q y/a2 -b2 I 2y 2  y
ax +------ 2 i- T(Y

2 +b 2 )7 y2 \y+b 2  y2 +a 2
7x -(- PT 2.



APPENDIX C

Derivation of Eq. (3)

The physical situation of Fig. 3 can be represented in terms of

Z(/ = 2 . a

and by adding -o- to o-. to produce - = o at points remote from the crack. From this

z( 22)

Along x 0
o-y

Z(iy) 9Y

Z'(iy) = Zi 1 + Y

Re Z - yImZ' =Z 1 - : Z 2 y2+a2')

Thus

Sy 3
Re Z- yImZ' . = -

+ a
2 (y2+ 2


