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LBSTRAC

The fundsmental equations governing the process of isotope
separation by thermal diffusicn are dsriveds The equationa are applied
to the behavicr of a single column in the cases of equilibrium,
stationary flow and approach to eqguilibrium.



INTRODUCTIOCH

thz method of lnermal 4iffusion

le Theseparstion of isctopes oty t
has assumsd & practical significa.icc in conn<cticn with the problem of
obteining concentreted uranium 23T, n element which is capable of
releasing lerge emounts of enecrgys .hile the work on this protlem is
primarily of ancx”erhﬂental nature, theoretical work can play un

important role in guiding the work of the cxperimenter and in ~eorrelcoting
his results,

2e The present paper deasls with the tneory of the thermal diflusion
methode In the published literature there sre & number of papers on
the theoretical treatment of isotope separation by thermal diffusicn,
smong which one might single out for mention those of Furry, Jones and
Onsaperi(to be referred to es To Je Oejs .aldmando, gardeen 3 end [obye™
However, all of these but the last are concerned with gases ra4h= tharn
liquidse The paper of Debye is not satisfactory because of the rough
approximations intreoduced, while the papers dealing with gases make
some assumptions which are probably not valid for liquidse (Incidentelly
it is interesting tc note that since 1940 no pepers on isotope scparaticn
by thermal diffusiocn have appeared ir. German publications, althcugh
there had been numerous papers previcusly.)

Se Because there exists no satisizctory theoreticel trestment of
isotope separation by thermal diffusion in liquids, it seems desirable
to attempt such a treatment. The purpose of the present paper is to
discuss the case of a single liquid diffusion columsn, introducing
assumptions and approximations which are appropriaste toc the type of
column being used, and to obtain results which can be directly applied
to it.

APPARATUS AND PROCESS

4, In order to be able to treat the problem theoretically, we
must first have a clear picture before us of the system to be investi-
gateds Some idealization will be necessary, to be sure, but it is
important to try to retain the essential features.

5¢ TWe shall consider a column to consist of two vertical

concentric tubes, spaced a distance a apart, each of length L, between
which the diffusing liquid is contained, in the annular space of mean
circumference b. The surfaces of the tubes in contact with the liquid
will be referred to as the "walls". One wall is maintained at a low
temperature T3, the other at a high temperature To. The mass of the
fluid contained between the walls will be denoted by i‘ce At the top
of the column there is a reservoir filled with liquid having a masw
¥Rps At the bottcm of the column there is an outlet which may be con-
nected to another reservoir, or else kept closed,

Ge Because of the temperature difference between the -walls, a
con 2ction current sets in, the liquid near the hot well, having the
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lower.density, flowing upward,while that near the cold wall flows down.
At the same t ime thermal diffusion ‘takes place, the molecules of the
lighter isotope diffusing from the cold toward the hot welle The result
is thet there is an exchenge of molecules between the upward convection
stream and the downward one, by which the upward stream acquires arn
excess of the lighter isotope and carries it to the top of the columr.
The conecentration of the lighter isctope at the top of the column, or

in the reservoir, gredually increases. while that at the bottom decreases

unless the bottom is connected to a large reservoir or tc another
column, so that a constant concentration is maintained.

7 If this process is allowed toc continue, & condition of
equilibrium will be apprcached, at which there will be & definite
relation between the concentrations et top end bottome It i rpossi
to stop the process at some stage, remove the enriched liquid frem
reservoir and start the process over agein. Such a procedurs is re
tc as intermittent operaticne On the other hand, it is possible,
bezinning at a certein stase, to draw off a continuous stresm of ernriche
liquid from the top of the column « This procedure is called
continuous operation. Under working conditions, the rgate at which the
isotope is drawn off from the top of the column is equal to that at
which it is carried to the top of the column by convecticn, so thet one
has a stationary condition within the column.

8¢ In the mathematical treatmert of a column such as has been
described, one can take into account the fact that the distance between
the walls e is very small ccmpared to the circumference b, by neglacting
the curvature of the walls und treating them as plene surfaces. In
discussing the convection and diffusion, one can .simplify the calculat-
ions considerably by neglecting the small regions near the ends of the
column where the temperatures veary frum the values prevailing elsewhere
and where the convection streams curve back to reverse their directicns.
These regions can be nejlected because their dimensions are generally
very small compared to the usual length of a column. (F.J.0.l)

9¢ Finally, since a column in e practical case will produce a
relatively smell change in the isotope cbncentration, one can represent
the concentration very often as a power series in the distance up from
the bottom of the column. The series will usually converge so
rapidly that only a small number of terms are required for reasonable
accuracys Such a power series expansion frequently reduces the work
of mathematical calculation considerably.

CONVECTICOK

10. Since we are dealing with isotopes having a small percentage
difference in atconic weight, the two kinds of molecules being separated
are very similar in their properties, and the presence of thermal
diffusion does not alter the behavior of the liquid to any mmrked
extents Hence one can first treat the convection of the liquid in the

.



ebsence of diffusion s~nd afterwards tncat the diffusion os iﬁfluenced
by the convection.

11. Let us suppose that we have ths liquid botween two prrallel
vertical wells o distance & epart, of breadth b nnd height Le Let us
toke « coordinate system with the Xeaxis at right angles to the plates
and the Z-oxis vertical, sc that s » ¢ & RIS
Since we shall consider the case in which nonc. oftquemtitics te be
dispussod varics in the dircction of the third coordinate nxis, the
letter will not be useds Let us toke tho "cold" wall, es the onc ot
x = 0, and let its temperature be Ty» while the "hot" wnll, ut x = &,
he:s « tempereturc T2, so thet AT @ Tp = Ty 0. Let p be the prossure,

g the ceecclerction of grevity, and § the hert flow por unit ares of
Tlotee Furthe more let ©, A tnd 4 donote dhe density, thormal ccnduce
tivity, =nd viscosity of the liquid, as functions of thc tomperanturs
Te Daby;:"i assumed the lest three quantities to be constant, corruse
ponding to ¢ smell veluc of £Te -Howsver, thise quentitics mey chnnge
ropidly with the temperature ond thereforc, for any approecinble veolue

of AT, the depcndence on tomperature should be token into considernticre
Or  the other hnnd, becruse of the similnrity of the two kinds of
molzcules, we shall nssums that o, A ond n de not dopend on thoir
concontrationse Finally, from the conditions of the problem, we crn
tako thess quantities independont of Ze

12¢ To culculate the conveetion flow, wo follow Fe Je Qe in
o

dotcmining the tempersture distribution on the brsis of thoe hont
conduction nlonee Except neor the edgos of the plate, one ean write,

d!

=i (1)
or, on integreting,

PO 1 '

Sl (2)
whero

(=
K = | AdT.
X J Ad (3)

1 T
13¢ FeJeQe showed that the convection flow can be trected as
lamollare To & sufficient nccurccy, one can use the hydrodyamic:l
equation for stcady viscous flow in tho form

(v-pwdV = vp -9, (4)

wherc 3, the velceity veotor, is teken in the z~direction, but inde-
pendent of 2, whilc 5, tho grevitetional aceeloraticn vector is teken
in tho (-z) dircction cnd of megnitudo ge Egqs (4) gives for the
x=ocomponents -

—5-



and for the z component:

a fovy vz oap 46 5)
fﬁ?i&’?" = :
Since, in (5), all terms ether thanp deperd only on X, we see that
g
,’Q'P = B, (G>

&3
where B is & constant, and the equation cen be written by mesans of (1)
as -

-1

LS

1]
t
+
Y
Ty
;
P

This egquation is to be solved subject to the boundary conditions

v(T1) = V(Tp) = © (8)

The solution of (7) canbe obtained by quandr&tures and will depend
linearly upon the ccnstent Be The value of this constant will depend
on the total flow of liquide It will be seen from (7) that for given
values of B, ,T1 and Tp, v(T) for a fixed value of T will vary as l/b
by (1), as a“

DIFFUSION

14, let the two types of molecules in the liquid be referred
to by subscripts 1 and 2, so that, for example, ¢, and ¢, are the
relative particle concentrations, (cl-f e2 = 1), and let 1 represent
the species which it is desired to concentrate, ise., the lighter one.
The equation of diffusion can be written in the form

where the first term on the rightehand side represents ordinary diffus-
ion, while the second term represents thermal diffusions In the case
of ordinary diffusion, the diffusion coefficient D (often denoted by
Dyp) is lmown to be a function of the temperatures It will be mssumed
that it is independent of the concentrations ¢y and cg, an assumption
which is justified by the similarity of the two species of molecules.

15+ The coefficiént C of the thermal diffusion term must depend
not only on the temperatureé, tut also on the concentrations. Since
there is no thermal diffusion if either species alone is present, one
can assume C to contain a factor C1Cqe Let us write

-4-
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-
C =z geyep La-,

D

One cen e xpect that q will depend on T and that it will *e, in rener
a slowly varying function of the concentretions. In partisuler, iI t
two species are very similar in their propertiec, it is reuscnatle to
believe that q will be very ne&rly independent of c, «nc¢ ¢ _. Thit It
btorne out by the fact thet such it the case for *hﬂ”mal diffucion
g;ses5 ve shall therefore assume, until there is wviaence Lo i
contrary, that q in (1C) is e function only of the tewrpeéreturse .net

tnis functior is we do nct know &t present. n the case of gaseg, it

has been found to be of the form /T, where CAis nearly a constuni, erni
this 1is t2e function used by F.J.C.1 For liguids, very rough theeretit.
erguments” heve led tc eithera /T or x/T2, depending on the model

-+
© hes
-

1)

sssunede It seems best, in the present state cof cur knowledge, “¢
leeve oper the question of what the dependence of 3 cr T i,
16« From (9) =nd (17 the flux density o! snecies 1 ia
piven by
? - ] ‘? - /i-C ‘.J'-Q- D(-Vc qc COVT)} OB
1-fl)-/’t-1 1‘+ 1€ ,‘ 3 A !

80 that we can write

- RN
% (fcl) :"V-Jl, Lo
where t is the time. If we are dealing with e stationary conditicn,

such as that of equilibrium, or of continuous operetion, the left-hend
member is zero, and we have

- :
Vedy -0 (13)

As pointed out by F.J.0.l, the condition will be essentially

stationary even during the approach to equilibrium provided the end-

reservoirs are sufficiently large,

STATIONARY CONDITION

17, Substituting (11) into (13), we get

% el -;,T)} 20, §31
'S_JE[OD(- X + q¢; cp T +/°VT§ - 5D 92 = 0, (14)
or if we replace x by T, by means of (1),

s AR () = gy 'D:f;] N

N

~.-

The boundary conditions at the walls are given by

Jlx =0 (X - ola_): \/16)

-5-



or

184
flicit solution giving the valuc of ¢

(17)

In = lving thosc couations, wo shrll not lock for oo -
for cozch valuc of T
ather we shall feollow FedeOs in sceking information nbout the aver: g

end 23

valus of ¢y nereoss . soction zeccnstant, for vericus wmlucs of z,
sincc this is the quantity which is of the most dircet concern “o the
¢xperimenter, ond since the concentrotion varies but little cver

crossescetion of the column.

15.
Moking usc of the bourndary ccnditions (17) we
con be writton

where ¢, is the upward trunspert of spocics 1

k -9
<X
i TN ¢ "-I
Som b b ate ofism e
] 4o~ I3 \.‘\_
P
=2 1) AR
= j?ma{va,~;/§~/kjl
,: &

EQe: (18) states the cbvicus

faety, that T
for o stationary stots.

206 Lc%t us now dofine o function
7

i
N
[

zf
-X J (It)- V\:/ T.
T

——
[}

FT
e sce thot

R
F{T\: g_.’.\‘_,
“/ h

<L

F(T) =0,

where & is the total tramsport, given by

e

. —

- { A 5
G =bipvay = Q ji‘\.yvd/T.
@ -

Ege (19) can be written

Lot us thercfore intograte oge (15) over T

is constant edong the

.
wae

frem Tl

T -
T 120
obtein o result whier

~
—
o

~—r

given by

(19)

tubc

(20)

(21)

(22)

(23)



Integration by ports, with the 2id of (21), gives

b
>~ = J°¢, 3 ‘*‘JJ ”_"“]\“’)“"
6= (7.3 [ o . (24)
2le If onc now gocs back to ogqe (15) und intogrates it with
rospect to T, one obtains an expression for 2¢ /®7 , which

can then be substituted into (24)e Taking into nccount the boundary
conditions (17), one finds

-
27, _ A 4 ; .Y
2o ogae, p iy,
aT < 0 PDQ 4_\"03 L ng%&PL47; (25)
rnd, substituting this into 4), one obtain
T = o (7 3) fL s ive (7
s ! Z, = GiVFece - '_c/*[ z¢,
. “’-rf'“/r Q}rz‘ TlApv AT
b= n TT 7 3 (26)
+V}}i\idr \.D?"c -.é‘(( \)“‘r/r
SR AU v Rl Yy

22+ If one noglects thc small variation in concontraotion Jlong
o section ze const., one con write this equation os

e l !, A c :.’_..S'
¢, = ol }7(1( ~ It N? ~ i 4§ 2 27)
where 2 , K, «nd N «re positive quantities dcfincd by
/ " \
H= - :é\- | FgarT, \
.\\- .rl
;« = K; * \d)
‘ T
‘ b “ 2
K = 75> ( ;A F LL*)
Ay g

i
N———
—

o7 -



~nd the concontr.tions rre now regarded =s depending only on ze
23

One con show that in precticel cases the term in (27)
involving d“;,“d}?
othor quantitics proscnt,

S

will gecnorclly be smnll comparcd to the

Hence we shnll discenrd this torme For
cenveniencs we shell write c in place of ¢, l=c in place of Cos
end T in  ploce of The ecqucotion then becomes

., e

o -

H - ‘,.‘3 .
() BEquilibrium

(29)

In the cuasc of cquilibriuwm both o ond
broomes

< are zerce Eqe (29) then

=18

K T o~Hell) =0
e

(30)
If we lct
3
L= ‘R'\ ) (31)
This can bo integreted to give
! -—K-:-—— = 7 4. Const (52)
a i-c - 'J o Cor§
24e Let the value of ¢ ot the top of the column be dencted by
c, s that nt the bottem by ¢, o It is customary to define the
separation factor by

M TR

Cu(l‘cr.\’

(33)
If we let S, denote the velue of S ot equilibrium, then it follows
fram (32) that
e

lh.fi=::-xl¢ s S %L

- D, = e (34)
Where L is the length of the columne /,n importent fecture of this
result is that the value of ths oquilibrium separstion factor is
indepondent of the concentration at the bettom of the columne

26, It is desirable %o investigate morc closcly the dependence
of S, on the veriables of tho systeme In terms of tho integrals
listed in. (28), it crn be writton

: He

(35)
K’
-8



tr o
or, by\us-& of (2), .

P

S Lo n" FedT (2€
Ind= ot —
- t.-‘a-'__~ e
ol %rur+xjAngT
6e If onc locks for th: value of &, Zunctad -

e Fod
IrS,. hre o meximum valuc, cne finde thet it setisfic

< - ; . 24
In = S|y AR TS e
LY s i Asbel
This dvpends only on the well temperoturcs Tl tnd Tz. The dererdunce
i1s rcther complicrted, howcver,

27« It might be pointed out that, on the basis of rough
considerations of the behavicr of the voricus quentitics in (3&'),~
rr.ising Tp should goncrally incrensc Sgpe  However, this connot oo
done indefinitely, sincc n high veluo of 4T will lecd to parasitic,
or local convection, resulting in mixing of the liquid and lowering
of the scparation factor. It appears that the choicc of optimmum wall
temperatures can best be made on the basis of exporim.nt, rathcr than
theory.

28¢ Roturning to (36),we sec, that, for fixed wall temperctures
T} ond T, the depondence of S, on a cen be expressed in the fom

. k el 39
lr\. 5‘ = --—‘-a. — ( )‘

© I+ k,a®
where k) nnd kp are sonstants depending on the temperature o &4 similer
roletion was given by Waldmenn? for gosese

29In plate 1,the vrosses indicate experimental values of 1nS
for a number of values of n, as detoermined by Dr. Philip He sbelson
for o particular set of conditionse the curve reprosents ln S, s
given by (39), ky and k% having been chosen to fit the experimental
detae It will be scen that the agreement is good. However, the
agreemcnt may be fortuitous to some oxtmnt for, os Dre 4belson
pointed out, in the wxperiments what was kept constont was not the
temperature of the well in contact with tho diffusing liquid, but
rother the tempecrature of the hesting or cooling substance in contact
with tho otheor sido of

= Gw



the walle ‘';hen the distance a is varied, the temperature of the
diffusing liquid at the wall Will vary somewhat in spite of the fact
that the heating and cooling agents are kept at fixed temperatures.

30e If we wish to have a solution for the concentration ¢ at
equilibrium, we can obtain it in a convenient form by expanding it in
& power series in z. Substituting into eq. (30) and equating to
zero the coefficients of each power, we get

c(ﬁ') = ¢t L..,(locg)!;*,é. + (%-.,:0)6\2.'3;2_4,. ] , (40)

e

provided we take z = O &t the bottom of the columne

3le If the sclution is desired in e clcsed form rather than as &
power series, it can be obtained from (32). The result is

T+Co (= oY) (402)
(b) Stationary flow

32e¢ tie next consider the case in which there is a steady upward
flow of liguid through the column at such a rate that the concsntration
at every point remains constent with time, a condition which might be
referred to as "skationary". 1In this case eq. (29) applies, with&™
and 7 both constant,g— being the mass of liquid flowing upward per
unit time through any cross-section of the column, while % is the mass
of the desired constituent crossing any section per unit time,
These two quantities are related to each other by the equation

T omo—Cp . (41)

where cp is the value of ¢ at the point where the enriched material is
withdrawn. If one is operating a single column this will be the same
as C 4 , but if the column is part of a pyremid, cp will be the
concentration at the top of the pyramidy Let us for the present impose
no restriction on c_.

Eg. (29) can now be written

\27Cp =0 <4 He(lec) - K dc, (42)
'd'é,
If we define o, as in (31) and let
vIT
", (43)

the equation beccmes

dci - ‘-k‘c(l-c).!,‘;‘: v(e =c) = O (44)

dr-
A -10-



This can be solved most conveniently by means of a power series in z.
In this way one obtains as the solution

= ¢+ Lcokl-co) - c -C ?L“,? +2 (1-2c, +v)d ](Zg)

Putting z = L gives us C 40 and f rom this we get the separaticn factor

— ! A BTN
=1 "" —\:(E k.o; ~C; i | / V(/; T Com S A Lx e -
ERR A ﬂ\L (46)
i o b 1 - ‘. /- Ce
33. If we are deallng with the case in which ¢ - ¢ we can

put the result into a more convenient form. At “the ton o;t the column,
(45) then becomes

22 «

c.= = €¢ +[ o(l-—co) -v(c. -cii_}\ L-—%—g(l 2c0+v)c\, T4
J
(47)

#& solve this equation for cy we obtein
- ; . 2
c, co 4 co(l-co)ljz. x L 4}:5 (1-2c -v) o LZJ e (48)
and from this we find |
Scl4aL+ad@QNAZi 4. (49)

34, It will be seen by a comparison of (49) with (34) that when
liquid is withdrawn continuously from the top of the column the
separation factor is less than that at eguilitrium; the difference
will be very small however if §, is nearly equal to unity (%L small)e

APPROACH TO EQUILIBRIUM

35« If one is interested in following the process by which the
column goes from its initial state to the condition of equilibrium,
one must replace eqe. (29) by the more general equation involving
the times This equatisn can be obtained from eq. (12) in much the same
way as (29) was obtained from (13)s Such an equation was derived by
Bardeens! If we again omit terms which are small in practical cases,
the ecuation can be written in the form

e b ERg H ( ¢ (¢ )] * l'\/ .'._~-. 4 - (80)

T 5! 3
If we define J\es in (31) and let £
Yoo S h L ak (51)
ES Heh 7
this beccmes " ‘ _ -
N5y e = o, [() ,A" g
2t A S b ( “)!‘*’- VR (52)
¥hoo 4 2



36es To solve this egquation, we look for & solution which is a
power £ries in z, with coefficients which are functions of te
Let vs set -

c (t)+ ’Yl (t). 1\", .f /"(t)’\ /’/“f' soe (83)

SUbstltutlnb this into (52) Qnd equating coefficients of corresgon
powers of z on both sides of the squation, we cbtein & series of rslat
ions \‘y!

/] = - \'f' ( P N A
! T i /- 2 \
’ v P < ju i A }g - "
H ’.’ ! - { Y 7 - / M ¥ ey ’ / AR i .
( =T AL AT A Y 5 ) - (54,
/ w14 ? i

soNe / ,'f" P Vit - . '!
Xl = 3 X (10 Y- 20 %Y e LY,

where a prime “denotes dlfferentlatlon w1th reslebt to time. It will
be seen thet two of the functions, %'o and %’1 can be teken
arbitrerily. The others will then Be determinéd by the equations in
terms of these two. One finds, for example,

\’,_ = /,( 1y {‘( [ 1, /)"- J“’F / /fé’ i’,atl-,_ \/41/)‘:1*_

The upward transport "y given bj

. i g .’\. . i
to= Hel-e)- KO (56)
! > 5 )
is found to be .
‘ 7\
J L‘/ ,\" r/\/ '\,--'/h / :‘.;J ;/ Lo 3\ /A~ 3 \q ﬁ\! (5 ]
c X,, i 9 F sl }; \’5 ¥ _,% / s {:;! et f

37« The f'unctlons\’fo and )/ will be chosen in any perticular
problem so as to satisfy the 1n1t1a1 conditions and the boundary
conditicns at the top and bottom of the column.

38e This method of solution is mucH simpler than the ususl method
involving a Fourier series, and it should work satisfactorily for the
cases encountered in practices An example of its application will
next be given.

() Pixed concontretion at bottem of columms

39« lie consider the case of a column of the type previously
discussed which is operated by having its lower end conneeted to a
large reservoir or to a stripper column so that the initial concen-
tration is meintained there at all times. ile have then, by taking
Z=,On )

}"c (‘(”/ =l s et o (%8
=12



whence it follows from (54) that “

,~:%%Kﬂ%) R ?
£ UG a,\,—ﬂ* S

-

\, ) ‘
FEN AR AR e

40+ In this case, €Qe (57) O1ves Tor -

e (/ ¢ \/}_"{: , "’Y, Hy T /i'f",!ﬁ"-'ti)';‘\: .. !

-

At the tep of the column (z = L) we have

- - ‘j i ¢ A —I | i -
1 ’\‘ ‘-’(' “;)-2‘/{'-1# LR = RSN R t./f % y///’r":'\_(_;; b (61)
| f I = 14 | i

or, since
./\ ] = o KL (52)
we can writes
- . I (Co)
LT:'IFoh-‘ )Tf; PL~&,Y , +/4//-gc 41+_

I

4l. On the other hend, at the top of the column, we have the
rate of change of concentraticnrelaeted t¢ the transport,

. ey (64)
hqﬂdt

where M_ is the mass of the liquid in the reservoir, while c+_is
given b

(65)

=m0 = ~E T o _ . 4 0
< 1 - 7 4.\-', (/’g [ ‘?/' _:)\’LL O’_i_‘ . .
Substituting (55) and (63) into (64) we get an equation for )ﬂ
g /,j}\ﬂ I} ‘ U PV . T1(66)
- —_ - ¢ (R /,. -t 73 i ) ) Y —a 3
‘f'”i l ' . ,\/d.. 'J‘ L_ ?5, (,.. h_,__ ‘F(/’, (.x_;)-‘\, LVH\']Q!_/,-?{/J//:-' Q)CJ‘_},’L. ..
Neglecting higher order terms, one integrates this te get

g/‘CuU—QJD$Q~t/“} (67)

where the relaxation time @ is given by

L[ ) )
e;’j‘ﬁé""‘[’ AR E }’ 2 ,D’ Sl Y-co)a L i} (68)



to the approximation considered.

42, The solution for the concentration can be written
\

a_ ., ot e Y S - )
Coeotanlioe, ) (-8 oy #lamc )T, e
.‘ = . J

Fron this one finds for the ssparation factor

A, . ) o 2
k“ = / + ( /- L é"/{’ )/d i-.-l— (,'ZQ_'CC.'- ¢ /é :y!. ~ .. . (70)
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