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AN INTRODUCTION TO THE APPLICATION 
OF FEYNMAN PATH INTEGRALS TO SOUND PROPAGATION 

IN THE OCEAN 

1. INTRODUCTION 

In an increasing number of situations, one is interested in determining the features of  
acoustic propagation in a general, range-dependent, ocean environment. By way of illustration, 
during a recent meeting of the Acoustical Society of America [I] 55% of the talks devoted t o  
underwater propagation dealt with phenomena which cannot be adequately modeled in terms 
of an ocean medium possessing range-independent characteristics. 

Of the techniques which are available for modeling propagation in a general environment, 
the parabolic-equation technique of Tappert and Hardin [21 is perhaps the most promising. I t  
has a wider region of validity than ray-tracing techniques, it takes into account mode coupling 
to all orders, and it can be implemented numerically using relatively simple algorithms. 

The  technique assumes that the solution to the Helmholtz equation for the pressure field 
is not so much different from the solution to a simpler equation called the parabolic equation. 
Because the Helmholtz equation is an elliptic differential equation, one must simultaneously 
solve for the field at all points in order to obtain the field at any particular point. This requires 
considerable computation for a range-dependent medium. On the other hand, the structure of 
the parabolic equation allows one to obtain its solution at a particular range knowing only its 
solution at shorter ranges. The equation can therefore be solved by marching in the sense that 
the field at range r can be obtained by propagating the field at a somewhat shorter range 
r - Ar according to a version of Huygens' principle. The computational realization of this con- 
cept leads to the above-mentioned algorithms, the best known of which is the split-step 
Fourier algorithm [2,31. 

Most of the past interest in the parabolic equation has centered about this computational 
technique. The equation was almost always discussed in the context of some scheme for ob- 
taining a numerical solution. It was realized only recently that the equation is also a useful 
starting point for analytic studies of sound propagation. 

Of the analytic tools available for study of the parabolic equation, Feynman's theory of 
path integrals [4] seems particularly powerful. It is very intuitive. One expresses the full wave 
solution to the parabolic equation in terms of the quantities associated with ray acoustics. The  
split-step Fourier algorithm follows directly in a few lines from the discrete version of the path 
integral. In fact the most efficient way of solving the parabolic equation is by evaluating the 
path integral. The split-step algorithm is just one of several techniques for doing this. The pri- 
mary defect of Tappert and Hardin's technique is that a realistic ocean bottom cannot be 
modeled. This is a fault of the algorithm rather than the basic parabolic approximation. 
Feynman's theory points the way toward the development of an algorithm for computing the 
pressure field above and in a physical ocean bottom. The parabolic approximation itself is most 

Manuscript submitted November 16, 1977. 
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naturally discussed using the path-integral formalism. Finally, Dashen 151 has recently 
developed a unified theory of sound propagation through a random ocean by using path in- 
tegrals. 

The purpose of this report is to dispel some of the mystery which surrounds path in- 
tegrals and their application to sound propagation. We have attempted to present the introduc- 
tory materiil which anyone interested in using path integrals as a research tool would need or 
want to know. In essence the report consists of a collection of examples and applications. 
There does not seem to be any way of becoming comfortable with path integrals without work- 
ing through many examples. Although the report is rather mathematical, containing over 500 
equations, the mathematics which is used is pedestrian. The whole subject is treated at an ele- 
mentary level. For those interested in a more sophisticated discussion of Feynman's theory, 
several excellent review articles are available. Among these we have found the works by Mon- 
troll [61, Gel'fand and Yaglom [71, Brush [81, Tarski 191, Kravtsov [lo], Brittin and Chappell 
[ l l ] ,  Fradkin [12], Berry and Mount [13], Klyatskin [14], Keller and McLaughlin 1151, and 
Koeling and Malfliet [16] particularly useful. The standard reference is the monograph by 
Feynman and Hibbs [171. In addition to a general exposition of the subject this work contains 
a host of useful computational techniques. 

This report is organized into nine sections and two appendixes. Section 2 contains some 
comments concerning functional integrals in general and Feynman path integrals in particular. 
After Feynman path integral representations are derived for the two- and three-dimensional 
parabolic equations in Section 3, several alternative representations are developed in Section 4. 
In Section 5 the analogies are pointed out which exist between sound propagation, quantum 
mechanics, and Brownian motion. In Section 6 path integrals are used to derive several 
methods of approximation. Boundary conditions are discussed in Section 7, and the utility of 
path integrals for developing algorithms is emphasized. The solution to the Helmholtz equation 
is written as a path integral in Section 8, and several applications are considered. Section 9 is a 
discussion of the parabolic approximation. This report does not specifically consider the applica- 
tion of Feynman's theory to the problem of sound propagation through a random medium, be- 
cause the subject has been treated with thoroughness by Dashen [5]. However, so that some 
previous work can be discussed, acoustic fluctuations are briefly considered in Section 9. Ap- 
pendix A contains the derivation of an intergral representation for the n-dimensional Green's 
function in an infinite, homogeneous medium. This representation is used throught the report. 
In Appendix B the stationary-phase approximation of an integral is recalled. 

The various sections of the report are not intended to be read separately. Each section 
uses previously derived results. 

2. FUNCTIONAL INTEGRALS 

2.1 General Comments 

A functional integral is a generalization of an ordinary N-dimensional integral. To obtain 
the value of the N-dimensional integral 

IN = J dzl . . . dzN J ( z l ,  ..., Z N ) ,  (2.1) 
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one evaluates the integrand J  over the range of the N variables z l ,  . . . , zN .  These values of J 
are then added according to the rules of calculus to determine IN. A functional integral 
corresponds to the continuum limit'of IN. The index i of z ,  becomes a continuous variable, say 
I: 

( z l ,  ~ 2 ,  ..., zNJ -+ ( Z  (r l  1, z (r2 ), ..., z  (rN 1) -. z ( r ) ,  r  continuous. (2.2a) 

The integral over the N-tuple ( z l ,  ..., z N )  becomes an integral over the function z ( r ) :  

J dzl dzs+ $ ~ [ z ( r ) ] .  (2 .2b)  

And the integrand J  becomes a functional, that is a function of a function: 

One writes for the functional integral 

Operationally it means J  is evaluated for all permitted functions z  ( r )  and then these contribu- 
tions are added according to the rules of functionalcalculus to give the value of the integral. 

There are three important points concerning functional integrals. The first point is that 
J ( z  ( r )  ) is not simply a function of the parameter r, it cannot be determined by picking a value 
of r, evaluating z  at that point, and then determining J fo r  that value of z. The functional J c a n  
be determined only if the complete function z ( r )  is specified, not its value at any one point. 
An example of a functional which illustrates this point is the area A ( z  ( r )  ) under a curve z  ( r )  
as shown in Fig. 1. Obviously A has a value which cannot be determined unless the complete 
function z  is given. Knowing z  at some particular value of r  is not enough. It should be clear 
from this example that J ( z  ( r )  ) is the same functional as J ( z ( s )  ) and 

J D [ z ( r ) l  J ( z ( r ) )  = D [ z ( s ) I  J ( z ( s ) ) .  

Our notation, though traditional, is somewhat misleading in t is regard. In the mathematics 
literature one often finds the preferable notation J ( z  ( .  ) ) and D  [z (. ) I J ( z  ( .  ) 1. P 

Fig. 1 - The area under a curve as an example of a functional; 
A ( z ( r ) )  = dr z(r) .  
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The  second point is that one must know the class of functions involved to determine the  
value of a functional integral. This corresponds to the fact that the N-dimensional integral can- 
not be evaluated unless the limits of integration are given. The  particular specification of the  
class of functions depends on the  problem, but some specification must always be given. As an  
example, one  might specify that the integration is over all continuous and, of course, single- 
valued functions z  ( r )  defined on the interval a < r  < P such that z  (a) = z l ,  z  (/3) = z2 ,  
and A < z  ( r )  < B. 

The  third point concerns how the various contributions are added to form t h e  integral. 
Integral calculus is just the study of the rules by which this addition is accomplished. Different 
sets of rules correspond to different types of integration, e.g., Riemann-Stieltjes, Lebesque, etc. 
These rules determine how the contributions to the integral are to be weighted; they determine 
the measure. The measure must always be specified. An expression such as Eq. (2.3) is mean- 
ingless unless the measure is explicitly or implicity indicated. Without i t  one would have no  
idea how to go about determining the integral's value. 

2.2 Feynman Path Integrals 

In 1948 Feynman I41 published a formulation of nonrelativistic quantum mechanics con- 
ceptually distinct from the formulations developed during the mid-1920's by Schrodinger and 
Heisenberg. In Feynman's formulation the wave equation and operator calculus are replaced 
by a type of functional integration called path integration. 

Specifically, consider the one dimensional motion of a particle of mass m  moving under 
the influence of a position- and time-dependent force F ( t ,  z ) .  If this force is derivable from a 
potential, 

then the Lagrangian for the system is 

= kinetic energy - potential energy. (2.5 

According to Hamilton's Principle [18] the particle will move from z, at time 1, to zb at time l b  
in such a way that the action 

is an extremum. This requirement leads to the differential equation for the path followed by 
the particle (Newton's law): 

where z ( t ,  = z, and z  ( t b )  = zb. 

If now we consider the particle to be described by quantum-mechanical rather than clas- 
sical dynamics, its motion is characterized by a probability amplitude (t,, z,l tb, z b ) .  The  
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modulus of q gives the probability that the particle will travel from z, at time t ,  to zb at t ime 
tb. Feynman showed that - C e;AI*, 

paths 

where A is given by Eq. (2.6), .fi is Planck's constant divided by 27r, and the sum is over all t h e  
possible paths, not just the classical one(s), connecting ( t , ,  2,) to (fb, zb) .  Equation (2.8) may 
be rewritten as 

The complete quantum-mechanical behavior of the particle is summarized by Eq. (2.9). 
Although no mention need be made of the differential equation satisifed by V or of the com- 
mutation relations satisfied by the observables, Feynman demonstrated that his formulation is 
mathematically equivalent to the traditional formulations. 

Because of its close connection to classical physics, Feynman's theory is perhaps the most 
intuitive approach to quantum mechanics. It has become increasingly important in theoretical 
physics. For example, since 1965 an average of at least one paper every nine days has been 
published in which some aspect of Feynman's theory is considered. Applications have been 
found in quantum field theory [7,9,12,19-221, statistical mechanics 16-8,11,12,17,23-271, the 
development of asymptotic expansions for solutions of differential equations [13,15,28-291, the 
development of variational techniques (17,301, the formulation of semiclassical approximations 
to scattering processes [16,31-331, the determination of bound states [341, the quantization of 
field equations 135-391, the study of disordered systems [40-471, and the somewhat related 
problem of wave propagation through a random medium [5,10,14,48,491. The theory has gen- 
erated interest among mathematicians in the problem of rigorously defining path integrals 
[50-551 and in the relationship between functional integrals and differential equations [7,56-591. 
Moreover work has been devoted to approximation schemes and the numerical evalution of 
path integrals [8,60-691. This incomplete list gives some idea of the impact the theory has had 
on physics and mathematics. 

2.3 The Question of Rigor 

Feynman path integrals have never been given a rigorous mathematical definition. The 
basic problem is that the functional integral of Eq. (2.9) does not have a countably additive 
measure [501. This statement simply means that, with the usual methods of measure theory, 
path integrals are senseless. Although there exist more-or-less satisfactory definitions of path 
integrals [50-551, they apply only to certain forms of the potential V ( t ,  z). 

How should an acoustician view this lack of mathematical rigor? He should probably ig- 
nore it and adopt the point of view that the path integral "if manipulated in a purely formal 
style without any regard for rigorous justification, gives all the right answers" [701. After all, if 
one does find an inconsistency which is solely the result of the use of path integrals, he has 
made a discovery of profound importance. 
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3. THE FEYNMAN PATH-INTEGRAL SOLUTION TO THE PARABOLIC EQUATION 

3.1. Some Preliminaries 

Throughout this survey we assume one is interested in determining the pressure field 
p(x, t) at some point x = (x, y, z) in the ocean and at some time t due to a point source locat- 
ed at x, = (x,, y,, z ,  1. One traditionally assumes p obeys the wave equation 

where V = 8; + a 2  + a:. The function f (t) defines the spectral characteristics of the 
source. (For a monociromatic source, f (t) = o cos (w,t + I#J 1.) The temporal variability of 
the sound speed c(x, t )  is usually gradual enough so that Eq. (3.1) can be replaced by the 
Helmholtz equation 

where 

with 

In addition to satisfying the Helmholtz equation, p, (x, t )  willlsatisfy the appropriate boundary 
conditions at the top and bottom of the ocean and will represent outgoing radiation. With re- 
gard to the solution of Eq. (3.2), both w and t enter as free parameters, i.e., the equation is 
solved as if they were constant. We shall therefore suppress the dependence of p on these vari- 
ables and write p(x) for the complex pressure p,(x, t). 

In the parabolic approximation one assumes 

where R = d ( x  - x,) + (Y - y,) and k, = w/c,, with c, being some reference sound 
speed. The reduced field + satisfies the parabolic equation 

where n(r, z) = c,/c(r, z), with 

The variable r is the horizontal path length in the direction of propagation. (It is commonly 
said that the parabolic approximation is related somehow to cylindrical symmetry. Strictly 
speaking this is not correct. What the parabolic approximation implies is that the acoustic en- 
ergy is restricted to the vertical slice of the ocean containing the source and receiver. Since 
only this slice is important, the three-dimensional problem reduces to a problem involving only 
two coordinate variables: rand z.) 



N R L  REPORT 8148 

The solution to Eq. (3.5) satisfies the same boundary conditions at the top and bottom o f  
the ocean satisfied by p(x)  and an initial condition. This initial condition is usually specified 
by requiring that 4 equal some depth-dependent function at a small horizontal distance from 
the source. That is, 

4 (c, z )  = h(z). (3.7 

The precise form of h and the value of E depend on the constant coefficient in Eq. (3.4), t h e  
acoustic properties of the ocean in the region of the source, and one's inclination. For any 
choice of initial field, however, 4 can be written in terms of a Green's function *: 

where 

and, for any value of r', 

9 (r', zl r', z l)  = 6 (Z - 2'). 

This Green's function propagates the acoustic energy from a source at r', z '  to the point r, z. 
We always take r > r' in Eq. (3.9a). 

If the effects of the variation of the sound speed in cross range are considered important, 
one could use the three-dimensional version of the parabolic equation. Taking the direction of 
propagation to be along the positive x axis, we have 

where ; is a two-dimensional vector, f i  = (y, z),  

r ,  = $  dbo *(r,81..Po)h(Po). 

(+2ik, a,+ v 2 +  k:[n2(r, li) - 11) * ( r ,  lilr', lit) = o 1  (3.1 2a) 

and 

with G2 = a,? + and n (r, 6) = c,/c(x, + r, y, z, t ) .  

3.2 The Huygens-Fresnel Principle 

Of the many methods available for developing the Feynman path-integral solution to the 
parabolic equation, perhaps the easiest to understand is the one based on the Huygens-Fresnel 
Principle [41. We will illustrate this method by considering the solution to Eq. (3.5) in an un- 
bounded medium. 

The Huygens-Fresnel principle gives a technique for constructing the field at r in terms 
of the field at a shorter range r', where r - r '  = Ar is taken to be small. Every element of the 
field at r' is considered the source of secondary wavelets which coherently sum to produce the 
field at r. These wavelets are solutions to the governing wave equation with constant index of 
refraction. That is, the rays associated with the wavelets follow straight paths. Let z, be a 
depth variable at range r and  let z,, be a depth variable at r' as illustrated in Fig. 2. (It might 
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r 
Fig. 2 - The Huygens-Fresnel Principle 

be more customary to simply use z and z' for z, and zrl respectively. We chose this notation 
because it will suggest a functional integration.) According to the Huygens-Fresnel principle * 
[711 the contribution to J, (r, z,) from an element at r', z,, is 

where w(r, z, ; r', zrl) is the field associated with the wavelet. The presence of the 
phenomenological factor q is characteristic of the Huygens-Fresnel theory; it is usually defined 
within the context of the Kirchhoff formulation. i t  will be determined below by a consistency 
condition. 

Now w (r, z, ; r', z,,) satisfies Eqs. (3.9) with n2  (r, z,) taken to be constant. Writing 

i ( r  -rl) ko 
w - exp 

we have 

and 

Eqs. (3.14) are easily solved by Fourier transforming with respect to z,. We obtain 
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Integrating Eq. (3 .13 )  over all the elements gives 

The factor 7~ is determined by the condition that Eq. (3 .16)  reduce to an identity as r -r'. In 
this limit 

-- 7J ( r ,  2 , )  4 - ( r ,  z , ) ,  
implying 

7J = I .  

(Equation (3 .17)  is also obtained from the parabolic-equation analog of the Kirchhoff theory.) 

I t  is convenient to define 
1 U ( r , z )  = - - [ n 2 ( r , z )  - 1 1 .  
2 

If n ( r ,  z )  = 1 - K (r ,  z ) ,  where K is a small perturbation, then U ( r ,  z )  = K ( r ,  Z )  . 

In summary, the field at r is given in terms of the field at r'by 

where A r  - r - r'. 

By carrying out the indicated differentiations, one can show 

If A r  is chosen small enough so that the gradients of n 2  (r,  z,) can be ignored, the right-hand 
side of Eq. (3 .20)  is insignificant and Eq. (3 .19)  is a good approximation to the solution of Eq. 
(3 .5 ) .  In other words, if A r  is picked small enough so that the rays associated with each 
wavelet do not get a chance to significantly bend as a result of the variation of the index of re- 
fraction, Eq. (3 .19)  will give a valid approximation to the field at rand z,. 

By an iterative procedure we will now obtain the field at range r = R and depth z due to 
a source at r = 0 with the spatial distribution at r = E given by Eq. (3 .7 ) .  We partition the 
plane of propagation into N strips of width A r  by lines at r = r l ,  r2 ,  ..., r N - ]  as indicated in 
Fig. 3 .  Just as before, a depth coordinate z,, is associated with the boundary r = r i .  The nota- 
tion is simplified if we set 
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Fig. 3 - A single Feynman path z(r). The summation over all the paths 
amounts to integrating over z r l ,  ZQ, ..., ZrN- I -  

The Huygens-Fresnel principle will now be applied to each strip. At r = ro we have, 
from Eq. (3.7), 

#(rO, Z, = h ( z ,  1. (3.22a) 

At the end of the first strip 

At the end of the second strip 

- z 
x exp ; k 1% ' 1 - 1  I 2  - u(ri, zrI )I), I - 1  
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At the end of Nstrips 

Because of the finite size of Ar, Eq. (3.22d) is only an approximation. The exact solution 
is obtained as Ar - 0. Since N A r  = R - r  is fixed, as Ar -, 0 N + UJ and the N-dimensional 
integral in Eq. (3.22d) becomes infinite dimensional. This infinite-dimensional integral is inter- 
preted as a functional or path integral. The points (ro ,  zrO), ( r l ,  zrl)  ..., ( r N ,  zrN) are con- 
sidered to lie on a continuous curve z ( r )  such that z,, = z ( r , ) ,  giving z ( r )  - z ( ro )  = zo and 
z ( r N )  = z ( R )  = z (Fig. 3) .  The N - 1 intermediate integrations over z,,, ..., zrN-, become an 
integration over z  ( r ) :  

This equation defines the measure associated with the path integral. The expression 
(2,) - zrl -I ) /Ar  = (z,, - zrl - I  )/ (ri - ri ) is the discrete approximation to the derivative of 

N 

z ( r ) ,  and A r x  ( . . . ) is the discrete approximation to an integral over r. Therefore, as 
r -1 

Ar-. 0, 

Collecting expressions gives 

where the integration is over all continuous functions z  ( r )  such that z ( € 1  = z0 and 
z  ( R  = z. Comparing Eq. (3.25) with Eq. (3.8) gives 

* ( R ,  z l r ,  z o )  = $ D [ z ( r ) l  exp 11 ( 3 . 2 0  

for the Green's function. For an arbitrary coordinate dependence 

11 (3.21) 9 ( I ,  z J  r: z l )  = $ D [z ( s )  I exp - U(s1 z ( s )  ) 

where z ( s )  is a continuous curve defined on the interval r' < s  < r  and satisfying the end- 
point conditions z  ( r ' )  = z' and z  ( r )  = z. 
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Equations (3.25), (3.261, and (3.27) are exact; we have "only" assumed the path integral 
exists. 

3.3 The Composition Law 

In this subsection we will outline a second technique for constructing the path integral. 
We will work with the Green's function defined by Eqs. (3.9). It satisfies the composition law : 

(r, z r ,  z )  = J dz, P (r, Z (  S, 5) (I. zsI 1')) (3.28) 
where 

r >, s >, r'. (3.29) 

In the context of the study of Markov processes, Eq. (3.28) is sometimes referred to as the 
Smoluchowski-Kolmogorov relation. 

To show that the composition law is valid, we must show that the right-hand side of Eq. 
(3.28) satisfies Eqs. (3.9). Equation (3.9a) follows easily enough by operating on both sides of 
Eq. (3.28) with 2ikoar + a: + k: In2 (r, z) - 1 1  and noting that this operator can be moved 
inside the integral over z,. To show Eq. (3.9b) holds, one must take the limit r-  r' without 
violating Eq. (3.29). This can be done in two ways: r - s followed by s -. r'or s -. r' followed 
by r - s. In either case Eq. (3.9b) will be satisfied. This two-step limiting process is artificial 
and can be avoided by doing the integral over z, for r - s and s - rf small but finite and then 
taking the limit r - r'. Below we will obtain an expression for P for small horizontal separa- 
tions which permits this procedure to be carried out. The result is again Eq. (3.9b). 

It is rather interesting that the right-hand side of the composition law is independent of s. 
This characteristic is a result of the falloff of P at infinity. To see this, we differentiate the 
right-hand side of Eq. (3.28) with respect to sand use the equation reciprocal to Eq. (3.9a), 

( + 2ikoar. - a; - kz  [ n 2  (r', zf) - 11) P (r, Z I  r', z') = 0, (3.30) 

to obtain 

= 0, 

provided the Green's function falls off at infinity (or provided the Wronskian-like quantity in 
the last pair of brackets is independent of 2,). 

We now iterate the composition law 
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where 

We pick s, ( i  = 1, ..., N - 1 ) so that s. - si = As, giving NAs = r - r'. Consider one of 
the factors in Eq. (3.32). Since P ( s ,  zi 1 s, , zi ) = P (a ,  zi ( s, - As, z, -l ) is a 8-function 
in zi - zi for A s  = 0, it will 'be "almost like a 8-function" for As small. This means that only 
a small region around zi = z, contributes to the integral in Eq. (3.32). Therefore, in calcu- 
lating Y (sir zit S, zi -l ), we need only consider the variation of the index of refraction 
within a small region about the point si, zi. In particular, by appropriate choice of As, this re- 
gion can be  made so small that n (r, z)  will be essentially constant within it and 

2:is] 'I2 {/: [ [ ~ i  i 7  -1 + n 2  (sir 2,) - 1 , 0 3 4 )  Wsi, zi-1 a - exp -As I /  
which solves Eq. (3.9) for a constant index of refraction. Substituting Eq. (3.34) into Eq. (3.32) 
and using Eq. (3.18), we obtain 

for A s  small. Just as in the treatment following Eq. (3.22d), Eq. (3.35) reduces to a functional 
integral as As -. 0: 

(zO, ~ 1 ,  ..., zNJ 2 (s), 

where, from Eq. (3.33), r' ,< s ,< r, z (r') = z', and z (r) = 2, 

giving Eq. (3.27) again: 

3.4 The Three-Dimensional Parabolic Equation 

The derivation of the path-integral solution to Eqs. (3.12) follows step by step the deriva- 
tion for the two-dimensional problem. One obtains 

P (r, PIr', PO = J D[P (s)I  exp 

b 
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The integration is over a two-dimensional vector function p  ̂ (s) such that p̂  (r') = 6'  and 
p  ̂ (r) = 6. The measure is defined by the rule 

4. ALTERNATIVE REPRESENTATIONS 

In the previous section we derived a path-integral solution of the form 

$ D[Z(S) ~ e ' ~ " " ,  (4.1) 

where A is a functional of the path r (s) and its derivative. This representation is usually called 
the coordinate representation. For many problems it is not particularly convenient. In this sec- 
tion we develop two alternative representations. 

4.1. The Wavenumber Representation 

In the wavenumber or momentum representation the number of degrees of freedom is 
doubled by introducing an additional integration over a function k(s). Physically k(s )  
represents the vertical wavenumber associated with the path z (s). 

We first rewrite Eq. (3.34) in the form 

dk; { 1 [ z j i : i - l ]  
w s i ,  Z , I S ~ - ~ ,  z i - ~  ) - k o J -  -a (.2lT) exp ikoAs k, 

(We have defined k, to be dimensionless.) Substituting Eq. (4.2) into Eq. (3.32) yields 
N 

* (r, rlr', 2') = 121 $ drl . . . $ dkl . . . dkN exp 

In the continuum limit 
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and 

giving 

The path k ( s )  is unconstrained, and, as before, z (r') - z' and z ( r )  = z. From a comparison 
of Eqs. (4.4d) and ( 3 . 3 6 ~ )  we notice a different measure is being used for the functional in- 
tegral in the wavenumber representation. 

i n  three dimensions the wavenumber representation is 

where 
2 N  [&I $ p 1  . d;N-l  $i1., . . .  ~ L ~ - $ D @ ( ~ ) I D [ L ( ~ ) I .  (4.7) 

4.2 The Velocity Representation 

Many times it is.desirable to transform a path integral by employing a change of variable: 

z ( s )  4 z ' ( s )  = some function of z ( s ) .  

We shall introduce this technique by transforming Eq. (3.27) into a representation in which 
the integration is over the "velocity" 

We first observe that Eq. (3.35) can be written in the form 
N12 

$ dzl . . . dzN 6 ( z  - z N )  exp ikoAs i 

We now introduce a change of variable 
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or ,  since zg = z', 

z 1  = z' + Asv, .  

z2 = z' + A s ( v 1  + v2 ), 

. . .  
Z N  ' 2 '  + A s ( v ,  + V 2  + . . .  + v N ) ,  

T h e  Jacobian of the transformation is simply 

dz ,  . . . dzN - ( A s )  Ndv, . . . dvN.  

Substituting this into Eq. (4.8) gives 

Y (r, zl r', z ' )  = 

x 1-1 $[tvf - ~ [ S ~ , Z ~ + A S ~ V ,  j -I ' III . (4.12) 

In  the  continuum limit 

Unlike the  previous examples, the  integration is over a function v ( s )  which is not constrained 
by end-point conditions. The  measure is determined by the correspondence 

where 

For the  three-dimensional problem 

T h e  velocity representation occurs frequently in the  Russian literature. 

4.3. Normalization Conventions 

We have defined the measure by indicating that the functional integral is the  limit of a 
multidimensional integral as the  dimensionality approaches infinity and then specifying the  
normalization of this multidimensional integral. That is, Eq. (3.36b) indicates how Eq. (3.27) is 
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to be evaluated. This procedure is usually not followed in research articles. Instead the normali- 
zation is implicity specified by stating, for example, that the integral in Eq. (3.27) is defined 
such that 

We want to show in this subsection that this procedure is entirely equivalent to the one we 
have been using. First, Eq. (4.17) is certainly valid if we assume the conventions given by Eq. 
(3 .36) .  By comparing Eqs. (4.17)  and (3.27) it is clear the left-hand side of Eq. (4.17) is the 
solution to Eqs. (3.9) with n - 1.  This solution can be trivially obtained directly from Eqs. 
(3.9)  and is equal to the right-hand side of Eq. (4.17) .  

We now want to show that Eq. (4.17)  does indeed give the normalization indicated in Eq. 
(3 .36b)  by explicity evaluating the path integral in Eq. (4 .17) .  The left-hand side of Eq. (4 .17)  
is first written as 

ik, N 

where, as before, zo - z', z N  = z ,  and As = ( r  - r l ) / N  We want to show 

Following the steps which led to Eq. (4.12) ,  

N N 

= ( A S ) N J  dv1 . . , dvN 8 z - Z '  - AS i -1 v i ]  exp 1% x v,?I 
2As  ,,, 

N ik, - - ( A s ) ~ J  dk  e i X ( z - z l )  

( 2 ~  ) i -1 

In writing Eq. (4.20) we have used the important formula 

7= , - ip2/4a 

-00 

Comparison of Eqs. (4 .20) ,  (4.1 8), and (4 .17)  gives (4.191, the desired result. 
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We have followed a standard scheme in evaluating the path integral: a change of variable 
is  introduced to diagonalize the exponent, and the integrations are then carried out using the  
formulas for Gaussian integrals. 

5. SOME ANALOGIES 

5.1 Quantum Mechanics 

The quantum-mechanical behavior of a particle of mass m moving along the z axis in a 
potential V(t,z) is determined by a wave function $ (t,z) which satisfies Schrodinger's equation 

where +i is Planck's constant divided by 27r. If the wave function is known at some initial time 
to, it will be given at a later time by 

$0.  9 )  = dzo K(t ,  zJ to ,  2,) $( to .  zO). (5.2) 

where the Green's function kernel (Feynman propagator) K obeys the Schrodinger's equation 
and the initial condition 

K(to,  zJ tO,  20) = S(z - zO).  (5.3) 

If one compares Eqs. (5.1), (5.2), and (5.3) with Eqs. (3.5), (3.81, and (3.91, one sees there exists 
an analogy between the nonrelativistic quantum-mechanical dynamics of a point particle and 
acoustic propagation in the ocean. The correspondence can be made precise by introducing 
some reference speed c, which may be though of as the average speed of the particle. Its 
value is unimportant, since it will cancel in any quantum-mechanical expression. It is intro- 
duced simply to  make the dimensions work out. In Table 1 we have constructed a dictionary 
for passing from quantum mechanics to underwater sound propagation. The meaning of 
several items in the table will become clear when we consider the ray-acoustics approximation 
t o  the parabolic equation. 

It may be a mistake to attach great importance to this analogy. One cannot solve the 
problems of sound propagation in the ocean by simply borrowing quantum-mechanical results. 
Much work has been devoted to quantum mechanics, however, and techniques and specific cal- 
culations which are now being discussed by acousticians first appeared in a quantum- 
mechanical context and have been available for years. 

5.2 Brownian Motion 

If a particle constrained to move along the z axis undergoes Brownian motion, the posi- 
tion of the particle as a function of time is described by a probability density $ (t ,z) which 
satisfies the diffusion equation 

The  diffusion coefficient D expresses the physical characteristics of the particle and medium via 
Einstein's relation. 
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Table 1: A Quantum Mechanics-Acoustic Propagation Dictionary 

For example, if the particle was at z  = z0 at time t  = to ,  then the probability that the 
particle will be in the interval z  to z  + Az at time t  is 

Quantum Mechanics 

1. Wave function * (1, z )  

2. Propagator 
K ( t ,  zl to ,  zo 1 

3. Scaled time 

Cot 

4. DeBroglie wave number 
mcolf f  

5. Scaled potential energy 

V ( t ,  z ) lmc:  

6. Scaled action 

~ ~ d t [ $ m [ % ] ~  f f  - 1 
7. Classical particle trajectory 

z  ( t )  

8. Scaled speed of the classical particle 
1 dz -- 
co dt 

According to the rules for conditional probabilities, the probability that the particle will be in 
the intervals z l  to z l  + A z l ,  z2 to z2 + Az2 ,  . . . , Z N  to Z N  + AzN at times t l ,  t 2 ,  ..., tN  
respectively, where to < t l  < t2 < ... < t N ,  given that it was at z0 at time to ,  is 

i 

Acoustic Propagation 

Reduced field 
4 (r, z )  

Green's function * (r ,  zl rot zo ) 

Range 
r  

Characteristic acoustic wave number 

k o  
Variable part of the index of refraction 

U ( r , z )  = - - [ n 2  (r, t )  - 1 I 
2 

Eikonal 

Ray path 
z  ( r )  

Slope of the ray path 
dz - 
dr 

Eikonal equation 
d2z  - +a,u = o  
dr 

Consider now the probability P [ z  ( s )  1 that the particle followed a continuous path z ( s )  from 
z  ( to)  = z0 to z  ( t )  = z. This probability is obviously the continuum version of Eq. (5.6) with 
z  ( t i )  = z ; ,  i = 0, ..., N - 1 and z  ( t N )  = z: 
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The  probability that the particle followed some path is equal to the integral of Eq. (5.7) over all 
paths and must be given by Eq. (5.5): 

z +Az 

dzl P [ z ( s ) l  = P(t ,  z)Az, 
z paths 

where the sum is over all paths such that z (0 )  = z, and z ( t )  = z'. Equation (5.8) implies 

where the integration is over all paths z (s) such that z (to ) = z0 and z( t )  = z. 

Consider now the calculation of the average value of a functional F ( z ( s ) )  of the  path 
followed by the particle. This average is given by the functional integral 

If we take 

we have 

where N is a normalization constant 

The functional integrals Eqs. (5.91, (5.101, and (5.12) are called Wiener integrals (721. All 
the statistical aspects of Brownian motion can be expressed in terms of these integrals. 

From the form of Eq. (5.12) we see the analogy between Wiener integrals and Feynman 
path integrals. A Feynman integral can be (formally) converted into a Wiener integral by ana- 
lytic continuation in the mass, in the time, or in R. Moreover, since they can be rigorously 
defined, Wiener integrals have often been the starting point of studies attempting to rigorously 
define Feynman path integrals. 
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The brevity of the preceding discussion really does not do justice to the application of 
Wiener integrals to the theory of Brownian motion. References 7, 8, and 17 contain richer, 
more satisfying discussions. 

6. METHODS OF APPROXIMATION 

In virtually every realistic situation the parabolic equation cannot be solved analytically 
and one must, therefore, resort to some method of approximation. The methods which are 
used in acoustics generally fall within two categories: asymptotic methods, such as ray acoustics, 
and perturbation methods, such as the Born approximation or the Rytov approximation. In this 
section we will use path integrals to develop two methods belonging to each category. 

6.1 Straight-Line Geometric Optics 

If acoustic energy is propagated from (0, z, to ( R ,  z), Eq. (3.27) becomes 

where z (0 ) = z ,  and z (R ) = z. The integral is normalized so that 

1 /2 

$ D [z ( r l i  exp 1" 2 dr '1 - ["-I 2niR exp 

In straight-line geometric optics the assumption is made that a ray picture is valid and refrac- 
tion is unimportant. In such a situation the acoustic phase depends only on the ray path which 
follows a straight line from source to receiver. The equation for this path is 

This suggests introducing a change of path variable 

and integrate over z'(r) rather than z (r). Since z (0) = zg.o, (0) = Z ,  and z ( R )  = 
z,, ( R )  = Z, the function z'satisfies the endpoint conditions 

Moreover, the Jacobian of the transformation is unity. To see this, we return to the discrete 
version of the path integral. Equation (6.3) becomes 

where i = 0, ..., N. Therefore 

$ dz,  . . . d l  = $ dz; . . . ~ Z A - ~ ,  (6.6) 

since Eq. (6.5) corresponds to simply adding constants to the variables z , .  Equations (6.1) be- 
come 
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and 

2 2 
1 dz' I $ ~ l z ' ( r 1  I exp 1 &(+I 2 dr 

So far we have made no approximations. We now assume that in the path integration of Eq. 
(6.7a) the dependence of Uon z'can be ignored. That part of the integrand depending on L/ 
can then be moved outside the integral 'sign, and the integral over z' is just the normalization 
condition Eq. (6.7b). We obtain 

q (R, ~ ( 0 ,  z,) = qo (R, z(0, z, exp z - z , (6.8) I 
where q,  is the solution to the parabolic equation with n(r, z) = 1 (i.e. with U = 0): 

The straight-line geometric-optics approximation is important for the study of electromag- 
netic propagation through the atmosphere but it is of little value for underwater sound propa- 
gation (at moderate to long ranges), because the sound channel always introduces significant 
refraction. However this example does illustrate an important methodological point. Many 
times it is not necessary to actually evaluate a path integral in order to obtain a desired result. 
In this example the normalization condition determined the only path integral needed. 

6.2 Ray Acoustics 

The path integral can be viewed as a coherent sum of elementary ray solutions 
exp [ik,A (z(r)l corresponding to various paths z(r). These ray paths do not satisfy any type 
of eikonal or ray equation however. They are completely arbitrary with the exception they 
must start at the source and end at the receiver. Consider what happens when k, becomes 
large. Most of the paths will contribute little to the sum, because exp [ik,A(z(r)l will oscillate 
rapidly and be canceled by the equally rapidly oscillating contributions from other nearby paths. 
The only exceptions will be for those paths z(r) which, when perturbed (z'- z * +  z'), do not 
produce any significant change in k,A. The difference between A (z '(r) + zl(r)) and A (z0(r)) 
will never be zero for all paths z', but it will be sufficiently small if it vanishes to first order in z' 
and if terms higher than second order are small. The situation is entirely analogous to that 



NRL REPORT 8148 

encountered when one evaluates an integral by the method of stationary phase. T h e  only 
difference is that one deals with an infinite-dimensional integral rather than a finite- 
dimensional integral. 

Turning now to specifics, we introduce in Eqs. (6.1) the change of variable 

z(r)  = z*(r) + zl(r)  (6.1Oa) 

with 

z'(0) = z l (R)  = 0 (6.10b) 

and  expand the exponent through second order in z': 

R ,  0 z 1 = exp I ikoA (z*(r) I $ D [zl(r) I exp iko I 

where 

First-order cancellation requires 

or, integrating by parts and using Eq. (6.10b1, 

T h e  only way Eq. (6.13) can be satisfied for all z ' i s  for z*to satisfy the equation 

Equation (6.14), together with the endpoint conditons z*(0) = z, and z*(R) = z determine 
the ray path z*. Equation (6.14) corresponds to Newton's second law F = ma. We now rewrite 
Eq. (6.1 1): 

where 

with 
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Again, the path integral is normalized so that 

Before proceeding with the evaluation of T, let us indicate how the straight-line 
geometric-optics approximation is recovered. We take U(r, z) to be such a slowly varying func- 
tion of z that a,U(r, z', in Eq. (6.14) and M(r) in Eq. (6.15b) can be ignored. The solution 
to Eq. (6.14) is then z,,(r) of Eq. (6.2) and we immediately obtain Eq. (6.8). 

The integral Tcan be written in the discrete form 

T  = lim T N ,  
N - m  

ArN -R 
where (dropping the prime on the path) 

with Mi = M(iAr) 5 a; U(iAr, z*(iAr) ). Collecting terms in the exponent gives 

The matrix (Aii) has components 

Aiei  = 2 - ( ~ r ) ~  Mi, 

Ai+lni = AiEi+l = - 1, 

and 
= O ,  l i  - j l  2 2 .  

We now introduce the subdeterminants 

Do - 1  
and 

Dk =det ( A " ) ,  i , j = l ,  ..., k .  

That is 

Dl = A 1 , ,  

DN-i  = det A. 
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These determinants are called Gramians and are central to the Gram-Schmidt orthogonalization 
technique for constructing a set of linearly independent basis vectors. From Eq. (6.21) we have 

2 
D k  = A k k D k  -1 - A k,k -1 D k  -2 

for k = 2, ..., N - 1. 
For the present we will assume (A, , )  is a positive define matrix. It follows [73] there 

exists an orthogonal transformation of the variables z ,  such that 

Since the transformation is orthogonal, 

$ dzl  . . . dzN-1 = $ dw, . . . dwN-1 .  (6.25) 

Substituting Eqs. (6.24) and1 (6.25) into Eq. (6.20) gives 

This ( N  - 1 ) dimensional integral is the product of N - 1 one-dimensional integrals, each of 
which may be evaluated using Eq. (4.21). We find 

We now define 

so that 

From Eqs. (6.21) and (6.23) we have the recursion relation 

for k = 1, ..., N - 1. Moreover 

Qo = 0 

and 
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and Eqs. (6.30) become, respectively, 

and 

We therefore obtain the result 

for z(0) = z(R) = 0, where Q(r) satisfies Eqs. (6.31). Equation (6.32) is valid provided 
Q(R) f 0, i.e., provided ( A i i )  is a positive definite matrix. This example illustrates the close 
connection between Feynman path integrals and boundary-value problems of the Sturm- 
Liouville type [571. 

We must now solve Eqs. (6.31) for M(r) = a: U(r, z*(r)). The ray equation, Eq. (6.14), 
may be replaced by the equations 

and 

where 

Physically p(r) = tan 8 (r), -- 8 (r) where 8 (r) is the local angle the ray path z*(r) makes 
with respect to the horizontal. Consider the quantity dz*(r)/dp(O). Differentiating Eq. (6.33a) 
gives 

But from Eq. (6.33b) we have 

Substituting Eq. (6.34b) into (6.34a) gives the integral equation 
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If we differentiate Eq. (6.34~) with respect to r, we obtain 

and 

From Eqs. (6.34~) and (6.34d) we have 

and 

Comparing Eqs. (6.34e1, (6.34f), and (6.34g) with Eqs. (6.31), we see 
dz* (r) 

Q(r) = - 
dp(0) ' 

Combining Eqs. (6.151, (6.321, and (6.351, we finally find 

where p(0) is defined by Eq. (6.33c), A by Eq. (6.12), and the ray path z'by Eq. (6.14). 

If the matrix (Aii) of Eqs. (6.20) and (6.21) is not positive definite, det A = Q(R) - 
dzldp(0) = 0. The endpoint r * ( R )  = z of the ray path is insensitive to the initial grazing an- 
gle, which means the ray path is degenerate, and a caustic is present. This leads to an infinite 
amplitude, and the ray acoustics approximation breaks down. 

We can go further. Returning to Eqs. (6.27) and (6.281, we have 

1 dZb(rN-] )ldp(O) 
= ( -  1 ) '  lim 

N-- dzb(rl )ldp(O) I I dZ'(rN)/dp (0) 1 (6.38) 

where I is the number of the factors 
dz *(ri ) I ~ P  (0 1 

dz * (ri )/dp (0 

which are negative. If this ratio is negative, dzb(ri )ldp(O) and dzb(ri)ldp(0) are opposite in 
sign, implying that somewhere in the range ri-] to ri, dzb/dp(0) = 0, (a caustic was encoun- 
tered). Therefore, as N - .  w, 
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where I is the number of caustics encountered as one propagates from 0 to R. Consider now 
Eq. (6.12) for A (z*(r) ): 

2 - Z, -1 
A (z*(r)) = lim Ar [$Iz' Ar  ] - u(rjlz')]. 

A , - I  

Remembering that z i  = z,, we have 

so  that 

1 = dpo-- a 'A (z*(r) ) 
~ Z I ~ P  (0 ) dz azaz, a 

a 2~ (z*) It azaz, 1 
Combining Eqs. (6.36), (6.39), and (6.41) gives 

VI (R, 210, z,) = 1 'I2 exp [ikoA (z*) - 
2 

(6.42) 

where again exp (-inl/2) represents the cumulative effect of phase jump of n12 on passing 
through each caustic. 

We have assumed until now that a single solution z* exists to the ray equation. If several 
distinct rays contribute, VI is given by a sum of terms of the form of (6.42): 

(The integer 5 depends on the particular ray path.) For two solutions z' and z; to the 
ray equation to be considered distinct rays, the phase difference k,( A (z,') - A (z;)l must be 
greater than some fraction of a cycle, say n/2: 

( A (z,') - A (z,') ( > (acoustic wavelength)/4. (6.44) 

We have spent considerable spsce on ray acoustics because it is probably the most impor- 
tant approximation and it gave us the opportunity to evaluate an important path integral (Eq. 
(6.32)). 

6.3 Standard Perturbation Theory 

We start our development of perturbation methods by expanding that part of the ex- 
ponential in Eq. (6.la) which depends on II: 

( - i k , ) "  R ' r  n! 
d dr, . . . d r  U , z r 1) . . . U(r,,, z (rn) 1. (6.45) 

n - 0  
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By introducing the Fourier transform 

the right-hand side of Eq. (6.45) becomes 

R 

x exp ik, dr z (r)M(r). 

where M(r)  is a sum of 6 functions: 

Substituting this expansion into Eq. (6.la) gives 

(M(r) depends on r,, ..., r,, k l ,  ..., k,.) Although we will later evaluate this path integral 
directly, it is convenient at this stage to observe Eq. (6.49) has the structure 

where f is symmetric under permutations of the ri's. Since there are n! of these permutations, 
Eq. (6.50a) may be written as 

The result of rewriting the expression for 9 in the form of Eq. (6.50b) is that the variables 
rl, ..., r, which appear in M(r)  become ordered 

With this ordering the path integral in Eq. (6.49) can be expressed in a particularly convenient 
form. Writing TM (R, zl0, z,) for this path integral, we first note it is the solution to the para- 
bolic equation with U(r, z) = - zM(r) and hence obeys the composition law. Suppose we 
iterate the composition law and pick as intermediate range points the variables r l ,  ..., r,: 

(Remember the composition law by itself is exact.) We now write a path-integral solution for 
the factors in Eq. (6.52): 
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where z (0 ) = zs, and z (rl ) = zl ; 

with z (r, ) = z, -1, and z (r,) = z,; and 

with z (r, ) = z,, and z (R) = z. These expressions differ only in the endpoint conditions 
satisfied by the paths. We now focus on the integration over M which appears in Eqs. (6.53). 
For Eq. (6.53a) we have 

since the ri's are ordered and 
r. 

1 

1 d r r  - r -- 
2 ' 

Therefore 

r1 

T ~ ( ~ ~ , z ~ ( O , Z ~ )  = e  lkl z(rl )I2 D [z (r) ] exp 12 dr [%] 2l 
= e ikl zl /2 [2:;rl 1 exp Iikirl - 1'1 r: 's 1 2] 

ik z 
- e  ' 1 " q o ( r l , z 1 ( 0 , 5 ) .  (6.55a) 

Again Y o  is the Green's function with U = 0. Further, 
i (k,z, + k, -1 z, -1 112 T M ( m , z n ( r n - l * ~ n - l )  = e  q0 , ,  z , ,  1 ,  -1 ) (6.55b) 

and - 
ik z 

TM (R, zl r,,, z, = e " "2Yo (R ,  zl r,, z, 1, (6.55~) 

giving 

TM (R, ~ l 0 . z ~ )  = 5 dzl . . . dz, exp i kizi qo (R, zl r,,, z,) I:, ] 
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Combining Eqs. (6.491, (6.521, and (6.56) and using Eq. (6.511, we have 
m R ' n  '2 

P R z 0 1 = ( - k 1 $ d $ r,, -1 . . . $ drl $ dzl . . . $ dz,, 
n - 0  0 0 0 

where we have used Eq. (6.46) to do the integrals over the k,'s. This expression is the standard 
Neumann series which expresses P as a power series in (I. If P is approximated by keeping 
only the first n + 1 terms, one is using nth-order perturbation theory. To zeroth order 

If two terms are kept, one is making the Born approximation 

The second term in Eq. (6.59) is called the Born term. 

In the preceeding we have expressed P as a power series in (I. It is also possible to do 
perturbation theory around a part of (I. Suppose 

where U' is in some sense small and the parabolic equation could be solved if it were absent. 
We might then expand that part of the exponential in Eq. (6.la) which depends on U' and 
proceed as before. We would obtain 

R 

P R z 0 z 1 = P Uo (R, 11 0, z, 1 - ik, $ drl $ dzl 
0 

where P U o  satisfies the equations 

- i k  ,, , z r ,  z = a: - 2kz U, (r, z)] quo (r, zl r', z') I (6.62a) 
and 

Puo (r,z1r,z1) = 8 ( z  -z l ) .  (6.62b) 

If Eqs. (6.62) cannot be solved exactly, Eq. (6.61) still might be useful if PUo is approximated 
using some other technique, say ray acoustics. 

Before going on to the Rytov approximation, we mention one minor point which may 
have given trouble to some readers. In writing Eq. (6.49), we moved the integrals over the ri's 
outside the integral over the path z(r). By use of the discrete representation for the path in- 
tegral, it is obvious this interchange is permitted. 

6.4 The Rytov Approximation 

In the previous subsection we developed an expansion for P in powers of (I. In certain 
situations it is preferable to use a perturbation scheme based on an expansion of log,* in 



, 
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powers of U. This scheme is called by Fradkin 1121 "modified perturbation theory." If in this 
expansion one keeps only the first nontrivial term, one has made the Rytov approximation 
[74-763. The Rytov approximation essentially amounts to exponentiating the born term. In 
this subsection we show how it may be obtained using the path-integral formalism. 

We wish to evaluate the path integral in Eq. (6.491, which we have called TM, without 
ordering the r, variables. We now have three techniques for doing this. We can use t h e  veloci- 
ty representation and perform a translation in v (r), we can use the discrete representation and 
carry out an analysis smilar to that which led to the evaluation of the path integral in Eq. 
(6.15b1, or  we can use ray acoustics directly. Ray acoustics amounted to expanding t h e  action 
(eikonal) A (z (r) ) through second order about the ray trajectory z*. If A is only quadratic in 
z (r), which will be the case if U(r, z)  is only quadratic in z, independent of its dependence or 
r, then ray acoustics gives the exact solution. The integral TM is the solution for * with 
U(r, z) - -zM(r). Therefore ray acoustics directly gives the value for TM 

Although it is instructive to evaluate TM using all three techniques, we shall only record 
its evaluation using the velocity representation. We have 

1 r 

0 
I )  (6.61) dr - v 2  + M(r)z, + ~ ( r )  $ ds v (s) . x exp iko 1 [ t  

We next let 

giving 

TM = exp 

where 

W e  now use the relation 

where 

Equation (6.66) follows from the constraint 
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Substituting Eq. (6.66) into T; and dropping the prime on v l ( r )  gives 

T; = $ D[v ( r )  I S $ drv ( r )  exp ik, dr - v 2  ( r )  - ~ ( r ) v  ( r )  I: I ( I I: 
Equation (6.68) is easily evaluated using the transformation 

v ( r )  = w ( r )  + ~ ( r ) .  
We find 

2 R 1 "' exp [ ~ [ i  1 dr f i ( r ) ]  - + 6 dr M~ ( r )  . TM = - I] (6.70) 

Collecting expressions yields 

where M is defined by Eq. (6.67). We have thus evaluated another important path integral. 

With M ( r )  defined by Eq. (6.48) we find 

rr (z - z , )  =- L k r [ z ,  + (z - z s )  , 
R I (6.72a) 

ko 1 - 1  

1 
R R 

I 
1 " - ;], (6.72b) - $ d r ~ ( r )  = $ d r ~ ( r )  

R 0 0 

and 

1 max (r,, rj ) = - k i k , [ l  - 
kz i j - I  

R 

so that 
R 2 R 
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Substituting into TM (Eq. 6.71) gives 

kikj [rjrj - R min (r;, ? ) I  (6.73) 

One can check the validity of Eq. (6.73) by noting that if the r,'s are ordered, so that min 
( r i p  9 )  = 9 (i > j ) ,  Eq. (6.73) must agree with Eq. (6.56). This check is a straightforward ex- 

ercise which is easily carried out by Fourier transforming with respect to the depth variables all 
the Y's which appear in Eq. (6.56). The integrals over the zi's then yield 6 functions which 
permit all but one of the integrations over the Fourier transform variables to be carried out. 
The  last integration is evaluated using Eq. (4.21). The final result agrees with Eq. (6.73). 

The Rytov approximation follows from ignoring in TIM the cross terms involving 
kikj ( i  # j). Dropping these terms and substituting Eq. (6.73) back into (6.49), we obtain 

The 2n-dimensional integrals factor into n identical two-dimensional integrals, which permits 
the infinite series to be summed giving the simple expression 

V (R, z10, z,) - Vo (R ,  zlo, z,) exp X, (6.75a) 

where 

Before proceeding, we note that if we drop the k 2  term in Eq. (6.75b1, we recover 
straight-line geometric optics: 



NRL REPORT 8148 

Equation (6.75b) for X may be simplified by using 
-12, k 

U ( r , k )  = $ d z , e  U ( r , z l )  

and performing the integration over k with the help of Eq. (4.21): 
112 

X = - ik, 
0 

ik, 
[ R ( z , - z , )  + rl ( z  - z , ) l  

Since 

[R (z ,  - z ,  ) + rl ( z  - z , ) ]  = R ( R  - r l )  ( z l  - z , )  2 

+ r, R ( z  - z l  ) - rl ( R  - rl ) ( Z  - z , )  2, (6.79) 

we have 

- ik, R 

X = $ d r l  $ dz, V',(R,z~r1,z~)O(r1.z~)~,(r1.~~~~.~,)~ (6.80) 
Y o  ( R ,  z ( 0 ,  z , )  o 

giving the Rytov approximation for the field V': 

- ik, 
V ' ( R . Z ( O , Z , )  = V ' , ( R * Z I O ~ ~ , ) ~ ~ P  ~ o ( R , z ~ ~ , z , )  I- 1 

x Y o ( R , z l r l , z , )  U ( r l , z ~ ) ~ o ( r l ,  z l 1 0 9 z , )  . 1 (6.81) 

Comparing Eq. (6.81) with the Born approximation, Eq. (6.59), we see that in the Rytov ap- 
proximation the field has the form 

Born term 
V' = V', exP [ *, I. 

The Rytov approximation may be generalized by breaking U up according to Eq. (6.60) 
and treating U'as a perturbation. The final result is 

modified Born term 
V' = Y uo exp I 

where quo is given by Eqs. (6.62) and the modified Born term is the second term on the 
right-hand side of Eq. (6.61). 

Equation (6.83) is an important result. If U, is the contribution due to the mean sound 
speed and U' represents the effect of random ocean variability on the sound speed, then Eq. 
(6.83) gives an adequate description of the propagation process over most of the region in 
range and frequency where one is interested in doing passive listening. Moreover Eq. (6.83) is 
amenable to the direct calculation of various coherence functions. However, one would prob- 
ably want to include cross-range dependence by using the three-dimensional parabolic equa- 
tion, and the numerical integrations which would be necessary are not trivial. 

The work in this section points out what seems to be a general characteristic of Feynman 
path integrals. High-frequency approximations, where some type of ray picture emerges, are 
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natural to derive using path integrals. It is rather awkward, on the other hand, to use the for- 
malism to develop perturbation schemes. 

7. BOUNDARY CONDITIONS 

So far we have assumed that the medium is infinite. Now we come to the crucial problem 
of incorporating into the analysis realistic boundary conditions. Although our general under- 
standing of this problem is rather unsatisfactory at present, the path-integral formalism does 
give some indication of the direction future research might take. 

The goal here is to use the formalism to develop algorithms for numerically solving the 
parabolic equation. With the inclusion of boundaries, many of the previously derived expres- 
sions do not apply, and it is almost hopeless to obtain even an approximate solution without 
detailed computer calculations. W e  are always assuming the medium possesses acoustic charac- 
teristics which are range dependent. If these characteristics are not present or can be ignored, 
then there is no  compelling reason for introducing the parabolic equation in the first place. 

The boundaries to be considered are the surface of the ocean and its bottom. T h e  surface 
of the  ocean does not create any particular problems, because it is almost always assumed in 
long-range-propagation modeling to be a free, plane surface which does not vary with time. 
When the ocean bottom is considered, a distinction must be made between propagation 
through water with a depth excess and bottom-limited or shallow-water propagation. In the 
case of a depth excess, the  exact boundary conditions imposed on the pressure at the  bottom 
interface are not so important over long propagation distances because acoustic energy which 
interacts with the bottom is scattered or absorbed and can for the most part be  ignored. (This 
statement requires some modification if the receiving hydrophone or array is bottom mounted.) 
The  bottom can therefore be modeled phenomenologically as being perfectly absorbing, and 
discontinuities in density and sound speed can be ignored. For such a situation it is relatively 
easy to solve the parabolic equation using the split-step Fourier algorithm. The  only range- 
dependent quantity of interest is the sound speed. 

For either shallow-water propagation or propagation .through bottom-limited water, the si- 
tuation is far more complicated. The  bottom has a pronounced effect on the received signal and 
cannot be modeled as casually as in the case of a depth excess. One must deal realistically with 
the  acoustic parameters of the bottom material, including absorption and discontinuities in 
density and sound speed. Moreover, variations in range of the water depth and of the bottom 
material become important, as well as the range variations of the speed of sound in the  water. 
There does not seem to be an algorithm for solving the parabolic equation in this situation. All 
we can do  in this review is indicate how path-integral techniques may be used to develop one. 

7.1. Water with a Depth Excess: The Split-Step Fourier Algorithm 

If the  acoustic energy is constrained to a channel of depth L, then the composition law 
takes the form 
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It is easy to argue physically for the limits of integration in Eq. (7.1).  The composition law is 
simply the mathematical statement that the propagation process can be viewed as occurring in 
two steps. Sound propagates first from the source at (r ' ,  z ' )  to an intermediate point (s, 2,). 
The function P (s, z,1 r', z ' )  is the source strength of a secondary sound field which originates 
at the intermediate point and propagates on to the receiver at (r ,  z ) .  The field at (r ,  z )  is the 
coherent sum of the contributions from all possible intermediate points at the particular range 
coordinate s. Consequently, to determine the limits of the integration in the composition law, 
one need only determine those points which could serve as the coordinates of an acoustic 
source (those depth positions where one could conceivably place a source). For the channel 
being considered, a source could be placed anywhere in the range 0 < z, < L. 

If we take the intermediate point close to the receiver, we have, with an obvious change 
of notation, 

Any marching algorithm which determines the field at r + Ar from the field at r will necessari- 
ly involve finding some expression for P ( r  + Ar, z )  r, z ' )  and then evaluating the integral over 
z' in Eq. (7.2).  

We previously concluded that for Ar sufficiently small P ( r  + Ar, z(  r, z ' )  is approximately 
equal to the solution to the parabolic equation with constant index of refraction. That is, 

iA  rk, 
P ( r  + Ar, z ( r , z1 )  = P o ( r  + Ar, z lr ,  z ' )  exp [ n 2 ( r ,  Z )  - 11 

where P o  is the solution to the parabolic equation with n ( r ,  z )  = 1 :  

and 
- 2 i k o a , P o  ( r ,  z )  r', z ' )  = ( r ,  z ( r ' ,  z ' )  

Both fields, P and P o ,  satisfy the same boundary conditions at z = 0 and z = L. These 
conditions are in turn the same as those satisfied by the acoustic pressure. To derive the split- 
step Fourier algorithm, one assumes that L is the depth of the water column plus an artificially 
introduced bottom layer having a depth 114 to 113 the depth of the water and that the field 
vanishes at z = 0 and at z = L: 

and 

Equations (7.4) and (7.5) are easy to solve. One expands the field Po  in terms of a complete 
set of eigenfunctions which satisfy Eqs. (7.5): 

Substituting Eq. (7.6) into Eq. (7.4a) and using the orthonormality property 

I+-] 1 dz sin [+I sin - skt, 
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we get 

Since we have the completeness property 

m [$I sin [+I sin = (2 - zl),  
k - I  

Eq. (7.4b) will be satisfied if 

' I 2  mzlk 
ak (r l ,  rl, zl) =[+I sin I T ] ,  

independent of r'. Combining Eqs. (7.3), (7.6), (7.8b), and (7.10), we find 

iA  rk, 
V r + A z r  0 = eXP[T r z  - 111 

Substituting Eq. (7.11) into Eq. (7.2) and interchanging the integration over z' with the sum 
over k, we pet 

iA rk, 
[n2(r, z)  - 11 

x I+-] k: sin I?] exp [ - 151 2] 

When one assumes the field vanishes at z -- L, one introduces undesirable reflections off 
the artificial bottom. They are eliminated by adopting the point of view that, in water with a 
depth excess, the bottom acts as a perfect absorber and any acoustic energy which strikes the 
bottom never gets back up into the water column. The simplest way of mathematically realiz- 
ing this notion is to add an imaginary term to the index of refraction: 

n2 (r, Z)  -. n2(r, z)  + i5 (z), (7.13) 

where 4 is small until z is close to L. It is typically taken to be a Gaussian: 
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Therefore 

~ 1 ' 1  In2(., z )  - 1 1 ) .  - Arp exp - - 

Since the inclusion of 4 is phenomenological, the parameters p and a can be determined only 
through experience gained by examining the numerical results for various test cases. 

The next step is to approximate the integral over z'by a discrete sum. It is assumed that 
over a depth increment Az the field q may be taken to be constant. Let N b e  the number of 
increments: NAz =L. Then 

and Eq. (7.12) takes the form 

[ N.; j ] ' 1  [ i Arko \Ir(r  + A r , j A z ~ ~ , z ~ )  = e x p  -Arpexp - - exp - 
2 

[ n 2 ( r , j A z )  - 1 1  

x [+I il sin [TI exp [* [k] '1 
In writing Eq. (7.16) we have used Eq. (7.15) and have truncated the sum over k. This truncat- 
ed is consistent with the assumption that the wiggles in q of spatial size less than AZ are unim- 
portant. It is analogous to the usual Fourier sampling theorem. Although the sums in Eq. 
(7.16) go from 1 to N, we could sum from 0 to N - 1 or from 1 to N - 1 without changing 
the results. 

So far we have assumed one is interested in calculating the Green's function q ,  in which 
case q ( ~ ,  ~ A Z ~ E ,  zO) = timmJAz, where z ,  = m,Az. If one is interested in calculating the solu- 
tion $( r ,  z )  to the parabolic equation corresponding to some initial distribution h, 

$ ( E ,  Z )  = h ( z ) ,  
then Eq. (7.16) is replaced by 

[ ~ ~ ; j ] ~ ]  [ j A r k 0  
$ ( r  + Ar, j A z )  = exp - Arp exp - - exp - 

2 
[ n 2 ( r ,  j ~ z )  - 1 1  

x [+I 2 sin 14 exp [+ I*] ' 1  t 
N 

x sin [TI $ (r, m A z ) ,  
m =1 

where 
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Let us examine the structure of Eq. (7.17) by first simplifying the notation. W e  define, 
for j  = 0 ,  ..., N, 

and 

$ ( r  + Ar, j A z )  = % ( r  + Ar ) .  

$ ( r , j A z )  = $ , ( r ) ,  

ex.[- Arp exp - [?I2] =@,, 

iA rk, [ n 2 ( r , j ~ z )  - 111 = & j ( r ) #  

Therefore 
N -1 N -1 

Gj  ( r  + A r )  = a j & , ( r )  x sin IT:] - Pk m 4  x sin [ v p l $ m ( r ) *  - (7.20) 
k 4  

This equation defines the split-step Fourier algorithm. It is easy to see from Eq. (7.20)  how the  
programming should go. To  calculate the field at r  + Ar, one does a sine transform on the field 
at  r. The  result is then multiplied by Pk, and a second sine transform is performed. T h e  output 
of this second transform is multiplied by Qj times Gj ( r ) ,  giving Gj  ( r  + A r ) .  The  pressure 
is obtained by multiplying $ j  ( r  + A r )  by some constant times i l l 2  exp ik, ( r  + A r )  (see Eg. 
(3.4)). After the value of the pressure is transferred to a storage location, the process is repeat- 
ed until the  maximum range of interest has been reached. One initializes by taking 

The  matrices @, and Yj are calculated once and stored. The matrix &, ( r )  depends on the  varia- 
bility in range and depth of the sound speed and is therefore recomputed at each range step. 

If one  does not have a subroutine for doing a fast-Fourier sine transform, the usual ex- 
ponential FFT  may be used by doubling the space. The  expression 

is used, where f db" is defined by the relations 

ftble = fO = 0 ,  

fgbk = fN  = 0 ,  

fp = fk, k  '1, ..., N - 1 ,  

and 
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Let us now try to isolate the various assumptions which went into the derivation of the 
split-step Fourier algorithm: 

The parabolic approximation is valid. This assumption will be discussed in Section 9 

The density is constant. This is a valid assumption provided propagation through the 
bottom is unimportant. 

The step size Ar can be chosen small enough so that Eq. (7.3) is valid. As long a s  the 
sound speed is a smooth function of depth and range, a Ar can always be found. If the sound 
speed possesses discontinuities, then Eq. (7.3) is questionable, regardless of the size of Ar (and 
Az). The reason is rather easy to see physically. Equation (7.3) means that the ray paths follow 
straight lines from r to r + Ar. If the sound speed is discontinuous, then, in addition to (or  in- 
stead of) the straight line path, ray paths which are reflected and refracted by the discontinuity 
will contribute to the field at r + Ar. These reflected and refracted paths are not included in 
Eq. (7.3). The  problem obviously persists as Az - 0. 

LI 

In water with a depth excess, acoustic energy which interacts with the bottom i s  ab- 
sorbed or scattered and does not contribute to the received signal. There is some experimental 
evidence in favor of this assumption [77]. For a source close to the surface it will introduce 
some bias in the calculated pressure in the regions between convergence zones but probably 
not in the neighborhood of a convergence zone, where RR and RSR paths are so much more 
important than BRSR paths. 

The preceding assumption may be mathematically modeled according to Eqs. (7.5b), 
(7.13), and (7.14). One technique is probably as good as another. There is a situation, however, 
where care should be taken. If one is numerically investigating the validity of the parabolic ap- 
proximation (or some improved approximation) by comparing the output of a PE program with 
that of a normal-mode program, one may be considering differences of just a few decibels. In 
such a situation one must be sure the absorbing bottom is modeled identically in both pro- 
grams. Otherwise the results may not really say much about the validity of the parabolic ap- 
proximation, particularly in the regions between convergence zones. As an example, one would 
a priori question the conclusions of a comparison of the field calculated using Eq. (7.20) with 
that calculated using a normal-mode program if the absorbing bottom is modeled in the 
normal-mode program by cutting off the modal sum when the phase speed exceeds the sound 
speed at the bottom, It would be preferable to compare the output of a program based on Eq. 
(7.20) with a modal solution where the normal-mode eigenfunctions Z,(z) are calculated using 

with 

Z, (0) = Z, (L) = 0. (7.25) 

A reasonable value for Az may be found. The choice of the number of depth points 
N = LlAz is intimately related to several of the other assumptions in a way which we would 
now like to discuss. In Eq. (7.2) we assumed Ar is small enough so that * (r + Ar, z(r ,  z') acts 
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almost like a &-function in z  - z'. With this assumption we were able to take the index of re- 
fraction to be a constant and hence find an analytic expression for * ( r  + Ar,  z ( r ,  2 ' ) .  The 
crucial point is how P ( r  + Ar, zl r, z ' )  imitates the behavior of a 8-function. If l z  - z'l is 
large, Y will be a rapidly oscillating function of z'. Hence, when one integrates over z', cancel- 
lations will occur for large ) z  - z'l which effectively restrict the range of integration to  a small 
region about z' = z. If one does not sample often enough in depth, the oscillations are washed 
out, and these essential cancellations do not occur. The result is an erroneous value for the 
field at r  + Ar. 

On the other hand, one condition for the validity of the parabolic approximation is that 
the slopes of the Feynman paths should be small [5]: ( (z - z ' ) l ~ r (  << 1.  That is, the contri- 
bution to the field from all paths with 1 (z  - z ' ) / ~ r )  > 1 should be negligible. This small- 
slope requirement is really not incorporated into the numerical algorithm. If the algorithm 
could be modified so that one keeps only those contributions to the field which correspond to 
( (z  - z ' ) / ~ r (  << 1, then the end result wou!d be the same (if the parabolic approximation is 
valid). More importantly, one would not have to sample as often in depth, because the oscilla- 
tions which occur for lz - z'l large would no longer be as important. Consequently, one would 
conceivably save storage space and running time. 

7.2. Bottom-Limited Water and Shallow Water: An Unsolved Problem 

Perhaps the most important unsolved problem involving the application of the parabolic 
equation to sound propagation is the development of an algorithm for obtaining its solution in 
a bottom-limited or shallow-water situation. We will not solve this problem here but rather in- 
dicate how it might be approached. 

For concreteness we will consider a specific model for theacoustic medium. We will as- 
sume it consists of two fluids in contact at the bottom interface. The depth of the water is 
B ( r ) ,  and the thickness of the bottom fluid is L - B ( r ) ,  with the acoustic pressure being 
essentially zero for depths greater than L. The density of the water is p,, and the density of 
the bottom fluid is p b .  Both p ,  and p b  are constant. For the index of refraction we have 

n 2  ( r ,  z )  = n$ ( r ,  z ) ,  0  < z  < B ( r ) ,  

where qb  represents the effect of bottom absorption. 

If the water depth and index of refraction are independent of range, the pressure is given 
by a normal-mode sum 

i 1 
p ( x )  = -- 2, ( z ) Z ,  ( ~ , ) ~ d l )  ( k , R ) ,  

4 ~ ( 2 , )  
where 

p ( z )  =p , ,  O < z  < B, 

= p b ,  B < Z < L ,  

and the normal-mode eigenfunctions satisfy the differential equation 
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the  boundary and  continuity conditions 

2, ( 0 )  = Z, ( L )  = 0 ,  

Z, ( z )  continuous, 

and 

-- I  Z, ( z )  continuous, 
p ( z )  dz 

and the  orthonormality condition 

These  functions are not normalized in t h e  conventional way because we are assuming t h e  
pressure, rather than the  particle velocity potential, satisfies the  Helmholtz equation. 

In  Section 9 we will show t h e  parabolic approximation is equivalent t o  replacing Eq. 
(7 .27 )  by 

with 

By use of t h e  orthonormality condition (Eq. (7 .31 ) ) ,  it is easy to  show that  'Y obeys t h e  compo-  
sition law: 

L 

'Y ( r  + h r ,  zlO, z s )  = dzr 'Y ( r  + Ar, zl r, z l ) 'Y  ( r ,  zt10, ~ $ 1 ,  
0 

where 

Z, ( z ) Z ,  (2 . )  exp 'Y ( r  + Ar, zl r, z ' )  = - I (7 .35 )  
p ( z ' )  " 

With Eqs. (7.34) and  (7 .35)  we have a marching algorithm for solving the  parabolic equa- 
tion for the  range-independent situation. Of course o n e  would not use these equations in prac- 
tice since t h e  pressure is readily obtained from Eq. (7 .27) .  W e  have derived them t o  fix t h e  
notation and because their structure suggests how o n e  might generalize to  the  range-dependent 
problem. 

As  we have mentioned, t h e  problem of constructing an  algorithm in the  general case 
reduces to  t h e  problem of determining an  expression for 'Y ( r  + Ar, z l r ,  z ' ) .  If o n e  has such 
an expression, t h e  composition law can be used to  construct the  field at r  + A r  in terms of t h e  
field at r. If t h e  parabolic approximation is t o  b e  at all valid, a value of A r  can be  found such 
that the  variation with range of the  medium's acoustic parameters can be  ignored within t h e  
region r  t o  r  + Ar. With this approximation 'Y ( r  + Ar, zl r, 2') has t h e  form of Eq. (7 .35)  bu t  
with t h e  usual normal modes replaced by range-dependent normal modes Z,, (r ,  z )  1781. T h e s e  
range-dependent eigenfunctions and their corresponding eigenvalues are obtained by solving 
an  eigenvalue problem at the  particular range r. 



D.R. PALMER 

Specifically we have 

* ( r  + ~ r ,  21 r, z ' )  = - 

where 

with 

for 0 < z  < B ( r )  and 

for B ( r )  < z < L. The boundary and continuity conditions are 

and 

-- a ~ : ( , ( ~ P z ) I ~ - ~ ( ~ )  I a ~ : ( r ,  z ) t z - B ( r ) .  ( 7 . 3 9 ~ )  
P w  a z  

If we further define 

* ( r ,  210, z S )  = V W ( r ,  z ) ,  0 < z < B ( r ) ,  

= * b(r,  z ) ,  B ( r )  < Z < L, 

then the pressure at a point ( R ,  z )  in the water column is 

where * is obtained by using the algorithm 
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and 

q b(r  + Ar, z )  = e 
-iArko/2 C ~ , b ( r ,  z ) e  i ~ r k j  (r)/2k0 

Since this approach has never been tested, it is not appropriate to discuss the algorithm, 
Eqs. (7.411, in detail. We would like to make two points however. First, we have ignored any , 
contribution due to shear waves. It is possible in principle to generalize the whole formalism to 
include shear waves in the same way quantum mechanics is generalized to include particle po- 
larization (spin). 

Second, range-dependent normal modes have been used 1781 to solve the Helmholtz 
equation. The main problem with their use is that the coupled differential equations for the 
modal coefficients are extremely difficult to solve. Equations (7.41) really amount to solving 
these equations in the parabolic approximation. However Eqs. (7.41) represent an unsophisti- 
cated, brute-force technique for solving the parabolic equation. A complete set of normal 
modes mist be calculated for each range step. One imagines there is a simpler, more sophisti- 
cated technique than one based on range-dependent normal modes. 

8. PATH INTEGRATION AND THE HELMHOLTZ EQUATION 

In this section we will develop path-integral representations for the solution t o  the 
Helmholtz equation and consider a few simple applications. We shall assume the medium is 
unbounded. It will be apparent that many of our results are valid even for a bounded medium. 

8.1. Some Basic Representations 

We begin with the Helmholtz equation, Eq. (3.2): 

where ko = w/c,, n(x)  = co/c(x), and we have suppressed any time dependence. With an 
integration by parts, one can show 

i 
p(x )  =-{dre 17 ( k ,  + k)/2 @ (7, ~ ( 0 ,  xS ) ,  

2ko 
where the propagator Q, satisfies the equations 

- 2ikoa7Q, (7, XIT', XI) = (v2  + kz [fi2(x) - 1 IJQ, (7, X I T I ,  XI) 
and 

Q,(rl ,  x17',xf) = 6 ( 3 ) ( ~  - XI), for a117'. 

As before, it will be convenient to define 
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Formally, at least, we have the composition law 

@(I, X ~ O ,  xS )  = J h t @ ( r ,  x lu ,  xl)@(u. xllO, xS). (8.5) 

where u is specified only by the condition 7 2 u >, 0. If we iterate Eq. (8.51, we obtain 

with go = 0, xo = x,, UN = 7, and xN = x. We will choose increments of equal length, 1 
for all i. We now assume N is large enough (Au is small enough) so that U(x) can b e  con- 
sidered constant when calculating each of the component propagators in Eq. (8.6). W e  there- 
fore have 

-rk,Aa U ( x ,  ) 
@ (uI, x,I u, - 1 ,  X, 1, = e @o(ul, x , ~ ~ , - ~ ,  xI-1 ), (8.8) 

where @, satisfies the equations 

- 2ik0au,@0 (u,, X , ~ U ~ - ~ ,  X, -1 = v:a0 (u,, x , ~ ~ ,  -1, X, -1 ) (8.9a) 

and 

a, (u, xilu, xi 1 = 8 (3)(x1 - X, -1 1. (8.9b) 

The  solution to Eqs. (8.9) is 

Gathering expressions gives 

In the continuum limit, N- w, with N A u  = 7 fixed, Eq. (8.11) becomes exact. We have 

(xO,xl, ' " ~ X ~ ) ' X ( " ) ,  O < < 7, (8.12a) 

N 
Au - j (8.12~) 

i - l  0 

and 
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giving 

According to  Eq. (8.12a) the  paths x (a) in Eq. (8.13) satisfy the  endpoint conditions 

x ( 0 )  = x,, X ( T )  = x. (8.14) 

Substituting Eq. (8.13) into Eq. (8.2) gives 

Because the measure depends on T, the integral over T cannot be interchanged with the integral 
over the paths. Using Eq. (8.4) we can rewrite Eq. (8.15) in the  form 

where again t h e  integration is over all continuous paths satisfying the  endpoint conditions, Eq. 
(8.14): This is our first path-integral representation for the  solution to the  Helmholtz equation. 

Just as  with the  parabolic equation, it is possible to introduce a change of variable 
X, - Xi -1 

v, = , i =I, ..., N, 
A u  

(8.1 7) 

and construct the  velocity representation. Taking 

we have 

I x exp i 1 du v u  - I 0  X, + s d u t v ( u ~ ) I l ] .  

W e  therefore have our second representation for the  pressure field: 
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Apparently this particular representation was first obtained by Fradkin 1121. 

W e  shall construct a third representation by introducing a new computational technique.  
Basically we want to  redefine t h e  path x (a ), 0 < a < 7, according to the  transformation 

a n d  integrate over w rather than x. Here  R 'wi l l  b e  a free parameter. When  we consider appli- 
cations, w e  will let R ' b e  t h e  range. T h e  advantage of this transformation is that t h e  resulting 
path integral will have a form similar to that of t h e  path integral for the  parabolic equation. 

T h e  path in Eq. (8.22) is defined on the  interval 0 < r  <. R ' and satisfies t h e  endpoint  
conditions 

For  t h e  exponent in Eq. (8.13) we have 

F o r  t h e  measure we have 

3 N/2 -- I ; ]  ,.[+rlI . . . [ + r N l ] .  

T h u s  

where  
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T h e  path integral in Eq. (8.13) becomes 

where 

with w  ( 0 )  = X ,  and w  ( R ' )  = J m  x. Before substituting into the integral over 
7 which determines the pressure, we let P = T/R ' .  Hence 

(It is implicitly assumed that k ,  has a small, positive imaginery part.)   his is our third 
representation and the last one we will derive. 

8.2. A Homogeneous Medium 

If the medium is homogeneous so that n ( x )  is constant ( = n o ) ,  the complicated path- 
integral representations of the previous subsection must give 

ikon, ,~x - x s l  e 
p ( x )  = 

4 w ( x  - x, (  ' 
(8.31) 

Let us verify that this is indeed the case for the representation Eqs. (8 .29)  and ( 8 . 3 0 ) .  It is not 
difficult to show the path integral in Eq. (8.29) is normalized so that 

If the index of refraction is independent of x ,  then 
R' 

1 d - w ]  = - R P U  = + - R B ( ~ :  2 - I ) .  (8 .33)  

We therefore have 

Q P  ( R r ,  X I  0 ,  x ,  1 = [&I 3'2 exp {y - p + - P [' ixs 1 2]}. (8 .34)  
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1 

Substituting this into Eq. (8.30) yields 1 

By letting T = noR'pl(x - x,l , this equation becomes 

In Appendix A a one-parameter integral representation for the free-field Green's function in n 
dimensions is constructed. By comparing Eq. (8.36) with Eq. (A131, we obtain the desired 
result, Eq. (8.31). Notice that R '  canceled out, as it should, since Eq. (8.30) is independent of 
R: 

i 
i 
4 

8.3. The Parabolic Profile f 
- 

i 

N o  general discussion of Feynman path integrals would be complete without mention of - 
1 the parabolic profile model. In this subsection we shall examine this model and point out the 

relationship between the path-integral solution and the usual normal-mode solution. 

We first observe that if U is a function of just depth, U(x) = U(z), the path integral in 
Eq. (8.29) (with P = TIR') may be written as the product of three path integrals: 

ap (R', x (0 ,  x,) = @ x @ Y @ Z ,  (8.37) 

where & 

and 

ax = J DLW,  G) I exp 

R' 

a, = J D [ W ,  ( r ) ~  exp [j; - J , dr [$I2], 

2 

eZ = J D [ w ,  (r) I exp - 
0 

in which 

w x  (0 ) = p -'I2x,, w x  (R ') = /3 -lI2x, 

w, (0) = P -'I2y,, w y  (R1) = /3 -'I2y, 

and 

w ,  (0) = p - I 4  ,, w,(R') = p  -l/2z. 

The integrals are normalized so that 



NRL REPORT 8148 

with similar expressions for $ D [ w y  ( r )  1 and $ D [ w ,  ( r )  I. It should be obvious by now t h a t  

(8.40a) 

and 

Substituting these into Eq. (8.30) gives 

Although we could keep R' a free parameter and demonstrate that it cancels out in the  e n d ,  it 
simplifies the  notation to set R' = R  = [ ( x  - x , ) ~  + 0, - y , )  2 l  ' I 2 .  The  exponent in Eq. 
(8.41) then becomes 

W e  let 

where z M  is the  depth of the SOFAR axis. Hence 
1 p u(JISw, ( r )  ) = - p 'a 2 [w,  ( r )  - P - l f 2 z M ]  2. 
2  

Therefore 

W e  know that ray acoustics gives the  exact value for the path integral if Uis at most qua- 
dratic in the  path variable. W e  will use this fact to evaluate @,. Since @, has exactly the  same 
form as the  path integral we considered in Section 3 ,  we write 

112 
k  0 

@Z = [ 2 ~ i d w i  ( R ) / d p ( o ) ]  exp [ikoA (w,* ( r )  ) I ,  

where p ( 0 )  = dw,* ( r ) / d r  evaluated at r  = 0 and 

T h e  path w,* ( r )  satisfies the  differential equation 
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with ~ ~ ' ( 0 )  = p -lI2zs and w: ( R )  = /3 -li2z. The solution to Eq. (8.47) with wZ9 ( 0 )  = 

p and p (0 ) = dwzb ( 0  ) ldr  is 

wZ* ( r )  = P - I i 2  [ z M  + ( z s  - z M )  cos a p r l  + AQ sin a p r .  (8.48) 
aP 

Hence 

w,*(R) = / 3  - l I 2 [ z M  + ( z s  - z M )  cos a P R ]  + pO sin a P R .  (8.49) 
aP 

From this last equation we have 

dw; ( R )  sin a P R .  - 
dp ( 0  ) a P 

The  caustics are at a p R  = n r ,  n = 1 ,  2 ,  . . . . If Eq. (8.49) is now used to eliminate p ( O )  
from the expression for wzb ( r ) ,  it only takes some algebra to show 

a 
A ( w ; ( r ) )  = sin a p R  ( [ ( z  - z M ) 2  + (2 ,  - Z M  ) I ccis ( Y P R  

- 2 ( z  - z M ) ( z s  - z M ) ) .  (8.51) 

Collecting terms gives 

k o a P  mZ = ( 2 n i s i n a P R 1 1 1 2 e x p (  2 sin a P R  [ I ( z  - z M 1 2 +  ( z s  - Z ~ ) ~ ~ C O S ~ P R  

- 2 ( ~  - z M ) ( z s  - z M ) ] I -  (8.52) 

The solution to the parabolic equation for the parabolic profile is thus extremely simple. 
Although this solution has been known for at least 30 ,  years, it is continuously being 
rediscovered. Equation (8.52) may be generalized to include the effects of a pressure-release 
surface by using the techniques of Ref. 15 ,  and a solution may also be readily obtained if a has 
a range dependence. 

Our expression for a ,  may be written as an infinite sum of products of Hermite polyno- 
mials I'I, by using the formula [791 

Letting 8 = a P R  gives 

where 
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These functions obey the orthonormality cqndition 

3 dz Zn (z)Zm (z) = anm. 
-m 

We substitute Eq. (8.53) into Eq. (8.41): 

m 

P(X) = Z,(Z - zM)Zn(zs  - z M )  - 
n -0 2 P 

where 

By letting P = k0r/kn, the integral in Eq. (8.56) becomes 

which according to Eq. ( ~ 1 2 )  is (i/4 )H,(') ( k , ~ ) .  Hence we obtain 

which is the standard result. 

8.4. Modified Perturbation Theory and the Supereikonal Approximation 

We shall consider now the application of Fradkin's modified perturbation theory 11 21 to 
the Helmholtz equation. This scheme has been developed for underwater sound by Munk and 
Zachariasen 1801 and by Callan and Zachariasen 1811 by working order by order in standard 
perturbation theory. Modified perturbation theory gives in lowest order an approximation, 
coined the "supereikonal approximation" in Refs. 80 and 81, closely related to the Rytov ap- 
proximation [74-761. 

Returning to Eqs. (8.2) and (8.3), we define Q by 

@ (7, X I  0, x3)  = QO (7, xl 0, x3 exp Q, 
where 

Q, (7, ~ 1 7 :  XI) = [ 1312 exp 
27ri(7 - 7') 

ik, (7 - 7 0 [ 2 !. [51 
The function Q, is the solution to Eqs. (8.3) for n = 1 ( U  = 0). Equation (8.3b) will be 
satisfied if Q = 0 at 7 = 0. It follows from Eq. (8.3a) that Q satisfies 

2 ik, 
- 2ikoa,Q = - 

7 (X - xs)  . 'JQ + V ~ Q  + ( v Q ) ~  - 2 k : ~ ( x ) .  (8.61) 

We wish to obtain a series expansion for Q in powers of the perturbation U(x). The simplest 
way of obtaining this is to replace U(x) by gU(x),  where g i s  an expansion parameter which is 
set equal to unity at the end of the calculation. We then write 
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After substituting Eq. (8.62) into Eq. (8.61)' we equate like powers of g and obtain the 
coefficients & ( I ) .  The series in Eq. (8.62) starts with I = 1 because @ = 0, (Q(O) = 0 )  if 
U = 0. For I = 1 we have 

The  terms with I > 1 are obtained from the recursion relation 

2 ik, 1 - 1  - 2ik0a, Q (!) = - (X - x,) . VQ") + v 2 Q ( ' )  + x V Q ' ~ )  . VQ('-'"). 
7 m -1 

If we could solve Eqs. (8.63) and (8.64), we would have the exact solution 

Here we will be content with the approximation 

@ = @ , ~ X ~ Q ( ~ ) .  

The  higher-order terms have been discussed by Fradkin 1121. 

Equation (8.63) is not difficult to solve. One writes 

Q1 = Q("@, (7, x10, x,) 

and then solves the resulting differential equation for Q' by using standard Green's-function 
techniques. The result is 

Comparison of Eqs. (8.66) and (8.68) with Eq. (6.81) shows the approximation Q = Q ( l )  is 
equivalent to the Rytov approximation for 0. The preceeding analysis represents a different 
technique for obtaining the Rytov approximation; one based on the differential equation 
satisfied by @ rather than the path integral. 

The expression for may be cast into a different form by introducing the Fourier 
transform 

and carrying out the integration over x'in Eq. (8.68): 

(This equation is to be compared with Eq. (6.75b).) Substituting Eqs. (8.60), (8.66), and (8.70) 
into Eq. (8.2) gives the supereikonal expression for the pressure [80,811: 
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where 

T h e  Rytov approximation for @ led to the  supereikonal approximation for p(x) .  On t h e  
other hand,  the  Rytov approximation applied directly to p (x ) gives 

with 

(The exponent in Eq. (8.73) is the  Born term divided by Go.) W e  now ask: What is the  rela- 
tionship between the  Rytov approximation for p ( x )  and the  supereikonal approximation? T o  
answer this question, we return to  Eq. (8.68) for Q ( ' )  and observe that the  integral over  7 '  
may b e  evaluated with the  aid of the  elementary formula 

d7 ' i [ r l ( r  - Tt)]3/2 
exp - [ - , +$I\ 

7 - 7  

T h e  result is 

In t h e  straight-line geometric-optics approximation the  integration over x '  is restricted to the  
straight line joining the  points x, and x, giving ( x  - x'l + ( x '  - x,l = I x  - x,l. Here we 
shall assume that large-angle scattering is unimportant, so  that the  difference ( x  - x'( + 
1x1 - x,l - I x - x,l is small compared to  I x - x i l .  With this assumption Eq. (8.76) be- 
comes 

Let us return to t h e  expression for p(x)  in the  supereikonal approximation: 
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The integral over T is now evaluated by the method of stationary-phase (Appendix B). In 
determining the stationary phase point, the dependence of Q ( ' )  on T is ignored. We find 

By using Eq. (8.77) for Q ( ' ) ,  we readily obtain the Rytov approximation, Eq. (8.73). One may 
also obtain Eq. (8.73) directly from Eqs. (8.76) and (8.78) by using a saddle-point approxima- 
tion to evalute the integral over T. 

We conclude this section by noting the straight-line geometric-optics approximation for 
p ( x )  is easily obtained from the supereikonal approximation. We drop the k 2  term in Eq. 
(8.72) for I(T and find 

independent of T. Substituting this into Eq. (8.71) and evaluating the integral over r by the 
method of stationary phase, we get 

I x  -x,l (x - x, 
p ( x )  = G,(x - xs )  exp (8.8 1) 

In obtaining Eq. (8.81), we have considered only the term 

in determining the stationary-phase point. (Of course in this case the integral over T can be 
evaluated exactly.) 

9. THE PARABOLIC APPROXIMATION 

9.1 Preliminary Discussion 

We have derived path-integral representations for the Helmholtz equation and for the 
two- and three-dimensional parabolic equations. In this section we will use these representa- 
tions to discuss the parabolic approximation. 

To see how one might develop the parabolic approximation, let us consider the expres- 
sion for p (x )  in the straight-line geometric-optics approximation, Eq. (8.81): 

We derived this expression using a two-step process: We made a straight-line geometric-optics 
approximation to @ of Eq. (8.2); then we evaluated the integral over T by using the method of 
stationary phase, determining the stationary-phase point from that part of the phase in Eq. (8.2) 
which does not depend on U. 
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We now write Eq. (9.1) in the,form 

p(x) = Go(x -x , )+( Ix  -xsl ), 

where 

Now 4' (r) satisfies the differential equation 

-2ikoar+ (r) = (k: [n2(r) - I ] ) +  (r), 

where 

in which 

We compare these equations with the two-dimensional parabolic equation (Eq. (3.5)) 

where 

in which 

and with the parabolic equation in three dimensions (Eq. (3.12a)) 

where 

in which 

The similarity between these three sets of equations is obvious and suggests the following 
scheme: 

To derive a "parabolic equation" with no transverse second derivatives, we calculate @ 
using straight-line geometric optics and evaluate the integral over T using the method of sta- 
tionary phase. 

To derive a parabolic equation with one transverse second derivative, we calculate @ us- 
ing a straight-line geometric-optics approximation applied to two coordinates and then evaluate 
the integral over T as before. 
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To obtain a parabolic equation with two transverse second derivatives, w e  apply 
straight-line geometric optics to one coordinate and then make the stationary-phase approxima- 
tion. 

In  the next subsection we will demonstrate the correctness of this scheme. We will use the 
first path-integral representation, Eq. (8.151, of the previous section. Along the way we will dis- 
cuss the concept of additivity of the action. 

A standard reference on the parabolic approximation is the paper by Klyatskin and Tartar- 
skii [481. In subsection 9.3 we will review their calculation and compare it with the calculation 
in subsection 9.2. Klyatskin and Tatarskii were interested in the application of the parabolic 
equation to problems in the theory of propagation through a random medium. To discuss this 
work, we must consider a model for the random fluc,tuations on the sound speed. The first part 
of subsection 9.3 will be devoted to this model and to an approximation intimately related to 
the parabolic approximation called the Markov approximation [76, Ch. 51. In subsection 9.4 we 
will derive an improved two-dimensional parabolic equation by relaxing the geometric-optics 
approximation. In the final subsection we will discuss corrections to the stationary-phase 
approximation. 

Before proceeding, we list the basic equations of the path-integral representation we will 
use: 

J d~ exp [%I @ ( T ,  X I  0 ,  x , ) ,  p ( x )  =- - 2ko 0 

and 

where x (0) = k, and x ( 7 )  = X .  The path integral is normalized so that 

Furthermore @ satisfies 

-2ikoa,@ (7 ,  xIO, x , )  = (V - 2k: U ( x ) ) @  (7 ,  x , )  (9.13) 

with the initial condition 

@ ( 0 , x l 0 , x S )  = 6 ( 3 ) ( x  - x , ) .  

The function U is defined, as usual, by 

9.2 Straight-Line Geometric Optics and the Method of Stationary Phase 

We will consider first the derivation of the two-dimensional parabolic equation. According 
to the scheme outlined in the previous subsection this requires applying straight-line geometric 
optics to the horizontal coordinates. Referring to Eq. (9.111, we set 
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and 

z ( a )  = zf(cr) .  (9.16) 

Here we are using a I subscript to indicate a two-dimensional vector in the horizontal plane: 

etc. If we further define a two-dimensional unit vector in the horizontal direction of propaga- 
tion 

we have 

R a  x , ( a )  = s, + - e, + x;(cr).  
7 

Equation (9.11) now reads 

Horizontal straight-line geometric optics follows from ignoring the dependence of U on x i  (a ). 
With this approximation the integral over x, ( o )  is trivial, and we obtain 

where 

The  expression for the pressure is 

We now can learn something new 'about path integrals. One might expect us to use Eq. 
(9.22) to derive a parabolic equation for r (7,  210, 2 , ) .  In fact the path integral in Eq. (9.22) 
does not in general satisfy a simple parabolic equation, and the reason is due to an important 
concept called the additivity of the action. 
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To illustrate this concept, consider the form of the path integral which solves the parabol- 
ic equation 

r ,  z  r ,  z  = $ D ( z  ( I )  I exp [ ikoA ( z  ( s )  ) I ,  (9 .24) 3 
1 

where 1 

The most important characteristic of this path integral is that the action A is additive: 

= Al  ( z l  ( s ) )  + A2 (22 ( s ) ) ,  (9.26) j 1 
where z l  ( s )  = z ( s )  for r' < s  < rUand z2 ( s )  = z ( s )  for r" < s  < r. The component actions 1 
A ,  and A2 are identical in form to A. They differ only in the limits of integration and in the 
endpoint conditions satisfied by paths. It is this additivity which leads to the composition law, 
the parabolic equation, and the marching algorithms for numerically evaluating the path 
integral. If the action is not additive, one has none of these things. Generally speaking, path 
integrals with nonadditive actions are very difficult to handle. The application of Feynman's 
theory to the problem of propagation through a random medium has not been particularly fruit- 
ful, until recently, because one always encountered path integrals with nonadditive actions [821. 
One of Dashen's most important contributions 151 is that he showed these nonadditive actions 
become additive if one makes the Markov approximation, an approximation which, as we shall 
see, is often no stronger than the parabolic approximation. With additive actions Dashen was 
able to develop a rather complete theory of propagation through random media, one which I 

seems to be in excellent agreement with experiment [831. 

To place this discussion in context, we observe that the path integral of Eq. (9.22) has the 
form 

$ D [ ( z ( ~ ) I  erp  ik, $ dm ~ ( m .  z ( m ) .  T )  . l o  I 
The action is not additive, because T is present in L. If the sound speed is a function of just 
depth, L is independent of T ,  the action is additive, and one easily obtains 

-2 ik ,a , r  ( T ,  210, z , )  = (a:  - 214 u ( z ) I r  ( 7 ,  ~ 1 0 ,  z , ) ,  (9.28) 
with 

~ ( o , z ( o , z , )  = 6 ( 2  - 2 , ) .  (9.29) 

To find the differential equation satisfied by r in the general case, we return to the discrete 
form of the path integral f 
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where zN = z and o N  = 7. A straightforward calculation gives 

[ -2ikoaT - a; + 2k: U ( X )  ] r  (7, Z (O ,  z,) 

where V, = (a,, a,). If U is independent of x,, then V, U = 0 and Eq. (9.31) reduces to 
Eq. (9.28). 

The best way to find r is not by solving Eq. (9.31) but by introducing a more general 
path integral: 

This path integral is more complicated, since it has an additional dependence on the variable t. 
However 

r ;  (7, Z I  0 ,  Z, = r (7, Z I O ,  z,), (9.33) 

and, since the action in Eq. (9.32) is additive, it is not difficult to show r 'obeys a simple para- 
bolic equation: 

-2ik,a,r; ( t ,  ~ ( 0 ,  2,) = a3 - 2k: U s, + - e,, z r T  (t, 210, z,), (9.34a) [ I tf I l l  

with 

r i  (0, z (0 ,  z,) = 6 (z - 2,). (9.34b) 

Unlike differential equations (9.28) and (9.31), when Eqs. (9.34) are being solved 7 is treated 
as a parameter. We prefer a slightly different form of Eqs. (9.34) obtained by letting 

and 

Equations (9.23), (9.34) now are 

where 

-2 ik, 

( r / R  ) 
a,*, (r, Z J  0,  z,) = (8;  + k i  [n2 (r ,  z )  - 1 I )  q, (r,  210, z,), (9.36b) 
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with n(r, z )  = n ( s ,  + re,, z) and 

q T  (0, z(0, z,) = 6(z - z,). 

The  following points are worth discussing. 

Equations (9.36) were first derived in Ref. 84. In that paper Feynman path integrals 
were not used. Instead the pressure field p(x)  was expanded in a power series in Uusing stan- 
dard perturbation theory. Each term in the series was then approximated by applying the 
straight-line geometric-optics approximation (the eikonal approximation) to the horizontal coor- 
dinates, and the series was resummed. The calculation made no assumptions about t he  depth 
variation of p (x )  or of the sound speed. Hence Eqs. (9.36) are valid regardless of the depth- 
dependent boundary conditions imposed on the pressure. 

In the equation satisfied by V T  the variable of integration 7 enters as a parameter; the 
equation is solved as if it were constant. If 7 = R, Eqs. (9.36b) and (9.36~) reduce to the  pro- 
pagator defined by Eqs. (3.9) rathe; than the field JI defined by Eq. (3.8). The point is that the 
depth-dependent initial field h ( z )  plays no role when one considers a point source, that is, 
when the Helmholtz equation has a spatial &function on the right-hand side. 

In deriving these equations, we have assumed only that straight-line geometric optics 
may be applied to the horizontal coordinates. If the sound speed does not vary with the  hor- 
izontal coordinates, this type of approximation is exact. Therefore Eqs. (9.36) should be exact if 
the sound speed is a function simply of depth. this is easily demonstrated. If c (x)  = c(z), 
then 

where 

These modal functions (which we assume possess only a discrete spectrum) are orthonormal, 

and complete, 

2 Zn (z)Zn (z') = 6 (z - z'). 
n 

From Eq. (A121 we have then 

1 
P(X) = - 1 - x Z, ( z ) ~ , ,  (z,) exp - 

477 h likiR Ih + $11. 
Letting A = kn7/Rk, gives Eq. (9.36a) with 

p, (r ,  Z I  0, zs = x Zn (z) Zn (zs ) exp 
n 

(k: - k i  ) I 
Using Eqs. (9.38) and (9.401, i t  is easy to see Eqs. (9.36b) and (9.36~) are satisfied. 



NRL REPORT 8148 

We have emphasized the difficulty of writing a differential equation for r (7, 210, z, ) 
when the sound speed depends on x and y. However for a range-independent sound speed we  
immediately obtained Eqs. (9.28) and (9.29). Hence for this case Eqs. (9.281, and (9.29) m u s t  
have a relationship to Eqs. (9.36b) and (9.36~). To exhibit this relationship, we note that, if 
n2 (s, 4- re,, z) = n2 (z), the form of Eq. (9.36b) dictates q, can depend on r only through 
the product r7 (Eq. (9.42)): 

qT (r, ~ 1 0 ,  z,) = a function of r7. 

We therefore have the symmetry relation 

r a ,q ,  (r, ~ ( 0 ,  z,) = 7a,qlr,  (r, 210, z,). 

Substituting this into Eq. (9.36b), we get 

-2 ik, 

(rlR 
a,*, (r, z IO ,  z,) = ( a t  + k,f [n2(z) - 

We now let r = R: 

-2ik,a,*, (R, ~ ( 0 ,  z,) = (8: + k: [n2(z) - 1 I )  q, (R, z~O,  2,). (9.45) 

Because q, (R, 210, z,) = r (7, zl0, zS), Eq, (9.45) is equivalent to Eq. (9.28). In the general 
case, qT will not be simply a function of rr because of the additional dependence of the index 
of refraction on r. Therefore 

- some function due to the range dependence of the sound speed; (9.46) 

that is, the symmetry is broken by the range-dependent part of the sound speed. Since t h e  
right-hand side of Eq. (9.46) is nonzero (and complicated), it is not in general possible to write 
p(x)  as an integral over 7 of an exponential times an object which obeys a simple parabolic 
equation with a first derivative in 7. (In subsection 9.5 we will use Eq. (9.46) as the starting 
point of a calculation of the corrections to the stationary-phase approximation due to the  
range-dependent part of the sound speed.) 

To complete the analysis, the integral over 7 in Eq. (9.36a) is approximated by the  
method of stationary phase (Appendix B). This approximation requires that k,R >> 1 and 
that q, be a smoothly varying function of 7 in the region of the stationary-phase point 
7 = R. We easily obtain the parabolic approximation 

where q = q, , satisfies the parabolic equation given by Eq. (3.9a) with the 8-function ini- 
tial condition as given by Eq. (3.9b). 

W e  now consider the derivation of the three-dimensional parabolic equation. Application 
of the straight-line geometric-optics approximation to only the x coordinate in Eq. (9.1 1) yields 

ik, (x - x,) , I r7 (7, bIO> cs 1, 
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where 

Here 6 ( u )  = b ( u ) , z ( u ) ) ,  SO 6 ( t )  = 6  = b , z )  and 6 ( o )  -6, = b , , z , ) .  Now r 1  
satisfies the equations 

and 

Defining 

we have the system of equations 

and 
y , ( o , f i 1 0 , 6 , )  = 8 ( 2 ) ( f i  - & ) #  

The stationary-phase approximation is straight-forward and yields 

where * = Y ,  ,, satisfies Eqs. (3.12). 

As one final topic we consider the significance of the parabolic approximation for propa- 
gation in an infinite, homogeneous ocean where U = 0. We have 

Substituting this into Eq. (9.47) we get 

This equation is to be compared with the exact result 

p ( x )  = 
1 exp l i k , , / ~  + (z - z , )  2 ]  (9.56) 

4 r  J R ~  + (z - z , ) ~  
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Obviously the parabolic approximation requires 

and 

The results for the three-dimensional equation are similar. 

9.3 The Calculation of Klyatskin and Tatarskii: Random Fluctuations in the Sound Speed 

W e  consider in this subsection the situation in which temperature fluctuations produce a 
random component in the sound speed. The  function U is then a random variable which may 
be written in the form 

U ( x )  = < U ( x )  > + ( U ( x )  - < U ( x )  > ), (9.58) 

where < . . . > represents an average over a large number of measurements of LI. This  
decomposition defines deterministic and random components 

and 

v, ( x )  = U ( x )  - < U ( x )  > . 
We shall use a particularly simple model for Ud and U,. The ocean is far too complicated 

for this model to be even approximately valid, and calculations based on it can at best give 
only the correct orders of magnitude. We consider it not because we fell it will lead t o  a 
description of acoustic fluctuations but simply so we may connect our analysis of the parabolic 
approximation with a previous study. 

We assume: 

The  deterministic component is a function of all three spatial coordinates: 

Ud = U d ( x , y ,  z ) .  (9.60) 

The random component is a Gaussian random variable. Hence, all moments of U, can 
be expressed in terms of the correlation function 

B(x;  x ' )  = < U, ( x ) U ,  ( x ' )  > . (9.61) 

Of course U, has a zero mean: 

< U J x )  > = O .  (9.62) 

The temperature fluctuations are homogeneous but not necessarily isotropic: 

The  fluctuations along the coordinate directions are characterized by scale paramenters 
L,, L,,, L,. That is, for 1x1 small, 
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where 
a; = B(O;  0 )  = < ( u , ( x l 2 )  > .  

the correlation function possesses separability along the direction of propagation. That 
is, if propagation is along the x  axis, 

~ ( 1 x 1 ,  ( y l ,  (21  ) = ~ ( 1 x 1 ,  O , O ,  )B(o,  I Y ! ,  14 ). (9 .66)  

It will be convenient to rewrite this equation as 

~ ( 1 x 1 ,  ( ~ 1 , I z l )  = i ( l x l ) B ( I ~ l ,  l z 0  
where 

+m 

i ( ( x 1 )  = B ( ~ X ( . O , O )  1 5 d x ~ ( l x l . 0 . 0 )  
-m 

and 

From dimensional considerations we have 

and 

This last relation will be used only for n  small, ( n  = 1 or 2). 

When one has a random sound speed, the parabolic approximation is intimately related to 
another approximation called the Markov approximation [76, Ch. 51. The Markov approxima- 
tion states that in the calculation of the average of any physical quantity the function 5  of Eq. 
(9 .67)  may be replaced by a 6 function 

Before discussing conditions under which the Markov approximation is valid, let us consider 
what it means. If the correlation function has a Gaussian shape, then 

1 
i ( ) x ) )  =- 

G L ~  exp [ - L [ L ] ~ ~ .  2 LX 

This expression approaches a 6 function as Lx - 0.  Consequently the Markov approximation 
in a problem is a statement about the size of L, in relation to the other dimensions which 
characterize the effect of fluctuations in the pressure due to fluctuations in the sound speed 
along the direction of propagation. If L, is small compared to these dimensions, it may be set 
equal to zero, giving Eq. (9.71). 

In the theory of propagation through a random medium, the conditions under which 
some approximation is valid are determined by comparing expressions for the average value of 
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products of the  pressure field. That  is, expressions for < p >  , < pp*> , < p p >  , < pppC> , .... 
before a n d  after making the  approximation are compared. In principle this comparison s h o u l d  
be d o n e  for all average values of experimental interest. In practice it is usually done only f o r  
the  average value of the  field < p >  and for the  mutual coherence function < p p ' > .  In  t h i s  
report w e  shall consider only < p  >. Consequently we will not  be able to derive all the  condi-  
tions associated with a given approximation. 

T h e  standard technique (76, Ch. 51 for determining the  conditions for t h e  validity of t h e  
Markov approximation is to  assume first that t he  three-dimensional parabolic approximation i s  
valid. W e  therefore return to t h e  path integral which solves the  three-dimensional parabolic 
equation 

Here  w e  assume the  direction of propagation is along t h e  positive x axis, X = x - x, is t h e  
propagation distance, Q = (v, z ) ,  and 6, = (v,, z , ) .  

W e  shall calculate < * > by assuming the  Markov approximation and then by assuming 
4 is a sharply peaked function of its argument rather than a 6 function, Comparison of the  t w o  
expressions will give the  first-order correction to  the  Markov approximation and hence a condi-  
tion for its validity. 

Taking the  average of Eq. (9,731, w e  obtain 

where 
X 

r ( Q  (r)  ) = < exp dr Ur (r, 6 ( r )  1 > . I 
Since Ur is a zero-mean Gaussian random variable, w e  can write 

with 

W e  now use Eq. (9.671, and  Eq. (9.76b) becomes 

where F i s  introduced to  simplify t h e  notation: 

F(r ,  r l )  ~ ( l y ( r )  - y ( r t ; l \ ,  l z ( r )  - z ( r t ) 1 ) .  (9.77b) 



D.R. PALMER 

There is a standard technique for introducing sum and difference coordinates. Since the 
integrand is invariant under an interchange of r a n d  r', we have 

If we let r' - r - s, 

If we now let r - t + s/2, we have 

W e  have replaced the upper limit on the integration over s by 00, since we always assume 
X >> L,, and ( ( 1 ~ 1 )  = 0 for s 2 L,. Assuming the Markov approximation, we have 

m 

1 ~ u t  F ( I ,  1) = ~ ( 0 . 0 )  = L, u $ and $ ds 6 ( s )  =- , SO 
0 

A = XL,U 6. (9.79) 

W e  now relax the &function assumption and assume 5 (1 s( ) is only sharply peaked about 
s = 0 .  W e  then can examine the integral over t in Eq. (9.78) in a power series about s = 0 .  
W e  shall keep terms through s2.  W e  first observe that 

Hence 

where y is the  functional 

Substituting Eq. (9.81) into the expression for A gives 
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The first integral is 112.. since the SIR term may be dropped for X >> L,. The second integral 
is L a 2  according to Eq. (9.70). Hence 

This expression gives the first-order correction to the Markov approximation. By comparing 
Eqs. (9.79) and (9.84), we see we already have an interesting result. The Markov approxima- 
tion is valid provided L: y << 1 that is, provided 

and 

The Markov approximation implies the slopes of the Feynman paths, averaged over the range of propa- 
gation in an rms sense, must be small 151. In the ocean where Lx -- L, -- 100 L,,  Eq. (9.85b) is 
far more stringent than Eq. (9.85a). Returning to Eqs. (9.76), we have 

Substituting this expression into the path integral gives 

ik, x 2 

where 

and 

Equation (9.86) cannot be approximated without making assumptions about the deter- 
ministic sound speed. The fact that the Markov approximation is intimately related to the pro- 
perties of the deterministic sound speed follows from Eqs. (9.85). The most important Feyn- 
man paths will be the deterministic paths calculated using ray acoustics. Therefore the magni- 
tudes of the left-hand sides of Eqs. (9.85) are measures of the refractive characteristics of the 
deterministic sound speed. Rather than analyzing Eq. (9.86), which, in fact, is not well 
defined, we shall adopt a rather naive approach. Since a ,  = a ,  ='0 in the Markov approxima- 
tion, we shall take as our validity conditions a,  << 1 and a ,  << 1 ,  that'is 
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k 0 ~ , u ;  << min [[t]', [$I '1 
For L, = Ly = L, = L  this reduces to the standard result 

If we assume Ud = 0 and the Markov approximation is valid, Eq. (9.86) becomes 
- 

In this case Eq. (9.53) gives 

(' - ")' ~ X P  ( - X / L D ) ,  < p(x) > =- 
4P X X I I (9.91) 

where LD is the damping distance: 
1 L x k : ~ ;  - -  - 

LD 2 .  
From Eq. (9.88) we see the Markov approximation requires that LD be large in comparison to 
the acoustic wavelength. 

Having discussed the Markov approximation, we are now in a position to discuss the pa- 
per by Klyatskin and Tatarskii. The following approach is adopted in Ref. 48: First, the mean 
index of refraction is taken to be a constant. This corresponds to setting Ud(x) equal to zero. 
Second, a point source is not considered. Instead, it is assumed that a field with some complex 
amplitude distribution uo (b) is incident on the x - 0 plane and that the random perturbations 

I 

in the sound speed exist only in the half-space x > 0. Third, the path-integral representation 
given by Eq. (8.20) is used. Fourth, the fluctuations in the index of refraction are homogene- 
ous and isotropic. Fifth, although it is not necessary to introduce a correlation length, validity 
conditions are recorded in terms of such a quantity. Sixth, the Markov approximation is as- 
sumed. Seventh, the average field and the mutual coherence function are considered. Only 
the results of the calculation of the mutual coherence function are recorded. 

In our analysis we shall assume: the mean value U, is zero (the general case will be con- 
sidered in the following subsections), the radiation is due to a point source, the model outlined 
above describes the fluctuations, and the Markov approximation is valid. Moreover, we will 
calculate only the average field, and we will use the path-integral representation we listed as 
Eqs. (9.10) through (9.15). 

Returning to Eqs. (9.10) and (9.111, we have 

Just as before, we redefine the paths: 
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and 

z ( u )  = z l ( u ) .  

Then 

' - u  x, I 
where again X = x  - x,. Taking the average yields 

with 

in which 

F ( m ,  u r )  = B ( ( ~ J ( u )  - Y ( u ' ) ~ ,  I Z ( ( T )  - ~ ( u ' ) (  ). (9.97) 

The  prime on the path has been dropped in writing these expressions. We need only 
remember that now we have x ( 0 )  = x  ( 7 )  = 0 .  Following the steps which led to Eq. (9.781, we 
get 

If we were to apply straight-line geometric optics to the x  coordinate, x ( t  + ~ 1 2 ) -  x ( r  -s/2)  
would be dropped. Klyatskin and Tatarskii go one step further and calculate A to first order in 
this difference: 

With the Markov approximation, Eq. (9.711, this last equation reads 

Therefore 
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where 

and 

The function A 1  represents the result of applying straight-line geometric optics to the x coordi- 
nate, and A 2  is the first-order correction to this approximation. It is not difficult to show 

and 

The right-hand of this last equality follows because x(0) =x(7) = 0. Therefore the first-order 
correction to straight-line geometric optics vanishes if the Markov approximation is valid. 

We now drop higher order corrections to straight-line geometric optics, indicated by the 
dots in Eq. (9.101a), and substitute Eqs. (9.102a) and (9.102b) back into Eq. (9.96): 

In writing this equation, we have used 

I x  -ns12 = x 2 +  (6 - b s )  2 

and Eq. (9.92), the definition for LD. Equation (9.93) becbmes 

An integral of the form 

may be written as 

By using the expansion 

4- = 1 + q/ko - f q2/k: + ..., (9.108) 



we have 

exp ( i ~ k ,  ) [ ko ] -- 
4 v A  2v iA 
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With t h e  aid of this last expression, Eq. (9.105) becomes 

exp ik,lx - x,( 2ilx - x,! 
< p ( x ) >  = 

4 v ) x  - x,J 1' + koXLD I -112 

This expression is to be compared with < p ( x ) >  calculated assuming the parabolic approxi- 
mation, Eq. (9.91): 

exp [ik,X + ik,  (6 - 6 , )  2 / 2 ~ 1  
< p ( x )  > = 

4 v X  
exp ( -X/LD ). (9.111) 

The two expressions agree if 

k ,  LD >> 1, (9.11 3a) 

and 

k , ~ ;  >> X. (9.113b) 

Equations (9.112) are simple kinematic restrictions, and Eq. (9.113a) is the condition we previ- 
ously found for the validity of the Markov approximation. 

In summary, the condition for the validity of the Markov approximation is the same as one of 
the conditions for the validity of the parabolic approximation. Moreover, with reference to Eqs. 
(9.851, the parabolic approximation implies the slopes of the Feynman paths must on the average be 
small. 

9.4 Relaxing the Straight-Line Geometric-Optics Approximation: A Modified Parabolic Equa- 
tion 

Having discussed the calculation by Klyatskin and Tatarskii, we now consider corrections 
to the parabolic approximation in the general case in which the sound speed is an arbitrary 
function of x. In this subsection the straight-line geometric-optics approximation will be re- 
laxed, and in the next subsection we will discuss corrections to the stationary-phase approxima- 
tion. Rather than decomposing U into deterministic and random components and considering 
the average value of the field, we will use the unaveraged expressions developed in subsections 
9.1 and 9.2. Moreover we consider only the two-dimensional parabolic equation. 
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Horizontal straight-line geometric optics amounted to assuming that in Eq. (9.20) 

This approximation may be relaxed in several ways. We could take 

and evaluate the integral over x;(w ), using an equation similar to Eq. (6.71). We would end 
up with a two-dimensional parabolic equation with U replaced by an expression involving in- 
tegrals over the path parameter r of Uand u2. Here we would like to discuss a different, more 
general approach. Rather than making a horizontal straight-line geometric-optics approxima- 
tion, we will make a horizontal Rytov approximation. 

Equation (9.11) may be written in the form 
- 

T , X O , X  - $ D [ Z ( ~ ) I ~ X P  (9.116) 

where 

a, = $ ~ k , ( u ) l e x ~  I} . (9.117) 

This integral is a functional of the path z(u) .  It can be evaluated using the Rytov approxima- - 
tion (subsection 6.4): 

Born term a1 (7. x,I O.S, = aOIL (7. x,(o, s,) exp a0, ( T , ~ , ~ O ~ S , )  

where 

Bornterm - -R, j d o $ & ~ i , . * , ( T , x , ~ u , x , ) ~ ( ~ ~ ~ ~ ~ ) ) ~ , ~ ~ , x ~ ~ O . ~ )  (9.119) 
0 

and 

a o , ( ~ . x , l ~ l , x i )  - $ D k , ( ~ ) l e x p [ ~ ~ d u [ ~ ] ~ ]  

i k O ( r  -7 ' )  X, -x, - [ - ] 1 .  (9.120) 

Substituting Eqs. (9.119) and (9.120) into Eq. (9.118) yields 
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With Eq. (9.1211, Eq. (9.1 16) becomes 

ik, R 
~ ( r , x ~ O , x ~ )  =[&lexp[-J F ( T , ~ I O , ~ ~ ) ,  

where 

with 

These equations are to be compared with Eqs. (9.21) and (9.22). 

Since the action in Eq. (9.123) is not additive, we generalize (imbed) just as before by in- 
troducing 

We have 

r'( (r,zIO, zs) = F(T,  210, zS) (9.126a) 

and 

-2 i k  a t ,  z , z S  = a - 2 k u t ,  T,  2) I F t ,  I ,  z ,  (9.126b) 

where 

f:(O,zlO,zs) = S ( Z  -zS) .  (9.126~) 

In analogy with Eqs. (9.35) we define 

* 7  (r, ~ 1 0 ,  zS 1 = F;[%, 210, zsl (9.127) 

and obtain the system of equations 

where 



D.R. PALMER 

in which 

C , ( ~ , z l O , z , )  - 6 ( z  -zS) ,  

and 

If the integral over T in Eq. (9.128a) is evaluated by the method of stationary phase, we have 

with 

and 

(9.1 29d) 

This system of equations was first derived in Ref. 84 using different techniques. Equa- 
tion (9.129b) is identical in form to the usual two-dimensional parabolic equation with the ex- 
ception that the index of refraction is replaced by an effective index of refraction obtained by 
integrating over the horizontal coordinates. The dominant contributions to this two- 
dimensional integral come from a cigar-shaped region about the geometric-optics path. The ex- 
tent of this region is determined by the horizontal gradients of n 2  (x) and typically is of the 
order of 10 kms. This impoved equation is not particularly useful when modeling the effects of 
sound-speed fluctuations which are horizontally homogeneous and isotropic. It does offer an 
advantage, however, if one is interested in modeling the effects of large-scale anomalies such as 
eddies or fronts, because it allows one to incorporate into a two-dimensional parabolic equation 
three-dimensional variations in the sound speed. 

9.5 Corrections to the Stationary-Phase Approximation 

In calculating corrections to the stationary-phase approximation, we shall assume that the 
horizontal straight-line geometric optics approximation is valid. The extension to the modified 
parabolic equation developed in the preceeding subsection is straight forward. We consider 
therefore Eqs. (9.36). 

Since the stationary-phase approximation amounts to the assumption that q, is slowly 
varying about the stationary-phase point T = R, corrections may be obtained by expanding q, 
about T = R: 

m 

- 2 1 (T - R ) I q  ( I )  (R, z10. zs). q, (R, zl0, 2, ) - 
1-0 '! 
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where 

*( I )  (R,z(o,z , )  - a ;  Y, ( ~ , z I o ,  z,)l , -R. (9.13ob) 

Substituting ~ q .  (9.1 30a) into Eq. (9.36a) gives 

with 
1 12 

Z\(Z) =W e - i z J k  (r - 111 exp - (r + t-'1 . 
0 [ I 

The calculation of corrections to the stationary phase approximation reduces to the calculation 
of the integrals Zl and the derivatives Y (I). 

We first indicate how ZI may be calculated for any 1. By the change of variable r - r -' it 
is oossible to write 

where Nis the coefficient in Eq. (9.132): 

For any I the expression in the second pair of brackets in Eq. (9.133) may be written as an hh 
order polynominal in r + (lit): 

With this expression Eq. (9.133) becomes 

Equation (A121 gives 

Since the Hankel function obeys Bessel's equation 

it is always possible to write 
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thus expressing all the higher order derivatives in terms of the first and second derivatives. 
The expression for ZI now becomes 

This expression gives the exact value of the integral. The determination of the coefficients a;, 
b,, and c, is straightforward for any 1 and m (but tedius for large I or m). As an illustration 
we have, for I < 2, 

A; -2 A{ = -2 A( - 0  
Al -1  j! 

and 
bo -1  b1 -0 b2 - -1 
co = 0 Cl - -1 C2 ' 1 Iz, 

giving 

and 

Zl (z) - - i n  N 1 + i- H i l ) ( z ) ,  I :I 
Since z - k,R is always large, it is usually sufficient to approximate the Hankel function by the 
first term of its asymptotic series: 

inHJ1) (2) = N - I  . (9.138) 

Substituting Eq. (9.138) into Eqs. (9.137) and carrying out the indicated differentiations gives 

1 Z1(z) = -- 
2iz ' 

and 
1 z2 ( z )  = - - 1 +- 
'iz (iz)2' 

Equations (9.130b), (9.131), (9.132), and (9.139) yield 

(9.1 40) 

In writing this expression we have kept only the leading correction which increases with 
range. 

Consider now the situation where the sound speed is a function of depth only. From Eq. 
(9.43) we obtain 
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a,21yT (R, zlo, zs)IT -R = a i l y ( ~ ,  zlo, z,), 

and Eq. (9.140) becomes 

P(X)  = 'I2 eikoR ly (R, 110, z,) (1 + A), 
41r I koR I 

where A is an estimate of the error associated with the stationary-phase approximation: 

This is as far as one can go without specifying the sound speed and using a model solution to 
calculate A via 

*(R.zlO,z,) = ~ Z , , ( ~ ) ~ ~ ( z , ) e x ~ [ ~ ( k ; ( * :  n k : ) .  1 (9.144) 

(This equation is to be compared with Eq. (9.421.) For a range-independent sound speed the  
straight-line geometric-optics approximation is exact. Therefore the stationary-phase approxi- 
mation is equivalent to the parabolic approximation, and the question of the validity of the par- 
abolic approximation reduces to the question of the size of A .  In this case one does not need to 
numerically solve the parabolic equation in order to discuss the error. All that is required is 
values for the normal-mode eigenfunctions and eigenvalues. 

If the sound speed possess a range dependence, that is, if it depends on the horizontal 
coordinates x, = (x, y), then Eq. (9.141) is no longer valid. The breakdown of Eq. (9.141) was 
suggested when we wrote Eq. (9.46) and may be inferred from Eq. (9.31). We could calculate 
the correction to the stationary-phase approximation directly from Eq. (9.140) by numerically 
solving for ly,(R, z(0,  z,) for a range of values of T about T = R and then numerically com- 
puting the second derivative. For a typical range-dependent sound speed, however, the most 
important correction to the stationary-phase approximation (not the parabolic approximation) is 
again given by Eqs. (9.142) and (9.143) [851. It would be desirable however to have a criterion 
which determines when Eqs. (9.142) and (9.143) are likely to be modified as the result of the 
range dependence of the sound speed. 

It is not difficult to show the solution to Eq. (9.36b) satisfies the integral equation 
i k , ~  * 

T r , z , z s  = J O r , z ~ , z s  --$drl J. d.1 
R 

x lyJO) (r, zl rl, zl ) U(rl, zl ) qT (rip ~ 1 1 0 ,  zs ). (9.145) 
1 Here Q!') satisfies Eq. (9.36b) with U = - - (n - 1 ) set equal to zero. Since 
2 

ly,g) (r, z(rl ,  zl ) = *do) (tr, zl trl, zl ), (9.146) 

it follows that 
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Therefore 
- - 

VItR(R,  ~ 1 0 ,  z,)  R f ( t R ,  z l o 9 z s ) ,  (9.148) - 

- 

where R is defined by the equations 

b ikoar  + a: - 2k0 U [ i .  z ] ]  ' ( r ,  z10.  z,) = 0 (9.149) 

and 
- 

The function R depends on t in two distinct ways. First, t scales the range. This depen- 
dence persists even when the sound speed is independent of the horizontal coordinates. , 
Second, R has a t dependence which results solely from the range dependence of the sound 
speed. - 

- 
- 

In analogy with Eq. (9.131) we have 

If we take 

R t ( R , z l O , z S )  - a ' - ' ( R , z ~ o , z , )  = g ( R , z l O , z , ) ,  (9.152) 

Eq. (9.151) reduces to Eq. (9.140) (for k,R large). In developing a criterion which will deter- 
mine when Eqs. (9.142) and (9.143) are valid, it is sufficient to consider only the I = 0 term in 
Eq. (9.151): I 

(If the lowest order term is in error, there is little hope for the higher order terms.) With the 
stationary-phase approximation, Eq. (9.153) reduces to Eq. (9.47) because of Eq. (9.152). 

We now write a path integral for R 

R R ,  0 ,  z = $ D [ Z ( ~ ) I  exp I ik, d r 2  - U [ i , z ( r ) ~ ~ I .  (9.154) 

The t dependence of R occurs only in the argument of U. Therefore the term labeled Eq. 
(9.153) may be rewritten in the form 

where 
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By carrying out an analysis similar to that which gave Eq. (9.110), we find 
R 151 '" exp [ikoR - iko J dr U(r, z )I exp [& (r) I '1, J [ z ( r ) l  3 q?r - 
0 

where 
R 

F[z ( r ) ]  = ko J dr ru1(r ,  z(r)  1, (9.158a) 
0 

with 

~ ' ( r ,  z)  = ar U(r, 2). 

Substituting Eq. (9.157) into Eq. (9.155) yields 

2 
1 27ri 1 & - 4n [-I koR 112eik0~ J D[z (r) I exp iko 1 dr [$ - U(r, 111 cxp [$I. 

Equation (9.159) agrees with Eq. (9.47) provided ~ ~ / 2 k , ~  is small, say a quarter of a cycle: 

(This expression is analogous to Eq. (9.113b).) To a good approximation Eq. (9.160) may be  
replaced by 

where z *(r) is any one of the ray paths defined by ray acoustics. Equation (9.161) gives an 
operational procedure for determining when the leading order correction to the stationary- 
phase approximation is not given simply by Eq. (9.143). 
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APPENDIX A 
THE FREE-SPACE GREEN'S FUNCTION IN n DIMENSIONS 

- 
Let x' - (x,, ..., x , )  be an n-dimensional coordinate vector, and let V - 5 8:: be t h e  

i - l  
associated Laplacian. The n-dimensional, free-space Green's function G, (g 2') satisfies 

where 8 (" (5) is the n-dimensional 8-function. In this appendix a one-parameter integral 
representation for G, will be constructed. 

Introducing the Fourier transform 

we have 

for outgoing waves. We now use 

which follows from the Fourier transform of the step function 

where 

@(7) = I ,  7 > 0, - 0, 7 < 0. (A61 

Substituting Eqs. (A31 and (A4) into Eq. (A21 and interchanging the orders of integration gives 

The n-dimensional integral over breaks up into n one-dimensional integrals, and each of 
these one-dimensional integrals can be readily evaluated (Eq. (4.21)) giving 
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where R ,  is the magnitude of x' - E': 
I 

With the change of variable 

R n 
7 - -  7 

2ko 
we have 

We have assumed here that ko is real so that k: > 0. Equation (AIO) remains valid if ko is 
complex as long as the branch cut is defined so that k ,  has a positive imaginary part. In one 
dimension with R 1  . = ( X  - x'I we have 

1 2 r i R 1  'I2 
=- - 

ko ] 4'5 exp + +I]. (A1 1) 

In two dimensions 

where 

and in three dimensions 

with 

R3 = J ( x  - x ' ) ~  + (y - y r ) 2  + ( z  - z ' ) ~ .  

The integral representation Eq. (A10) may be used to derive the far-field expression for 
the Green's function G,. If k o R ,  >> 1, the integral over 7 in Eq. (A101 can be evaluated by 
the method of stationary phase. The single, stationary-phase point is at 7 -- 1, and we have, 
using Eq. (B4) of the following appendix, 



APPENDIX B 
THE METHOD OF STATIONARY PHASE 

Let . 
P 

I (P)  = J dr + ( r ) e i p e ( ' ) ,  ( B I )  
a 

where O is a real function of r  with two continuous derivatives in ( a ,  P )  and p is some nu- 
merically large parameter. If 0 ' ( r i )  = 0 ( i  = 1,  ..., m) with a < r i  < P and 0 " ( r i )  f 0,  
then* 

In the text we apply the method of stationary phase to integrals of the form 

where a and b are~.positive parameters and k,& is assumed large. We have 

*C. Eckart, "The Approximate Solution of One-Dimensional Wave Equations," Rev. Mod. Phys. 20, 399-417 (1948). 
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