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ABSTRACT 

A procedure has been developed for the construction of random 
rough surfaces with statistics which approximate the ideal of multi- 
variate Gaussian statistics with a prescribed spectrum. Estimates of 
the deviation of the sample surfaces from the ideal ensemble statistics 
are made. The procedure uses a fast-Fourier-transform algorithm to 
produce a numerical surface which is then used to construct a physical 
realization of the surface via a numerically controlled milling 
machine. The resulting surface is one which can be used in scattering 
experiments, and the degree of conformity of its statistics to those of 
the ideal is well understood. The use of these surfaces will eliminate 
a major source of uncertainty in the interpretation of controlled 
experiments. 
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THE THEORY AND CONSTRUCTION OF MULTIVARIATE 
GAUSSIAN SURFACES 

In the experimental study of scattering of sound from random rough surfaces, it is 
desirable to have surfaces whose statistical properties are as well known as possible. To 
compare theory and experiment, researchers generally compromise and assume a Gaussian 
height distribution, since they are the easiest to deal with theoretically. Often this as- 
sumption has been justified by measuring the surface and showing that it deviates only 
slightly from Gaussian. Even if the experimental surface has a Gaussian height distribu- 
tion, this does not guarantee a multivariate Gaussian height distribution. Since other 
assumptions or approximations are usually made in the theoretical aspects of scattering, 
the removal of those assumptions concerned with surface statistics is necessary. It is the 
purpose of this report to outline a method to construct a surface with a multivariate 
Gaussian height distribution and a prescribed correlation function. The procedure that 
we have used results in surfaces whose degree of accuracy is relatively well known. The 
surfaces so constructed are to our knowledge unique. 

The present report contains two main sections. The first main section contains a 
theoretical description of the procedure with some error estimates. The second main 
section contains a description of the algorithm used to numerically generate and physi- 
cally form a surface. The second section also briefly discusses a specific surface with a 
Gaussian correlation function constructed using the program. An outline and a listing of 
the computer programs written for the study is given in the appendixes. 

THEORY 

Surface Generation 

The stochastic process used to generate the surfaces is the usual ( l , 2 )  random-phase- 
Fourier-series process. Specifically the surface height is the real part of a complex func- 
tion of x and y (or x), where x and y are the coordinates in a plane parallel to the average 
surface, that is 

The function A(x) is expressed in terms of a random-phase Fourier series 
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where 
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and 

The phases $J,, are (2Nx + 1 )  (2Ny + 1) independent random variables uniformly 
distributed over the interval (0,27r). Each surface formed in this way is defined o n  a 
rectangle Lx by Ly and can be periodically continued outside this region. The coefficients 
in the series have been chosen so that S(p) is the spectrum of the surface. The fact  that 
h(x)  is a Gaussian process is a consequence of the central limit theorem (1). However, 
for completeness, the process of the preceding paragraph will be analyzed in detail. A 
detailed analysis is also useful in order t o  develop estimates of the deviations from the ideal 
inherent in any finite surface constructed from Eq. (1). 

If one assumes multivariate Gaussian statistics, then the lowest order or two-point 
correlation function contains all the information necessary to specify the statistics, and 
the higher order correlation functions are simply related t o  the two-point correlation 
function. If the statistics are not multivariate Gaussian, then this is no longer true, and 
it is important t o  know how the correlation functions deviate from the ideal. 

These deviations are due to the finite surface size and appear in two ways. One way 
is the deviation of the ensemble statistics from the ideal. This is treated in the next sub- 
section, and it is found that this deviation is negligible compared to  the second deviation, 
which is the fluctuations in the statistics of an individual surface from the ensemble 
statistics. This is treated in the third subsection "Statistical Fluctuations" by estimating 
the mean-squared fluctuations in the correlation functions as a function of the order of 
the correlation function (equation (22)). The fluctuations increase as the order increases, 
and when the fluctuations become comparable t o  the maximum value of the correlation 
function, this is taken to be the maximum usable order. A specific example is contained 
in the third subsection. Since the correlation functions appear in the theory of surface 
scattering, this estimate is of particular interest. 

Ensemble Statistics 

The statistical quantities of interest to  us are the height correlation functions, which 
follow directly from the characteristic functions associated with the joint probability 
distributions. First let us consider the joint probability density for the complex quantity 
A(x~) ,  which will be represented by a two-dimensional vector A(xi). The usual conven- 
tion of associating the imaginary part of A(xi) with the 2 axis and the real part with the 
1 axis will be followed. 

It is easiest t o  consider. building the surface u p  one term at  a time, so for the time 
being we will think of the series in Eq. (2) as a single-parameter sum. The problem 
viewed in this way can be seen to  be a type of random walk process. 

The N-point joint probability density for A(xi) generated by a Fourier series of K 
terms will be denoted by PKIA(xl), . . . , A(xN)]. The density functions are most easily 
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found by writing an integral recursion relation which relates PK [A(x1), . . . , A(xN)] to 
PK-i [A(xl), . . . , A(xN)].  Since each term in the series is statistically independent of 
the others, the recursion relation is particularly simple and is given by 

This says that the probability of A (x) having a certain value at the points x l ,  . . . , XN 
with K terms in the series is the sum over the probabilities of having a certain value with 
K - 1 terms in the series times the probability that Kth term will increment the value of 
A(x) by A(x)  - B(x). 

Equation (4) can be solved immediately by introducing the characteristic functions 
associated with the joint probability densities PK and APK. The characteristic functions 
CK and CK are defined by 

and 

Substitution of (5) and (6) into (4) gives 

Rewriting this equation in the form appropriate to Eq. (2) gives 

The probability density Ap,, [A(xl), . . . , A(xN)] and hence crnn(kl, . . . , k ~ )  can 
be determined as follows: Since pmn corresponds to only one term in the Fourier series, 
the A(xi) differ only by a phase factor. Thus A(x2),  . . . , A(xN) are determined once 
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A(xl) is known. Since the phase of A(xl) is uniformly distributed over (0, 2n), t h e  
probability distribution for a single component surface can be expressed as 

- R L n  . A(xl ) l  61(IA(xl)l - Dmn) (8) 

where Dm, is the amplitude of the mnth term in the series given by Eq. (2), that is, 

and 6i(x) q d  E2(x) are the one- and two-dimensional Dirac delta functions respectively. 
The dyad R&, produces a rotation corresponding to the phase shift induced by 
exp [ip,, (xj - xl)] . Explicitly 

where 

i 
Omn = Pmn ' (xj - X I ) .  

The characteristic function cmn(kl, . . . , kN) can be found by Fourier-transforming (8). 
The result is 

The characteristic function for A(x) could now be determined from (11) and (7). 
However the quantities that we are really interested in are the N-point correlation func- 
tions for h (x) = Re A(x) = Al(x).  The density function for Al(xl),  . . . , A ~ ( x N )  follows 
from that of A(xl), . . . , A (xN) by integrating over A p(xl), . . . , A ~ ( x N ) .  Thus the char- 
acteristic function for h(xl),  . . . , + (XN)   follow^ from the characteristic function for 
A(xl) ,  . . . , A(xN) by setting kl  - i2, . . . , k~ . i2 equal to 0. Thus 
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where 

Now Dm, is a small quantity, vanishing as A;"~ for large AT. Since we are interested in 
AT large compared to the correlation area, (12) will be expanded in a power series using 

Combining (12) and (13) gives 

where 

and 

If the second term in (14) is neglected, then the generating function for a multivariate 
Gaussian distribution is obtained. Thus the second term in (14) represents the deviations 
from multivariate Gaussian statistics due to the finite size of AT. 

It is desirable t o  have an estimate of the error introduced in the correlation functions 
by the second term in (14). This will be done by finding the error in r ( x l ,  . . . , x2,) 
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when all the points are collapsed to the same point. The measure of error will be taken 
to be 

where ( ) means average over the distribution corresponding to (14) and ( )Gamsim means 
average over the distribution corresponding to the first term in (14). These quantities are 
most easily computed using the relationship 

Expanding both sides of (18) and equating powers of k gives, to o(A?'), 

Thus to this order 

A question of more interest is: How many points can the correlation function have be- 
fore the error measured by €2, obliterates its significance? This will be estimated by 
setting ~2~~~~ equal to 1. Thus 

As an example, (20) will be evaluated for a Gaussian correlation function 

From this and Eqs. (15) and (16) it follows that 

r ( 0 )  = ro 
and 

F2(0,0) = F ; L ~  . 

Thus for this case 
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Specifically for L, = Ly = 10L, 

That is, the highest order correlation function that is significant is the 30-point function. 

Actually these deviations from a Gaussian process are relatively small compared to 
the statistical fluctuations of the ensemble members. These fluctuations will be discussed 
next. 

Statistical Fluctuations 

The ensemble just discussed has the desired statistical properties. However each 
member of the ensemble has statistical properties which fluctuate about those of the 
whole ensemble. It is necessary to construct a measure of these fluctuations which is 
relatively easy to calculate and interpret. 

For each surface of the ensemble we define a correlation function in the usual way: 

Also one can define an ensemble correlation function 

Ensemble-averaging (14) and using the translational invariance of the ensemble gives 

That is, while the correlation function associated with one surface in the ensemble 
does not exactly correspond to the ensemble correlation function, the ensemble average 
of r, does. Since only one surface is dealt with at a time in an experiment, it is useful 
to estimate the deviation inherent in a given surface. One way of doing this is to  calcu- 
late the mean-squared deviation of rS(xl, . . . , x2,) from rl, . . . , ~ 2 ~ ) .  This is difficult 
to calculate in general. However, if the variables xl, :. . , xan are equated, then the prob- 
lem considerably simplifies. For this estimate a multivariate Gaussian ensemble will be 
assumed. The statistical deviation will be defined as 
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[ (hzn(x  + x') h2n(x + xu))  d j  dz t l  

Both of the moments of h ( x )  are most directly determined from the relation involving 
the assumption of Gaussian statistics, namely, 

by expanding in powers of kl  and k2 .  This gives 

2n n 2 11 
2r12 

(hZn(x1)h2n(x2))  = [ ( 2 n ) ! l Z ( + )  C (T) 1  
[ ( n  - 8)  ! ]  2 ( 2 ~ )  ! 

( 1 7 )  
!2=0 

and 

Thus the error measure is 

A2,, = (n!12 2 2gQ 
[ ( n  - Q ) ! ]  2(2!2)! 

( 1 9 )  
Q=O 

The sum will be approximated as follows. The summand as a function of Q is strongly 
peaked a t  some value Q m a x .  The location of this peak can be found by neglecting the Q 
dependence of 

since it is a slowly varying function of Q by comparison. Use of Stirling's approximation 
gives for QmaX 

211,,, * n  + O(1) . ( 2 0 )  

Thus the error measure is approximated by 

Aan ~ ? ' ( n  !12 ( x )  22P  iT [xr d2x 2 [ ( n -  Q ) ! ] ' ( 2 Q ) !  - 1 .  
!2=0 

The sum can be evaluated, and the result is 
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Combining this with (21) and using Stirling's approximation gives 

This is the desired relation. For a Gaussian correlation function, (22) can be evaluated. 
Let 

Then (22) gives 

It should be kept in mind that (23) is valid only for large 2n. 

Equation (22) or (23) can be used to estimate the highest order correlation function 
that is significant. This is done by setting A2,,,, -- 1 (100% error). This gives for a 
Gaussian correlation function 

and for L ~ I L , L ,  = 11100 

Thus for this particular choice of parameter the nine-point correlation is the highest order 
that has any significance. Since Azn increases rapidly as n increases, the value of 2n that 
can be considered reasonably accurate is the next lowest, or 8 for this case. 

An indirect check on this estimate was made using a numerically computed surface. 
The argument used was as follows: Essentially 2n,,, is a measure of the highest order 
moment of p(h)  that is significant. The main way that deviations from a Gaussian distri- 
bution manifest themselves for a finite surface is in the finiteness of the range of heights. 
As the order of the moment increases, its error increases, since it is more sensitive to the 
tails of p(h). A way of estimating the maximum usable moment is as follows. The 2nth 
moment of h is ideally 

m 

(h') = (2*1'0)-112 [ 
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The integrand peaks strongly a t  

Thus an estimate of 2nmaX can be obtained by setting 

The surface numerically constructed by the methods discussed in the next section 
has a Gaussian correlation function with L, = Ly = 10L, = 10  and ro = L:. It was 
found that for this case h m a x  = 3. This gives 

which is in good agreement with our previous estimate. -- 

One additional question can be asked about the method of error estimation used t o  
derive ( 2 3 )  and ( 2 4 ) :  What happens t o  the error when the points x l ,  . . . , x2, are no t  
taken to be equal? This question is difficult to  answer exactly, but an indication of the 
probable answer can be found from an examination of the fluctuations in the two-point 
correlation function. In this case, if r ( x )  is monotonically decreasing, then the fractional 
error increases as 1x1 increases. This is due t o  the fact that there is a constant mean- 
squared noise in r ( x ) ,  and since F ( x )  decreases as x increases, the fractional error will 
increase. It is reasonable to expect that this behavior is also present in the higher order 
correlation functions. 

Conditional Height Distribution 

In the next section, where the numerical procedures used to  generate and machine 
an actual surface are discussed, an approximation is made concerning the behavior of the 
surface near an extremum. To justify this approximation and to  gain some insight into 
the nature of the surfaces generated, we will examine the conditional height distribution. 
The distribution of interest is the probability distribution of heights hl a t  some distance 
x12 from an extremum of the surface, given that the height at the extremum is h a .  
Starting from the multivariate Gaussian distribution p ( h l ,  h a ,  V h a ) ,  i t  follows that 

where ro = r ( x  = O), and x3 = X 2 .  

The chief feature revealed here is that near an extremum the surface has on the 
average the shape of r ( x ) .  Since the width of the distribution is very narrow when 

1 x lz l  is smaller than a correlation length and the fractional width decreases as h 2  
increases, the highest peaks near their maximum will closely resemble the correlation 
function. 
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This also provides an interesting insight into the appearance of the surface given the 
correlation function of the surface. In the next section we assume that the point of 
minimum radius of curvature of the surface coincides with the point of maximum excur- 
sion from zero. This will be a good approximation as long as the minimum radius of - 

curvature and maximum value of the correlation function coincide at x = 0. This is true 
for a Gaussian correlation function and will be true for most correlation functions of 
interest. 

THE NUMERICAL ALGORITHM 

Description of Implementation 

The computer program package RANMILL was designed to implement the methods 
described in the preceding section and to  carry out the numerically controlled milling of 
the surface. The RANMILL package consists of four computer programs written for a 
Control Data Corporation 3800 series computer. An outline of RANMILL is given in - 

Appendix A, and a listing is given in Appendix B. 

RANMILL calculates a series of random surfaces using the method described in the 
preceding section and chooses the optimum surface on the basis of the agreement of the 
theoretical and calculated height distributions. It then does a detailed statistical analysis 
of the optimum surface, comparing its statistical properties to those prescribed. The user 
can further employ the package to determine optimum tool travel during milling and, 
finally, to produce the input for a Bunker Ramo 3300 Incremental Continuous Path 
Numerical Control System (3). 

Calculation of the Surface 

As shown by the section containing Eqs. (1) through (3), a random surface with 
;pecified statistics can be generated from the equation 

vhere A(m, n) = 4 2 L , L y ~ ( m ,  n) and where 

N, and Ny are the number of sampling points along the x and y axes respectively, 

L, is the length along the x axis, 

Ly is the length along the y axis, 

S is the power spectrum, the Fourier transform of which is the autocorrelation 
function of h(x, y), 

@(m, n) is a set of NxNy random phases uniformly distributed on the interval 
[O, 2?r] and shifted such that @(O, 0) = n/2, and 

A(0, 0) cos @(0, 0) equals the mean height of the surface and is equal to 0. 
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This equation lends itself particularly well to computer implementation, since the double 
sum can be evaluated by means of the "fast Fourier transform" algorithm of Cooley and 
Tukey (4). 

- 

The first program in the RANMILL package, SURFACE, calculates a surface and 
examines its statistics. Use is made of the fast-Fourier-transform program FASTFOUR (5). 
This subroutine calculates the Fourier transform at equally spaced sample points, t he  
number of which, due to storage limitations, cannot exceed 4096. Between sample 
points the function is evaluated in RANMILL by a bicubic interpolation algorithm which 
gives a continuous gradient (6). The spectral function, S(m,  n), is evaluated in a sub- 
routine supplied by the user. Using FASTFOUR to  obta!n the Fourier transform of the 
spectral function, SURFACE first calculates the theoretical autocorrelation function 
I'(x, y) and thus the mean squared height of the surface I'(0,O). From this information 
the theoretical height distribution, which is Gaussian, is easily calculable. 

As shown in the preceding section, if one considers the ensemble of surfaces gen- 
erated, the statistical properties of h(x, y) will be the desired ones. However, since we 
are constructing only a single representation of the surface, its statistics are subject t o  
statistical variations around those of the entire ensemble. To ensure the generation of a 
surface which is approximately ergodic, it is necessary to calculate a series of surfaces, 
retaining only the one which "best" represents the statistics of the ensemble. The "best" 
surface is chosen on the basis of the minimum mean-squared deviation from the theoret- 
ical height distribution. 

A more thorough statistical analysis cf the surface is then performed. The joint 
probability distribution of heights and the two- and three-point autocorrelation functions 
are directly calculated at selected points and compared to the theoretical values. For 
this comparison the theoretical values are based on the calculated, rather than the ex- 
pected, mean-squared height. The theoretical height distribution is recalculated based on 
the actual mean-squared height and once again compared to the height distribution of 
the surface. 

Finally SURFACE calculates the partial derivatives of the surface, and the three 
matrices h(x, y), ah(x, y)/ax, and ah(x, y)/ay evaluated a t  the sample points inherent in 
FASTFOUR are stored on magnetic tape. 

The chief problem encountered in the implementation of the program was the gen- 
eration of the random set @(m, n). Equation (1) is particularly sensitive to correlations 
in @(m, n). These correlations result in defects in the statistical properties of the surface. 
In one instance the use of an inadequate random sequence was observed to generate a 
surface with a height distribution which deviated significantly from the expected Gaussian. 

Subroutines that generate so-called pseudorandom number sequences are available in 
most program libraries. In these the numbers are generated sequentially, each number 
being uniquely determined by its predecessor. Such number generators have the advan- 
tage that they can generate the elements of a sequence one at a time without requiring 
storage for the entire array. However, to a greater or lesser extent, depending on the 
method, sequences generated in this way show correlations and were found inadequate 
for use in this study. 

A much better set of random numbers can be generated if the sequential requirement 
is relaxed and the random set is generated as an entity. We found that the nonsequential 
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random set generated by repeated shuffling of the set of numbers produced by a sequen- 
tial generator was satisfactory. In the random-number generator presently used in SUR- 
FACE, a sequence is first generated using a multiplicative congruential pseudorandom 
number generator from the program library. Several passes are then made through the 
sequence in which elements are interchanged with others at random addresses within t h e  
array. The random addresses are generated by the same multiplicative generator that 
produced the original sequence. The surface which is generated by the program can be 
changed either by specifying a different initial number for the random-number generator 
or by simply shuffling more or less often. 

A test was performed on the random number set generated in this way. It con- 
sisted of using the program SURFACE to generate a surface corresponding to a flat sur- 
face spectrum using a 63-by-63-point matrix. The resulting h ( x ,  y) matrix should have 
entries that are Gaussian distributed. It should also have a two-point autocorrelation 
matrix which is a Kronecker delta and a three-point autocorrelation matrix which is zero. 
These matrices were calculated numerically and were found to be correct within the 
expected uncertainty (due to  counting errors inherent in the use of a finite sample). 

Additional Statistical Comparisons 

Using the surface matrix and the partial derivative matrices as written on magnetic 
tape by SURFACE, program PARSTAT calculates the probability distributions of the 
partial derivatives and of the gradient and compares them to the theoretical distributions. 
The maximum gradient of the surface and its location are also printed out. Finally 
PARSTAT estimates the maximum curvature of the surface. As stated in the last para- 
graph of the preceding main section, we assume that it occurs at either the maximum or  
the minimum of h(x, y). The curvature is then calculated by fitting a quadratic form in 
that region. 

Tool Travel During Milling 

The path of the tool which mills the surface is determined by program POINTS 8. 
Like PARSTAT, this program obtains the surface matrix and the partial derivative 
matrices from magnetic tape. At this point the matrices may be rescaled using input 
scale factors. 

POINTS 8 contains an interpolation subroutine, INTERP, which provides values of 
the surface and its derivatives between matrix points. This subroutine uses the bicubic 
interpolation algorithm of Coons (6), which produces a function with continuous first 
derivatives. 

For milling, the surface is defined as a set of equally spaced parallel cuts h ( x ,  
constant). The cuts consist of linear chords defined by points on the surface. The 
spacing between cuts and the definition of the chords depends on the desired accuracy 
to which the surface is to be milled. For the calculation of a chord representation, three 
tolerances are supplied by the user. One of these, eh,  specifies allowable error in the 
height of the milled surface. The other two, T, and T y ,  are tolerances on the slope. 
These tolerances are used in calculating both the cut spacing and the chord lengths. 

One milling error which depends on the cut spacing is introduced by the hemispher- 
ical shape of the milling tool. The use of such a mill traveling along parallel cuts produces 
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a scalloping effect. By approximating the surface at the point in question by a portion 
of a sphere, the error introduced by this effect can be shown to be well approximated by 

where Ay is the spacing between adjacent cuts, hy is ah@, y)/ay, R is the radius of 
curvature of the surface, and R m  f is the radius of the mill. The radius of the mill must 
be less than or equal to  the smallest radius of curvature of the surface; therefore 

Then, if eh is the allowable error in the surface height, 

It is conservative to replace hymax by the maximum gradient of the surface Sm. Thus 

It can be seen from this relation that, to keep the number of cuts to  a minimum, R,f  
should be taken as large as possible without exceeding the minimum radius of curvature 
of the surface. 

The linear chords by which each cut is approximated are also chosen on the basis of 
eh, as well as on the basis of the slope tolerances T, and Ty . Chords are chosen t o  be of 
maximum length without violating the following conditions: 

1. that they fall entirely within the region [h (x, y)  - eh, h(x, y) + eh] , 

2. that their slopes be within T, of ah@, y)/ax, and 

3. that the change in ah@, y)/ay along the length of an individual chord be less 
than Ty. 

Given a fixed starting point [xo, yo, h (xo, yo)] , chords of increasing length to the points 
[XO + AX, yo, h(xO + Ax, yo)], [x0 +  AX, yo, h(xO + 2Ax, yo)], etc. are tested against 
the three limiting conditions until one fails. If the first chord which is tested fails to 
meet one of the conditions, the chord length is repeatedly decreased by halving the 
x coordinate of the endpoint until all conditions are met. 

A constant value of Ax is used throughout the surface. Its length is chosen such 
that the first chord cannot fail to meet the first condition. If the surface is approxi- 
mated by a parabola, the maximum deviation of the chord from the surface is 



NRL REPORT 7588 15 

1 2 a2h(x)  , 6 = max[Ih(x) - c(x)l] .;. 8 (Ax) 
ax2 

where Ax is the change in the x coordinate over the length of the chord. Thus it is con- 
servative t o  set 

where 

- a 2  h ( x )  hxxm,, - - . 
ax2 

The first trial chord automatically satisfies condition 1 and is tested against only 
conditions 2 and 3. If it fails, increasingly shorter chords are tested until one does not 
fail. Clearly these shorter chords need not be tested against condition 1. 

If the first trial chord meets conditions 2 and 3, longer chords are tried. They are 
tested against all three conditions. The following method is used to  test whether they 
meet condition 1: As each chord is tested, the slopes of the corresponding chords to t h e  
top and bottom of the error band are calculated: 

Ah, + eh 
S n +  = nAx , n = 1 , 2  ,..., N ,  

Ah, - eh 
Sn- = n A x  , n = l , 2 ,  ..., N .  

As long as the slope of the chord falls between min(S,+) and max(S,-), the chord lies 
within the error band. 

As mentioned before, a hemispherical tool is used for milling the surface. Ideally 
the mill should travel tangent to  the chord representation of the surface, its contact point 
being the lines of the chords. However the mill travels in a straight line from one chord 
endpoint t o  the other, so that if ah(x,  y)/ay changes along a chord, and the surface in 
effect rotates around the mill, the contact point of the mill with the surface is not 
exactly a straight line. The error introduced by this effect can be reduced to any desired 
value by decreasing the error criterion on the y partial, Ty. 

The milling tool is offset in such a way that a t  each point it is approximately tangent 
to the surface. If the chords from a given cut are considered t o  lie in the xz plane, then 
Fig. 1 illustrates the case in which 

R1 and R 2  are radius vectors of the milling tool from the point of intersection of the 
chords. Since the milling tool is to  be tangent to  the chord it is cutting, R i  is perpen- 
dicular t o  the ith chord. D is the vector from the point of intersection of the chords t o  
that of the paths of the mill center. 
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Fig. 1 -The paths of the mill center are shown for the case in which 
they  partial derivative is zero. For this case the mill center travels in 
the plane of the chords. The machine tool axis is parallel to the z axis, 

For the general case, where ah (x, y ) / a y  is nonzero, R1 and R p  are rotated out of 
the xz plane so as to be approximately normal to h(x, y) at (xo, yo). This causes D also 
to  rotate out of the plane; however, as will be shown, the rotation is done such that F, 
which is given by F = D - R1, remains parallel to, but not in, the xz plane. 

Consider two chords x l  and xp with slopes Sl and Sp respectively which intersect 
at the point (xo, yo, zO). The unit vectors along the chords are 

iI = dl(;  + s lk )  , 

then the plane tangent to the surface at (xo , yo, 20 ) is given by 

and a vector normal to the tangent plane is 
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Since ISi - z,l < Tx, z, can be approximated by the slope of (21 + 22), so that 

Then a vector which lies in the tangent plane and is perpendicular to + 2 2  is defined by 

V = Nx(Gl  + G 2 ) ,  

and 

By showing that the y component of R1 equals that of R2, one can show that AR is 
parallel to the plane of the chords. Projecting AR onto the plane of the chords results iri 
Fig. 2. R i  and R i  ire the projections of R1 and R2. It can be seen from Fig. 2 that F 
has magnitude 

0.5 I AR I 
I FI = sin (812) 

and direction GI. Thus 

- 0.5lARI 
F = +-xi sin (812) ' 

Fig. 2-The projection of the mill center path onto the plane of 
the chords ie shown for the general case. Since the y partial deriva- 
tive is nonzero, the mill center travels not in the plane of the 
chords but in another, parallel plane. The machine tool axis is 
parallel to  the z axis. 
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where the positive sign is valid for S1 > S2 and the negative sign is used for S1 < S2. 
For S1 = S2,  F = 0. Finally the position of the mill center relative to (xo, yo, zo) is  
given by 

It is assumed in the above derivation that the mill center paths intersect. Although, 
strictly speaking, this is true only if ah(x, y)/ay does not change over the length of the 
chord, this assumption is forced to be valid t o  any desired accuracy by the introduction 
of condition 3 in the chord search, namely that the change in the y partial derivative 
along a chord be less than a tolerance input by the user. 

To increase the similarity of the chord structure of adjacent cuts, the chord search 
always proceeds in the same direction, that is, in the direction of increasing x .  However, 
to  save machining time, the order of points in every other cut is reversed after it has 
been defined so that the milling is back and forth. 

To reduce the amount of material which the finishing mill must remove, the surface 
is f i s t  roughed out using a cylindrical (flatend) mill. For roughing, a rough chord repre- 
sentation of the surface should be used; that is, the input error tolerances should be large. 
The flatend mill travels a constant distance R, above the chord to  ensure that it does not 
gouge the surface: 

where R,, is the radius of the mill used for roughing, E, is the error criterion used in the 
chord search for roughing, and S, is the maximum gradient of the surface. The spacing 
of adjacent roughing cuts is 90 percent of the diameter of the roughing mill. 

To decrease machining time during roughing, a graduated feed rate is used. Deeper 
chords are machined more slowly than those near the surface of the material. The maxi- 
mum and the minimum feed rate, Fmax and Fmin, are input quantities. The feed rate at  
which the nth chord is machined is given by 

where A = Fmindmax/(Fmu - Fmin), dm, is the maximum depth attained by the rough 
surface, and d, is the maximuni depth of the nth chord. In the finishing of the surface, 
when the amount of material being removed with each cut is smaller and more nearly 
constant, a constant feed rate is used. 

Results 

Figures 3 through 5 describe a surface which was generated and milled using RAN- 
MILL. Figure 3 is a photograph of a surface which was generated using a Gaussian 
spectral function 
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Fig. 3-Sample surface. The sample shown here is 10 by 
10  inches square and has an autocorrelation function r ( x )  = 

(1136)e-x6 . This surface was designed using RANMILL 
and milled out  of Lucite. 

Fig. 4-An isometric computer plot of the surface shown in Fig. 3 

Figure 4 is an isometric plot of the same surface. This spectrum results in a surface with 
a Gaussian autocorrelation function, with a correlation length LC and mean squared height 
rO. LC was taken equal t o  1 inch, and the mean squared height was set to  1/36 inch. 
The surface is 1 0  by 1 0  inches ( L ,  = Ly = 1 0  inches), with 64 sampling points on a side 
(Nx  = N y  = 64), and was milled out of Lucite. 

The actual and expected height distributions of this surface are shown in Fig. 5, . 

along with 85-percent confidence limits. Table 1 contains the expected two-point 
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Fig. 5 -The actual and expected height distribution of the numerically computed 
sample surface are shown. Based o n  Poisson counting statistics, 85 percent of the 
points of the calculated histogram should fall within the indicated error bands. 
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autocorrelation function of the surface and the deviations from it of calculated values, 
and Table 2 is the three-point autocorrelation function, which should be 0 everywhere. 
The milling tolerances used for this surface were eh = 0.004 inch, Tx = 0.06 inch, and 
Ty = 0.076 inch. 
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CONCLUDING REMARKS 

HEIGHT 

A procedure has been developed for constructing random surfaces whose statistics 
approximate those of a multivariate Gaussian surface. Estimates of the deviations of a 
representative surface from the ideal have been discussed in detail. These estimates are 
very useful if the surface is to be used in an experiment which is to be compared closely 
to theory; otherwise the question of whether the theory or experiment is in error will 
always linger. 

The numerical method used is based on a fast-Fourier-transform algorithm and re- 
quires as an input some parameters that govern the resulting surface size and the direc- 
tional power spectrum of the surface (in the form of a subroutine). The resulting surface 
is periodically continuable, so that a larger surface can be constructed by combining 
replicas as if laying tiles, and has been selected so as to best represent the properties of 
the ensemble. The program package also produces a detailed analysis of the statistical 
properties of the surface and a paper tape for machining the surface on a numerically 
controlled milling machine. The surface generation is quite efficient, so that it is prac- 
tical to select the best surface out of 100 for production. 
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Table 1 
The values of the theoretical two-point autocorrelation function r(x) = e - x 2  and the  
percent deviations displayed by the numerically computed sample autocorrelation function, 
c(x)  =  AT) h ( x  + x') h ( x l )  d2x' shown as a function of x and y .  The rms surface 

height and the correlation length are equal to 1. The surface area AT is 10 X 10. 

Table 2 
The values of the numerically computed sample three-point autocorrelation function 
I',(x, z) = (1 / A T )  J h(xf  ) h  (x' + x )  h  (x' + z )  d2x' are shown for selected values of x with 
z  = 0.047 (ix + iy ). The rms surface height and the correlation length are equal to  1. The 

surface area AT is 10 X 10. The ideal ensemble value of I''(x, z )  is 0. 

Y ,  

0.000 

0.156 

0.313 

0.469 

0.625 

0.781 

0.938 

1.094 

1.250 

1.406 

1.563 

c ( x ,  z ) for Various x 

0.000 

1.000 
0.0% 

0.976 
0.09% 

0.907 
0.34% 

0.803 
0.67% 

0.677 
0.94% 

0.543 
1.04% 

0.415 
0.84% 

0.302 
0.30% 

0.210 
-0.58% 

0.138 
-1.74% 

0.087 
-3.03% 

r ( x )  

0.313 

0.907 
-0.78% 

0.885 
0.01% 

0.823 
0.91% 

0.728 
1.82% 

0.614 
2.59% 

0.493 
3.08% 

0.377 
3.19% 

0.274 
2.85% 

0.190 
2.11% 

0.126 
1.05% 

0.079 
-0.15% 

0.625 

0.677 
-2.64% 

0.660 
-1.30% 

0.614 
0.07% 

0.543 
1.36% 

0.458 
2.45% 

0.368 
3.21% 

0.281 
3.54% 

0.205 
3.42% 

0.142 
2.89% 

0.937 
2.08% 

0.059 
1.19% 

0.156 

0.976 
-0.20% 

0.952 
0.25% 

0.885 
0.84% 

0.783 
1.46% 

0.660 
2.00% 

0.530 
2.30% 

0.405 
2.27% 

0.295 
1.83% 

0.205 
1.00% 

0.135 
-0.13% 

0.085 
-1.40% 

of x 

1.250 

0.210 
-3.60% 

0.205 
-2.18% 

0.190 
-1.06% 

0.168 
-0.25% 

0.142 
0.25% 

0.114 
0.42% 

0.087 
0.29% 

0.063 
-0.08% 

0.044 
-0.56% 

0.029 
-0.99% 

0.018 
-1.16% 

and Percent 

0.469 

0.803 
-1.64% 

0.783 
-0.55% 

0.728 
0.62% 

0.644 
1.76% 

0.543 
2.72% 

0.436 
3.37% 

0.333 
3.60% 

0.243 
3.38% 

0.168 
2.74% 

0.111 
1.79% 

0.070 
0.72% 

Deviation for 

0.781 

0.543 
-3.57% 

0.530 
-2.07% 

0.493 
-0.59% 

0.436 
0.77% 

0.368 
1.89% 

0.295 
2.67% 

0.226 
3.04% 

0.164 
2.98% 

0.114 
2.55% 

0.075 
1.90% 

0.047 
1.22% 

1.406 

0.138 
-2.11% 

0.135 
-0.88% 

0.126 
-0.06% 

0.111 
-0.35% 

0.094 
0.41% 

0.075 
0.14% 

0.057 
-0.39% 

0.042 
-1.07% 

0.029 
-0.99% 

0.019 
-2.30% 

0.012 
-2.45% 

1.563 

0.087 
0.16% 

0.085 
1.18% 

0.079 
1.66% 

0.070 
1.64% 

0.059 
1.19% 

0.047 
0.41% 

0.036 
-0.61% 

0.026 
-1.72% 

0.018 
-2.75% 

0.012 
-3.49% 

0.008 
-3.73% 

Various 

0.938 

0.415 
-4.19% 

0.405 
-2.62% 

0.377 
-1.14% 

0.333 
0.16% 

0.281 
1.20% 

0.226 
1.90% 

0.172 
2.21% 

0.126' 
2.15% 

0.087 
1.79% 

0.057 
1.27% 

0.036 
0.80% 

Values 

1.094 

0.302 
-4.27% 

0.295 
-2.72% 

0.274 
-1.37% 

0.243 
-0.25% 

0.205 
0.57% 

0.164 
1.07% 

0.126 
1.23% 

0.091 
1.07% 

0.063 
0.69% 

0.042 
0.26% 

0.026 
-0.03% 
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Caruthers and Novarini (7) have also developed a procedure for numerically calcu- 
lating random rough surfaces based on spatial filtering. Our procedure has several advan- 
tages, some of which are: careful statistical estimation and testing of fluctuation error, a 
fast algorithm, and the production of a physical realization of the surface. 
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Appendix A 

PROGRAM OUTLINE 

I. Program SURFACE 

A. Generate a series of surfaces 

1. Generate a set of random phases and shift it so that @(O, 0 )  = n/2 

2. Generate the spectral function A(m, n )  

3. Calculate the expected correlation function 

4. Calculate the surface and its height distribution 

5. Reshuffle the random phases and repeat until the desired number of 
surfaces has been generated 

B. Print the surface whose height distribution deviates least from the theoretical 
one and store it on magnetic tape. Calculate and output its partial derivatives 
and its mean squared height. Search for the maximum and minimum of 
h ( x ,  Y ) .  

C. Check the statistics of the surface using calculated, rather than theoretical, 
mean-squared height in determining expected distributions. 

1. Height distribution 

2. Joint probability distribution 

3. Autocorrelation function 

4. Three-point autocorrelation function 

11. Program PARSTAT 

A. Calculate probability distribution of x  and y  partial derivatives and of the 
gradient and compare to expected distribution 

B. Calculate maximum gradient occurring on the surface and its location 

C. Estimate the radius of curvature at the surface maximum and at the minimum 



24 SCHUETZ AND ZIPFEL 

111. Program POINTS 8 

A. Scale the surface using input scale factors 

B. For bivariate surfaces calculate a rough representation of the surface t o  be used 
in roughing i t  out. This step is omitted for surfaces in only one variable. 

1. Calculate cut spacing 

2. Search out chords 

3. Displace mill a constant distance R,  above the surface 

4. Calculate feed rate as a function of chord depth 

5. Buffer out points onto magnetic tape 

C. Define a fine chord representation of the surface t o  be used for the final 
milling. 

1. Calculate cut spacing 

2. Search out chords 

3. Calculate mill displacements for the hemispherical mills 

4. Use a constant feed rate 

5.  Buffer out the points onto magnetic tape 

IV. Program PAPER 

This is a postprocessor which reads the surface as defined by POINTS 8 from 
magnetic tape, puts it into format required by the 3300 and punches a paper tape. 



Appendix B 

PROGRAM LISTING 

PROGRAM D I E4ENS 
D I M E N S I O N  H ( 6 4 t 6 4 ) t G K ( 6 4 t 6 4 ) t C P H ( 6 4 * 6 4 ) 9 A ( 6 4 * 6 4 ) 9 D A X ( 6 4 e 6 4 ) 9 P H H ( 6 4  
lr64)tDHX(64r64)tX(1024)#Y(1O24)9r.1FF(3)tC(64~64)#A~4~64e64) 

REAL LlvTWO 
L O G I C A L  I N T E R  
COMPLEX~A~DAXICPHIC  
E O U I V A L t N C t ( k l r C P H s A r U A X )  t ( P H t i r L j H X )  r ( A ( 2 0 4 9 )  rGi.?) 
L N T W O = L O G F ( 2 * )  
READ 9019SPECT 

C  FOR A  TWO-DIMENSIONAL SURFACEIUSL NFY=O*  
2 0  READ 9 0 0 r N F X s N F Y e I F R  

I F ( E O F e 6 0 )  5 0 9 2 1  
2  1 CONT I N U E  

I F ( I F K * N E I O  )GO TO 2 6  
C A L L  b A C K F I L t ( 1 )  
DO 2 4  L L L = l r 1 0 0 0  
READ ( 1 ) rSCR 
I F ( E O F t 1 )  2 6 9 2 3  

2 3  C A L L  S K I P F I L E ( 1 )  
2 4  CONTINUE 
2 6  C A L L  dACKF I L E (  1 )  

N X = Z * ( N F X + l )  $ N Y = Z * ( N F Y + l )  
I F ( N F Y . E Q * O )  N Y = 1  
IF (NFX.EQ.0 )  N X = 1  
F M X = t O G F ( F L O A T ( N X ) ) / L N T W O  
F M Y = L O G F ( F L O A T ( N Y ) ) / L N T W O  
MFF ( 1 )  =FMX 
M F F ( 2 ) = F M Y  
M F F (  3 ) = O  
IF(ABS(FMX-MFF(l))*LT*lL-lO) GO TO 1 0  
lF(ABS(FMY-MFF(2))-LT*lE-10) GO TO 1 0  
P R I N T  9 0 2  
STOP 

10 CONTINUE 
I F ( M F F ( l ) r G E . M F F ( Z I ) G O  TO 11 
I N T E R = * T R U E *  
MSCR=MFF ( 1 )  
M F F (  l ) = M F F ( 2 )  
MFF ( 2  =MSCR 

11 I F ( M F F ( l ) . G T o l Q )  M F F ( 1 ) = 1 0  
I F ( M F F ( I ) + M F F ( Z ) . G T . l Z )  M F F ( 2 ) = 1 2 - M F F ( l )  
N X = Z * * M F F ( l )  
NY=2+*MFF ( 2  
C A L L  S U R F A C E ( H ~ G M I C P ~ I ~ A ~ D A X ~ P H H S O H X ~ C ~ A A ~ X ~ Y  * M F F 9 N X * N Y * I  NTERsSPECT 

1 )  
GO TO 2 0  

9 0 0  FORMAT (3 I 5  ) 
9 0 1  FORMAT ( A 8 1  
9 0 2  FORMAT(*OINPUT M A T R I X  DIMENSIONSeCALCULATED AS Z ( N F X  + 1 )  OR 2 ( N F Y +  

1 1 1 ,  ARE NOT POWERS OF TWO.*) 
5 0  STOP 

END 
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SUUROUTINt S U H F A C t ( k t r G f . l r C P t l r A r L / A X r P t i H r U H X t C r A A r X ~ Y r M F F  r N X r I i Y r  I N T E R  
1rSPECT I 

UIMENSIOPL W k F ( 3 1  t S V 1 ( 1 0 2 4 I r S V 2 (  1 0 2 4 ) r P 1 i Y ( 4 O C ~ 6 I  r P H I ( 4 0 9 6 )  
i 
1 

OLMENLlON H ( N X r N Y )  r G M ( 6 4 e 6 4 )  r C P t i ( N X r N Y 1  r A ( N x ~ N y 1  rDAX(NXeNY1 r P H H ( N X  
1 r N Y I  *bHX(NXrNYI  r C ( N X r N Y 1  ~ I ~ A ( I ' I X ~ P ~ Y I  8 x ( N x )  sY(r4YI  

COMMON/4/SKIPeSOEUK rRNK 
CQMMON/CONSTN~T/PI eThUPI  * P I  5G1rSQR2 rLtiTk!O 
CQMMON/SPEC/XLT r Y L T  

i 
CQMPLEXtAr DAXrCC rCrFACTOr3 eSCRcCPH 
LOGlCAL S K I P  

i 
LOGICAL I N T t K  
REAL LNTWO 
LNTWO=LOGF(Ze) 
S Q R 2 = 1 e 4 1 4 2 1 3 5 6 2 3 7 3 0 9 5  

I 1 

P I = 3 r 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3  
TWOPI' 2 e * P I  
P I s u = P  I * + 2  
ISURF=O 

5 REAO ~ O O ~ X L T ~ Y L T  rkN5nUk  ~ O L L P ~ P ~ I Y I * ~ F ~ S U K F  
I F ( r N 0 T e I N T E H I  GO TO 6 
SCR=XLT 
XLT=YLT 
YLT'SCU 

6 CON1 INUE 
I F ( N Y e E Q e 1 1  Y L T = l e  i 

CONST=XLT*YLT 
NSHUF =k NSHUF 
FNSHUF'Oe 
P R I N T  YO1 r X L T r  YLTrNSHUF rNXrl4Y rhi iElrNSURF 
READ 9 0 0 1 r I N I T  
SKIP=eTRUE. 
SURFA =Om 
I F (  I N I T e N E e O I  PHIE!T 9 0 1 4 r I F l I T  
I F ( 1 N I T e N E e O I  CALL R A N F S t T ( 1 h l T I  
P R I N T  9 4 l r D E L P  
NFX=NX/2e- le  S NFY=NY/2e-1e 
I F [ N Y e E U e 1 1  NFY-0 
NXMzNX-1 $NYM=NY-1 
NFXP=NFX+l  SNFYP=NFY+l 
NlS=NX*NY 
NlMS=NXM+NYM 
I F ( N Y M r t Q e 0 I  NlMSzNXM 
S C R = S L T S P E C ( F L O A T ( N X I r F L Q A T ( N Y I I  

C CALCULATt  THEORETICAL CORRtLATION FUNCTION 
00 2 0  N P P = l t N Y  
NPzNPP-1 
DO 2 0  M P P S l r N X  
MP=MPP-1 
CPH (MPP rNPP I 'SPtCTHUFI ( (t;P-hFX I e (kP-NFY II 
AA(MPPrNPPI=SURT(2.*XLT*YLT*I i tTAL(CPh(KPPrNPPI  I )  

2 0  C(MPPrr4PPI=O* 
C(NFXPrNFYP I = l e  
IF (NY-EO.1 )  GO TO 4 4  
DO 4 3  I = l r N X M  

4 3  CPH( I * N Y I = A A I I r N Y I = O e  
4 4  DO 4 5  I = l r N X M  
4 5  X(II=(I-l)*XLT/FLOAT(NXI 

DO 4 5 1  I t l r N Y M  
C P H ( N X t I I = A A ( N X t I I = O .  
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Y ( I ) = ( I - l ) * Y L T J F L O A T ( N Y )  
A A ( N X r N Y  )=Om 
CPH( NXsNY ) r o o  
X(NXI=(NX-J)+XLT/FLOAT(NX) 
Y I N Y ) = ( U Y - l ) + Y L T / F L O A T ( N Y )  
C A L L  SETUP ( O ~ M F F S S V ~ ~ S V ~ I O # I ~ E R R )  
I F  ( IFLRRmEQmO) PRINT 9 0 3  
IF( IFERR.EQm1) GO TO 7 9 8  
CALL  F A S T ~ O U C ( ( C I M F F ~ S V ~ ~ S V ~ ~ + ~ * I F E K ~ ~ )  
IF~IFLRH.EQIO) P R I N T  9 0 5  
I F ( I F E R R I E Q ~ ~ )  GO TO 7 9 9  
CALL  FASTFQUR(CPHrMFF,SVlaSV2r+lrIFEHR) 
1F(IFERRmEQmO) P R I N T  PO5 
I F ( I F E R R m E Q m 1 )  GO TO 7 9 9  
DO 2 1  NPP=l,NY 
DO 2 1  M P P n l s N X  
PHH1MPPrNPPI=~HEAL(CPH(C~PPeNPPJ / ~C(ClPPrNPP)+CONST 1 )  
P R I N T  9 1 1  
JLY =NY/Z 
IF~JCYIEQSO) J C Y = 1  
C A L L  PHINTV PHHrXeY INXINY*NX/~@JCY 9 1 )  
OAMO=PHH ( 1  ,I I 
DO 3 9  N Z = l r N l M S  
PHY ( N Z  ) =  TWOPI+RANF (-1 
DO 3 1 5  N Z Z = l r N S H U F  
DO 3 1  N Z = l r N l H S  
I A D D  = R A N F i - l ) + I N l M S - 1 1 + 1  
PHINZ=PHY I NZ 
Pt lY (NZ I=PHY ( I A 0 0 )  
P H Y t I A D D ) = P H I N Z  
FNSHUFSFNSHUf+lm 
CONT INUE 
I F ( S K I P )  GO TO 3 9  
I F t S U R F A  .EQoO*) GO TO 8 0 1  
P R I N T  9 0 1 6 r S U R F A  
DO 3 8 5  I C O N T = l r N l M S  
PHYJ I C O N T l = P H I  ( I C O N T I  
CONTINUE 
T I M = T I M E F I m l )  
P R I N T  9017,TIM 
ICTOO=NFXP+NXM+NFY 
DPOO= o S + P I - P H Y I I C T 0 0 )  
I CON T=O 
DO 4 0  N P P l l r N Y  
NPrNPP-1  
DO 40 M P P = l r N X  
MP=MPP-1 
I F I ~ M P P m N E o N X o O H o N X r t O o 1 ) o A ~ u D ~ ~ N P m N t o N Y o O R o N Y o ~ ~ o 1 ) )  ICONT=ICONT+ l  
RANANG=PHY(lCONT)+DPOO 
A ( M P P ~ N P P ) = A A ( M P P ~ N P P ) Q C E X P ~ C ~ ~ 1 P L X ~ o ~ a R A N A N G ) ~  
CONTINUE 
P R I N T  9 2 0 r A ( N F X P a N F Y P )  
C A L L  F A S T F O U R ( A I M F F I S V ~ , ~ V Z ~ + ~ ~ I F E R R )  
I F 1  IFERRoEQmO) PHINT 9 0 5  
I F (  IFtHRmEQm1) GO TO 7 9 9  
CONTINUE 
SUM=O l 
SUMZ=O l 
DO 50 J Y P z l r N Y  
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DO 5 0  J X P = l r N X  
CC=C(JXPrJYP)  
A (  J X P r J Y P  ) = A (  JXPeJYP ) /CC 

1 0 0 1  H ( J X P r J Y P ) = R t A L ( A I J X P t J Y P  ) ) /CONST 
SUM=SUM+H(JXP*JYP) 
SUM2=SUM2+H(JXPtJYP)n+2 

5 0  CONTINUE 
SUM=SUM/NlS 
SUMZ=SUMZ/NlS 
XGAMO=SUM2-SUM**2 
PRINT 930rSUMrSUM2 ~XGACIO~GAI.!U 
HMAX=HMIN=O* 
DO 6 0  J Y P = l r N Y  
DO 6 0  J X P x l r N X  
I F ( H ( J X P r J Y P I . G T o l i M A X )  HMAX'H(JXPrJYP) 
I F ( H I J X P r J Y P ) o L T . H M I N )  h M l N = H ( J X P r J Y P )  

6 0  CONTINUL 
PRINT 907rHMAXeHMIN 
I F  (oNOT.SKIP) GO TO 1 0 1 0  
CALL STAT(HeGMePHklrXrY eHClAXrhMlN*NXrNY rGAk1OrXLTrYLTr INTER) 
DELT= SOERR 
PRINT 9015rFNSHUFrDELT 

1 0 0 3  IF(DELToGE.DELP) GO TO 3 8  
DO 3 5  M N n l r N l M S  

3 5  PHI(MN)=PHY(MN)+DPOO 
SURFA =FNSHUF 
DELP=DtLT 

38  CONTINUE 
ISURF= I S U R F + l  
IF(1SURFoGEoNSURF) SKIP=.FALSEo 
I F  ( S K I P I  GO TO 3 0 5  
GO TO 3 8 4  

1 0 1 0  CONTINUE 
W R I T E ~ l ) r X L T r Y L T r G A M O e X ( j A M O e N X r N Y e S P t C T r I f i I T r S U R F A  
PRINT 9 0 8  
CALL P H I N T V ( H r X r Y  eNXeNY eNXrNY r 1  
W R I T E ( 1 )  ( ( H ( J X P e J Y P ) r J X P = 1 r N X ) r h ( l r J Y P ) r J Y P = l r N Y ) e ( t 1 ( J X P r l ) e J X P = l  

l r N X ) r H ( l r l )  
CALL STAT (HrGMrPHH eXrYrHMAXrHMlt4rNXrNY rXLP.FIOrXLT r  YLTr  INTER) 
FACTOR=CMPLX(OorTWOPI) 
DO 7 3 0  I = l t 2  
I F ( I o L O o l o A N D o N X ~ E O o 1 )  GO TO 7 3 0  
I F ( I o E O o 2 o A N D o N Y o E O o l )  GO TO 7 3 0  
ICONT=O 
DO 7 1 0  N P P = l r N Y  
NP=NPP-1 
DO 7 1 0  MPP=l rNX 
MP +MPP- 1 
I F ( ( M P P ~ N E ~ N X ~ O R ~ N X ~ E Q ~ ~ ) ~ A N D ~ ~ ~ V P ~ N L ~ F ~ Y ~ O R N Y ~ E ~ ~  ICONTEICONT+l 
I F ( I . t Q o 1 )  DAX(MPPrNPP)=FLOAT(E.lPbNFX)*FACTUK+AA(b1PPrhPP)+CEXP(CMPL 

l X ( O . r P H Y ( l C O N T ) ) I / X L T  
IF( I .EO.2)  DAX(MPPeNPP)=FLOAT(NP-I \ ;FY)*FACTOIi+AA(CIPPeFuPP)*CEXP(CMPL 

l X ( O . r P H Y ( I C O N T ) ) ) / Y L T  
7 1 0  CONTINUE 

CALL FASTFOUR( U A X ~ M F F  ; S V ~  ,sv2, 1, IERR) 
I F  ( I t R H o E Q o O I  PRINT 9 0 5  
I F  ( IEKHoEQo11 GO TO 7 9 9  
DO 7 2 0  J Y P = l r N Y  
DO 7 2 0  J X P r l r N X  
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C C = C ( J X P t J Y P I  
D A X (  J X P t J Y P  I =  D A X (  J X P  t J Y P  / C C  
D H X ( J X P t J Y P ) =  R E A L ( D A X ( J X P t J Y P  ) ) / C O N S T  

7 2 0  C O N T I N U E  
I F ( I . E Q . 1 )  P R I N T  9 0 9  
I F ( 1 . E Q . Z )  P R I N T  910 
C A L L  P & I N T V ( D H X e X e Y t h X t N Y  t I J X t F i Y  e l  1 
W R I T t ( 1 )  ( ( L i H X ( J X P t J Y P ) e J X P = l r N X ) r D H X ( l e J Y P ) t J Y P = l t N Y ) t ( D t i X ( J X P t l )  

l e J X P = l r N X ) t D H X ( l t l )  
7 3 0  C O N T I N U E  

E N D F I L E  1 
E N D F I L t  1 
GO T O  8 0 0  

8 0 1  P R I N T  9 4 0 t D E L P  
GO T O  8 0 0  

7 9 8  P H I N T  9 0 4  3 GO TO 8 0 0  
7 9 9  P R I N T  906 
900 F O R M A T ( 4 E l O e 4 r 4 1 5 )  
9 0 0 1  F O R M A T ( I 1 3 )  
901  F O R M A T ( * l H A N D O ? l  S U H F A C E  G t N t R A T U R .  * / *  P t H I O D  I N  X=  * t F 8 * 3 /  

l* P E R I O D  I N  Y= * t F 8 . 3 / *  NO. 3 F  S H U F F L E S  PER T R I A L  S U R F A C E =  * * I t + /  

Z *  NUMUER O F  S A 4 P L I N G  P O I N T S *  
3* A L O N G  X - A X I S =  * e I 4 r *  A L O h G  Y - A X I S =  * r I 4 /  
4 *  N U M b E H  O F  I l v T E H V A L S  P t H  STAFiDAHD D E V I A T I O N  U S E D  I N  C A L C U L A T I N G  I - I  
5 E I G H T  D I S T R I B U T I O N =  * t I 4 / r *  NUMUER OF T E S T  S U K F A C t S =  * e l 4 1  

9 0 1 4  F O R M A T ( * O R A N D U M  N U M t i E H  GENEHATOK WAS I N I T I A L I Z C D  T O  * e l 1 4 1  
9 0 1 5  F O R M A T ( * O F O R  * e F 8 0 l r *  S H U F F L L S  D E L T A = * r F 1 3 . 5 )  
9 0 1 6  F O R M A T ( * O O P T I M A L  S U R F A C E  i i t 3 U L T t D  F l 3 G M * r F 8 r l e *  S H U F F L E S * )  
9 0 1 7  F O R M A T  ( * O T H E  T I M E  I N  M I L L I S t C O N D S  I S *  e F 1 4 . 1 )  
9 0 3  F O R M A T ( * O S U C C t S S F U L  C A L L  TO S t T U P * )  
9 0 4  F O R M A T ( * O U N S U C C t S S F U L  C A L L  TO S t T U P + k )  
9 0 5  F O R M A T ( * O S U C C t S S F U L  C A L L  TO F A S T F U U R * )  
9 0 6  F O H M A T ( + O U N S U C C t S S F U L  C A L L  T U  F A S T F U U H * )  
9 0 7  F O H M A T ( l H O e / / r *  M A X I M U M  H ( X e Y ) = * r F 1 3 . 5 * *  M I N I M U M  I i ( X t Y ) =  * e F 1 3 * 5 )  
9 0 8  F O R M A T  ( 1 H O  r / /  r *  T H E  F O L L O W I N G  M k T R I  X  I S  t I ( X t Y  I *  ) 

909 F O R M A T ( l H O t / / r *  T H E  F O L L O W I N G  i 4 A T R I X . I S  D H X ( X e Y ) * )  
9 1 0  F O R M A T ( l H O e / / r *  T H E  F O L L O W I N G  M A T R I X  I S  D H Y ( X t Y ) * )  
9 1 1  F O H M A T ( l H O e / / r *  T H E  F O L L O W I N G  M A T R I X  I S  T H E  T H E O R E T I C A L  AUTO-CORRE 

l L A T I O N  F U N C T I O N * )  
9 2 0  FORMAT(*lA(KFX+lrNFY+l)= * r C ( t l 3 . 5 r E 1 3 . 5 ) )  
930 F O R M A T ( * O H B A H = * t E l 2 . 5 +  H  S U U A K E D  B A R = * e E 1 2 . 5 e *  C A L C U L A T E D  M t A N  

l S Q U A R t D  H E I G H T = + e t l 2 . 5 t *  E X P t C T E D  M E A N  SQUARED H E I G H T = * e E 1 2 . 5 )  
9 4 0  F O R M A T  ( * O N 0  S U R F A C E  W I T H  S Q L K H  OF L E S S  T I I A N *  e E 1 0 . 4  t *  WAS FOUND*  
9 4 1  F O R M A T ( * O S E A H C H  F O R  A  S U R F A C L  K I T H  SOERR i 3 E T T E K  THAI4+eE12 .4 )  
8 0 0  R E T U R N  

E N D  

F U N C T I O N  S P t C T R U M ( M r h 1  
C O M M O N / S P E C / X L T e Y L T  
C O M M O N / C O N S T A N T / P I  t T W O P I  r P I S U t S G l < Z  t L N T W G  
R E A L  LNTWO 
S P E C T R U M = G A M A O * P I * C L S * t X P ( - P I 5 U Q L ( C L X * I " i / X L T ) * * 2 + ( C L Y * N / Y L T ) * * Z ) )  
R E T U R N  
E ~ T R Y  S E T S P E C  
R E A D  9 0 0  eGAMAO t C L X  e C L Y  
C L S = C L X * C L Y  
I F ( Y L T . ~ Q I ~ )  GAMAO=GAMAO/(SUHT(PI)*CLX) 
S P E C T H U M = l  

9 0 0  F O R M A T ( 8 E 1 0 . 4 )  
R E T U R N  
E N D  
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SUBROUTINE S f A f ( H t G M t P H H t X t Y t H M A X t h M I N t N X t N y # M ( i A M O # X L T t Y L T t I N T E R )  
! 

DIMENSION IXI2#10)#HNPI64)tHNMl64I~UNCl641 
i 
I 

DIMENSION P H ( 6 4 ) # N I 6 4 1  
DIMENSION H I N X t N Y ) t G M I 6 4 t 6 4 1 t P H H l N X t N Y I t X I N X ) t Y l N Y )  
DIMENSION X X I l 0 ) ~ Y Y I l O )  
COMMON/4/SKIPtSOERRtNNN 
COMMON/CONSTANT/P I t TWCPI t P I  SUtSUR2 #LNTWO 

i 
4 

REAL MGAMO 
HEAL LNTWO 

i 
LOGICAL S K I P  
LOGICAL I N T t H  
SQERR=Om 

i 
NlS=NX*NY 

i 
DO 1 0  1 = l r 6 4  i 

10 N l I ) = O  
DELH=SUHT(2e+MGAMO)/FLOATItiNN) 
HMM=ABS ( HM I N 
IF(HMAXeGTatIMM) HMM=HMAX 
NN-HMM/DELH+ 10 
IF INNoGT.31)  N N = 3 1  
HBOT=I -FLOATINN) - *5 ) *DELH 
NN=2*NN+l 
P R I N T  9 0 1  
DO 2 0  J Y P - l t N Y  
DO 2 0  J X P = l r N X  
ICl=lhIJXPtJYPI-HUOT)/DkLh+l. 
I F I I C l o L E e O )  GO TO 2 0  

$ 

I F l I C l . G T . 6 3 )  bO TO 2 0  
N l I C l ) = N I I C l ) + l  

2 0  CONTINUE 
DO 3 0  I n l r N N  
H I N T =  H B O T + ( F L O A T l I ) - a 5 ) * D t L H  
FACTOR= le/SQHf12.*MGAt10) 
P H I I ) =  ~5*(tHF((HINT+*~+btL~~*FhCTOK)-tHF(IHINT-*5*D€LH~*FACTOR)) 
UNCIII=SOR2/ISOKTlPUIII~NlS)) 
T E R M = N ( I ) / N l S - P H I 1 1  

1 
P H I  I )=TERM/PHl  I) 
SQERR=SQERR+TERM+TERM 

3 0  P R I N T  9 0 2 t H I N T  r N l I ) r P H ( I ) t U N C ( I )  
I F ( S K 1 P )  RETURN 

3 0 5  CONTINUE 
C CORRELATION FUNCTION 
2 0 0  UNCC=2*O * M G A M O / S U H T ( F L O A T ( i U ) )  

P R I N T  907 tUNCC 
E=MGAMO**Ol 
DO 2 0 5  J l t l r N X  
NCX= J1 

2 0 5  I F ( P H H ( J l t l ) * L T * t )  GO TO 2 0 6  
2 0 6  DO 2 0 7  J 2 = l # N Y  

NCY= J 2  
2 0 7  I F ( P H l l ( l r J 2 ) * L T . t )  GO TO 2 0 8  
2 0 8  CONTINUt  

N C X = M I N 0 ( 6 4 r N C X )  
N C Y = M I N 0 ( 6 4 t N C Y )  
DO 2 2 1  J 2 r l r N C Y  
DO 2 2 0  J l = l # N C X  
G M I J l t J 2 ) = O e  
DO 2 1 0  I l = l  tNX 
DO 2 1 0  I 2 = l r N Y  
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Kl~Jl+Il-1 S IF(K1mGTmNX) KlaK1-NX 
KZ=JZ+IZ-l 3 IF(K2.GTmNY) KZSKZ-NY 
TERM=t4(KlrK21*H(11#12) 

210 GM(JlrJZ)=GM(Jl*JZ)+TERM 
GM(JlrJZ)=GM(JlrJZ)#FLOAT4RlS) 
G M ~ J l r J 2 ) = G M ( J l r J 2 ~ - P H H ~ J l r J 2 ) * I ' I G A I A O / P t 1 t 1 t l r l )  

220 CONTINUE 
221 CONTINUt 

CALL PRINTV(GMrXrYr64r64rNCXrNCYrll 
C JOINT PROUABILITY DISTRIbUTION 

DO 199 LLLSlrlO 
READ 904r(IX(I*LLL)rI=lrZ) 
IF(IX(lrLLL)mtOmO.ANOmIX(2rLLL)*tQmO~ G O  TO 1991 
IF(.NOT*INTEH) GO TO 222 
SCK=IX(ltLLL) 
IX(lrLLL)=lX(Z*LLL) 
IX(ZrLLL)=SCH 

222 CONTINUE 
PRINT 905r(lX(IrLLLIrI=l#2) 
ClZ=PHH(IX(lrLLL)+lrIX(2rLLL)+l)/PHH(lrl) 
DELl=SOKT(2m*MGAMO*t 1m-C12I )/tLUAT(rdNI\J) 
DEL2=SORT(Zm*MGAMO*(lm+C12I )/FLLATINEJ~~) 
D E L ~ = D ~ L ~ * Z .  
DELZ=DtL2*2 l 
HMM=WMM*SORZ 
NNl=IIMM/DELl+l* 
NNZ=HMM/DELZ+l* 
IF(NNlmGTm31) NN1131 
IF (NNZeGTm31) NN2131 
H6OTl=(-FLOAT(NN11-.51*DELl 
HdOTZ=(-FLOAT(NN2)-.5)*GEL2 
NNl=Z*hNl+l 
NN2=2*NN2+1 
DO 100 IalrNNl 
DO 100 JzlrNN2 

100 GM( lrJ)=Om 
DO 110 J=lrNY 
DO 110 I=lrNX 
ISmI+IX(lrLLL) 
JS=J+IX(Z*LLL) 
IF(IS*GTmNX) IS=IS-NX 
IF(JSmGTmNY1 JSrJS-NY 
HPL=(H(IrJ)+tl( ISrJS) )/SOR2 
HMI=(h(ItJ)-H(IS*Jb))/SOHZ 
ICl=(HMI-HBOT1) /DLLl+lm 
ICZ=(HPL-HBOTZ)/OLL2+1m 
IF(ICl*LtmOmOR*ICZ*Lt.O) G O  TO 110 
IF(ICl*GTm63*ORmIC2.GT.63) GU TU 110 
GM(IClrIC2)=GM(IClrIC2)+1* 

110 CONTINUt 
DO 115 I=l#NNl 

115 HNM(I)=H~OTl+(FLOAT(I)-m5)*ULLl 
DO 116 IslrNN2 

116 HNP( I )=HbOTZ+(FLOAT( l)-m5 1*bti2 
CALL PKINTV(GMrHNI5rtihPr 649 64thNltNKZr91 
00 121 J=lrNNL 
HINP=hNP(J) 
DO 121 I=lrNNl 
H INM=tINM ( I ) 
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1 
j 

SCRATCH= E X P ( ( - ( H I N P * H I N P ) / ( ~ ~ + C ~ ~ ~ - ( H I N M * H I N M ~ / ( ~ ~ - C ~ ~ ) ) / ~ + ~ . * M G A  1 

1M0))/~2a*PI*MGAMO*S(3~~~1a-C12*C12))*DELl*DEL2 4 

1 2 1  GM ( I t J I =  G M ( I t J ) / ( F L O A T ( k l S  ) + S C K A T C H  1-1. 
P R I N T  9 0 6  
C A L L  P K I N T V ( G M t H N M t H N P t  6 4 ,  6 4 t h N l t M N Z t 9 )  

i 
-f 

1 9 9  C O N T I N U E  
1 9 9 1  C O N T I N U E  - 
C  3 - P O I N T  C O R R E L A T I O N  F U h C T I O N  

* 

UNCC=SQRT ( 3 0 * * : I G A I 4 U * * 3 / N l b  1 
DO 3 9 9  K Z = l n l O  
H E A D  9 0 4 t ( I X ( K l t K Z ) r K l = l ( L )  i 
I F ~ I X ~ 1 ~ K 2 ) a E O ~ O ~ A N D ~ I X ~ 2 t K Z I a t u ' ~ O )  GO TO 4 0 0  7 
I F ( a N O T e 1 N T E K )  GO TO 1 9 9 2  
S C R = I X l l t K Z )  i 

I X ( l t L L L ) = I X ( Z t K 2 )  
I X ( 2 t K 2 ) t S C R  

1 9 9 2  C O N T I N U E  
P R I N T  908t(IXIKltKZ)tKl=lt2)tUNCC 
N S T A = F L O A T ( N X ) / ! J *  +1. 

1 
N b T B = F L O A T ( N Y ) / 5 a  +1* 
N C X = N X / N S T A  
N C Y = N Y / N S T B  
I C 0 1 = 0  
DO 3 0 6  I = l t N C X  

L 
3 0 6  X X ( I ) = ( I  I * N b T A * X L T / F L O A T ( N X )  

I 
DO 3 0 7  I = l t N C Y  

3 0 7  Y Y (  I I = (  I ) * N S T ~ * Y L T / F L O A T ( I \ ~ Y )  
- 

SUMaO*  
DO 3 2 0  J l = N S T A t N X t N S T A  
I C O Z = O  
I C 0 1 = I C O 1 + 1  
DO 3 2 0  J Z - N S T B t N Y t N S T B  
I C 0 2 = I C 0 2 + 1  
G M ( I C O l t I C O Z ) = O  
DO 3 1 0  I l = l t N X  
DO 3 1 0  I Z = l t N Y  - 
L l = J l + I  1 
L 2 1 J Z + I Z  
I F ( L l * G T a N X )  L l Z L 1 - N X  
I F I L Z e G T e N Y )  L 2 z L 2 - N Y  
M l = I X ( l ) + I l  
M Z = I X ( 2 ) + 1 2  
I F ( M 1 a G T m N X )  M l = M l - h X  
I F ( M 2 . G T a N Y )  M2=MZ-NY 
TERM=hIMltMZ)*H(LltL2)+H~IltI2) 

3 1 0  GM( ICOltICOZ)~GM~ICO1tIC02)+Tti~~~1 
GM~ICOltIC02)=GM~ICO1tICO2)/ N 1 S  

3 2 0  SUM=SUM+GM(ICOltIC02)++2 
S U M = S U M / 2 5 e  
C A L L  P H I N T V  G M t X X t Y Y t 6 4 t 6 4 t N C X t N C Y t l )  
P R I N T  9 0 9 t S  M 

3 9 9  C O N T I N U E  
b 

9 0 1  FORMATI*O*t7Xt*PROUABlLlTY U I S T H I b U T I O N  OF H * t / * O * t 8 X t * H * t 1 2 X t W H  
l)*t5Xt*HIST/P(H)-la*t6Xt*tSTa EHROK*)  

902 F O R M A T ( 1 H  t E 1 3 . 6 t 3 X t 1 8 t 7 X t F l l e 5 t 4 X t F 1 1 * 5 )  
9 0 3  F O R M A T I l H O t * M A X I M U M  D E V I A T I O N = * t E 1 3 a 6 )  
9 0 5  F O R M A T I l H O t / / / t *  T H E  F O L L O W I N G  M A T R I X  I S  T H E  t I I S T O G R A M * t  

1 * O F  H + t H - I X = H - t Y = H + )  t O H  A  S W I F T  OF l * t Z I l O t * ) * )  
9 0 4  F O R M A T ( Z I 1 0 )  
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FORMAT ( 1 H 1 9 2 0 (  / J r * O T l i L  D L V I ~ T  ION FKOCl Tt ikORET I C A L  OF T l lE  A b O V t  MAT 
l T R I X  I S  G I V E N  ON THE FOLLOWlNG PAGLS*)  

F O R M A T ( l H l e / / / e + O T H E  FOLLOWING M A T R I X  I S  ThE  ERROR l N  THE AUTO-COH 
l R E L A T I O N  FUNCTION U F  H ( X e Y J r  EXPECTLD UNCm=+eL13.6) 

FORMAT ( l H O r / / / r + O T H E  FOLL0WIP;G i * IATI< IX I S  THE THREL-POIST AUTO-CORK 
1 E L A T l O N  FUNCTION FOR T H k  S H I F T S  ( X r Y )  AND ( + e Z 1 1 0 e + J m U N C = * ~ E 1 3 . 6 J  

FORMAT (*OMEAN-SOUAHtD O k V 1  AT l 6 i u  FKUW Z L H 3  OF - T I { €  CALCULATED P O I N T S  
1 OF THE THREE-POINT COltHELATIUt.( F U l i C T I U N =  + r t 1 3 a 5  J 

RETURN 
END 

SUBROUTINE P R l N T V  (BeXeYeNXUeNYOeNXeNY rIFORC1J 
D I M E N S I O N  B ( N X D r N Y U 1  * X I N X D J  t Y  (NYDJ 
D I M E N S I O N  FORM ( 17 1 
DATA ( F O R M = 1 3 6 H ( l H  slXeF9a5r3X*lO(tllm4rlX) J ( l H O t 5 X * * Y * * 7 X e 1 0 ( *  

l X ~ * r F 9 m S e l X J  J ( 1 H  rlXrF8m4r3XelO(Fllm5elXJ J l l H 0 1 5 X e * H +  + e 5 X e 1 0 ( +  
1H-=* * F 8 m 4 r l X J  1 )  

JFORM= IFORM+4 
I P09=O 
I F ( N X a L E m 1 O J  GO TO 3 0  
I P R = N X / 2 - 5  
I P R N T = I P R / l O  
I P R N T = I P R - l O * I P H N T  
P R I N T  FURM(JFORM)e(X(IJrI=leIPHNT) 
DO 10 J Y P = l r N Y  
P R I N T  F O R M ( I F O H M ) ~ Y ( J Y P J ~ ( B ~ J X P B J Y P ) ~ J X P = ~ ~ I P R N T )  
I P R N T P = I P R N T + l  
N L s N X - 9  
I F (  IPRNTPmGTmNL) GO TO 3 0  
DO 2 0  I = I P R N T P * N L e l O  
I P 0 9 = 1 + 9  
P R I N T  FORi-1IJFORMJ r ( X ( J ) e J ~ l e l P o y J  
P R I N T  F O R M ( I F O H M J r ( Y ( J Y P ) s ~ M ~ J X P ~ J Y P J e J X P = I e l P U 9 ) e J Y P = l e f i Y )  
CONTINUE 
I F I I P 0 9 . t Q m N X J  GO TO 5 0  
I P l O = I P O 9 + 1  
P R I N T  FORM(JFOUMJe(X(JJ*J=IPlOrNX) 
DO 40 J Y P s l r N Y  
P R I N T  F G R M ( I F O H M J * Y ( J Y P ) ~ ( ~ ~ J X P ~ J Y P ~ ~ J X P = ~ P ~ O ~ ~ X )  
RETURN 
END 
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PROGRAM MA I N l  
D I M E N L I O N  H(65t65)rHX(b5r65)~HY(65~65)~XX(1025)rYY(1025) 
REAO 900,FNXvFNY 
JXP=FNX+l .  
JYP=FNY+l .  
C A L L  PAHSTATB(k1,HX rkiY ,XX(YY B J X P ~ J Y P )  

9 0 0  F O R M A T ( 8 E l O e 4 )  
STOP 
END 
SUBROUTINE PARSTkTt3 (H,tiX rHY *XX,YY ,JXP(JYP) 
D I M E N S I O N  H ( J X P , J Y P ) t H X ( J X P * J Y P )  * H Y ( J X P ~ J Y P ) # X X ( J X P ) # Y Y ( J Y P )  
C O M M O N / I N F O / S Z , S C A L E ~ R ~ ~ l I L L ~ J i ( s J Y  * X I P P # Y I P P  
D I M E N S I O N  G ( 6 4 t 6 4 ) , N X ( 3 1 ) r N Y ( 3 1 ) r N G ( 3 1 ) r N ( 3 1 ) r X ( 3 1 ) t Y ( 3 1 )  
D I M E N S I O N  P R X ( 3 l ) r P R G ( 3 1 ) ~ E K l ( 3 1 ) ~ E R 2 ~ 3 1 ) ~ E R 3 ~ 3 1 ) ~ P K Y ( 3 1 )  
DIMENSION K ( 2 9 2 r 2  
D I M E N S I O N  S C ( 2 , 4 )  
D A T A ( P I = 3 . 1 4 1 5 9 )  
S Z = S C A L t = l  
READ 9 1 0 * X L T , Y L T  ,GAMO,XGAr40 
READ Y Z ~ ~ S P E C T ~ I N I T I S U K F A  
JX= JXP-  1 
J Y = J Y P - 1  
N l S = J X * J Y  
D X = X L T / F L O A T ( J X )  
DY=YLT /FLOAT ( J Y  
C A L L  G ~ T H ~ O ( ~ I ~ H X ~ ~ ~ Y ~ A A ~ Y Y ~ X L T ~ Y L T ~ G A M O ~ X U A P ~ O ~ J X P ~ J Y P ~ S P E C T  r 1 ~ I T r  

1SURFA ) 
DO 1 0  1 = l r 3 1  
N I  I ) = 1 6 - I  

1 0  N X ( I ) = N Y ( I l = N G ( I ) = O .  
GMAX=O. 
HA=-1E+20  
HB=+ 1E+2O 
DO 2 0  J = l r J Y  
DO 2 0  I = l , J X  
I F ( H ( I , J ) . L E . H A )  GO TO 11 
H A = H ( I r J )  
K ( 1  , l * l ) = I  
K ( l t l r Z ) = J  

11 I F ( H t I , J ) . G E a H b )  GO TO 1 2  
HB=H(  I t J )  
K ( 2 r l t l ) = I  
K ( 2 , l r Z ) = J  

1 2  CON1 I N U E  
G ( I ~ J ) = H X ( I I J ) * * ~ + H Y ( I * J ) * * ~  
I F ( G ( I t J ) . L E . G M A X )  GO TO 2 0  
GMAXZGI I r J  
IMAX=  I 
J M A X Z J  

2  0  CONT I N U t  
I S =  IMAX-1  
J S r J M A X - 1  
F=SQRT(GMAX)  
P R I N T  Y O O r F t I S , J S  

C  F I R S T  SUUSCRIPT = 1  FOR MAXIMUM,=2 FOR MINIMUM. 
C  SECOND 5UUSCRIPT  = 1  AT MAX O k  MIN ,=2  AT ADJACENT POINT.  
C  T H I R D  SUbSCHIPT  = 1  FOR X  D IMENSION,=2  FUR Y  DIMENSION.  

DO 2 2  I = l r 2  
K L I t Z r 1 ) = K L I t l t l ) + l  
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K ( I r 2 r 2 ) = K ( I t l t 2 ) + 1  
IF(ABS(H(K(Ir2rl)rK(I,lr2) ) ) - L T - A t r S ( t ! ( K ( I r l r l ) - l r K ( I r l r 2 ~ ) ) )  

l K l I r 2 r l ) = K ( I r l r l ) - l  
IF(K(IrZrlIeEQ*O)K(I,2rl)=JX 
I F ( J Y o E Q e 1 1  GO TO 2 1  
IF(ABS~H(K(Ir1r1)~K(Ir2r2)))~LT~At)S(ti(K(Ir1r1)rK~Ir1r2)-11)) 

l K ( I r 2 r 2 ) = K ( I t l r 2 ) - 1  
I F ( K ( I r 2 r 2 ) e t Q . O )  K ( I ~ Z I Z ) = J Y  

2 1  C O N T l N U t  
DO 2 1 0  J = 1 r 2  
s C ( J ~ ~ I = A B S ( H X ( K ( I ~ ~ ~ ~ )  r~(I*Jr2))-HX(K(Ir2rl)rK(l r J r 2 )  1 )  
I F ( J Y o E Q e 1 )  GO TO 2 1 0  
S C ( J r 2 1 = A b S ( H X ( K ( I r J r l )  (K(Irlr2))-tiX(K(IrJ(l)rK(Ir2(211) 
SC(J~3)=AbS(HY(K(IrJI1),K(Illt2))-HY(K(IrJrl)rK(Ir2r2))1 
S C ( J ~ ~ ~ = A B S ( H Y ( K ( I ~ ~ ~ ~ ) ~ K ( I ~ J ~ ~ ) ) - H Y ( K ( I ~ ~ ~ ~ ) ~ K ~ I ~ J ~ ~ ) ) )  

2 1 0  CONTINUE 
HXX=AMAXl(SC(lrl)rSC(2rl)) 
I F ( J Y o N E e 1 )  GO TO 2 1 1  
R=DX/HXX 
GO TO 2 1 2  

2 1 1  H X Y = A M A X l ( S C ( 1 * 2 ) r S C ( 2 r 2 ) )  
HYY=AMAXl(SC(lr3)rSC(2,3)) 
H Y X = A M A X l ( S C ( l r 4 ) r S C ( 2 M )  
HXX=HXX/DX 
HYY=HYY/DY 
HXY =HXY /DY 
HYX=HYX/DX 
HXY=AMAXl(HYXrHXY) 
R=~~*(HXX+HYY+SQRT(HXX**~+HYY**Z+~O*HXY**~I) 
R s l  /R 

2 1 2  I S = K ( I r l t l ) - 1  
J S ~ K ( I r l r 2 1 - 1  
IF ( I .EU.1 )  PRINT 9 0 4 t H A r I S r J S r R  
I F ( I . E O e 2 )  PRINT 9 0 5 r H B r I S r J S r R  

2 2  CONTINUE 
SUMX=SUMY=SUMG=O 
DO 2 3  I = l r J X  
DO 2 3  J Z l r J Y  
S U M X = S U M X + H X ( I ~ J ) * * ~  
SUMY=SUMY+HY( I rJ ) * *2  

2  3 SUMG=SUMG+G ( I r J ) 
SUMX=2e*SUMX/NlS 
SUMY=Z * *SUMY/N lS  
SUMG= SUMG/NlS 
DELG=GMAX/lSe 
D E L F = F / 1 5 e  
GMAX=15*5*DELG 
FMAX=15*5*DELF 
S T P = S Q H T ( P I )  
DO 25  I = l r 1 6  
X (  I ) = N (  I I*DELF 
Y ( I ) = N ( I ) * D E L G  
PRX ( I =EXP (-X ( I **2/SUPIX ) / ( bTP*SQRT (SUMX 1 1 *DELF 
P R Y ( I ) = t X P ( - X ( I 1 * * 2 / S U I r l Y ) / ( 5 T P * S Q R T ( S U M Y ) ) * D k L F  

2 5  P R G ( I ) = E X P ( - Y ( I )  /SUMG)/ SUMG+DELG 
DO 2 6  I = 1 7 t 3 1  
X l I  ) = N (  I )*DELF 
Y ( I l = l E + 1 0  
PRX( I I = P R X ( 3 2 - I )  
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P R Y ( I ) = P R Y ( 3 2 - I )  
P R G (  I l = O e  
DO 3 0  I = l t J X  
DO 3 0  J = l t J Y  
I C = ( - ~ X ( I S J ) + F M A X ) / L , L L F + ~ ~  
N X ( I C ) = N X ( I C ) + l  
IC=(-HY(IrJ)+FMAX)/DELF+l. 
N Y ( I C ) = N Y ( I C ) + l  
IC=(GMAX-G(IrJ))/DELG+l* 
N G ( I C ) = N G ( I C ) + l  
CONT I N U t  
N G ( 1 6 ) = 2 . * N G ( 1 6 1  
DO 4 0  1 = 1 r 1 6  
E R 1 ~ I ) = N X ( I ) / ~ N l S * P K X ~ I I 1 - 1 ~  
ER2(Il=NY(I)/(NlS*PRY(IIl-l* 
ER3(Il=NG~Il/(NlS*PRG(I)l-1. 
CONT I N U E  
DO 5 0  1 = 1 7 t 3 1  
E R 1 (  l)=NX(II/(NlS*PRX(Il)-l* 
E R ~ ( I I = N Y ( I I / ( N ~ S * P R Y ( I I ) - ~ .  
E R 3 ( I l = O .  
CON T  I N u t  
P R I N T  9 0 1  
P R I N T  9 0 2 r ~ N ~ l l r X ~ I ) r Y ~ I l r N X ~ ~ l r N Y ~ I l r N G ~ I ) r P R X ~ I l r P R Y ~ ~ l r P R G ~ I ) r  

1 E R l ( I I r t R 2 ( I l r t R 3 (  I ) r I = 1 # 3 1 1  
F O R M A T ( * D M A X I b l U M  M A G N I T U O t  OF G K A D I t N T = * r E 1 3 a 5 # *  OCCURS AT ( * r I 5 r *  

l r * r 1 5 r * ) * / / )  
F O R M A T ~ 1 H O r 4 2 X ~ * H I S T O G R A M S * r 1 5 X r * P K O ~ A t , I L I T I E S * r  Z 3 X r * t K K O H S * /  

l r  * O I N T E R V A L * t 7 X r * P A R T I A L  G R A D - S O U A H t 0 * # 4 X r *  H X * r 4 X r * H Y * t 2 X r * G R A D  
2 S 0 * r 5 X r * H X * t 8 X r * H Y * r b X r * G U A U S C f r 9 X r  * H X * r 8 X r * H Y + r 6 X r * G R A D S C c / )  

F O R M A T ( 1 H  r I 8 t 2 F 1 4 . 4 t 3 I 6 r 3 X r 3 E 1 0 ~ 2 r 3 X r 3 E 1 0 ~ 2  
F O R M A T ( 2 F 1 0 * 4 )  
F O R M A T ( * O T H E  I ~ I A X I i 4 U M  OF T H E  S U K F A C t  = * t F 1 2 . 6  r *  A N D  OCCURS AT ( * r 2 I 5  

l r * )  . E S T I M A T t O  R A D I U S  OF C U R V A T U R L  A T  T H I S  P O I N T = * r F 1 2 . 6 )  
F O R M A T ( * O T H E  M l h I M U h i  OF T H t  S U K F A C L  = * t F 1 2 0 6  r *  AND UCCURS A T  ( * r Z I >  

l r * )  . E S T I M A T t O  R A D I U S  OF CURVATURE A T  T H I S  P O I N T = * r F l Z . 6 )  
F O R M A T ( 8 F 1 0 . 4 1  
F O R M A T ( A 8 r I 1 3 r E 1 0 . 3 )  
R E T U R N  
E N D  
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SUbROUTINE G ~ T H ~ O ( H I H X I H Y ~ X ~ Y ~ X L T S ( I Y L T S S ~ A M O S I  XGAMOStNXPrNYPsSPEC 
~ T S I I N I T S ~ S U R F A S )  

C THIS VERSION TO BE USED WITH PARSTAT8 
DIMENSION X(NXP)rY(NYPlrH(NXP#NYP)#HX(NXP#NYPl#HY(NXP#NYP) 
C O M M O N / I N F O / S Z I S C A L E ~ R ~ ~ I L L ~ N X ~ I \ I Y ~ X I P P ~ Y  I P P  
DATA ( E P = l E - 6  I 
CALL S K I P F X L E ( 1 )  
NXS=NXP-1 
NYS=NYP-1 
DO 1 0  I = l r N X P  

1 0  X ( I ) = F L O A T ( I - 1 )  
DO 1 5  I = l r N Y P  

1 5  Y ( I ) = F L O A T ( I - 1 )  
DO 2 0 0  K = l r 1 0 0  
READ(1)  XLTIYLTIGAMOIXGAMOINX #NY#SPECTs I N I T I S U H F A  
I F  ( E O F t 1 ) 8 0 0 ~ 5 0  

5 0  CONTINUE 
P R I N T  ~ ~ O I X L T ~ Y L T # ~ A M O # X G A M O # N X # N Y # S P ~ C T # I N I T ~ S U R F A  
P R I N T  ~ O O ~ X L T ~ ~ Y L T S ~ G A M O S ~ X U A ~ I O S ~ N X S * N Y S ~ ~ P E C T S ~ I N I T S ~ S U H F A S  

9 0 0  FOHMAT(1H t 4 ~ 1 8 0 l l r 2 I 6 r l X t I 1 3 # E 1 8 0 1 1 )  
I F ( S P E C T ~ N E O S P ~ C T S O O R ~ N X ~ N € ~ P ~ X S . O R ~ N Y ~ N E O N Y S . O R . I N I T ~ N E ~ I N I T S )  

1GO TO 1 0 0  
I F ( A B S ( X L T - X L T S l ~ G T o t P o O R o A ~ S ~ Y L T S ) . G T ~ E P ~ O R ~  

l A b S ( G A M 0 - G A M O S ) o G T o E P o O R a A B S ( S U R F A - S U R F A S G T E P  GO TO 1 0 0  
GO TO 3 0 0  

1 0 0  CALL S K I P F I L E ( 1 1  
2 0 0  CONTINUE 
3 0 0  CONTINUE 

READ(11 ( ( H (  I # J )  # I = l t N X P )  r J = l # N Y P )  
R E A D ( 1 )  ( (  HX(I~J)rI=lrNXP)rJ=lsNYPI 
IF(NY.EQa11 GO TO 3 0 5  
R E A D ( 1 )  ( I  HY( I p J )  r I = l r N X P ) r J = l # N Y P l  
GO TO 3 1 0  

3 0 5  DO 3 0 6  I = l r N X P  
3 0 6  H Y ( I t l ) ~ H Y ( I # Z ) t O o  
3 1 0  X I P P = l o  

Y I P P = l .  
DO 4 0 0  I = l r N X P  
DO 4 0 0  J=l,NYP 
H ( I e J ) = S Z + H ( I t J )  
HX( IrJ~=HX(ItJ)+SZ+XIPP/SCALE 
I F ( N Y o E O a 1  I GO TO 4 0 0  
HY( I r J l = H Y (  I r J ) * S Z + Y I P P / S C A L t  

4 0 0  CONTINUE 
C HX AND HY ARE I N  U N I T S  OF D t L T A  H PLH POINTIH I S  I N  UNITS OF LENGTH 

CALL PRINTV(H rX tYrNXP,NYPvNXP#NYPt l )  
CALL P R I N T V ( H X t X s Y t N X P t N Y P , N X P # N Y P # l )  
IF(NY.EOo1) GO TO 8 0 1  
CALL P H I N T V ( H Y , X r Y e N X P t N Y P s l u X P * N Y P # l )  
GO TO 8 0 1  

8 0 0  P R I N T 9 0 1  
STOP 

9 0 1  FORMAT(*ONO SURFACE WITH DESIRED PARAMETERS ON TAPE*) 
8 0 1  RETURN 

EN0 
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SUBROUTINt PHINTV ( B ~ X B Y ~ N X U ~ N Y U ~ N X B N Y * I F O R M )  
c T H I S  VERSIUN TO BE USED WITH PUINTSu AND PARSTAT6 

DIMENSION B ( N X D B N Y D ) B X ( N X D ) * Y ( N Y D ~  
DIMENSION FORM( 1 7 )  
DATA (FORM=136H( lH  r l X r F 9 0 5 r 3 X v l O ( t l l r 4 r l X )  I ( ~ H O ~ ~ X ~ + Y * B ~ X B ~ O ( *  

l X = * t F 9 e S r l X ) ) ( l H  ~ l X r F 8 * 4 r 3 X r l O ( F l l ~ 5 r l X )  I ( l H O r S X r + H +  * r S X ~ 1 0 ( +  
l H - = + r F 8 * 4 r l X )  1 )  

JFORM= IFORY+4 
I P 0 9 = 0  
l F ( N X - L t . 1 0 )  GO TO 3 0  
IPR=NX/Z-5 
I P R N T = I P R / l O  
IPRNT=IPR- lO*IPRNT 
PRINT F O R M ( J F O R M ) ~ ( X ( I ) B I = ~ ~ ~ P K N T )  
DO 1 0  J Y P = l r N Y  

1 0  PRINT F O R M ( I F O H M ) ~ Y ( J Y P ) ~ ( H ( J X P ~ J Y P ) ~ J X P = ~ P ~ P R N T )  
IPRNTP'IPRNT+l 
NL=NX-Y 
I F (  IPRNTPeGTefUL) GO TO 3 0  
DO 2 0  I = I P R N T P r N L r l O  
IPO9=1+9 
PRINT F O R M ( J F O R M ) ~ ~ X ( J ) B J = I ~ I P O ~ )  
PRINT F O R M ( I F O H M ) ~ ( Y ( J Y P ) ~ ( ~ ( J X P ~ J Y P ) B J X P = ~ ~ I P O ~ ) ~ J Y P = ~ B N Y )  

2 0  CONTINUL 
IF ( IP09 .EQeNX)  GO TO 5 0  

3 0  I P 1 0 = I P 0 9 + 1  
PRINT FORM(JFUUM)r(X(J)rJ=IPlOrP1X) 
DO 4 0  J Y P = l r N Y  

4 0  PRINT F O R M ( I F O R M ) r Y ( J Y P ) r ( B ( J X P r J Y P ) r J X P = I P l O * N X )  
5 0  RETURN 

END 
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PROGRAM P O I N T S 8  
C  T H I S  PROGRAM S k A K C l i t S  OUT THE CHORDS ALWAYS BEGINIJINC, FROM THE SAME EDGE AND 
C  MOVING I N  THE S A M t  D I R E C T I O N *  I T  THEN H t V t K S E S  t V E R Y  OTHER CUT SO THAT 
C  CUTT ING I S  S T I L L  DONE I N  ALTERNATING D I K E C T I O N S *  

COMMON/SEARCH/XLTeYLTeGAMOeXGAMOeNXPeNYPeSPECTeINITeSURFA 
COMMON/INFO/SZeSCALEeRt~i ILLeNXeNYeXIPPeYIPP 
D I M E N S I O N  T I T L ( ~ O ) ~ X C ( ~ ~ ~ O ~ ) ~ S ~ ~ O O ) ~ L Y ( ~ O O ) ~ D I S ( ~ )  
D I M E N S I O N  O X C ( 3 )  
L O G I C A L  HIGHEReRETURNeROUGH 
P I = 3 ~ 1 4 1 5 9 2 6 0 3 5 8 9 7 9 3  
READ 9 0 0 r X L T e Y L T  eGAMOeXGAMOeFNX eFNY 
READ 9 2 4 r S P E C T e I N I T e S U R F A  
READ 900eSZeSCALEeGUADMeZMAX,ZMIN  

C  USE OF A  NEGATIVE  S Z  G I V t S  H E F L t C T l O N  OF O R I G I N A L  SURFACE 
NX=FNX 
NY=FNY 
WRITE(5)eXLTeYLTeGAMOeXGAMOeNXeNYeSPtCTeINITeSURFA 
NXP=NX+ l  
NYP=NY+ l  
C A L L  C A L L G E T H ( O * e O *  eAeBeC)  
GRADM=ABS(SZ)+GRADM/SCALE 
XLT=XLT+SCALE 
YLT=YLT+SCALE 
I F ( S Z * L T e O e )  GO TO 1 3 0 1  
Z M I N = S Z * Z M I N  
ZMAX=ZMAX+SZ 
GO TO 1 3 0 2  

1 3 0 1  ZMAX=ZMIN+SZ 
ZMIN=ZMAX+SZ 

1 3 0 2  CONTINUE 
D Z = 1  1"ZMAX 
XGAMO=XGAMO+SZ+*Z 
REWIND 5 
READ 9 0 1 6 e T I T L  
I F ( E O F e 6 0 )  3 0 0 r 1 4  

14 READ 9OOeDIAMR rEPSReTAReTBReFMAXeFMIN  
READ 900 eDIAMF eEPSFeTAFeTbFeFDRTF 
READ 9 0 0 r D I A M C U T e F D R T C  
R M I L L R = * 5 + D I A M H  
R M I L L F = o S + D I A M F  
RCUT=o5+DIAMCUT 
P R I N T  9 2 0 e T l T L  
P R I N T  901eXLf rYLTeXGAMOrGRADMrNXrNYeSZeSCALE 
XO=YO=Oe 
XEDGE=XLT+2e*(2ol*RMILLF+*l) 
YEDGE=YLT+2*+(2*l+RMILLF+*l) 
FT=RMILLF*GRADM/SQRT(GRADM+*2+1)  
RZ=GRADM+RMILLR+lrl,EPSR 
EPS=EPSR 
TA-TAR 
T8=TBR 
R M I L L = R M I  LLR 
I CUT=O 
ROUGH=*TRUEe 
D Y = l o E * R M I L L  
I F ( N Y o k Q e 1 )  GO TO 2 6  
P R I N T  9019 

16 S C R = l * / D Y  
P R I N T  Y O Z r R M I L L e E P S r T A e F M A X e F M I N r S C R  
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D X = S Q R T ( 8 r * R M I L L * E P S )  
Y=YO 
I COUNT=O 
R E E L = l *  
P R I N T  9 2 1  * R E E L  
R E T U R N = a F A L S E *  
B U F F E R  OUT(5rl)(TITL(l)rTITL(lO)) 
BUFFER,  OUT ( 5 r 1 )  (ROUGH*I<OUGH) 
B U F F E R  O U T ( S r l ) ( R E E L r R E E L )  
I F ( U N I T r 5 )  1 6 2 9 1 6 3  
C O N T I N U E  
C A L L  S E T U P 3 ( X O r Y + l * r F M A X )  
C A L L  I N T E R P ( X O r Y r Z O r Z X O r Z Y ( 1 ) )  
STP=ZXO+TA 
STM=ZXO-TA 
I C U T = I C U T + l  
X C I  l r l ) = X O  
X C ( 2  r l ) = Y  
X C ( 3 r l ) = Z O  
P R I N T  9 0 3  
DO 2 1  I P T = l r 4 9 9  
S I P = S T P  
S I M = S T M  
I P T P = I P T + l  
F A C = l  
I H A L F = O  
X C ( 2 r I P T P ) - Y  
H I G H E R = * F A L S t *  
X T = X C ( l  r I P T )  
XT-XT+DX 
C A L L  I N T E R P ( X T * Y r Z T r Z X T r Z Y T )  
S T P T = Z X T + T A  
S T M T t Z X T - T A  
D E L X t X T - X C ( 1 r I P T )  
S T = ( Z T - X C ( 3 r I P T ) ) / D E L X  
D E P S = E P S / D E L X  
AMPT=AMINl(AKPT*HIGHER+SIP*(l- HIGHER)tSIPrSTPTrST+OEPS) 
AMMT=AMAXl  (AMMT*HIGH€R+S I t 1 * (  1- H I G H E R )  r S I M  r S T M T  r S T 0 D E P S )  
IF(AMPT*LTeST*OR*AMMTaGTaST) GO TO 2 0  
I F I A B S ( Z Y ( 1 P T ) - Z Y T  ) a G T * T B )  GO TO 20 
I F I X T * L T a X L T + X O )  GO TO 1 9 1  
X C (  1 r I P T P ) - X L T + X O  
C A L L  INTERP(XLT+XOrYrXC(3rIPTPlrZXrZY(IPTP)) 
S(IPTP)=(XC(3rIPTP)-XC(3rIPT))/(XC(lrIPTP~-XC(lrIPT)) 
GO T O  2 2  
H I G H E R = * T R U E *  
X C (  1 r I P T P )  P X T  
X C ( 3 r I P T P ) = Z T  
S T P = S T P T  
STM=STMT 
S ( I P T P ) = s T  
Z Y  ( I P T P )  = Z Y T  
I F ( F A C a N E a 1 e )  GO TO 2 1  
GO T O  1 8  
I F ( H I G H E R )  GO TO 2 1  
F A C = * 5 * F A C  
X T - X C ( l + I P T ) + F A C * D X  
I F ( I H A L F . G T a 5 )  P R I N T  922rIHALFrIPTrXC(lrIPT)rAMPTrSIPrSTPTrAMMTrSI 

l M r S T M T r S T + D E P S  
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IHALF= I HALF+l 
IF(IHALF.LE.35) GO TO 19 
STOP 

21 CONTINUE 
2 2 IPT=IPTP-1 

S(l)=S(IPTP) 
DO 230 I=lrIPT 
IF(.NOTmROUGH) GO TO 225 
XC(3rI)=XC(3rI)+RL 
GO TO 230 

225 J=I+l 
CALL DISP(S(I)rS(J)rZY(I)rU1Sll)rDIS~2)~31S(3)~ 
DO 23 K=lt3 

23 XC(Kr1 I=XC(KrI )+DIS(K) 
230 CONTINUE 
237 DO 238 J=lr500 
2371 IF(UNITr5) 2371r2372 
2372 IPT=IPT+l 

XC(lrlPT)=XC(ltJ)+XLT 
XCI2rIPT)=XC(2rJ) 
XC(3rIPT)=XC(3rJ) 
S( IPT)=S(J) 
LY(IPT)=ZY(J) 
IF(XC(1,IPT)eGEaXEDGt) GO TO 239 

238 CONTINUE 
239 CONTINUE 
C THt FOLLOUING LUUP RtVEHSLS W R I J L H  OF t V t K Y  OTHER CUT TO PRODUCE RETURN 

IF(.NOT.RETUHN) G'J TO 232 
DO 231 I=lrIPT 
J=IPT -1+1 
1FIImGt.J) GO TO 232 
SCR=S( I ) 
S(I)'S(J) 
S( J)=SCH 
sCR=ZY ( I )  
ZY(II=ZY(J) 
ZY (J =SCR 
DO 231 K=1r3 
SCR=XC(KtI) 
XC(Kr1 )=XC(KrJI 

231 XC(KrJ)=SCR 
232 S C R = A M A X ~ ( A B S ( O X C ( ~ ) - X C ( ~ ~ ~ ) I ~ H ~ ~ S ~ O X C ~ ~ ) - X C I ~ ~ ~ ) ) ~ A B S ( O X C ( ~ ) - X C ~ ~ ~  

11) 1 )  
IF(ROUGi1) A=FMIN+ABSIZMIN-LZ)/(FMAX-FMIN) 
XC(3rl)=XC(3tl)-DL 
IF(ICOUNT.EQ.0) SCR=ABS(lO.*XC(3rl)) 
XC(4r1 )=FMIN/SCR 
IF(SCR.LE..OlS) XC(4tl)=100* 
BUFFER OUT(5rl)(XC(ltl),XC(4tl)) 
J=l 
PRINT 904rICUTrJs(XC(LLLrJ)rLLL=lr4)rb(J)rZY(J) 
DO 2321 LLLZlr3 

2321 OXC(LLL)=XC(LLLrIPT) 
DO 235 J=2rIPT 
I+J-1 
XC( 3rJ)=XC(3tJ)-DZ 
S L I U E = A M A X 1 ( A B b ( X C ( l r J ) - X C ~ l r I ) I r A U 5 ~ X C ~ 2 r J ) - X C ~ Z r I ) ) r A B S l X C ~ 3 r J ) -  
lXC(3rI)) 
XC(4rJ)=FMAX/SLIDk 

CUT . 
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I F ( R 0 U G H I  X C ( 4 r J ) = X C ( 4 r J ) * A / ( A + A b S ( A f . l I N l I X C ( 3 t J )  9 X C ( 3 9 1 )  S O . ) ) )  - 

I F ( S L I D t . L C - - O 1 5 )  X C ( 4 t J ) = 1 0 0 .  
I F ( U N I T t 5 )  2 3 3 9 2 3 4  
BUFFER OUT(5rl)(XC(ltJ)tXC(4rJ)) 
P R I N T  9 0 4 t I C U T t J t ( X C I L L L t J ) * L L L = 1 * 4 ) ~ 5 ( J ) ~ Z Y ~ J )  

- - 
C3NT I N U t  
I C O u N T = I C O u N T + I P T  - 

I F ( U N I T t 5 ) 2 3 9 1 t Z 3 9 2  
IF (Y .G t .YEDGk)  GO TO 2 5  
RETURN=-NOTeRtTURN 
Y=Y+DY 
I F ( I C O U N T I G E . ~ Z O O )  GO TO 2 4  
GO TO 1 7  
C A L L  FINISH3(XC(lrIPT)tXC(2tIPTl*XC(3tIPT)rFMAX) 
E N D F I L E  5  
P R I N T  9 0 6 t R E E L t l C O U N T  
R E E L = R L t L + l m  
I COUNT=O 
GO TO 1 6 1  
C A L L  F I N I S H ~ ( X C ( ~ ~ I P T ) ~ X C ( ~ ~ I P T ) ~ X C ~ ~ S I P T ) ~ F M A X )  
E N U F I L E  5 --- 

E N D F I L E  5  
P R I N T  9 0 6 t R E E L t I C O U N T  
IF(.NOT.ROUGH) P R I N T  9 0 8 t T I T L  
IF(.NOT.ROUGH) GO TO 3 0 0  
P R I N T  9 0 7 r T I T L  
XO=Y0=2.1*RMILLF 
I F ( N Y . t Q . 1 )  XO=YO=O. 
XEDGE=XO+XLT+.2+FT 
YEDGE=YO+YLT+.2+FT 
I F ( N Y . t O . 1 )  YiUGE=O. 
I C u T = O  
ROVGH=.FALSEe - 
EPS=EPSF 
TA= TAF 
T d = T B F  
R M I L L = H M I L L F  
FM IN=FMAX=FDRTF 
DY=SOKT(4.+RMILL+EPS/(le+GRAOM**2) 
P R I N T  9 0 2 0  
GO TO 1 6  
IF (NY . tO .1 )  GO TO 7 1 5  
XCUT=YCUT=XO+.l 
R E E L z l .  
ICUT=Bt iCUTOUT 
SCHX=XCUT+RCUT+XLT 
SCRY=YCUT+RCUT+YLT 
P R I N T  ' 4021  
BUFFER O U T ( 5 r l ) ( T I T L l l ) t T I T L ( l O ) )  
B U F F t R  O U T ( 5 t l ) ( I C U T t I C U T )  
BUFFER O U T ( 5 * 1 ) ( R E t L t R L E L )  
I F ( U N I T t 5 ) 3 0 1 p 3 0 2  
XC(1) 'XCUT-RCUT 
X C ( 2 ) = - 4 .  
X C ( 3 ) = 0 .  
XC(  4  )=kDRTC/4 .  
P R I N T  9 2 3 t ( X C ( t L L ) t L L L = l r 4 )  
BUFFER O U T ( 5 t l ) ( X C ( l ) * X C ( 4 ) )  
I F I U N I T t 5 ) 7 0 0 p 7 0 1  
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7 0 1  X C ( 3 ) ' - 5 *  
x C I ~ ) = F U R T C / ~ *  
P R I N T  9 2 3 , t X C ( L L L ) t L L L = l t 4 )  
D U F F t R  OUT ( 5 t l ) ( X C ( l ) r X C 1 4 ) )  

7 0 2  I F ( U N I T e 5 ) 7 0 2 r 7 0 3  
7 0 3  X C ( Z ) = S C R Y  

X C ( 4 ) = F D R T C / A B S ( S C H Y + 4 * )  
P R I N T  9 2 3 r I X C ( L L L ) t L L L = l e 4 )  
B U F F E R  OUT ( 5 t l ) ( X C ( l ) e X C ( 4 ) )  

7 0 4  I F ( U N I T e 5 ) 7 0 4 r 7 0 5  
7 0 5  X C  I 1 )  =SCRX 

X C ( 4 ) = F D R T C / A B S ( 2 a * R C U T + X L T )  
P R I N T  9 2 3 , ( X C ( L L L ) e L L L = l e 4 )  
B U F F E R  OUT ( 5 t l ) ( X C ( l ) e X C ( 4 ) )  

7 0 6  I F ( U N I T t 5 ) 7 0 6 r 7 0 7  
7 0 7  X C I  2  1-XCUT-RCUT 

P R I N T  9 2 3 * ( X C I L L L ) , L L L = l r 4 )  
B U F F L R  OUT 1 5 r l ) ( X C ( l ) e X C 1 4 ) )  

7 0 8  I F ( ~ N I T t 5 ) 7 0 8 r 7 0 9  
7 0 9  X C I l ) = Y C U T - R C U T  

P R I N T  9 2 3 ,  I X C ( L L L )  t L L L = l  t 4 )  
B U F F E R  OUT I S r l ) ( X C ( l ) t X C ( 4 ) )  

7 1 0  f F I ~ N l T t 5 ) 7 1 0 ~ 7 1 1  
7 1 1  X C I 3 ) = 0 *  

X C ( 4 ) = F D R T C / 5 *  
P R I N T  9 2 3 e ( X C ( L L L ) r L L L = l r 4 )  
B U F F t R  OUT ( 5 r l ) ( X C ( l ) t X C ( 4 ) 1  

7 1 2  I F ( U N I T , 5 ) 7 1 2 r 7 1 3  
7 1 3  X C ( 4 ) = F D R T C / A B S ( X C I l ) )  

X C ( l ) = X C ( 2 ) = 0 *  
P R I N T  9 2 3 e I X C ( L L L ) r L L L = l t 4 )  
B U F F E R  OUT ( 5 r l ) ( X C ( l ) r X C ( 4 ) )  

7 1 4  I F ( U N I T t 5 ) 7 1 4 r 7 1 5  
7 1 5  E N D F I L L  5  

E N D F I L E  5  
R E W I N D  5  

900 F O R M A T ( 8 € 1 0 * 4 1  
9 0 1  F O R M A T ( + O S C A L E D  SURFACE P A R A M E T L R S  ARE AS FOLLOWS+/ 

1 5 X * + P E R I O D  I N  X = + , F 1 0 * 4 e l X e +  I N C H E S * /  
1 5 X , + P E R I O D  I N  Y = * , F 1 0 e 4 r l X t +  I N C H E S + /  
1 5 X e * M E A N  SQUARE H E I G H T = + ~ F ~ O W ~ , ~ X ~  + I N C H E S + /  
1 5 X e + M A X I M U M  G R A D I E N T = + e F 1 2 * 6 /  
1 5 X t + N U M B E R  O F  G R I D  P O I N T S  P t R  P E R I O D  I N  X = + r I 5 /  
15X,*NUMBER OF G R I D  P O I N T S  P t H  P E R I O D  I N  Y = + r I 5 / /  
1 +  T H E  O R I G I N A L  SURFACE WAS S C A L E D  A S  FOLLOWS+/ 
1 5 X , * Z - A X I S + e F 1 2 * 6 /  
1 5 X t + X  AND Y  A X E S + t F 1 2 e 6 / )  

9016 F O R M A T ( l O A 8 )  
9 0 1 9  F O R M A T ( / / / / + O R O U G H I N G + )  
9 0 2 0  F O R M A T ( * l F I N I S H I N G * )  
9 0 2 1  F O R M A T ( + l C U T  O U T + / )  
9 0 2  F O R M A T ( + O M I L L  H A D I U S = * r F 1 0 ~ 4 /  

l* E P S I L O N = + t E 1 3 * 4 /  
1+ S L O P E  C R I T E R I O N = + r E 1 3 * 4 /  
l* F E E D R A T E  V A R I E S  BETWEEN + ,F10*2 ,+  AND + , F 1 0 * 2 /  
1+ NUMdER O F  C U T S  P E R  I N C H = * r F 1 0 * 2  

9 0 3  F O R M A T ( ~ H O * ~ X I + C U T  P O I N T + ~ ~ X ~ + X + ~ ~ ~ X ~ * Y + ~ ~ ~ X ~ * Z * ~ ~ O X B *  F R N  * e  8X ,  
1 * S L O P E * r l O X t + Z Y + ~  

904 F O R M A T ( l X t 2 1 5 , 9 E 1 3 * 5 )  
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FORMAT(*OEND OF HlitL+~F3.01* THIS REkL CONTAINS*tI5,* POINTS.+) 
FORMAT(+OTHIS HtEL COMPLETLS ROUGHING OF *r5X11OA81 
FORMAT(*OTHIS KkEL COMPLETES FINISHING OF *r5XtlOA81 
FORMAT(lHlrlOA8) 
FGHMAT(+OREEL hO. +rF3.0) 
FGkMAT(*OHALVtU+,I6r * TlMcS.+rI5r+TH CHOHD~X=+rFlOs4/ 
1+ A M P T I S I P ~ S T P T = * ~ ~ F ~ ~ S ~ / *  A M M T t S I N , S T M T = + t 3 F l 2 . 6 / +  STtDtPS=+,ZF12 
2.61 
FORMAT(1H ,10E13s51 
FORMAT(A8,Il3rtlOs31 
STOP 
END 

SUBROUTINE 5tTUP3 (XO ~YO,ZOIFI 
C THIS VERSION TO BE USED WITH PUINTSB 

DIMENSION XC(41 
XC( 1l=XO 
XC(Z)=Yo 
XC(31'0. 
S C R = A M A X l ( A B S ( X O I ~ A t , S ~ Y O ) l  
XC (4 I =F/SCR 
IFISCR*LE..0151 XC(4)=100- 
BUFFtH OUT (5911 (XC(lltXC(411 

506 IFIUNIT,51 506,606 
606 CONTINU€ 

GO TO 100 
ENTRY FINISH3 
XC(1l=XO 
XC( 2 I =yo 
XC(31=0. 
XC(4l=F/ABS(LOl 
I F ( A B S ( L O l ~ L t - - 0 1 5 1 X C ~ 4 1 = 1 0 0 ~  
BUFFtR OUT (5311 (XC(lI,XC(41) 

507 IF(UNITt51 5079607 
607 CONTINUE 

S C R = A M A X 1 ( A B S ( X O I ~ A U S ~ Y O I I  
XC(4l=F/SCR 
IF(SCRsLE..015) XC(41=100. 
XC(lI=o. 
XC(21=0* 
BUFFER OUT (5rll (XC(lItXC(411 

508 IF(UNIT,51 508,608 
608 CONTINUE 
100 RETURN 

END 
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SUBROUTINE DISP(S~,S~IZYIDXIDYIDZ) 
C  T H I S  VERSION TO BE USED WITH POINTS8 

COMMON/INFO/SZISCALE,RMILL 
s 1 s = s 1 * s 1  
S2S=S2*S2 
C l P = l . / S Q R T ( S l S + l .  1 
CZP= l . /SQRT(SZS+ lo )  
D Z ~ ( C l P + C Z P ) / ( 2 o * C l P )  
D l = ( C l P + C Z P ) / ( 2 o * C Z P )  
Z Y l = Z Y * U l  
ZY2=zY*D2 
Clml*/SQRT(SlS+ZY2**2+1o) 
CZ=lo/SQRT(S2S+ZY1**2+1o) 
D X = - S l * C l * R M I L L  
DY- -ZYZ*C l *RMILL  
D Z = ( C ~ - ~ O ) * R M I L L  
I F l A B S ( S l - S 2 ) . L E . l E - 1 0 )  R t T U k N  
Z S l = Z Y Z * Z Y l + l .  
DXP=RMILL*C1P*SOHT(~1~-C1*CZ*~S1*SZ+ZS1~)/~l~+ClP*C2P*~Sl*S2+1~~~~ 
I F ( S l . L T m S 2 )  UXP=-DXP 
DZP=Sl*DXP 
DX=DX+DXP 
DZmDZ+DZP 
RETURN 
END 

SUBROUTINE I N T E R P ( X X I Y Y I Z ~ Z X ~ Z Y )  
C  T H I S  VER5ION TO BE USED WITH POINTS8 
C  I N T E R P O L A T ~ S  TO XXIYY Ok THE N 1  b Y  h l  SURI-ACL H WITH GRADIENT 
C  IHXIHYIO H  I S  tXT tNOEO PERIOOICALLY I F  XXIYY OUT OF RANGE 

DIMENSION B U ( ~ ) I B U P ( ~ ) ~ F ( Z I ~ F O ( ~ ) ~ F P ( Z )  
C O N M O N / I N F O / S Z I S C A L E ~ R P ~ ~ L L I J X ~ J Y I X ~ P P I Y I P P  
C O K M O N / S E A R C H / X L T I Y L T I ~ A M O ~ X ~ A M O ~ J X P I J Y P I S P ~ C T I I N ~ T I ~ ~ H F A  
DIMENSION H ~ 4 2 2 5 r l ~ r H X ~ 4 2 2 5 r l l t i i Y ~ 4 2 2 5 1 1 ~ 1 X A ~ 1 O 2 5 ~ t Y A ~ l O 2 5 ~  
J X P = J X + l  
J Y P = J Y + l  
X = X X / X I P P  
YmYY/YIPP 
I F ( X o L T o 0 o )  X=X+JX*100 
IF(Y.LT.0.) Y=Y+JY*lOO 
NXmX 
NY=Y 
U=X-NX 
WtY-NY 
NXmMOD (NXIJX) 
NYtMOD ( N Y t J Y )  
NX=NX+ l  
NYmNY+l 
Km 1 
DO 2 5  1 ~ 1 1 2  
DO 2 0  J = l r 2  
GO TO ( 5 t l O ) r I  

5 vmu 
NYP=NY+J-1 

C  THESE S T A T t M t N T S  TAKL SUbSCHIPTS MODULO 64 FOR P t k I O D I C I T Y  
IF (NYP*EQ.JYP)  N Y P = l  
NXP=NX+ 1 
I F ( N X P o E O o J X P )  NXP=1 
N N N = I N Y P - l ) * J X P  
HA=H(NX+NNN) 
HBtH(NXP+NNN) 
GA=HX I NX+NNN 1 
GU=HX(NXP+NNN) 
GO TO 1 5  
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1 0  v-W 
NXP=NX+J-1 
IF(NXPoi5QoJXP) NXP=1 
NYP=NY+l  
I F ( N Y P * E Q o J Y P )  NYP=1 
H A = H ( N X P + ( N Y - l ) * J X P )  
H b = H ( N X P + ( N Y P - l ) * J X P )  
GA=HY(NXP+(NY- l ) *JXP)  
GB=HY ( N X P + ( N Y P - l ) * J X P  

15  Ar2 .  * (HA-140 ) +tiA+GB 
0=3.*IHB-HA)-GA-GA-Ga 

C  BU AND BUP ARE THE SURFACt AND SLOPt ALONG THE bOUNDARIES 
C  OF THE SQUARE. F  I S  F l r  FO I S  F o r  AND FP I S  F l ' = - F O 1  

b U ( K ) = H A + V * ( G A + V * ( t 3 + v * A )  
B U P ( K ) = G A + V * ( B + b + 3 . * V * A )  

2 0 K=K+1 
F ( I ) = V * V * ( 3 o - V - V )  
FO( I )=l . -F ( I) 

2 5  F P ( I ) = 6 . * V * ( l . - V )  
NYPZNY+1 
IF(NYPoEQoJYP1 PIYP=l 

HC=H(NX+(NYP- l ) *JXP)  
H D = H ( N X + ( N Y - l ) * J X P )  
Z=BU(3)*FO(l)+dU(4)*F~l)+BU(l)*FO~2)+BU12)*F~2)-HD*FO~l)*FO~2) - 

1 HC*FO(1)*F(2)-lik*F~l)*F0(2)-tlb*F(l)*F~2) 
Z X = ~ U P ( ~ ) * F O ( ~ ) + U U P ( ~ ) * F ~ ~ ) + F P ~ ~ ) * ~ U U ~ ~ ) - ~ U ~ + F O ~ * H - H A  + 

1 F ( Z ) * ( H C - H B ) )  
Z Y = B U P ~ 3 ) * F O ~ 1 ) + U U P ( 4 ) * F ~ 1 ) + ( B U ~ 2 ) * U 2 - B U l + O l * D - H C  + 

1 F ( l I * ( H A - H B )  
ZX=ZX/XIPP 
ZY-ZY/Y IPP 
RETURN 
ENTRY CALLGETH 
CALL G E T H ( H ~ H X ~ H Y ~ X A ~ Y A ~ X L T ~ Y L T ~ ~ ~ A M O ~ X G A M O ~ J X P ~ J Y P ~ S P E C T # I N I T # S U R F  

1A l 
RETURN 
END 
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SUBROUTINk G E T H ( H ~ H X S H Y I X * Y * X L T S ~ Y L T S ~ G A M O S I  XGA 
1 t I N I T S t S U R F A S )  

H I S  VERSION TO BE USED WITH POINTS8 
DIMENSION X ( N X P l  r Y ( N Y P 1  r H ( N X P t N Y P 1  s H X ( N X P t N Y P l  t t  
COMMON/ INFO/SLtSCALEtR l4 ILL*NXtNY t X I P P + Y  I P P  
D A T A ( E P = l E - 6 1  
CALL  S K I P F I L E l l I  
NXS=NXP-1 
NYS=NYP-1 
DO 1 0  I s l t N X P  
X ( I l = F L O A T ( I - 1 1  
DO 1 5  I = l r N Y P  
Y ( I l = F L O A T ( I - 1 1  
DO 2 0 0  K = l t 1 0 0  
R E A D ( 1 )  X L T t Y L T t G A M O * X G k M O t N X t N Y t S P t : C T * I N I T * Z  
1 F ( E O F t l I 8 0 0 t 5 0  
CONT I N U t  
I F~SPECTmNE*SPECTS*OR*NX*NE.NXS.OR*NY*NE*NYS 

1GO TO 1 0 0  
I F ( A B S ( X L T - X L T S I . G T . E P ~ O R * A ~ ~ S ( Y L T - Y L T S ~ G T ~ E  

lABS(GAM0-GAMOSl*GT*EP*OH.AHS(SURFA-SURFASle( 
GO TO 3 0 0  
CALL  S K I P F I L E ( 1 I  
CONTINUE 
CONT INUE 
R E A D ( 1 I  ~ ( H ( I * J l r I = l t N X P l r J = l t N Y P l  
R E A D ( 1 )  ( (  HX(ItJ)tI=ltNXP)tJ=ltNYPI 
I F ( N Y e t Q e 1 )  GO TO 3 0 5  
R E A D ( 1 )  I (  HY(ItJItI=ltNXPltJ=lrNYPl 
GO TO 3 1 0  
DO 3 0 6  I = l r N X P  
H Y I  l r l ) = H Y l  l r 2 ) = O *  
X I P P = X L T / F L O A T ( N X )  
Y  IPP=YLT/FLOAT ( N Y )  
DO 4 0 0  I = l r N X P  
DO 4 0 0  J = l t N Y P  
H ( I ~ J I = S Z * H I I I J I  
H X I  I s J ) = H X I  I t J ) * S Z * X I P P / S C A L E  
I F I N Y * t O e l I  GO TO 4 0 0  
H Y (  I * J I = H Y (  I t J I * S L * Y I P P / S C A L t  
CONT I N U t  

; AND HY ARE I N  UI\ ITS OF DELTA Ii PLK POI  
C A L L  P R I N T V ( H  r X @ Y  *NXPrNYP*iVXPrf iYP P 1 
CALL P H I N T V ( H X I X I Y * I \ X P I N Y P ~ ~ . ( X P * ~ Y P *  
l F ( N Y * ~ L l m l l  GO TO 8 0 1  
CALL  PRINTV(HY r  X t Y  tNXP tNYP*NXP *NYF 
GO TO 8 0 1  
P R I N T  YO1 
STOP 
FOHMAT(4tlOm3r17t113tElOm3) 
FORMAT(+ONO SUKFACt WITH D t S 1 '  
RETURN 
END 
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SUBROUTINE P H I N T V  ( B r X r Y  r N X D r N Y D r N X r N Y  r IFOHbl )  
C T H I S  VERSION TO BE USED W I T H  P U I N T S B  

D I M E N S I O N  B I N X D r N Y D ) r X ( N X D ) r Y I N Y D )  
D I M t N S I O N  F O H M ( 1 7 )  
DATA I F O R M = 1 3 6 H I l l I  rlXrF9.5r3XrlO(tllr4rlXI I ( l H O t 5 X r + Y + t 7 X i l O ( +  

l X = + r F 9 . 5 r l X ) ) ( l H  rlXrF8*4r3XrlOIFll.5rlX) I ( l H O r 5 X r + H +  + t 5 X t l O ( *  
l H - = + r F B * 4 r l X )  1 )  

JFORM= IFORM+4 
I P 0 9 = 0  
I F I N X . L t . 1 0 )  GO TO 3 0  
I P R = N X / 2 - 5  ' 
I P R N T = I P R / l O  
I P R N T ' I P R - l O + I P R N T  
P R I N T  F O R M ( J F 0 K M ) r I X I I )  t I = l r I P K N T )  
0 0  1 0  J Y P = l r N Y  

1 0  P R I N T  FORM(IFORM)rY(JYP)rIH(JXPrJYP)rJXP=lrIPKNT) 
I P R N T P = I P R N T + l  
NL=NX-9 
I F ( I P R N T P * G T * N L )  GO TO 3 0  
DO 2 0  I = I P R N T P r N L r l O  
I P 0 9 = 1 + 9  
P R I N T  F O R M ( J F O R M ) r I X ( J ) r J = I r I P 0 9 )  
P R I N T  FORM( 1FOkt.l) r ( Y ( J Y P )  r ( b ( J X P 9 J Y P I  r J X P = I * I P U 9 )  r J Y P = l r N Y )  

2 0  C O N T I N U t  
I F (  I P O Y * E Q r N X l  GO TO 5 0  

3 0  I P l O = I P O 9 + 1  
P R I N T  FORM(JFOHMlr(X(JlrJ=IPlOrHX) 
DO 4 0  J Y P Z l r N Y  

4 0  P R I N T  FvRM( I F O i < M ) r Y (  J Y P I  r ( B ( J X P r J Y P )  r J X P = I P l O r N X )  
5  0  RETURN 

END 



NRL REPORT 7 58 8 

PROGRAM PAPER2 
DIMENSION CO( 4r500O)rN(lO)rI(264)rNX(3)r1X(7) 
DIMENSICN I T I T L ( l l ) r J T I T L ( 1 0 )  
DATA(NbiOF=O) 
DATA (NN r l O S H ) r ( N (  l ) = 0 4 0 H )  

1 (NG ~ 1 4 7 6 )  t ( N (  2 )=001 t J )  e 
2  I N X ( 1 )  = 0 6 7 8 ) r ( N (  3 1 = 0 0 2 B ) r  
3  ( N X ( 2 )  = 0 7 Q U ) r ( N (  4 ) = 0 2 3 B ) e  
4  ( N X ( 3 )  = 0 5 l B ) r ( N (  5 ) = 0 0 4 B ) e  
5  (NPLUS = 1 6 0 U ) t ( N (  6 ) = 0 2 5 B ) e  
6  (NMINUS=lOOB)e(N(  7 ) = 0 2 6 B ) e  
7 (NF = 1 6 6 b )  * ( N (  8 ) = 0 0 1 B )  r  
8  I hbl = 1 2 4 8 ) t ( N (  9 ) = 0 1 0 b ) e  
9  (NDBLK ~ 2 O O U ) t ( N ( 1 0 ) = 0 3 1 H ) r  
A  (NSPACE=0200) e I NEOR=013b 

D A T A ( I T I T L ( l l ) = B H  REEL NO 
NNPOINTS=4999 
REWIND 5  
N Y Y = l  
READ YOlr(JTITL(LLL)tLLL=lrL()rSHOUGHebRttL 
PRINT Y O O e ( J T I T L ( L L L ) r L L L = l * ~ ) r  S R t t L  
FORMAT(BA8rI2~F3oltE10.4) 
FORMAT(lHOt8ABr F3.1 tE10.4) 
BUFFER IN(5rl)(ITITL(l)rITITL(10)) 
I F ( U N I T t 5 1  l l r 1 2 t 9 6 r 9 7  
BUFFtR IN (5 t l ) (HOUbHrROUGH)  
I F ( U N 1 T t 5 ) 1 2 1 * 1 2 2 ~ 9 7  
BUFFER I N l 5 r 1 )  (HEELvREtL I  
I F ( U N I T t 5 ) 1 3 t 1 4 e 9 7  
COEJ T  I NUE 
PRINT 9 0 0 t (  I T I T L ( L L L 1  r L L L = l r 8 )  t R t t L  
DO 2 0 6  L L L = l t B  
IF(JTITL(LLL).tOoITITL(LLLI) GO TO 2 0 6  
NDEOF=3 
GO TO 9 6  
CON1 I NU€ 
IF(SROU6H.EQoHOUGH) GO TO 207 
DO 2 0 9  L L L ~ l r 2 0  
CALL S K I P F I L E  ( 5 )  
BUFFER IN(5rl)(ITITL(l)rITITL(Z)) 
I F ( U N I T t 5 ) 2 0 8 r 2 O Y ~ Y 6 , 9 7  
CONT I N U t  
CONTINUE 
I F ( S R E t L 0 E Q ~ R t E L )  GO TO 205 
CALL S K I P F I L E  ( 5 )  
GO TO 1 
CONT I N U t  
MASKS778 
DO 3 J z l r l l  
~XT=~OOOOOOOOOOOOO B  
DO 3  H = l r 8  
I C O = I T l T L ( J ) / I X T  
ICO=ICOOANDIMASK 
I X T = l X T / 1 0 0 8  
CALL SYMBOL( I C 0 1  
CONT INUE 
CALL SYMBOL ( 4 8 )  
1C0= I N 1  (REEL/  10.) 
CALL SYMBOL(IC0) 
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ICO=INT(f?EEL)-ICO*10 
CALL SYMYOL ( ICO) 
CALL SYMBOL ( 58 
DO 47 I JK=l 9NNPOINTS 
BUFFER IN (591) ( C O ( ~ ~ I J K ) Y C ~ / ~ ~ I J K ) )  
IF(UNITt5)3994,48~97 
NPOINTS=I JK 
CONTINUE 
CONT I NUE 
IF(NYY.Nt.1) GO TO 484 
DO 481 IJK=l tNPOINTS 
C0(2tIJK)=C013rIJKl 
C0(3rIJK)=O. 
CONTINUE 
NPOINTS=NPOINTS+l 
DO 485 KKK=1+3 
CO(KKKINPOINTS)=CO(KKK~NPOINTS-1) 
CO(4 rNPUINTS)=100.0 
DO 49 KKK=lr200 
I(KKK)=NSPACE 
I (201 =NEOR 
I ( ~ O ~ ) = N D B L K  
BUFFER OUT (191) (1(1)91(202)) 
IFIUNITt1)491r492 
CONTINUE 
IA=0 B IB=O B IC=1 
L=l 
I JKz 1 
ISEQ=l 
I(L)=NN 
L'L+l 
IF(IA.EQ.0) GO TO 10 
I(L)=N(IA+l) 
L=L+l 
IF(IA.EO*O.AND.IB*EQ*O) GO TO 20 
IIL)=N(IB+l) 
L'L+1 
IIL)=N(IC+l) 
L'L+l 
IF(ISEQ.NE.1) GO TO 25 
I(L)=NG 
I(L+l)=N(lO) 
I(L+Z)=N(l) 
I (L+3 ) =NG 
IIL+4)=N(2) 
L'L+5 
DO 40 INDEX=lr3 
I(L)=NX(INDEX) 
L=L+1 
ICO=CO(INDEX9IJK)*lE+4 
ISIGN=ICO/IABS(ICO) 
ICO-IAt3SIICO) 
IF( ISIGNJ 31932932 
I (L)=NMINUS 
GO TO 33 
I ( L =NPLUS 
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L=L+l 
I(LI=h(IX(4)+1) 
I(L+l)=N(IX(5)+11 
I(L+21=N(IX(6)+11 
I(L+3)=N(lX(7)+11 
L=L+4 
CONT INUt 
I(Ll=Nt 
L0L+1 
ICO=C0(4rIJK)*10 
TkN= 1E+6 
DO 401 K=lr7 
IX(KI=ICO/TEN 
ICO=ICO-IXIK)*TtN 
TEN=TEN/lOe 
DO 405 K"lr6 
K=K 
IF( IX(K).NEeO) GO TO 41 
CONT INUt 
DO 42 LLL=Kr6 
I(Ll=N(IX(LLL1+11 
L'L+l 
CONT INUE 
I(LI=N(IX(71+1) . 
L=L+1 
IF(IJK*tOmNPOINTS) GO TO 70 
IF(ISEQ.Nt.11 GO TU 50 
I(L)=NM 
I(L+l)=N(4) 
L=L+2 
I(L)=NUt)LK 
I JK= I JK+1 
IF(L*Lt*2201 GO TO 60 
BUFFtR OUT (1*1) (I(l)rI(L)) 
IF(UNITr1)501t502 
CONT IPJUt 
L SO 
L=L+1 
IStQ=I SEQ+l 
IF(1SEQ.EQmlOOOI lSEQrl 
ICO=IStQ 
IA=IC0/100. 
ICO=lCO-IA*l00. 
IB- ICO/10* 
ICO=ICO-It3*10. 
IC=ICO 
GO TO 5 
I (Ll=NM 
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I(L+l)=N(61 
I I L+2 =NDBLK 
LPL+Z 
BUFFtR OUT (1-11 (I(l)tI(L)) 
IF(UNITt1)701r702 
CONTINUE 
L=1 
ISEQ=f StO+l 
IF(iStQ.EO.1000) ISEQzl 
ICO= IStO 
IAaIC0/100. 
ICO=ICO-IA*100. 
IB=ICO/10. 
ICO= ICO-IB+lO. 
IC= ICO 
I(L)=NN 
L=L+l 
IF(IA.tO.0) GO TO 71 
I(L)=NIIA+l) 
L=L+l 
IFIIA.tQ.O.ANU.IB.tQ.0) GO TO 72 
I(L)=N(IU+lI 
L = L+ 1 
I(L)=N~fC+lI 
I ( L+1) =NF 
I(L+2)=Nl3) 
IIL+3)=N(lI 
I(L+4)=NIlI 
I(L+5)=N(l) 
I I L+6 =NM 
I(L+7)=N14) 
IIL+B)=NIl) 
IIL+9)=NDULK 
L=L+lO 
DO 80 KKK= Le20L 
IIKKK)=NSPACE 
BUFFtR OUT I1911 II(l)tIl202)) 
GO TO 95 
NDEOF=NUtOF+l 
IFINDtOF.LE.2) GO TO 1 
PRINT 910 
FORMATI*ONO SUCH FILL ON TAPt*) 
GO TO 95 
PRINT 920 
FORMATI*OIRRECOVEKAtjLt PARITY tHHOK OK UNIT 5s) 
REWIND 5 
STOP 
END 
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SUBROUTINE SYMBOL(IISW1 
DIMENSION I ( 2 6 4 )  
DATA (L'O) 
1sw= I ISW 
IFIISWmEQ*O) 1SW=38 
IFILmEQ*O*AND.ISW*kQe58 ) RETURN 
I F ( I S W * G T * 3 0 )  GO TO 401  
GO TO ( l r 2 t 3 r 4 r 5 ~ 6 r 7 ~ 8 v 9 r 4 ~ Y ~ Y ~ 9 ~ ' ~ L ) ~ 9 * l 7 ~ 1 U ~ 1 Y ~ 2 0 ~ 2 1 ~ 2 2 ~ 2 3 ~ 2 4 ~ 2 5 r  

1 2 5 r 2 5 ~ 2 5 r 2 5 r 2 5 l ~ I S W  
4 0 1  ISW= ISW-30 

GO TO ( 3 Z ~ 3 2 r 3 3 t 3 4 r 3 b r 3 b r 3 7 ~ 3 U ~ 3 3 ~ 4 O ~ 4 1 ~ 4 1 ~ 4 1 ~ 4 l t 4 ~ ~ 4 l t 4 l r 4 8 ~ 4 d ~ 5 O  
lr51t52r53r54t55tS6*57*5Y)*ISW 

C A=2lB=17rU=22B=18tC=23t!=19tD=24~=2O~E=25B=2l~F=26U=22~ti=27B=23~H=3OU=24~ETC 
1 IA=OOU%IB=22BBIC=76BBID=OZB~IL=OOUJGO TO 400 1 
2 IA=568BIH=52BBIC=526$1D=52BbIE=ZZB4GO TO 400  2 
3 IA=42bSIB=42EBIC=52DSIO=52B~1E=24bBGO TO 400  3 
4 I A = 7 0 8 B I a = 1 0 U B 1 C = l 0 t ! $ I I , = 7 6 U B I t ~ = l O B L t i O  TO 400 4 
5 IA=72bBIb=528%1C=52UbIO=52Lj~It=4465GU TO 400  5 
6 IA=346SI8=52bBIC=5ZL;$IL;=52B5It=O4b'IGO TO 400  6 
7 IA=40bBIB=40USIC=56bBIO=6ODBIE=40bSbU TO 400 7 
8 IA=24bSIB=52b~IC=52bBIU=52t~OIt:=24tjSGO TO 400 8 
9 IA=20BSIB=525$IC=52B$ID=SZBSIE=34~3btiO TO 400  9 
1 7  I A = ~ ~ U S I B = ~ O ~ Y I C = ~ O B $ I O = ~ O ~ ~ B I E = ~ ~ ~ ~ ~ G O  TO 400  A 
18 I A = 7 6 t i % I U = 5 2 8 3 I C = 5 2 B B I O = 5 2 f ~ Y I L = 2 4 t j 5 G O  TO 400 B 
1 9  I A = 3 4 i 3 B I U = 4 2 0 % I C = 4 2 S B I U = 4 2 L i b I  t:=2465GO TO 400 C 
20 IA=76dSIB=42U%IC=42BBIV=42CbIt=34ESbU TO 400  D 
2 1 I A = 7 6 b O l ~ = 5 2 b S I C = 5 Z U B I U = 5 2 I ~ 1 , l  t=4ZdbbO TU 400 E 
2 2 IA=76b$IB=50bbIC=50BBIC~=5OESI ti=4OUsGO TO 400  F 
23 IA=34BB18=42881C=42E,B1L>=528Blt=54E3%GO TO 400 G 
2 4  IA=76881B=1ObB1C=lOtiB1D=lOBBIE=76HBGO TO 400 H 
25  IA=42BBIB=42UBIC=766%IV=42t!Blt=42UBC~O TO 400 I 
3 2 IA=IU=IC=ID=IE= lOBBGO TO 400 - 
3 3 IA=44bBIB=42UBIC=74EBIL;=40tiblk=4ObSGO TO 400 J 
3 4  IA=76~BIB=106SIC=24tc3Ib=42tj~It=0OB4GO TO 400  K 
3 5 IA=76~SIB=02U8IC=OZbBIi)=Oi!Ubl t=oZH!bC10 TO 400 L 
3 6  IA=768BIB=208SIC=10ti5IO=2OLbIt=76BIbGO TO 400 I4 
3 7  IA=768SIH=20BBIC=lObBIO=O4f15IE=768BGOTO400 N 
3 8 IA=34U%IB=42UBIC=42UBIO=42L:~IE=34DbbO TO 400  0 
3 9  I A = 7 6 ~ B I B = 5 0 ~ B I C = 5 0 B B I V = 5 O B b I t = 2 0 8 4 G O  TO 400  P 
4 0  IA=34bYIB=4ZBBIC=46Li~IU=36H~IE=OlB1GU TO 400 0 
4 1  1A=76B%Ib=5OUBlC=5OBBIU=54L!~~1L.=22BBGO TO 400 R 
4 8 I A = I 6 = I C = I D = l t = O  $60 TO 400 BLANK 
50  I A = 7 2 U S I B = 5 2 U b I C = 5 Z b B I b = > Z t i ' b l L = > 6 i 3 B G O  TO 400 5 
5 1 IA=408SIB=408SIC=766SID=40S\~Ik=4OBSGO TO 400 T 
5 2 IA=76BSIU=OZBBIC=OZHSID=OZL~~IE=76BSGU TO 400 U 
5 3 IA=7U0BIB=04UBIC=O2BSILi=O4t~SIE=7OBSGO TO 400  V 
54  IA=76UBI~=04U%IC=10531D=04PPYIE=76~SG0 TO 400  w 
5 5 IA=42dBIB=24DBIC=10i:BIU~24i3SI€=42U5GO TO 400  X 
5 6 IA=40dBIB=20~%IC=l6i?$IV=2Ot~~IE=40UBGO TO 400  Y 
5 7  IA=42~YI6=466SIC=52d$IU=6ZbbIt=4ZUbGU TO 400 Z 
400  I ( L + l I = I A  

I ( L + 2 1 = I B  
I ( L + 3 ) = I C  
I I L + 4 ) = I D  
I ( L + 5 ) = I E  
I ( L + 6 ) = 0  
L=L+6 
IF(LaLE.2481 RtTUKN 

58 BUFFtH O U T ( 1 * 1 )  ( I ( l l t I ( L 1 1  
5 8 1  !F(UNIT t 1 ) 5 8 1 * 5 8 2  
582 CONTINUt 

L = 0 
RETURN 
END 
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