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ABSTRACT 

Direct methods which utilize finite discrete Faurier 
transforms in the computation of both power and energy 
density spectra a r e  examined. The methods a r e  shown to 
be applicable to  most physically realizable processes. The 
"intrinsicD windows involved in the methods and the vari- 
ance d the resulting estimates a r e  discussed. A generalized 
smoothing technique is developed which significantly reduces 
the variance d the estimates and greatly suppresses leakage 
from side lobes. 
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DIRECT COMPUTATION OF POWER DENSITY 
AND ENEFGY DENSITY SPECTRA 

With the development of the fast Fourier transform (FFT) algorithm, i t  became fea- 
sible to compute the power density spectrum from a considerable number of data points 
in a direct manner without the intermediate explicit calculation of the autocovariance 
function, which heretofore had been standard. 

Because of this basic change in the technique of computation of power density spec- 
tra, it becomes necessary to examine the assumptions, constraints, methods, and 
applicability of the new technique, as well as the relative merit of various subsequent 
smoothing operations. A portion of the investigation has been attacked piecemeal by 
various authors, often for specific cases. The purpose of this report is to present a 
consolidated treatment and to extend and generalize the treatment where possible. 

The report is concerned with both the problem of computation of energy density 
spectra for aperiodic deterministic functions and the problem of computation and 
smoothing of power density spectra for stationary, ergodic, random functions. The 
Fourier sampling problem and the sampling variation inherent with random processes 
a r e  both examined. The f i rs t  section of this report presents the assumptions, sufficient 
conditions for applicability, and initial analysis of the technique. The next section de- 
scribes the actual computation of power density and energy density spectra and the 
resulting frequency windows. The final section is concerned with several smoothing 
operations (one of which is particularly meritorious), the associated frequency windows, 
and the variance of the smoothed estimators. The details of the various computations 
and analyses, together with some background material, a r e  presented in the Appendices. 

INITIAL CONDITIONS AND ANALYSIS 

Aperiodic (or Transient) Deterministic Functions 

Consider a continuous time function x ( t )  which is aperiodic (or transient), deter- 
ministic, and real. Denote the continuous Fourier transform* of x ( t )  by $ ( f )  . Assume 
that $ ( f )  is approximately band limited. A sufficient condition is that $ ( f )  approaches 
zero at  least  as rapidly as E / (  I f  1") for  1/(2A) 5 If 1 < a, where a > 1.0 , E is some 
small constant, and A is a time interval. Assume that x ( t )  is negligibly small outside 
an interval of T seconds. Here a sufficient condition is that ~ ( t )  approaches zero at  
least as rapidly as v/( It 1 P ,  for t  outside the interval of T seconds, where /3 > 1 .0 ,  and 
v is some small constant. 

It  should be noted that a condition for the validity of the continuous Fourier trans- 
form requires that 

*Defined in Appendix A. 
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be finite. Thus the assumption concerning x( t )  is nonrestrictive and is merely a conven- 
tion regarding the size of the time interval during which x (t ) is nonnegligible. Simi- 
larly, the total energy which ~ ( t )  represents is given by 

which must be finite*. Thus the assumption of approximate band limiting is realistic 
and simply involves a choice of the range of frequencies with appreciable energy.** 

Let x ( t )  be sampled at  a rate of 1 / A  samples per second during the T  seconds with 
the convention that the first sample occurs at t = 0 and the ~ t h  samplet at t = T. If 
we signify the continuous transform of the finite discrete time ser ies  {x = x( t  = A j )I 
for  j = 0, 1,  2, . . . , N - 1  , by $b( f ) ,  then it is shown in Appendix B that, under the 
given sufficient conditions, 

where y, can be' made arbitrarily small. From Eq. B12 one has 

If we let  

and consider the frequenciesq 

f, = k / T 1 ,  k  = 0, 1, 2, . . . , (N/2)-1 

then with these substitutions one has 

*The t denotes conjugation. 
**In Appendix B the sufficient conditions for approximate band limiting and negligibility of x ( t )  a re  

examined. 
$Note that the N samples occur in the closed time interval LO, TI and that there a r e  N - 1  sub- 

intervals of duration A  in the closed time interval LO, '17 ; thus (N-1) A  = T .  
1Not.e that the presentation by Swick (1) may lead to a slight misconception due to  a failure to dis- 

tinguish between the interval of time spanned by N samples, that is (N-1) A=T, and the interval 
of time T' = NA used in all equations. 
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where the coefficients Fk a r e  the members of the sequence F which is defined* to be the 
discrete finite Fourier transform (DFT) of ix j  1 .  Thus the approximation to the con- 
tinuous transform of ~ ( t )  , when evaluated f o r  f equal to integer multiples of 1 /T' and 
1 f 1 5 1 / ( 2 A ) , is equal to T' t imes the corresponding member of DFT {xj 1 .  

Stationary, Ergodic, Random Functions 

A continuous random process generates an infinite aggregate of continuous random 
functions. The observed continuous random time function ~ ( t )  is to be regarded as one 
realization of the infinite ensemble of functions which might have been observed. An 
important characteristic of a stationary, ergodic, random process is its power density 
function ~ ( f  ) which is the continuous Fourier transform of the autocovariance function of 
the process 

where E represent6 an ensemble average, x t ( t )  is the tth member of the ensemble, and 
p is the ensemble mean of the random process. Thus P ( f )  is defined to be 

P ( f )  = Iwp(r) exp ( - 2 n i f r )  d r .  
- w 

Since both the power density function and the autocovariance function a r e  charac- 
teristic of the random process as a whole, they a r e  deterministic functions. It is in 
this sense that both Appendix B and this portion of the report t reat  the Fourier sampling 
problem for the random process utilizing power density estimates which a r e  based on an 
infinite number of realizations. The variation of the estimates arising in the random 
sampling problem (when only a finite number of realizations a r e  available) is treated 
later  on in the report. 

Without loss  in generality, let  p = 0 . If one uses as an estimate of p(r  = A z )  the 
function ct(r = AZ ) given by 

where cg ( r=  -Az)  = ct(r = A z ) ,  then it is obvious that 

Thus, ct(r = Az)  is an unbiased estimator of the autocovariance function a t  the lags 
= AZ fo r  = o, 1, 2, . . . , N-1. 

*sirnil& to definitions in Appendix C. 
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Assume that p ( r )  is negligibly small for 171 > T seponds. A sufficient condition is  
that p ( r )  approaches zero a t  least a s  rapidly a s  v l / (  1r1P ) for lags r greater than T 
seconds, where p' > 1 . 0  , and V' is a small constant. The single realization x(t) may 
be thought of a s  being composed of an infinite number of segments, each of length T. 
Because of the assumption about p ( r ) ,  the segments of x ( t )  a r e  approximately independ- 
ent (for T large) and may be used in place of the member functions of the ensemble. 
This is merely another way of stating the stationary and ergodic constraints placed upon 
the random process. Assume that P ( f )  is approximately band l i e t e d .  Here a sufficient 
condition is that P( f ) approaches zero at  least  a s  rapidly a s  E 1 f 1 a ) for 1 / ( 2 ~  ) 5 ( f 1 < , , 
where a' > 1.0 , and E' is some small constant. Let the sampling rate fo r  c ~ ( T )  be l / A  . 
Note that exactly analogous arguments for the sensibility and practicality of the  assump- 
tions concerning ~ ( r )  and P( f )  can be given a s  those presented in the previous subsec- 
tion for the assumptions on x ( t )  and $ ( f ) .  

If one computes c 4 ( r = n z )  for l z l  = o ,  1 ,  . . . , N - 1  from each segment according 
to Eq. 9 and forms a f b l t e  discrete transform (this is the older "brute force" method) 

which is ensemble averaged 

E [ C ~  ( ~ n ) ]  exp (-277 i f  A n ) ,  1 f 1 5 1 / ( 2 A )  
E [ . i ( f l  = 1' n=z+l 

and defines P d f )  to be equal to E [ P : ( ~ ) ] ,  then 

exp ( - 2 n i f  A n ) ,  I f I 5 1 / ( 2 A )  

I t  is shown in Appendix B that, under the sufficient conditions on p ( r )  and P ( f )  , 

where y2 can be made arbitrarily small*. It should be noted that an  infinite number of 
segments (members of the ensemble) a r e  required in the ensemble average, and thus an 
infinite amount of data a r e  required to estimate P ( f )  arbitrarily closely. A discussion 

*Note that here y2 represents a greatest lower bound on the error in determining the power spectra 
from an infinite number of segments, whereas in Eq. 1 yl represents an estimate of the error in- 
volved in approximating the Fourier transform of the deterministic function. The formula for 71 
i s  given in Eq. B11; y2 is given by Eq. B13. 
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of the variance of the estimate when only a finite number of segments a r e  available is 
deferred until later .  

DIRECT COMPUTATION OF ENERGY DENSITY 
AND PQWER DENSITY SPECTRA 

Energy Density Spectra for  Aperiodic Deterministic Functions 

The energy density spectrum of the aperiodic function x ( t )  is given by Lee (2) as 

where + ( f )  is the continuous Fourier transform of x( t )  . From the previous section and 
Appendix B we know that, to within an arbitrarily small quantity y,, 

+ ( f k )  = TIFk ,  k = 0,  1, . . . , (N/2)-1, and fk = k/T1. (15) 

Thus, upon neglecting terms of order one o r  higher in y,, we have 

The right-hand side of Eq. 16 can be thought of as an approximation to the average 
energy density in a band of width l /T1  centered a t  the frequency f, = k/ T' . It can be 
shown that 

1 / ( 2 A )  

( T ' ) ~ F , F ~  / r ( f k - f )  WE(f) d f .  k = 0. I .  . . . . (N/2)-1, 
- 1 / (2A)  

(17) 

where the window* is 

and 

Figure 1 is a scaled plot of the energy density window versus N A ~  for  the case 
where N = 1024 and A = 0.2 . 

Power Density Spectra for Stationary, Ergodic, Random Functions 

Rather than applying the "brute force" method of the f i r s t  section, let us utilize the 
discrete finite Fourier transform of the 4th segment with length T (N samples) of the 

* WE(f )is called a "windowt1 because it effectively acta as a weighting function (or variable trans- 
mission window) throughout the frequency domain. 
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Fig. 1 - Plot of WE( f )/(2N-1) A vs NA f for the case N = 1024 and 
A = 0 . 2  sec. 

realization x ( t )  to compute the power density spectrum. The direct approach is con- 
siderably faster  (3) than the old method. Thus we have 

The constraint that k = 0 ,  1, . . . , (N/2)-1 will be understood to apply to the equations 
that follow. Consider the expression , which will be shown to be an estimator of power 
density, 

In Appendix D it is shown that 

where c4 (Az) is defined in Eq. 9. Equation 21 can be rewritten as 
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where f k  = k/(NA) = k/T'  . An ensemble average of Eq. 22, utilizing Eq. 10, gives 

E %  ( ) - A  [ l  - ( A ~ z ( / T ' ) ] ~ ( A z )  exp ( -2n i fkAz)  (23) 
. = - N + l  

Application of the convolution theorem gives r i se  to 

1 / ( 2 4 )  

E ($)= f P ( f k - f )  WBD(f) d f ,  k = 0. 1. . . . , (N/2)-1. 
- 1  / ( l a )  

where 

WBD(f) = f i ( r -Az)]  [I  - ( l r l / T 1 ) I  exp ( - 2 n i  f r )  d* 
- m z = - N + 1  

= A 2 QBD(Az) exp ( - 2 n i  f Az)  

and 

and where QBD(Az) is defined in Table A2, Appendix A. A plot of the frequency window 
makes obvious the interpretation of the expected value of sf as an estimate* of the aver- 
age power density in a band of width I/T' centered at  the frequency f k  = k/Tf.  

Figure 2 is a scaled plot of the window WBD(f) versus NAf for  the case N = 1024 
and A = 0 . 2  sec. 

*In the direct method, the power density estimates are calculated directly from the finite discrete 
Fourier traneform according to Eq. 20. However, i t  can be seen from Eq. 21 that this involves an 
implicit calculation of the estimator of the autocovariance function. 



W. B. MOSELEY 

Fig. 2 - Plot of W B D ( f  ) /NA vs N A f  for the case N = 1024 and 
A = 0.2 

The spectral window W B D ( f )  is similar to a sl i t  of width l/T1, so f o r  very large T' 
(i. e .  , large N ) i t  is reasonable to assume that P ( f  ) is approximately constant over the 
slit. Hence one has the approximation 

for large T . This type of argument relating the window to a elit will be used again and 
referred to as  a slit-window argument. 

Up to this point, i t  has been assumed that an infinite number of segments were 
available f o r  the ensemble average. Let us now consider the case where only one seg- 
ment of length TI (M = r N  samples where r is an integer) is obtained and where the S: for  
k = 0, 1 ,  . . . , ( W 2 ) - 1  a r e  computed from the segment. Here the single values a r e  
used in place of the ensemble averages; the equations to this point still apply with T; 
replacing T' and M replacing N .  Jenkins and Watts (4) provide a derivation, under the 
relatively weak restriction that the random process is linear but not necessarily normal, 
of the approximate variance and covariance of s:, that is (for i # j ) 

- .  

t {sin [ n M A ( f i  - f j ) l / ~  sin [ n A ( f i  - f j ) J I 2 )  
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and 

Variance (s:)= P 2 ( f k ) ,  k = 0 ,  1,  . . 9 (M/2)-1.  (30) 

They also show that, for M large, 2S,'/p(f , )  has approximately a x2 distribution with 
two degrees of freedom f o r  k z 1 ,  and that s,'/P(o) has approximately a x2 distribution 
with one degree of freedom. 

Several features of Eq. 29 and 30 should be noted: (a) the covariance between two 
spectral estimators is of order ( I / T \ ) ~  for i # j and thus, for  T; large, the St, a r e  ap- 
proximately independent random variables; (b) the estimates a r e  not consistent estimates 
of the power density spectrum, since the variance of the estimates does not approach 
zero a s  N approaches infinity ; and (c) the standard deviation of the estimates is 100% of 
its mean value. 

SMOOTHING THE POWER DENSITY SPECTRUM ESTIMATES 

In order  to reduce the variance of the s: estimates, some smoothing technique 
must be applied. A straightforward method by Bartlett (5) of exchanging resolution for  
decreased variance is to subdivide the single record of length TI into r nonoverlapping 
segments each of length T (N samples). Compute the Sf  fo r  each segment (4= 1, 2, . . . , r )  
and then average over the segments 

It is obvious from Eqs. 25 and 31 that 

where W B D ( ~ )  is given by Eq. 27. A similar  slit-window argument gives 

E ( S k ) = P ( f k ) ,  T large  and k = 0 ,  1,  . . . , (N/2)-1. (33) 

The constraint that k = 0 ,  1 ,  . . . , (N/2)-1 will be understood to apply to all equations 
that follow unless specifically excepted. 

Since NA is larger than the time during which the autocovariance remains nonnegli- 
gible, the S: and si a r e  approximately independent for i # j .So 

a r k  = ( 1  2 Var (S:)=(l/r) p2 ( f k ) .  
g=1 

The single record of length T, provides estimates of the average power density in a 
band width l /(rNA) centered a t  the frequencies f k  = k / ( r ~ A ) f o r  k = 0 ,  1,  . . . , (rN/2)-1 with 
variance ~ 2 ( f k )  , whereas the r segments give r i se  to the sk which a re  estimates of the 
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average power density in a band of width ~ / ( N A )  centered a t  frequencies f  = ~ / ( N A )  fo r  
k = 0 ,  1, . . . , ( ~ 1 2 ) - 1  with variance ( l /r )  p2(fk) .  

Now if a reduction of side lobe leakage is deemed necessary, one has the choice of 
either smoothing the estimates Sk o r  smoothing the T'F: at  the intermediate s t age  before 
computation of the power density estimates. 

As an example of the former choice, consider the following typical smoothing opera- 
tion applied to the s,: 

Vk=d- l%- l  + dOSk + d l % + 1 ,  1  < k  < (N/2)-2, 

where d-I = dl = 1/4 and do = 1/2.  It is shown in Appendix E that 

E ( V k ) =  J ~ ~ ' ( ~ ~ ) ~  
+ (1/T ' ) 

P ( f k - f )  K(f)  d f ,  1  < k  < (N/2)'-2, (36) 
[-1/(2A)] - ( l / ~ '  ) 

where 

and w B ~ ( f )  is given in Eq. 27. 

The window K( f )  is shown scaled in Fig. 3 .  It is graphed versus NAf for the case  
N = 1024 and A = 0 .2  sec. Using a slit  window argument and the fact that d-1 + do + dl  = 1  
one has 

E(Vk) = P ( f k ) ,  N large and 1  < k  < (N/2)-2. (38) 

Because the Sk a r e  approximately independent for large N, the variance is given by 

On the other hand, if the estimates T ' F ~  a r e  smoothed for each segment and power 
density subsequently computed, one has* 

where 

*The details of the analysis leading to Eqs. 40 through 43 a r e  given in Appendix F. 
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NAf 

Fig. 3 - Plot of K(f)/((l/2)NA) vs NAf for the case N = 1024 and 
A = 0.2 sec. 

and is a normalizing constant given by 

co =(-[~(f) d f )  

where the frequency window Q ( f ) is given bg 

Here Ho(f )  and H ( f )  are  the discrete finite Fourier transform and the continuous Fourier 
transform, respectively, of the time window h ( t )  of the smoothing operation. 

The variance of the smoothed estimator U$ has been shown by Sloane (6) to be PZ(f,). 
The effective bandwidth of the smoothing window CoQ(f)  is given by a technique described 
by Jenkins and Watts (4) for non-rectangular windows. For an estimator based on a 
spectral window which is not rectangular, the bandwidth b of a window W is defined as the 
width of the rectangular window having unit area which gives the same variance a s  W. 
This bandwidth is 
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where W(f) is any nonrectangular spectral window. Thus the technique gives 

and we know 

Now averaging across  the segments provides 

From Eqs. 40 and 47, we have 

and again a slit-window argument gives 

E(Uk) = P ( f k ) ,  N large. 

Since the v i a r e  independent for different segments, from Eq. 47 we have 

Var (Uk) = ( l /r )  Var ($1 = ( l /r)  P ( f t )  (50) 

Construction of the quantity R ,  which is the ratio of the effective bandwidth of the  smooth- 
ing window to the effective bandwidth of the "intrinsic" window, WBD(f) , gives one an 
estimation of the change in resolution due to the smoothing. Thus we have 

Now Eqs. 40- 51 and Appendix F have dealt with a generalized smoothing operation 
applied to the estimates T'F:. If we take the specific case of the Hanning s moothing* 
operation and determine the above relations for the case N = 1024 and a = 0 . 2  sec ,  
we have 
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and 

(Note that the minus sign for the d-, and d l  coefficients corresponds to the case where 
both the data and the smoothing time window extend from t = 0 to t = T ) .  Also, 

I [8/(3T1)1 H A D , ( f )  HAD; ( f ) ,  1 f 1 5 1/(2A) 
C o Q ( f )  = 

0, I f 1  > 1/(2A) 

(HAD, ( f )  is  given in Table A2) 

and 

and 

Figure 4 provides a scaled graph of the window CoQ(f)  in Eq. 54 versus N A f  for 
the case N = 1024 and A = 0.2 seconds. 

Now let us discuss the various smoothing techniques. The method due to Bartlett is 
a component of both of the other techniques and leads to a reduction in variance by a 
factor of r, the number of segments. With the provisions that the decrease in resolu- 
tion by a factor of r can be tolerated for  the specific problem and that the time length of 
each segment still  satisfies the requirement of the sufficiency condition, this method 
can be useful. 

The second method which involves smoothing the power spectrum estimates Sk is 
the smoothing method normally used when the power estimates have been obtained via 
the Blackman and Tukey approach. In this sense the second method is the "standard1' 
method. When this method, utilizing a typical smoothing operation, was applied to the 
power spectrum estimates obtained via the direct approach detailed in this report, i t  
was observed that a reduction in variance occured. However, in Fig. 3 i t  can be seen 
that this method suffers in two respects: first, the failure to suppress* the side lobes 
with the resultant "leakage" of power f rom adjacent bands produces a possibly severe 
bias for the smoothed estimates; and second, the introduction of a "shoulder" on the 
main lobe at  N A ~  = 1.0 in the example considered leads to similar consequences. These 
disadvantages a r i se  from the convolution of the "intrinsic" window (the W B D ( ~ )  window) 
produced in the direct approach with the smoothing window. On the other hand the 
Blackman and Tukey approach has an effective "intrinsic" window ( ~ , ( f )  in their notation) 
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NAf 

Fig. 4 - Plot of CoQ ( f  ) /(2/3 N A  ) vs N A  f for the case N  = 1024 
and A  = 0 . 2  sec. 

which, when convolved with the smoothing window, simply gives the smoothing window 
again. Because of these two disadvantages, use of this method may be hazardous. 

Next, let us consider the third method which involves smoothing the estimates 
T ' F ~  fo r  each segment and subsequent computation of power density spectra. It was 
observed that the choice of Hanning smoothing, power spectrum computation, and aver- 
aging across  segments resulted in a significant reduction of variance by a factor of r. 
It can be seen from Fig. 4 that this method provides a rehtively sharp window with the 
additional advantage of almost total suppression of side lobes.* This general method 
gives very good overall results. (The choice of Hanning was arbitrary, and other 
smoothing windows such as Parzens could be used with very good results.) As in any 
spectral analysis scheme, the smoothing window and technique to be used a r e  those 
which a r e  appropriate for the particular signal characteristics. 

Figure 5 contains the graphs of the windows fo r  each of the methods, plus the 
standard Hanning window for reference versus N A ~  . All of the windows have been 
normalized so  that their value is 1 for N A ~  = o . This particular normalization applies to 
the figures only. This allows one to see the relative side lobe height and obtain some 
feeling for the relative widths of the windows. The exact widths and window configura- 
tions can, of course, be obtained f rom the formulas given above. 

*In numerical calculations, the f i rs t  side lobe had a maximum value which was more than 31 dB 
down in comparison with the value at N A f  = 0. The 10 log ratio definition of dB was used. 
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Fig. 5 - Plot of WBD(f )/NA, C o Q ( f ) / ( ( 2 / 3 ) N A ) ,  K(f ) / ( (1/2)NA),  and 
Hanning ( f ) / ( (  1 / 2 ) ~ a )  vs ~ n f  fo r  case N = 1 0 2 4  and n = o .  2  sec. 

SUMMARY 

The methods of "direct" calculation of power density spectra and energy density 
spectra were found to be applicable to most physically realizable processes. In order 
to make the above statement, the following steps were taken: (a) the implicit basic 
assumptions of approximate band limiting and negligibility of the basic data outside the 
given time interval a r e  rewritten as two sufficient conditions and a r e  shown to be non- 
restrictive for practical physical processes; (b) since the "direct" methods involve 
discrete finite Fourier transforms, the Fourier sampling problem is minutely examined 
in the light of the sufficient conditions, and formulas a r e  derived for the e r r o r  factors 
y ,  and y2.  (For the case of the random process, y2 is an estimate of the greatest 
lower bound on the e r r o r  in determining the power density spectra f rom an infinite num- 
ber of realizations; whereas in the case of the deterministic function, y represents an 
estimate of the e r r o r  in approximating the energy density spectra.); anh (c) it is shown 
that both y, and y2 can be made arbitrarily small through the proper choice of the 
sampling parameters. 

The methods of "direct" calculation of both power density and energy density spectra 
a r e  described, and the resulting "intrinsic" frequency windows WE ( f  ) and WBD( f  ), for 
the energy density case and the power density case, respectively, a r e  presented. The 
practical situation of a finite number of realizations with the sampling variation in- 
herent in random processes is examined. In order to reduce variance, several smooth- 
ing operations a r e  considered. 
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A generalized smoothing technique (which involves smoothing at an intermediate 
stage prior to the computation of power density) is developed. With the choice of Hanning 
smoothing and averaging across  segments, this technique results  in a significant reduction 
of variance, a relatively sharp window, and almost total suppression of side lobes. 
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APPENDIX A 

CONTINUOUS AND DISCRETE FOURIER TRANSFORMS 

The continuous Fourier transform of a function y ( t )  is defined to be 

B(f) = j y ( t )  exp (-2nift)  d t  
-m 

= F ( Y ) ,  

and similarly the inverse Fourier transform of B(f) is defined a s  

y ( t )  = J m  B(f) cxp ( t h i f t )  d t  
-m 

= F - ~  (B).  (A41 

It is easy to show that F  and F-' a re  inverse operations, that is, 

where I is the identify operator. Table A1 l ists  some useful functions and their trans- 
forms. 

Table A1 
Continuous Transform Pairs .  In this table S ( t )  is the Mrac  delta 

function, QB( t )  and WB( f  ) a r e  the Bartlett time and frequency windows, 
and QH( t ) and HA( f )  a r e  the Hanning time and frequency windows. 

~ ( t )  

A  2 s ( t n A )  
n=-m 

~ ( t - - a )  

I [ l - ( I t I / ~ ) l ,  It1 5 T 
Q B ( t )  = 

O . l t l > T  

B ( f )  

2 8 [f -(&'A)] 
,f,=-m 

B(f)  exp ( - 2 n i a f )  

WB(f) = T { s i n ( n f ~ ) / ( n f ~ ) ) ~  

1 
(1/2) [ l  + cos ( 2 n t / T ) l ,  It1 5 T / 2  

QH( t )  = 
10. 1 tl > T I 2  

HA(f) = (T /2 )  {s in (n fT)  / (nfT)  

+ s in (nT  [f + ( l / T ) l ) / ( 2 n T [ f  + ( l / T ) l )  

+ s in (nT  [f - ( l /T)1 ) / (2nT [f - ( l / T ) ] ) )  
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The convolution of Gl( f )  and G2(f )  is defined to be 

It is a well-known theorem that i f  q f )  , G l ( f )  , and c 2 ( f )  are  the transforms of z ( t )  , 
zl ( t )  , and z 2 ( t )  , respectively, and if z ( t ) , =  z l ( t )  . z Z ( t ) ,  then 

G ( f )  = * G 2 ( f ) .  (A71 

Similarly, if ~ ( f )  = ~ , ( f )  . $ ( f ) ,  then 

The discrete Fourier transform analogous to the continuous Fourier transform given 
in Eq. A1 is defined to be 

m 

A  YD(tj)  exp (-sift.), J If1 5 1/(2A) 

0,l f 1 > 1/(2A) 

where t j  is a discrete time variable (that is, t .  = A j ) and the interval between succes- 
sive values of t, is A .  Table A2 lists some funciions and their discrete transforms. 



Table A2 
Discrete Transform Pairs. In this table QBD(tj) and WBD(f1 are the discrete Barlett time and 
frequency windows, QHD(tj ) and HAD(f) are the discrete Hanning time and frequency windows, 
and QHDl ( t  ) and HADl (f) are the discrete Hanning time and f r e qu  e n c y windows with a shift 
along the time axis. 

J 

YD(tj) 

I [ I  - ( l ~ j  l f l ' ) ] ,  l ~ j  I 2 T' 
QBD(tj =Aj) = 

0 ,  l ~ j l  > T' 

Q H D ( ~ ~  = A j  + [ A / ~ I )  = 
for 1 A j  1 5 T1/2 

0, for l ~ j  1 > T1/2 

2n[Aj + (A/2) - (T1/2)] ). 
QHDl (t = A j + 10/21) = 

for 0 2 A j  ( T '  

BD(f) 

I [(A2)/~'][sin(T'n f)/sin(Anf)I2, I f  1 2 1/(2A) 
WBD(f) = 

0 ,  If ( > l/(2A) 

1 , I f 1  21/(2A) 

sinTh[f + ( & ' ? " ) I  . I f 1  L1/(2A) 
HADl(f)= sinAn[f + (4/T1)] 

where = c1 = 1/4, d-l = dl = + 1/4, co = do = 1/2, end j = -a,, . . . , -2, -1, 0, 1, 2, . . . , a, 



FOURIER SAMPLING PROBLEM 

Since in practice only a finite number of samples of the continuous function may be 
available, this appendix derives a relationship, subject to two sufficient conditions, 
between the continuous Fourier transform of the function and the finite discrete Fourier 
transform of the set  of samples. 

Following Blackman and Tukey*, let us  represent the operation of sampling data 
throughout all time, a t  equally spaced times with interval A ,  by the infinite Dirac comb 

and the operation of obtaining a finite number N (even) of equally spaced samples by the 
finite Dirac comb 

The transform of the continuous, aperiodic, deterministic function x(t), which has been 
sampled throughout all time, is given by 

From Table A1 and Eq. A7 one has [for If 1 I 1/(2A)l 

*R. Blackman and J. W. Tukey, "The Measurement of Power Spectra," New York: Dover, 1959. 
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which upon integrating gives 

The transform of the N samples of x( t )  is given by 

We will consider frequencies f such that 0 If 1 I 1/(2A) only. Upon comparing with 
Eq. B1 we have 

-(N/Z )- 1 

% ( f )  = +.(f) - [n 2 8(t-An) + A 2 8(t-An) x ( t )  exp (-2rrift) d t  
-m n = - m  n=N/Z 1 

m -(N/Z -1 

= $a(f)  - A x $An) exp (-2nifAn) - A .(An) exp (-2rrifAn). (B4) 
n=N/Z n=-m 

Substitution f rom Eq. B2 gives 

m 4 ~ 1 2 )  -1 

-A  x x(An) exp (-2rrifAn) - A x(An) exp (-2rrifAn) . 
n = *  

(B5) 
n=N/Z 

The summation over 4 in Eq. B5 gives the contribution to $b due to aliasing, whereas 
the summations over n give the contributions from the outer skirts  of the transient 
function. 

Assume that $ ( f )  approaches zero a t  least  as rapidly as eXlf la)for 1/(2A) 5 If 1 5 m ,  

where a > 1.0 ,  and E is some small constant. This is the condition for  approximate 
band limiting. Assume that x( t )  approaches zero a t  least as rapidly as VX It IS) for  t 
outside the interval contained in the N samples, where p > 1.0, and v is some small 
conetant. This is the condition for  the negligibility of X( t).  
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Application of these conditions in Eq. B5 gives 

Let 

be the sampling frequency. After a slight rearrangement in Eq. B6 we have 

Now ( 4 i A f k  [4-(1/2)land[4-(1/2)l-a ~(2/4)"d finally 

Substitution of these relations into Eq. B8 gives 

where 

is the Riemann-Zeta function when a > 1.0 . Upon completion of the integration in the 
last  term one has 

I+(f)+b(f)I < It€/ ( f f ) - ' (2  ((a)  t ( 2 / ~ 1 ( ~ - l ) - ' ( f ' ) ~ - ' )  [ ( N R ) - ~ I - ~ ~ '  (B10) 

Define T' = NA = w f l  , that is, T' equals the time interval T for the N samples plus A. 
Substitution for N in Eq. B10 gives (after modification) 

I$(f>-$b(f) l  < 
2fi 14 - - Yl. 

(f')O (p-1) (T' - 2 ~ ) ~ - '  



NRL REPORT 7179 23 

The Riernann-Zeta function is bounded for  a > 1.0 *. Now by choosing the sampling 
frequency high enough, the f i rs t  term on the right of Eq. B11 can be made a s  small a s  
desired. Similarly, by choosing the time interval T large enough, the second term on 
the right of Eq. B11 can be made as small as desired. Thus the conditions on $ ( f )  and 
~ ( t )  a r e  sufficient conditions for  the representation of $ ( f )  by $,(f) to within an arbi- 
trarily small quantity for 0 5 I f 1 5 1 4 2 4 .  

Next let us establish a convention a s  regards zero phase and_i$l the time that the 
first nonnegligible sample was obtained t = o  . Then the finite Dirac comb becomes 

and $,( f )  is given by 

Although the entire discussion in the preceding portion of Appendix B is germane 
when a stationary, ergodic, random process is involved, some "translation" of ideas 
and symbols is needed. 

If one "translates" according to 

x ( t )  - p ( r )  [defined i n  Eq. 71 

$ ( f )  - P ( f )  [defined i n  Eq. 81 

$b ( f )  - Pb(f )  [ de f ined inEq .  121 

( A  2 p(An) exp ( -2ni  f An), 1 f 1 6 l/(2A) 
n = - m  

then in the foregoing discussion one has results exactly applicable to the random process 
case. As examples, one has 

T' = MA and T = (M-1)A 

*See E. Jahnke and F. Emde, "Tables of Functions," New York:Dover, 1945. 
tWith the convention that the first nornegligible sample occurs at t = (-Nt 1)A and the last nonneglf- 
gible sample occurs at t = (N -1) A 



and Eq. B11 would become L 

I + c ' I ( ~ ~ ' + ~ )  <(a1) + 26' ( v l I  
Ip(f) - Pb(f ) l  < = Y2 ; 

( f ' ) " '  ( P I  -1) (T' - A) 

finally Eq. B12 would become 



APPENDM C 

DISCRETE FOURIER TRANSFORM AND 
FAST FOURIER TRANSFORM 

Here present a defuition of the discrete finite Fourier t r ~ s f o r m  and severd 
related formulae. A more detailed discussion may be f o u d  elsewhere (Ref 3). 

Coo~ider the sequence {X 1 ( j = 0, 1, . . . , N-I) of N com@e~ Wmbers a point in 
N-space LC"] and denote the sequence by X ,  i. e. , (C 1) 

Let 

Now the N vectors b, (k = 0, I, . . . , N - l ) ,  defined to be 

b, = (1, wk, w ~ ~ ,  wJk, . . . , \ (N- l )k )  

form a basis for cN. So X is also given by 

where the A, a re  complex numbers (note that the coefficients A. are  unique for a given 
basis) obtained by 

The sequence A = {A,, A,. . . . . A,-, 1 in Eq. C5 is defined to be the discrete finite 
Fourier transform (DFT ) of X .  The x, are  related to the coefficients A j  by 

The operation generating the sequence X as in Eq. C6 is defined to be the inverse 
discrete finite Fourier transform (IDFT) of A .  It should be noted that the original 
sequence X (which can be thought of a s  a time series) is represented exactly by the se- 
quence A at the N points of interest. If there were sampling errors or experimental 
errors  in the xi, then these will be retained in the Ai. 
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The sequence Y = {Yo, Y1 , . . . , Y,-,I obtained from the sequence x by 

is often defined symbolically to be the fast Fourier transform (FFT ) of x, although in 
actuality the term fast Fourier transform refers to a particularly efficient algorithm for 
calculating the sequence Y according to Eq. C7. 



APPENDIX D 

A SIMPLE COUNTING PROBLEM 

This appendix concerns itself with the simple counting problem incurred in the 
direct computation of power density spectra. 

Consider the equation 

Let 

m - n =  z .  

After the multiplication indicated in Eq. Dl  the resulting terms will have an expo- 
nential portion whose argument is - 2 w i k z / N .  Table Dl  gives the values of z  which ar ise  
from this multiplication. Note that the diagonals of the table a re  lines of constant Z .  If 
one regroups the terms according to values of z  and sums first over the diagonals of 
constant z  , one has 

N-I-= t 
e x p ( - % i k z / N )  (xf) x A Z .  2 2 0  

a=o 

and 

Define 

where cC ( A  z )  = ctt ( - A  z )  for z  2 0. The use of Eq. D5 allows both Eqs. D3 and D4 to 
be represented by the-following type of term: 

( N - 1 2 1 )  C' ( A z )  e x p ( - 2 n i k z / N ) .  (De) 

Finally if one sums Eq. D6 over the range of z and multiplies by T 1 / ( N  2, one has 



- - 
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where T' = NA, 

Table D l  
z Values 

m (m-1) (m-2) (m-3) 

.,. 

. . . 

... 

(m-n) 

... 

. . . 

. . . 

m-(N-1) 



APPENDIX E 

WINDOW RESULTING FROM A TYPICAL SMOOTHING 
APPLIED AFTER THE COMPUTATION 

OF POWER SPECTRA 

Consider the equation 

Vk = (114) Sk- 1 t ( 1/2) Sk + (1/4) Sk  +, 
which, when ensemble averaged, gives 

E(Vk) = ( 1 / 4 ) E ( S k - l )  + (1/2)E(Sk) + (1 /4 )E(Sk+ , )  - 
Substitution f rom Eq. 32 provides 

Recall that f = k/T1 ,  and let yl = f t ( l /T1) .  and Y,= f - ( 1 1 ~ ' )  . With these changes 
of variables, Eq. E3 becomes 

Now y, , y2 and f are all dummy variables of integration and could be replaced with a 
single dummy variable of integration, say g . So Eq. E4 becomes 
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where 

and d-l = dl = 1/4, do  = 112. Although it is a very small correction, it should be  
remembered that the three different portions of K(g) have slightly different regions in the 
frequency domain for which they are nonzero. 



APPENDIX F 

WINDOW RESULTING FROM SMOOTHING BEFORE 
THE COMPUTATION OF POWER SPECTRA 

For  simplicity of calculation, Appendix F begins with the convention that the N 
samples occur during the time interval -T/2 to T/2 . The main body of the text uses the 
convention that the same N samples occur during the time interval 0 to T. This shift of 
the time axis merely introduces a phase factor (recall Table Al). However, this phase 
factor does not influence the results of Appendix F because the true power density, the 
power density estimates, and the resulting smoothing spectral window (see Eqs. F16 and 
F17) a r e  all independent of the initial phase factor. 

Consider the expression 

( 0. I f l  > If1 1 4 2 6 )  

which is the discrete finite Fourier transform of the $th segment with length T (N samples) 
multiplied by T'  = N A  . With the change of convention as to the time of occurance of the 

4 first sample, A  ( f )  becomes 

A8(f)  = exp 27ri N-' A f  A  x 4 ( a j )  e x p ( - 2 r i f A j ) .  ( ( 2 , )  ::: 
Let B'f f ) be the convolution of A' ( f  ) , with the frequency window H( f  ) , of the smoothing 
function, i. e. , 

and 

~ ' ' ( f )  = /' A4' ( f  - s )  H? ( s )  d s  
- m  

It should be noted that the limits of 'the integrals in Eq. F2 and F3 a re  finite due to Ag(f). 
Having smoothed the transforms, let us  consider the equation which gives rise to power 
spectra: 

E [ ( L / T * ) B $ ( ~ )  B ' ~  (f)]  = (./TI) / ' H ( ~ ) H ~ ( S ) E [ A * ( F - ~ )  A" (f-s)]  dr d s .  (F4) 
-m -m 
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Now from Eq. F1 one has 

where a = f  -r , and b = f  -S . After the multiplication indicated in Eq . F5 the resulting 
terms will contain a product x 8 ( ~ 4 ) ~  for which the argument of X &  minus the argument of 
( ~ 4 ) ~  is set equal to z A. Table F 1 gives the value of z in parentheses and l ists  the  ex- 
ponential portion of each term a s  the exponential of w.*  Summing first  over diagonals of 
constant z we have 

and 

N-1-12 1 W- bzA z X" (ah) x X ( a A t  1 ~ 1 ~ )  d b - a ) ( a + l z l ) A  , z 2 0 .  
a=o 

Next, summing over values of z we have 

N-1-1 2 1 
A 4 ( f - r )  A*' ( f - s )  = A 2 e x p  ( - ~ n i ( r - s ) ( ~ - 1 ) ~ / 2 )  x t t  (ah) 

a,O 

Ensemble averaging gives (recall Eq. 7) 

~ [ l t f - r )  A" ( f - s ) ]  = A2 erp ( - n i ( r - s ) ( l - 1 )  A) 
a=O 

*For  the table W = e 
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which can be rearranged to give 

It is easy to  show that 

N-1-1 Z J  

C W ( b - a ) a A  = 
s in  [ ~ A ( N - /  z 1 ) (a-b)] 

exp (-ni(a-b)  (N-121-1)~) 
a=o sin[vA(a-b)] ) (F8) 

Utilizing Eq. F8 and recalling the definition of a and b, Eq. F7 becomes 
s i n [ n ~ ( ~ - ) z 1 )  (a-b)] 

z = - N + 1  

Equation F9 can be rewritten a s  

sin [n(T1- ( t i )  (s-r)] 
E [A~( f - r j  A'+ (i-a)] = 

A [d 8 ( t - - ~ ~ ) ] P ( t )  s.[nA(s-r)l -m r = - N + l  

which, because of the convolution theorem, is 

where 

s i n  [n(T'-1 t 1 ) ( s - r ) ]  
exp (-2n i f t )  d t ,  

r = - N t l  
s in  [nA(s-r)] 

s i n  [n(T1/2) ( s - r t 2 f ) l  s i n  [n(T1/2) (s-r-2f)l 
= A ( sin[n(A/2) ( s - r  + 2 f ) l  s i n  [ ~ ( A / Z ) ( S - ~ E F ~ T ) '  
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Substitution from Eqs, F10 and F11 into Eq. F4 gives 

E il/~l )B* (f) gC (l/i')~(r)~~ (s) [la P(x)A2 
- m 

sin [nT' (f -s-x)] sin [nT' (f -r -x)] 
sin [nA (f -s-x)] sin [nA(f -r-x)] 

)dx]dr ds 

sin [nA (f -x-r)] 

sin [nA ( f -x-s)] 
)] dx dr ds 

The interchange of the order of integration is justifiable due to the nature of the functions 
involved and the effective finite limits of integration. So consider first the integral 
over r, 

sin [nT' ( f-X-r)] ( N O )  -1 
)dr = P A  Z h[f-Aj-(4/2)]h(t)cxp(-2ni(f-x)t)dt, 

-m j=-N/2 

= Discrete finite Fourier transform of h(t), (F13) 

Exactly analogous results apply for the integral over s; applying these results in Eq. F12 
we have 

It should be noted that T' is necessary from both the standpoint of definition of power 
density spectrum and from the standpoint of a dimensionalizing and normalizing constant. 
So finally we have 

where the frequency window is 
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