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ABS TRAC T 

The purpose of the present investigation is the deter- 
mination of the properties of an intense 10.6-micron laser 
beam propagating through the open atmosphere in the pres- 
ence of wind o r  slewing, or both. It is shown that the Max- 
well equations can, in this problem, be reduced to the study 
of the scalar wave equation with a varying index of refrac- 
tion. The index of refraction is related to the atmospheric 
density; therefore, the density changes in the air due to 
beam absorption a r e  related to the absorption coefficient of 
the air and to theintensity of the beam, using the linearized 
hydrodynamic equations. A detailed discussion of the mech- 
anisms of photon absorption by the constituents of the air  is 
presented. The resultant equation for the scalar wave is a 
nonlinear partial differential integral equation which is 
solved numerically. The algorithm used for the computer 
code is discussed, together with cri teria that have been de- 
termined to be useful in assessing the accuracy and relia- 
bility of the numerical results. The solutions of several 
different problems are  presented and discussed. In partic- 
ular, i t  is found that (a) beam quality is degraded for water 
vapor pressures at  or near sea  level, and (b) beam slewing 
reduces the detrimental effect of water vapor. 
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This is an interim report on a continuing problem. 

AUTHORIZATION 

NRL Problems R05-31-304 and N01-23.101 
Project ORD 0832-129-173-1, Task U1754-2 

Manuscript submitted March 8, 1971. 



PROPAGATION OF HIGH-ENERGY 10.6-MICRON LASER BEAMS 
THROUGH THE ATMOSPHERE 

I. INTRODUCTION 

The development of the gas dynamic laser has turned the prospect of a cw high- 
power laser into a reality. Many applications of these devices involve propagation of the 
beam through the atmosphere, and thus an understanding of the various aspects of beam- 
atmosphere interactions is required. This report is devoted to a study of one of the non- 
linear aspects of the propagation of laser radiation through air, namely, the change due 
to absorption of beam energy in the index of refraction of the air, which in turn modifies 
the propagation of the beam. Beam energy absorption by an otherwise motionless atmos- 
phere induces temperature changes in the medium, which in turn cause a defocusing ( o r  
focusing) of the beam that changes with time. A number of studies have been made of 
this phenomenon, which is often referred to as thermal blooming (1-7). 

If a steady wind is present with a nonzero component transverse to the beam axis, 
the heated air is swept out of the beam and a steady-state ultimately evolves (8). Beam 
slewing under suitable conditions likewise gives r ise  to a steady state. The formulation 
and description of these steady states is the problem this report addresses. The exist- 
ence and stability of such states is assumed. Theoretical and experimental studies of 
cases such as these have been made (9). 

Section I1 of this report presents the formulation of the physical assumptions of the  
problem. Section III is a discussion of the techniques used in a numerical solution of the 
equations derived in Section 11, while Section IV is a discussion of the results  of several  
numerical solutions, and a presentation of the basic limitations of the algorithm used t o  
obtain the numerical solutions. 

11. FORMULATION OF THE PROBLEM 

Outline 

An equation which contains the index of refraction of the air is developed to describe 
the propagation of the laser beam. The index and the density of the air a re  related by 
the Lorentz-Lorenz law. The a i r  density is in turn related to the heat sources in the air 
that arise from beam absorption through the linearized hydrodynamic equations. Finally, 
a detailed discussion of the mechanism of absorption of 10.6-micron radiation along the 
lines developed by Wood, Camac, and Gerry (10) is included. 

Propagation Equation 

The wave equation for a harmonically varying electric field in a medium of varying 
dielectric coefficient is 
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with k = W / C ,  where is the angular frequency, and E is the dielectric coefficient. Us- 
ing the equation of charge conservation, the divergence term on the right-hand s ide  is 
given by 

If the properties of the medium are  such that variations of the dielectric coefficient a re  
small in a wavelength, the right-hand term may be neglected in comparison with the  k 2 E ~  

term in the first  equation, yielding simply 

This approximation also implies that the polarization of the field i s  not changed as it 
propagates so that only linearly polarized amplitudes need be considered. Further, since 
the principal concern is with a beam which in the first approximation is simply propa- 
gating along the z axis, a solution of the form E = G s, (r) e v  ( i k  6 z) is anticipated, 
where s, is assumed to be a slowly varying function of z, E, is the dielectric constant of 
the medium prior to i ts  interaction with the beam, and G is a unit vector transverse to 
the beam axis. a and E ,  each have an imaginary part that describes beam absorption; 
because density changes will be small, E ( ' )  = E , , ( ' )  to an excellent approximation. There- 
fore, the equation for s, is 

where VL2= a2/ax2 + a2/ay2. In accord with the expectation that cp be a slowly varying 
function of z, the second-derivative term is dropped as being small compared with the 
first-derivative term. The equation that describes the laser beam then is 

Equation (I), being essentially a two-dimensional Schrminger equation with z playing the 
role of time, has  the quantity 

as a constant of the motion. 

The energy flux is described by the time-averaged Poynting vector. With the ap- 
proximations described above included in the standard expression for the Poynting vector, 
the energy flux becomes 

where a = 2~,,( . The total power P passing through a plane z = constant is given by 
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6,  is unit vector alo z axis. Equation (I), supplemented with a relationship between the  
dielectric constant Tr) and the function m ,  is the equation to be solved. 

Hydrodynamics 

The atmosphere will be treated as a perfect fluid; viscous and thermal conduction 
effects will be ignored since their consequences can be shown to be negligible in the 
cases that wil l  be considered in this paper. The beam will be regarded as an external 
heat source described by an energy deposition function Q, representing the energy de- 
posited per gram per second at each point in the fluid. A complete description of the 
hydrodynamic system is thus provided by the boundary conditions, the equation of state, 
an expression for the internal energy of the fluid, and the hydrodynamic equations of 
motion: 

The quantities p,  V, p ,  &, T ,  cv, and c represent the density, fluid velocity, pressure, 
internal energy per unit mass, tempera"ture, specific heat at constant volume, and spe- 
cific heat at constant pressure, respectively. The operator d/dt stands for the sub- 
stantial derivative. 

During the course of fluid motion through the laser beam, the temperature change 
of a fluid element will, in most circumstances, be small so that the specific heats may 
be regarded as constant throughout the flow. Under these conditions, the first, third, 
fourth, and fifth of these equations may be combined to yield an expression involving 
pressure and density alone: 

d~ P ~ P  - - y-- = ( y -  1) p~ 
dt p dt 

where y = c,/c,. Further, because the changes in the pressure, density, and velocity 
are expected to be small, the linearized hydrodynamic equations can be regarded as a 
good description of the physical system. Let the pressure P O ,  density p, , and velocity 
V, of the fluid satisfy the unperturbed exact hydrodynamic equations 
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The total pressure, density, and velocity are taken to be 

P  = P o  + P I  9 

The subscripted quantities P p l ,  and v  are taken to be of the first order, and higher 
powers of these terms are deemed negligible. Particularizing to the case of a beam in 
the presence of a steady uniform wind ( v ,  = constant), the first-order quantities a r e  
taken to satisfy the equations 

where, now, the operator d / d t  is taken to be 

The term y p o  / p o  is c:, where c ,  is the speed of sound in the fluid prior to the perturba- 
tions caused by the beam. 

Since the steady-state case is the solution of interest, the hydrodynamic quantities 
at a fixed point in space are taken to be independent of time. Therefore all  partial time 
derivatives of these quantities vanish, and the equations of motion reduce to 

The last equation may be integrated to give 

where Go is a unit vector along the direction of the wind velocity and the integral is 
along the path of motion of a fluid element. Thepath is parameterized by the path length 
s which is taken to be zero when the fluid element is at the point r .  By elimination of 
the deneity and velocity in favor of the pressure, a differential equation for the pressure 
change alone is easily obtained: 
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An estimate of the contribution of the pressure t e rm to the density can be obtained by 
ignoring the pressure gradient along the beam axis and the gradient perpendicular to the  
wind velocity; then 

Restricting wind speeds to values much smaller than the speed of sound, the pressure 
term may clearly be ignored, and the density change of air at  any point r is given by 

Equation (15) shows clearly that a zero wind speed is not tenable in this treatment; a 
steady state cannot be achieved without the wind as a mechanism for removing the heated 
air from the beam. Furthermore, Eq. (15) can be used as a means for estimating the 
l imits  that must be placed upon the beam intensity, wind velocity, and absorption coef-. 
ficient for  the linearized treatment used here to r e t e n  i ts  validity. If beam absorption 
leads instantaneously to heating, then the quantity poQ becomes a I ,  where I is the beam 
intensity. The integral may be approximated by 2 a i a  where f is an average power dis- 
tribution along a line across  the laser face through the center, and a is the beam radius. 
Then, if the density change must be Less than to preserve the validity of the lineariza- 
tion of the hydrodynamic equations, 1 ,  a ,  and vo must together satisfy the inequality 

In this formulation of the propagation of a laser beam in the presence of a steady 
wind, there exists a reflection symmetry in the fluid variables and the beam intensity 
through a plane encompassing the beam axis and a line parallel to the wind velocity. 
This symmetry has considerable utility in the numerical solution of the problem. 

Important applications may be envisaged wherein the laser beam is required to 
rotate about an axis perpendicular to the beam axis; such motion, referred to henceforth 
as beam slewing, can be brought within the framework of a steady-state calculation s im-  
ilar to the discussion above. Beam slewing in an otherwise stationary atmosphere will 
not lead to a steady state, in part  because there is no mechanism for removing the heated 
air in the vicinity of the laser face, even though the slewing does so  further downrange. 
Therefore, the initial conditions will be functions of time. A steady state can be achieved 
by the introduction of a mechanism for removing the heated air from the vicinity of the 
face of the laser;  such a mechanism may be modeled in a wide variety of ways, three of 
which will be briefly discussed here. 

In a coordinate system rotating with the laser,  the hydrodynamic equations assume 
the form 
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where v is the fluid velocity measured relative to the rotating reference frame, p and p 
represent the pressure and density, respectively, while n is the angular slewing ra te ,  
which is orthogonal to the beam direction. These equations, when linearized, assume the 
forms, for the steady state, 

+ + 
(20) (vo  . V ) P l  = - P O V . ~ ,  

while the zeroth-order quantities satisfy equations of the form of Eqs. (17)-(19) with the 
I 

heating term dropped. An exact solution of the (nonlinear) zeroth-order equations is 
provided by 

where wo is a velocity vector parallel to n. For nonvanishing w , ,  this solution corre-  
sponds to a wind along the slewing axis, and this wind serves as a mechanism for remov- 
ing the heated air  from the laser face. In the rotating coordinate system, a fluid particle 
is moving in a spiral path about the slewing axis, and i ts  trajectory is given by 

t ( -  s in t z o  cos - I; ::) 
while the magnitude of the fluid velocity is (wo2 t n2 ~ 7 " ~  and is a constant for a given 
fluid element. Under these conditions, Eq. (22) may be integrated to give 

The point ro may be chosen to represent a point in space where the beam has not 
arrived, s o  that the density and pressure changes there vanish; hence the factor in 
brackets in Eq. (25) may be set  equal to zero. An expression for the pressure change 
alone may be derived in much the same manner a s  before. Again, the contributions of 
the pressure term can be shown to be negligible provided that v0 << c,; however, with 
slewing present, V ,  can become quite large for long distances down the beam. There- 
fore, the linearization of the hydrodynamic equations will be valid only for restricted 
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distances Z, downbeam for which Z, << c,/R. Within these limitations, the solution f o r  
the density change is given by 

On the basis of the above solution, three models can be described. 

1. The velocity component w, is nonvanishing. As previously mentioned, a wind of 
this type serves a s  a device for removing the heated air from the laser face, allowing a 
steady state to be achieved, and permits an arbitrary number of rotations of the laser  
about i ts  slewing axis. This solution has the disadvantage that the symmetry described 
at  the end of the formulation of the steady-wind solution is lost, and therefore doubles 
the computational effort in a numerical solution of the problem. 

2. Set the velocity component W, = 0, and do not allow the axis of revolution to go 
through the laser  face, but instead let it be at a distance D behind it. Then the rotation 
itself removes the heated air from the laser face; all that is required is that the steady 
state set in prior to one complete rotation of the laser  about the slewing axis. If a dis- 
tance R down the beam axis is measured in terms of z, the distance from the laser  face, 
then 

This method has the advantage, from the standpoint of numerical computation, of pre- 
serving the symmetry that reduces computation times. 

3. Again, se t  the velocity component w, = 0; in the rotating reference frame, 
rigidly attached to the laser,  se t  up a fan that blows air at  a velocity V; at  right angles 
to the beam axis and the slewing axis, in addition to the slewing velocity, for a fixed dis-  
tance D down the beam axis. Then v, in Eq. (27) is replaced by 

which, in form, is similar to the second model for slewing. This model also preserves 
the desired symmetry. 

The model used in calculations here will be the second model. All three models 
admit a new parameter, in addition to the slewing ra te  R; solutions will therefore be 
dependent upon the value of the parameter. This parameter dependence is expected to  
be discernible, but not of vital importance. 
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Absorption of 10.6-Micron Radiation By Air; Kinetic Cooling 

The constituents of air  that a r e  the principal absorbers of 10.6-micron radiation a r e  
water vapor and carbon dioxide. Pressure broadened levels of water vapor make i t  an 
effective absorber of infrared radiation throughout a broad band that includes 10.6 
microns, while carbon dioxide absorbs principally through the inverse laser transition. 
These processes have been briefly discussed by Wood, Camac, and Gerry (10) and have 
been applied in a study of CO, laser propagation in geometrical optics by Wallace and 
Camac (11). Because of i ts  importance to the character of the results, a detailed dis-  
cussion of the absorption mechanism is presented here. 

Water molecules, upon absorption of one photon of 10.6-micron radiation, a r e  ex- 
cited to the (010) vibrational state. The stored energy is released to the translational 
modes by collisional deexcitation of this state; the principal molecules in the deactiva- 
tion collisions a r e  oxygen and water vapor. The deactivation time is s o  short compared 
to a l l  hydrodynamic processes in the propagation problem that i t  may be regarded a s  
zero. Hence, the energy deposition rate may be written as 

where is the energy deposition rate due to all other constituents of air. 

Figure 1 is an energy level diagram showing the principal lower vibrational levels of 
CO,, N,, and H,O. The excited levels of the various molecules a re  populated according 
to Boltzmann statistics; therefore CO, molecules in the (100) state a re  always present 
and beam photons may be absorbed, leaving the CO, molecules in the (001) state. 

The reaction 

is very rapid due to resonance between the levels of CO, and G, the characteristic time 
being of the order of lo-' see. The system of carbon dioxide molecules is thus dis-  
placed from a thermal equilibrium distribution with an excess of molecules in the ground 
state and the (001) state, and a deficiency in the (100) level. The latter state will be re- 
populated principally by collisions of the type 

CO, (010) + C0, (010) + C0, (100) + CO, (000) - 54 cm-' . (32) 

This reaction proceeds faster than all others that tend toward the same final state be- 
cause of resonance. The energy removed in this reaction comes from the translational 
modes. Reaction (32) tends to deplete the supply of (010) levels, but these a r e  replen- 
ished through the process 

CO, (000) + CO, (000) $ C02 (000) + C 0 2  (010) - 667 em-' . (33 

The absorbed energy in Reaction (33) once again comes from translation. Two reactions 
of type (33) must occur for every one of the type indicated by Reaction (3 2) to maintain 
the C 0 2  in thermal equilibrium. The removal of energy from the translational modes by 
Reactions (32) and (33) cools the CO, molecular system, and, concomitantly, the air. 
Because the reactions subsequent to the photon absorption that a re  described above occur 
s o  rapidly a s  to be almost instantaneous, the rate of energy removal from the transla- 
tional modes is governed by the rate at which photon absorption occurs. Therefore the 
contribution of the CO, molecules to p o ~ '  is given by 
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L CO, ,) q6'J t4 1 (V.0) "1 H,O ( 0 0 0 )  (V, ) 
0 (000)  (000)  (000)  - 

VIBRATIONAL MODES 

Fig. 1 - The principal lower vibrational energy levels 
of the major constituents of air--COz, N z ,  0 2 ,  and 
H ,O--are shown, with the 10.6-micron laser transition 
explicitly marked. The 10.6-micron photon energy i s  
designated as Aw,. 

Reaction (31) 4s populating the above the equilibrium level; simultaneous with the 
CO, collisions, N, i s  undergoing collisions of the form 

+ 0, $N, + 0, + c o o l  - 18 cm-I 

and 
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which tend to depopulate the excited level N:. In addition to Reactions (35), depopulation 
may go via excited states of 0 2  and H20, and Reactions (35) will be understood to sym- 
bolize both When water vapor is present in any significant amount, deactivation of nitro- 
gen proceeds primarily along the second route; since the water vapor content of air is a 
variable quantity, both reactions must be included. 

Let EN: represent the excess number of N: molecules at time t over the equilibrium 
number at some point r in the beam. Its time rate of change is given by 

acoz d * - -  
EN, - I ( r , t )  

,Kw, 

where the quantity ,8 is the reaction constant for the reactions indicated by the subscripts 
(12), and No, is the number density of 0, molecules, and NHzO the number density of 
water molecules. In terms of a reaction time T ,  the above equation may be rewritten as 

a 
d C 0 2  EN*, dt EN; = - ~ ( r , t )  - - 

4% 7 

where 

p (02 ) and p (H20) are  the partial pressures of Oz and H20, respectively, P is the total 
pressure, and TNIO and ~~m~~~ a re  the reaction times for Reactions (35). The deriva- 
tive is the substantial time Aerivative and, for the steady-state case, the solution to  the 
above equation becomes 

The number of energy-releasing transitions per second is ~N:/T and the rate of 
energy release is 

The total energy deposition rate is obtained by combining Eqs. (30), (34), and (40) 
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This last result, taken together with the steady-state solutions of the linearized hydro- 
dynamic 'equations, yields, after evaluation of some integrals, 

where 

and 

In addition, the fact that 

has been incorporated into Eq. (42). 

The quantities aco and a ~ , o  for air are  related (13, 14) to the partial pressures of 
CO, and water vapor, Bmperature, and total pressure by 

and 

The absorption coefficient of water vapor in air used here has been determined empiri- 
cally only in the temperature range of 23°C to 26°C; therefore, Eq. (47) has a limited 
temperature range of validity that must be borne in mind. 

If the deactivation time r of nitrogen were zero, then there would be no delay be- 
tween the time of photon absorption and the appearance of the photon energy as heat. 
This is manifest in Eq. (42) where the term in the integrand that involves T would not be 
present, and the density change p ,  would always be negative, i.e., the air always expands 
in the presence of the beam. Since r i;l general does not vanish, varying amounts of heat- 
ing and/or cooling may take place. For the case of no water vapor in the air at all, 
aH,o = 0 and 8 = 2.441, while T assumes i ts  maximum value. Thus, for large velocities, 
i.e., for v o  such that v 0 > > a / 7  throughout the beam, the factor (1 - 8) in the integrand multi- 
plying the intensity becomes -1.44, so that p ,  > 0 and the beam absorption causes cool- 
ing. For  lesser wind speeds and increasing water vapor content, the physical situation 
will be intermediate to these two extremes, but it should be noted that there can be no 
net cooling when aHZO > 1.44 aco2. 
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A dimensionless wave function f is introduced by putting 

r 

where P is the total luminous power output of the laser. The constant of the motion, 
given by Eq. (2), can be stated in terms of f by the requirement that 

2 JI lf(E.y,[)1 d % d p = l .  
c *  constant 

(55) 

Combining Eqs. (53) and (54) with Eq. (52), the equation for the scaled amplitude f is 

where 

(When a slewing beam is being studied, v o  in Eqs. (56) and (57) is to be replaced by 
v o  + nz.) 

Because Eq. (56) is parabolic, specification of the amplitude at  the plane 5 = 0 de- 
termines the function everywhere else; in particular, the values of f a t  any point in a 
given plane 5 = constant can be determined. The technique to be used for a numerical 
computation of solutions of Eq. (56) will be the replacement of Eq. (56) by an appropriate 
difference equation which will be used to solve for the solution at  successive planes sep- 
arated by distances limited only by considerations of accuracy and stability. The method 
of proceeding from plane to plane is referred to as "marching." (Because of the char- 
acter  of the boundary conditions of the problem and of the difficulties encountered in the 
numerical solution of hyperbolic equations by difference techniques, the approximation of 
neglecting the second derivative of v with respect to z, used to derive Eq. (I), is essen- 
tial to  a numerical solution of the problem. Marching does not work for hyperbolic 
equations.) 

Since a partial differential equation does not uniquely determine a corresponding 
difference equation, there a r e  many candidates for the difference equation to be used in 
the numerical computation. Each candidate must meet the requirements of convergence 
(to insure that the solution of the difference equation converges to the solution of the dif- 
ferential equation for  any 5 in the limit that A x  and Ay vanish) and of stability (which 
assures,  to a limited degree, that the numerical solution of the difference equation re -  
mains reasonably close to the exact solutioii of the difference equation.) 

Harmuth (15) has shown that a simple forward differencing of the linearized version 
of Eq. (56) (obtained by replacing the integral by i ts  upper bound) is unstable for all 
choices of step size A[ and mesh s izes  Ax, A?. A symmetric differencing, o r  "two-point 
predictor," is stable, however, for  a nonempty domain of the parameters A 5 ,  A x ,  A y . 
For integration in 5 ,  therefore, the derivative in 5 is replaced by 
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The density change, as expressed in Eq. (47) (with the pressure term neglected), i s  
related to the wave function cp by Eq. (4): 

The dielectric constant E ( ' )  i s  related to the index of refraction by 

E ( T )  = n2 , (49 ) 

and the index of refraction is a function of density through the Lorentz-Lorenz law 

In Eq. (50), p  is the absolute density and N i s  the molecular refractivity. Since po and 
p ,  are both small quantities, Eq. (50) may be rewritten, ignoring quadratic terms in 
Pl , as 

With Relations (51) and (48) included, Eq. (1) becomes 

which is the fundamental equation to be solved for the description of the propagation of a 
laser beam in the presence of a steady wind. The boundary conditions involve only the 
specification of the function cp on the plane z = 0. Equation (52) is clearly nonlinear and 
is not tractable from an analytic standpoint. Therefore it i s  solved by numerical 
computation. 

111. COMPUTATIONAL METHODS 

Transformation to Scaled Variables 

Equation (52) i s  scaled for purposes of numerical computations. Let a be a length 
characterizing the initial beam profile in a direction transverse to the beam axis. New 
coordinates x, 7, and 5 are defined by 
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while the algorithm for the linearized version of Eq. (56), 

is taken to be 

2 i  [ f ( z , y , t + ~ t )  - f ( z , y , t - A t )  - 
2At I - 

x + A F , Y , 5 )  - 2 f ( x , y , [ )  + f (x -A59? ,5 )  

[ " -  (a;)' I 

In Eq. (59), M is taken to be the maximum value of the integral in Eq. (56). 

The stability and convergence properties of the linear algorithm given in Eq. (60), 
which a re  necessary (but not sufficient) conditions to the stability and convergence of the 
nonlinear algorithm, may be studied (16) by examining the Fourier components of all 
solutions to Eqs. (59) and (60). If a plane wave solution to Eq. (59) is taken as 

Assuming a solution of the form given by Eq. (61) for the difference Eq. (60), the U (5) 
now has two solutions (as opposed to one for the differential equation): 

where 

It is necessary to show that there exists a linear combination v( 5 )  of the two solutions 
given in Eq. (63) that converges to Eq. (62) in the limit where A[,  A x ,  and Ay vanish in 
some specified order and, to insure stability, that V ( 5 )  has the property that i t  grows as 

lim V(5) - 0 
S +m 
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If and ( ~ 7 ) ~  are required to vanish in proportion to A 5  , then it can be shown that 

while the solution U- (5) fails to converge. The convergence of the solution of the differ- 
ence equation to that of the differential equation can be assured if  there exists a means 
of suppressing all those Fourier components of the type U-(5). The unwanted solution i n  
the general case may be suppressed by a "careful" specification of the function f at the 
plane 5 = 0 and at the plane 5 = A 5 . By "careful," one means that the specification at 
5 = A 5  must be at least as  accurate (17) as a Taylor's expansion about 5 = 0 to the same 
order as the predictor algorithm. In this case, the algorithm is accurate to order (A[) ', 
as is demonstrated that 

Thus at 5 = At, the data must be specified as 

where 

and a2f (0) /at2 must be similarly specified. 

Since the unwanted solution has been suppressed by the above device, the test for 
linear stability need only be applied to the wanted solution, and, indeed, may be applied 
to its Fourier components which are primarily characterized by the function u+ (5). The 
stability requirement on u+ (5) given by Eq. (64) demands of B that 

Since B is a real number, if B > 1, Eq. (68) can never hold. A marginal stability is 
achieved only i f  B < 1. The conditions of stability, in terms of At, A;, and A?, divide 
into three categories: 
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With a prescribed choice of Aii and AF the numerical solution of the difference equation 
will be unstable unless A 5  is chosen to satisfy the three conditions in Eq. (69). Since the 
f i rs t  condition is the most stringent of all three restrictions, choosing A 5  in accord with 
i t  will ensure the desired stability. 

The intrusion of ,BM into the stability conditions given in Eq. (69) may be viewed in a 
different light. The solution of Eq. (59) may be written in the form 

where g is a solution of the equation 

In order that a numerical solution of the equation be satisfactory, the oscillations, i n  5, 
of the exponential factor must be sampled by at least six points per oscillation. Thus, 
step sizes A 5  must be chosen s o  that 

which is the same as the las t  condition of Eq. (69). 

All the above considerations apply, of course, only to the linear approximation. Not- 
withstanding the choice of M as the maximum of the integral, the predictor was found to 
be incapable of suppressing a nonlinear instability for values of p of interest even though 
the f i rs t  criterion of Eq. (69) was well satisfied. In order to damp the nonlinear growth, 
a simple two-point corrector (18) was applied in conjunction with the predictor. Writing 
out the terms of order AC3 explicitly, the predictor and corrector a r e  taken a s  

and 

When A 5  is taken small enough, the third derivatives in both of the expressions of Eq. 
(70) become equal in value; the correct  value of f at the plane 5 t A 5  is then taken to be 
that linear combination of the corrector and predictor that eliminates the terms of order 
A C3,  that is, 

In Eq. (70), the f irst  derivatives a re  evaluated by the use of the algorithm that relates 
these derivatives to the transverse derivatives and the heating integral at  the plane 5,  
just as Eq. (67) does s o  at the plane which is the face of the laser. This form of the algo- 
rithm has been found to be sufficient to suppress the nonlinear growth and has been used 
in this work. 

It is convenient (19) to make a change of variables in order to map the whole trans- 
verse plane into a finite region. The following transformations were chosen: 
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The transverse Laplacian, in terms of the new variables f and 7 ,  now becomes 

In terms of these new variables, the conserved quantity (see Eq. (54)) takes the form 

The left-hand side of Eq. (74) is monitored throughout every run as a check on the sta- 
bility and convergence of the algorithm. 

Laser beams whose transverse dimensions vary considerably with z present prob- 
lems of sampling for numerical schemes with fixed transverse mesh size. In Appendix 
A, a formulation of the propagation problem is presented in terms of coordinates that 
will automatically take into account the change in the beam size. The stability and con- 
vergence cri teria developed in this section may be applied to the equations of Appendix A 
with little modification. 

IV. RESULTS OF NUMERICAL COMPUTATIONS 

Accuracy Criteria 

The computer code described in Section 111 has been run successfully for a large 
number of initial parameters. Because exact analytical solutions of the full nonlinear 
problems were lacking, criteria were needed for determining whether a given run led to 
correct results or  not. Since comparisons with the exact solutions could be the only 
valid check on the numerical solutions, the computer code was applied to problems to 
which exact results were known, These solutions a re  discussed in Appendix B. Such 
checks provided a testing ground for certain parts of the numerical procedures used and 
served as a test bed for studying the effects of parameter such changes as step sizes, 
mesh sizes, focused coordinate systems, etc. These comparisons provided the necessary 
minimum level of confidence in the chosen algorithm needed to proceed with the nonlinear 
problems. 

This section is devoted to a description of the criteria that were and a r e  used to 
establish run quality, the characteristics of reliable and unreliable runs, and a delinea- 
tion of the potential sources of error. These a re  illustrated by the presentation of some 
of the results obtained with the computer code. 
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Run Quality Criteria 

Run quality is a function of the downrange distance z; a given run may be good up to 
one value of Z ,  then poor thereafter. Clearly it is desirable to have runs of high quality 
for as large a value of range as possible. 

It has been shown that the quantity 

is a constant of the motion. The ratio 

provides a quantitative measure of numerical accuracy in numerical solutions. This 
quantity was determined, for the runs to be described later in this section, at selected 
intervals downrange, but in this report, i ts  value will be given only at the last one o r  two 
values of z before run termination. Since SE/E generally (but not always) increases 
with z , the final numbers are indicative of the accuracy upbeam. 

A second qualitative measure of the validity of a calculation is the frequency with 
which the oscillations in the real and imaginary parts of the amplitude are sampled by 
the mesh. To each run, usually at the final one or two z values reported, a Run Quality 
Factor (RQF) is assigned according to the following conditions: 

Sampling Characteristics Run Quality Factor 

Sampling nowhere exceeds 6 to 8 points of POOR 
the mesh per oscillation 

Small amplitude oscillations sampled 
poorly; large amplitude oscillations sam- 
pled at least 6 to 8 times. 

BORDERLINE 

Large and small oscillations are sampled GOOD 
at least 6 to 8 times. 

Large and small oscillations are sampled EXCELLENT 
better than 8 times. 

Figures 2 and 3 show a plot of the real part of the amplitude at the mesh points taken 
from a typical set of runs demonstrating the sampling for different RQF1s. Run quality 
factors are  helpful in discussing run characteristics, but they must be used with caution 
since they can be misleading. An RQF of POOR may in fact be describing the oscillations 
quite faithfully; but usually poor runs, when continued downrange, lead rapidly to very 
large values of G E @ .  A run with an RQF of EXCELLENT may be suffering from aliasing 
and, in fact, be quite poor; cases such a s  these may often be detected by looking at RQF 
as a function of Z .  

Further, RQF's are  often difficult to assign; they are  a function of mesh size as 
well, and they suffer to a degree from subjective interpretations. A cruder pair of 
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BORDERLINE 

6106; P =@lo6 wa t ts ;  a = 25  cm; f = 1 . 0  km; L = 1 . 2  km; 
fi = .06  rad/sec;p(H20) = 1 2  t o r r ;  vo = 1000 cm/sec. 

Fig. 2 - Sampling quality of the real part of the amplitude along the line of sym- 
metry graphically displayed for Run Quality Factors BORDERLINE and POOR. 

categories such as acceptable runs and unacceptable runs may in some instances be sat- 
isfactory. Experience shows that POOR runs a re  unacceptable, while BORDERLINE, 
GOOD, and EXCELLENT runs a re  acceptable. 

A third and very important criterion of run quality is provided by the appearance of 
isoirradiance contours in a beam cross  section as a function of z .  For a run of high 
quality, these contours evolve smoothly from concentric circles (for an initially rota- 
tionally symmetric beam) to creecent-shaped curves. Runs of poor reliability generally 
betray themselves by the development of straight lines about which the crescent patterns 
a r e  forced to evolve. These lines, which a re  not isoirradiance contours, and hence a r e  
not plotted, run parallel to the mesh lines or a t  45" to the mesh lines. There a re  two 
principle reasons for such development. First ,  in the case of a small f ratio, the initial 
amplitude will contain many oscillations in the aperture plane. A fine mesh is needed to 
sample these sufficiently frequently for a good description. Since a rectangular mesh is 
used, sampling along the 45" lines is less frequent than along the mesh lines themselves. 
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5257; P = l o 6  r a t t r ;  a = 25 cm; t = 2.0  km; L = 2.4 km: 
n = .05 rad / r rc ;  p ( ~ 2 ~ )  = 12 t o r r ;  vo = 1000 cm/rrc. 

Fig. 3 - Sampling quality of the real part of the amplitude graphically 
displayed for Run Quality Factors EXCELLENT and GOOD. 

Mesh sizes that provide adequate sampling at the laser aperture may prove inadequate at 
some distances downbeam, and e r ro rs  a re  introduced into the numerical solution. 

In the vacuum case, the e r r o r s  possess a 90" rotational symmetry. When wind is 
present, the symmetry in the e r ro rs  deteriorates and is masked to some degree by the 
aberrations due to heating. These effects a re  illustrated by the contour plots of Figs. 
4 and 5. Figure 4 shows two vacuum runs for a Gaussian beam focused at 1 km; the 
mesh number was 31 x 61 in both cases, but the sampling of the oscillations was altered 
by using two different coordinate systems.* The contours in the top row were calculated 
with n = 1.5 km, while those of the bottom row were calculated with n = 1.12 km. In the 
f i r s t  case, the beam is sampled well enough by the mesh at the laser aperture, but as the 
beam converges toward the focus, the sampling becomes poorer. In the second case, 
improvement is achieved for two reasons: 

*See Appendix A for  a discussion of focused coordinate systems and the significance of the param- 
e ter  P mentioned in the above paragraph. 
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1. The beam is being specified on spherical surfaces, on which phase oscillations 
a r e  small since the surfaces more closely approximate surfaces of constant phase than 
planes do. 

2. The mesh size shrinks in about the same proportion that the beam does, so that 
the beam is sampled with the same thoroughness downrange as i t  is at the aperture. 

Figure 5 shows a run with atmospheric heating present, but with an inappropriate 
choice of focused coordinate system. The outermost contours betray the poor sampling 
on the left (the wind moves from left to right), but the aberrations of the beam due t o  
atmospheric heating mask this effect on the downwind side. Secondly, contours may show 
a n  evolution about lines parallel to the mesh axes; such development arises,  in par t ,  for  
reasons of physics. Any numerical scheme for solving Eq. (56) must rely on a mesh  
which samples only a part  of space; a beam initially confined to that part  of space cov- 
ered by the mesh will ultimately grow in size unless self-trapping should occur. This  
growth occurs both for vacuum beams and for beams traversing a medium. Unless the 
mesh is chosen s o  as to be able to accommodate this increase in size, a point will b e  
reached in the calculation where the beam amplitude in the outer regions of the mesh is 
large, am! poor sampling or boundary conditions will begin to manifest themselves in  the 
solution. The isoirradiance contours become very complicated and show definite square  
edges, reflecting the presence of the edges of the mesh; for this reason, we describe 
such a situation by the phrase "the beam has hit the edges of the mesh." Run quality at 
such downrange distances deteriorates completely, reflecting poor sampling, and insta- 
bilities ar ise  leading to large values for ~ E / E .  Figure 7 shows the isoirradiance con- 
tours for such a case, which will be discussed below in greater detail. In some instances, 
the options made available by the parameter II in the focused coordinate systems enable 
the deterioration of the run to be postponed to larger values of z .  However, the condi- 
tions imposed upon the value of II to improve sampling at  the aperture for beams of small 
f rat io run counter to those arising f rom the need to avoid having the beam hit the edges 
of the mesh. In cases where neither condition may be relaxed, the computer code cannot 
be relied upon to  describe the correct physical situation. Modifications of the code that 
will allow Q to vary with z in an appropriate manner appear to be a way of handling 
situations such as these, but such changes have not yet been incorporated into the 
program. 

Numerical Results 

Results of particular numerical solutions of the problem of laser beam propagation 
through a nonturbulent atmosphere a re  now presented. The numbers attached to a given 
computation serve  to designate it; the particular characteristics of the beam at  the aper- 
ture a r e  specified, followed by the run quality characteristics (SE@ and RQF) at  one or 
more distances downrange. The figures show the isoirradiance contours a t  selected 
downrange distances. (In these figures, the scale of each of the plots is se t  by the size 
of the f i rs t  of the plots; the contours represent 90% of peak intensity, 80% of peak inten- 
sity, etc., from the inside out. The actual value of the peak intensity and the deflection 
of the peak intensity point from the beam axis a r e  data available from the computations 
in general, but in some of these early results shown here, they were not.) A paragraph 
is devoted to a discussion of the results in each case. It is emphasized here, and in the 
examination of individual runs, that not all of the solutions presented here are to be 
regarded as  acceptable. Indeed, unacceptable numerical results a r e  presented to illus- 
t ra te  the characteristics of erroneous solutions that may arise from an uncritical use of 
the numerical procedures described in this report. 
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FOCUSSED YHOPACAlION IN CONSTANT INDM &DIUM 

Solid curves are exact analytical r e s u l t s  
Polnts (+) are computer r e s u l t s  
Arrows ( t )  lndlcate mlnlmum walst po lnts  

DISTANCE FROM LASER FACE (KM) 

Fig. 6 - Comparison of computer results with analytical results obtained from the theory of 
propagation of a focused laser beam in vacuum; a = 10 cm. 

The graphs in Fig. 6 show light rays  emanating from a point at the laser aperture 
where the power is 30% of the central intensity. The runs here a r e  in vacuum to check 
the linear aspects of the code. The solid curves a r e  analytical results, the points rep- 
resent the computer results, and the arrows point to the waist of the b e a m   he agree- 
ment between theory and numerical computation is excellent. The runs in Fig. 6 were 
made with II = 1.5 f in all cases. Because the beam diverges to the right of the waist 
points, while the focused coordinate system continued to converge, the beams ultimately 
hit the edges of the m e s h  The quantities SE/E, at the focal distances for the cases  
shown, were 6 x 7 x 8 x and 2 x for the cases f = 1, 2, 3, and 4 km, 
respectively, while for f = 5 and f = 6 km, SE/E was 2 x I O - ~  just short of the focal point 
in each case. 

No-Diffraction Runs 

No figure is provided here. The rationale for these runs is provided in Appendix B. 
These runs a r e  made to check the nonlinear aspects of the code. This is done by drop- 
ping the Laplacian t e rm in the wave equation, which is equivalent to saying that refrac- 
tion dominates the character of the beam propagation. Such runs might be termed high- 
power runs, or  no-diffraction runs, o r  the geometrical optics limit. The resultant 
equation, while still  nonlinear, may be solved exactly (see Appendix B) to give the result 
that the intensity profile does not change downbeam. This result was confirmed by 
computation with the code by circumventing the subroutines that compute the Laplacian. 
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Run No. 3346, shown in Fig. 7, has the same parameters as those of the next two 
runs, illustrated in Figs. 8 and 9. This sequence of runs, together with the vacuum run 
for 2 km, shown in Fig. 6, illustrates the potential sources of e r ro r  that may be encoun- 
tered in these numerical computations as discussed earl ier  in this section. With n o  prior 
knowledge of the extent to which the beam would bloom, or diverge, because of the  heat- 
ing, a f i rs t  guess was made that the choice of focused coordinates used for the vacuum 
case would work here. The first  indication that this assumption was erroneous w a s  pro- 
vided by the isoirradiance contours a t  z = 1.0098 km, the maximum linear distance of 
the 0.3 isophote from the horizontal center line is the same as it  was at  the laser aper- 
ture while, for a vacuum run as seen f rom Fig. 6, i t  is only one-half as large. Thus, the 
heating effect is preventing the focusing of the beam, as it  would otherwise do in vacuum. 
The coordinate system, on the other hand, is still  converging s o  the beam will approach 
the edges of the mesh. At z = 1.2108 km, discernible flattening of the contours at right 
angles to the wind direction is perceived and become more pronounced at  z = 1.41 17 km. 
The structure at this point cannot be believed, even though 6 ~ @  = 7 x (For this 
run, the RQF was not available. A reasonable guess can be made from the rapid varia- 
tions of intensity across  the beam that RQF here is POOR) Succeeding isophote plots 
demonstrate the total deterioration of the run. At z = 1.6127 krn, 6E/E - 10 208, while 
at z = 1.8337 km, 6E/E = 5.91. 

It is important to note that the patterns at  z = 1.6127 km, which s o  clearly show the 
unacceptable run quality, could easily have been missed had the computer been com- 
manded to plot at slightly different z values. If fewer isoirradiance contours had been 
used, the plots at z = 1.2608 km and 1.4117 km would have shown less  complexity and 
could then have been readily interpreted as complicated diffraction patterns. However, 
such interpretations were avoided by use of the 6 ~ @  and RQF's. 

The initial data shown in Fig. 8 a r e  the same as the previous run; however, k! = O3 , 
i.e., ordinary Cartesian coordinates were used, while (N, ,N,)  = (31,61). 

Because the previous run was s o  clearly in er ror ,  i t  became necessary to do the 
computation again. Since the beam did not appear to be focusing, Cartesian coordinates 
were used. At z = 2 km, ~E/E = 7 x lo-', but no RQF's were available in this early run. 
However the contours at  z = 2.0 km show considerable flattening on the wind side of the 
beam. Beam deflection into the wind was enough to cause concern about poor sampling, 
s o  i t  was therefore decided that the run was UNACCEPTABLE. 

Run No. 3353 of Fig. 9 is a repeat of the above two runs, but with Q = - 2 km. This 
choice of Q was taken because the coordinate system would then be slightly diverging, 
giving the beam more space in which to diverge. The differences between the isoir- 
radiance contours at  z = 2 km in this case and in the previous run a r e  quite pronounced. 
The squaring of the pattern as seen in Fig. 8 is gone, and the contours on the wind side 
a r e  l e s s  compressed. The value 6E/E = 2 x l o m 5  here, and the RQF was GOOD. It ap- 
pears  that the run could be further improved by choosing Q slightly closer to zero; how- 
ever, this would sacrifice accuracy at- the center of the beam for the same total number 
of mesh points. With the NRL computer, increasing the number of mesh points is not 
possible. 

The contours show that the beam reaches a minimum size at  approximately 1.2 km 
and diverges for larger values of z. Since the computer printout also included phase 
angle a t  each mesh point, the assessment that the beam is no longer focusing beyond 1.2 
km could be verified by the behavior of the phase angle as a function of radial distance 
f rom the beam center. Phase angle should increase with radial distance for a diverging 
beam, and this was indeed the case here. 
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1 2.0196 

RUN # 3353 (ACCEPTABLE) 

P = 105 watt#; 

vo = 10 on/reo; 

a = 10 on; (31,611; 

A = 0.0 rad/reo; 
f = 2 kn; 1 = -2 km; 

d = 0 (pure hratlng);  
d s .67 X 1 0 ' ~  on'l. 

Fig. 9 - Run No. 3353. 

The deflection of the peak intensity along the line of symmetry of the contour plot is 
plotted against range z in Fig. 10. Deflection at  small z grows quadratically with z ,  a s  
geometrical optics predicts. At 1.8 km, the deflection curve show a rather severe change 
in slope. This appears to be due to a rapidly changing shape in the profile and to the fact 
that the beam is sampled a finite number of times. 

Beam deflection, measured in the above fashion, is a crude measure of the location 
of the beam. It is quite conceivable that, with the growth of diffraction peaks along the 
line of symmetry, the deflection itself can show an abrupt discontinuity while the beam 
configuration is changing in a smooth and continuous fashion. Therefore the position of 
the peak intensity point along the central line indicates the beam displacement in a 
qualitative sense only. 
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Fig. 10 - Beam deflection vs  downrange distance for Run No. 3353. 

The value of the peak intensity along the line of symmetry in a cross  section of the 
beam is plotted vs  range Z, in Fig. 11. The peak intensity is seen to reach a maximum 
at 1.2 km. The decrease thereafter is related directly to the divergence of the beam. 

The isoirradiance contours of Run #I155 a r e  shown in Fig. 12. At z = 1 km, 
~ E / E  = 1 X and the RQF is EXCELLENT. The sharp corners of the interior contours 
can be eliminated by using a finer mesh. Slewing and kinetic cooling a r e  present. At a 
range of I km, V,,T = 30 cm, while the beam size is reduced to about 6 to 10 cm in diam- 
eter. Thus, even with a large amount of water vapor present, the a i r  is swept out of the 
beam before the excited nitrogen molecules decay to add to the heating, reducing the 
overall heating effect by .6. The high slewing rate further diminishes the heating. Al- 
though the calculation was not carried further, it is clear that diffraction will cause the 
beam to spread at larger ranges. 

Beam deflections were less  than 1 cm at all ranges up to 1 km in this run. 

Plotted in Fig. 13 a r e  the isoirradiance contours at the focal point for runs which 
have identical parameters, except water vapor pressure, to demonstrate the effect on a 
focused beam of the kinetic cooling phenomenon. All figures a r e  drawn to the same scale. 
An absolute scale is shown below the left-most figure. The peak intensities, from left to  
right, a r e  3140 watts/cm 2, 490 watts/cm2, and 640 watts/cm2. The peak intensity value 
fo r  the central figure is lower than that of the right one because of the development of 
two strong maxima in the beam. In contrast, the l / e  radius of a diffraction-limited beam 
(shown a s  a dashed circle centered on the beam axis, indicated by a small cross) is 1.65 
cm, with a peak intensity of 11,250 watts/cm2. 
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Fig.  11 - Peak intensity in beam v s  downrange distance for Run No. 3353. 
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p(R20) = 2.25 Tom. p(H20) = 4.00 Tom. 

Fig. 13 - Comparison of the effects of water vapor 

p(H20) = 12.00 Tom. 

pressure (H 20) on a focused beam. 

The parameters that characterize the above runs, apart from water vapor, a r e  
P = lo5 watts; a = 10 cm; v, = 200 cm/sec; n = 0.00 rad/sec; f = I km; &d ( N ~ ,  N ~ )  = 
(31,61). 

Run #3145, whose contours a r e  shown in Fig. 14, was chosen with parameters to 
match the run reported by Wallace and Camac ( l l ) ,  who studied laser propagation using 
geometrical optics. They presented their contour plot at  z = .6 km. The two figures, 
with the different normalizations accounted for, a r e  in detailed agreement. Beyond this 
point, a t  798 km, the beam, which was initially collimated, is undergoing self-focusing. 
(At z = 798 m,  ~ E / E  = 3 x and RQF is EXCELLENT.) The next figure can only be 
regarded a s  a qualitative representation of the phenomenon because the beam is collaps- 
ing to too small a configuration to be handled by the mesh size used in the computation. 
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Appendix A 

FOCUSED COORDINATES 

In numerical computation of solutions to Eq. (56), sufficiently small mesh sizes to 
describe the oscillations of the amplitude in the transferse directions are  imperative. 
If, for  focused beams, a fixed transverse mesh is used, there may be insufficient sam- 
pling in the vicinity of the focal region, especially for short focal lengths where the spot 
size, in vacuum at least, is certainly small. Variable mesh sizes may be achieved by 
using angular coordinates on concentric spherical surfaces as follows: 

As was done in Section LII, construct a right-handed coordinate system whose origin 
i s  at the center of the laser face, whose plane l ies in the x y  plane, and whose z axis is 
the direction of propagation. Downbeam a distance Q place the origin of a second right- 
handed coordinate system, with its z' axis pointing back towards the laser (see Fig. Al). 

Fig. A1 - Relationship between three coordinate 
systems used in the discussion of focused coordi- 
nates. 

With respect to this system construct the customary spherical polar coordinates; the 
coordinates of a point P in space will thus be characterized by (x, y ,  z) or by ( r ' , 0' , QI I). 
The Helmholtz equation in terms of the latter variables is 

1 a -- 1 a 
sin e1 2 t 1 

t k2e$ = 0 . (A1) 
(rl)2 are ae' ( rl)' sin2e1 a ( q l )  

t r a wave propagating along the positive z direction we put 
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i to Eq. (Al) and derive an equation for @ which will involve a2@/a( r ' )  and k a@/&: 
D opping the second space derivatives a s  was done in the derivation of Eq. (1) and carry- 
i g only lowest order terms in the absorption coefficient, the equation for @ becomes I 

At points between the focal point f of the beam and the laser face, the amplitude @ 
ill usually be small for all but small values of 8' . Carrying only the lowest orders of 

Eq. (A3) is closely approximated by 

3 coordinate transformation 

4 onverts Eq. (A4) into 

hich is quite similar in form to Eq. (1). The quantities i, and 5 are angular coordi- 
ates on spheres of radius r '  in the transverse directions, as seen from the origin of 
he primed coordinate system. t 

If a i s  a characteristic transverse linear dimension (say beam radius) characteriz- 
the initial laser beam profile, then 0, = a/11 is a corresponding characteristic 

gular dimension. Scaling the variable x^ and 5 with this quantity, a new pair of varia- 
i and y are introduced: 

or those points in space where the amplitude is significantly different from zero, the 
r '  may be related to the propagation distance Z ,  to lowest order in 0 '  , by 

d z is related to 5 by Eq. (53). In terms of the variables i ,  i ,  and 5, Eq. (A6) 
ecomes 
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while the intensity I now takes the form 

The index of refraction is related to the amplitude cP by 

- - 
The variables x, Y,  and 3 may be related to the original variables x ,  y ,  and z by 

In the limit that Q+m, all previous results a r e  recovered. 

The solution to the boundary value problem posed by the differential equation [Eq. 
(Ag)] requires the specification of the function on the spherical surface that goes'through 
the point x = y = z = 0. On such a surface, the amplitude of a Gaussian beam focused a t  
a distance f is given by 

To describe the oscillations in the real  and imaginary parts of the amplitude that 
a re  due to the last factor in Eq. (A12), a transverse mesh size of appropriately small 
dimensions must be chosen. The larger the beam dimensions, the smaller this mesh s ize  
must be; the mesh size will also be correlated with the f ratio of the beam. For values 
of Q near f ,  such oscillations can be reduced considerably; for Q = f , they vanish. I£ one 
is not interested in the behaviour of the beam as f a r  as the focal point, this latter choice 
of d is the appropriate one. Larger values of Q a re  required to study the beam in the 
vicinity of the focal length, since the denominators of the second and third terms (see Eq. 
(A10)) in the wave equation (Eq. (A8)) vanish at z = Q , and the approximations on which 
the equation was based a r e  no longer valid. 

The numerical value of the quantity Q is determined by the problem itself. It is con- 
venient, in practice, to attempt a numerical solution with fixed mesh size. I£ the results  
show a strong focusing of the beam, the numerical results can be made more reliable by 
redoing the computation with Q chosen slightly larger than the focal length. If the heat- 
ing causes severe blooming in spite of the initial focusing, it may prove necessary to use 
a negative value of Q so  that the coordinates a re  defocusing. 

An alternative derivation of Eq. (A9), which is much simpler than the above but has 
less immediate geometrical significance, is obtained by putting 
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- * 1 - 
x = ii and y = Y t  

1 - ka21/p 1 - k a 2 y p  

so that 

giving the equation 

The first-derivative terms are eliminated by defining a new amplitude 9 by 

is then the amplitude in Eqs. (A9)-(All). The equivalence of the two derivations is 
clear. 



Appendix B 

ANALYTICAL RESULTS 

Th  computer code can be checked, in part, by comparing computer solutions of 
known f oblerns with analytical resuIts. The analytical results  presented here provide 
a check on two different aspects of the code. 

V ~ C U U  Propagation 1 
vacuum propagation of a laser beam is described by Eq. (1) with p set  equal to 

he solution of the resultant equation is 

The integration is carried over the plane z = 0, and v ( Z 0 )  is the amplitude specified a t  
the face of the laser. For a Gaussian beam whose power is normalized to unity and 
whose intensity is reduced from i ts  central value by a factor of e at  a radial distance a, 
and which is focused at a distance f down the beam axis, 

and 

The intensity of the beam is given by 

+ exp[ - pz/( c 2 +  ( 1  - 51;) '>I 
I ( P ,  2) = 

~ r a ~ 1 < ~ + ( 1 -  </?)zl  

In Eqs. (B2), (B3), and (B4), p Z  = (xZ+y?/aZ,  5 = z / k a z  , and ? = f /kaz .  

A collimated beam is obtained from the limit of infinite focal length: 
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By comparing the numerically computed solutions for these cases with the analytical 
results, those portions of the code that deal with the linear parts  of the equation a r e  
checked, and the linear stability and convergence of the algorithm can be ascertained. 

High-Energy Beams 

When the absorbed power in the central portions of the beam near the laser face is 
large, the nonlinear term in Eq. (56) will be much larger than the Laplacian term. Such 
a state of affairs is local only, since the opposite must hold in the wings of the beam. 
For this local region, however, Eq. (56) may be approximated by 

From Eq. (B8) and i t s  complex conjugate, i t  may easily be shown that 

Hence the integral is independent of the variable 5 ,  and therefore Eq. (B8) may be inte- 
grated directly to give 

Equation (B8) and i t s  solution (B10) prove useful in two ways. Regardless of how 
good the approximation of dropping the Laplacian in any one specific case may prove to 
be, those portions of the computer code that deal specifically with the Laplacian may be 
bypassed, solving Eq. (B8) instead of Eq. (56). Thus, a check is provided on the formu- 
lation and accuracy of the code in treating the nonlinear portions alone. Also, for high 
values of p, the oscillations of the amplitude as a function of 5 ,  induced by the heating, 
must be sampled at least s ix times per oscillation to be certain of accuracy. Dropping 
the cooling portion of the integral and using a Gaussian beam, this condition yields a 
restriction on stop size of 

which was found, in practice, to be necessary indeed, as was discussed in Section IV. 



Appendix C 

EFFECTS OF THERMAL CONDUCTION 

In this appendix, the size of the thermal conduction terms, which have not been in- 
cluded in the analysis, will be estimated, and their neglect justified. Thermal conduc- 
tivity, which provides a mechanism for energy transfer in addition to the hydrodynamic 
motion, changes the energy conservation Eq. (7) to 

The effect of the added terms is estimated using the solution obtained by neglecting them. 
The pressure and its gradients are negligible in any case, so only the density terms are 
considered; replacing the V Z  term by derivatives along the wind where maximum changes 
occur, and pQ by a I, the ratio of the conduction term to the transport term then is 

The factor ( 1/1)(d1/d~) determines a characteristic inverse length appropriate to our 
estimate; this length can be estimated from the output intensity profiles at the smallest 
cross section of the beam and is about 1 cm in the most severe cases. Using the appro- 
priate thermal constants for air, and for a wind speed of 200 cm/sec, the above ratio is 
of the order of 10- 3; when slewing is included, the ratio is  even smaller. The effects of 
thermal conduction in the cases presented are  negligible since this estimate provides 
only an upper limit to these effects; each case must, however, be considered separately. 
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