
4 b d /

NRL Report 7704

AN /UYK-17(XB-l)(V) Signal Processing
Element Architecture

WILLIAM R. SMITH, JOHN P. IHNAT,
HAROLD H. SMITH, NELSON M. HEAD, JR., EDMUND FREEMAN,

Y. S. Wu, AND BRUCE WALD

Information Processing Systems Branch
Communications Sciences Division

June 7, 1974

NAVAL RESEARCH LABORATORY
Washin%on, D.C.

Approved for public rrlease; distribution u n l i m i t e d . D x -A

--
SECURITY C L A S S ~ F ~ C A T I O ~ O F THIS PAGE mm Data Entered)

AN/UYK-17(XB-l)(V) SIGNAL PROCESSING ELEMENT
ARCHITECTURE 6. PERFORMING ORG. REPORT NUMBER

REPORTDOCUMENTATION PAGE
1. REPORT NUMBER 12. GOVT ACCESSION NO.

NRL Report 7704
4. T I T L E (a n d Subtitle)

READ INSTRUCTIONS
BEFORECOMPLETINGFORM

3. RECIPIENT'S CATALOG NUMBER

5. T Y P E O F REPORT h PERIOD COVERED

7. AUTHORIe)

W.R. Smith, J.P. Ihnat, H.H. Smith, N.M. Head, Jr.,
E.Freeman, Y.S. Wu, and B. Wald

8. CONTRACT OR GRANT NUMBER(m)

s. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Research Laboratory
Waehington, D.C. 20376

Unclassified
Is.. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of thla Report)

10. PROGRAM ELEMENT, PROJECT. TASK
AREA & WORK UNIT NUMBERS

NBL Roblem 480246 and 4B02-10
WF 21-241-601
XF21-241419

11. CONTROLLING O F F I C E NAME AND ADDRESS

B02.06-Department of the Navy, Naval Air Systems Command
Waehington, D.C. 20361

(continues)
'14. MONITORING AGENCY NAME & AODRESS(1f dlfferent from Conlroll ing Offlce)

I Approved for public release; distribution unlimited.

12. REPORT D A T E

June 7,1974
13. NUMBER O F PAGES

106
15. SECURITY CLASS. (of thlm report)

17. DISTRIBUTION STATEMENT (of the abatracl entered In B lock 20. I f dlfferent from Report)

18. SUPPLEMENTARY NOTES

19. K E Y WORDS (Conllnue on reverae aide I fneceaaary m d Ident l fy by block nmber)

Signal Processing Element (SPE) All Applications Digital Computer (AADC)
Microprogrammed Control Unit (MCU) Signal Processing Arithmetic Unit (SPAU)
MCU SPAU
Microprogramming Selector Channel Controller (SCC)
Signal processing SCC (continues)

20. ABSTRACT (Contlnue on reverae alde I f necaaaary and Ident l fy by block number)

The AN/UYK-17(XBl)(V) Signal Processing Element (SPE) was developed at the Naval
Research Laboratory to provide a high performance processing facility for radar, sonar, and
communications systems. The design of the microprogrammable SPE enables realization of
efficient, flexible solutions to problems which arise in digital signal processing tasks.

The SPE is intended to be compatible with the Navy All Applications Digital Computer
(AADC) now under development, and will be implemented as part of the AADC system. The
SPE can also be used as a stand-alone processor.

(continues)

DD :z{)NRM73 1473 EDITION OF 1 NOV 65 IS OBSOLETE
S/N 0 1 0 2 - 0 1 4 - 6 6 0 1 ,

SECURITY CLASSIFICATION O F THIS PAGE (m e n Data Enterad)

. L C I J ~ I T Y CLASSIFICATION OF THIS P A G E l W m Date Entered)

11. Continued 19. Continued

B02-10-Department of the Navy, Naval Electronics Systems AN/UYK-17 Signal Processing
Command, Washington, D.C. 20360 Element

20. Continued

The SPE is a collection of several interconnected components. This report describes the
organization of the SPE, explaining how SPE components are interconnected and how they
interact in order to accomplieh a signal processing task. Furthermore, detailed register-level
descriptions of the programmable SPE components - the Microprogrammed Control Unit (MCU)
and the Signal Processing Arithmetic Unit (SPAU) - are presented. The operation of the
Selector Channel Controller (SCC), which is the SPE Input/Output controller, is also described.

ii SECURITY CLASSIF~CATION O F THIS PAOEpVhen Data Entered)

CONTENTS

. Scope of This Report 1
. The SPE Design ; 1

............ 11 . ANIWK-17(XB-l)(V) SYSTEM ARCHITECTURE 2

..................................... Major Components 2
................. Interconnecting Data Paths; Data Movement 4
................ Intercomponent Communication and Control 5

. SPE System Configurations 7

........ I11 . STORAGE CONTROL UNIT AND BUFFER STORAGE 10

.............. Storage Control Unit (SCU) and Buffer Storage 1 0
. Buffer Storage Access 10

.......................... Storage Control Unit Operation 12
................................ Buffered Data Channels 1 3

.......................... IV . Z-BUS AND INTERRUPT LINES 15

................................ MCU Control of the SPE 15
. %Bus Description 17

...................................... %Bus Operation 19
.................................... MCU Z-Bus Control 2 1

. V . MICROPROGRAMMED CONTROL UNIT 23

.. Introduction 23
. MCU Data Manipulation; MCU Basic Architecture 23

............................ Microinstruction Sequencing 27
InterruptHandling 29

............................ MCU Operation of the Z-Bus 32

............................ MCU Operational Description 33

................ VI . SIGNAL PROCESSING ARITHMETIC UNIT 53

.. Introduction 53
...................................... SPAU Operation 53

.................................. Hardware Description 55
.. Control Word 67

.................... I . SELECTION CHANNEL CONTROLLER 82

.. Introduction 82
................................ Buffered Mode Transfer 84

.......................... Unbuffered Mode Data Transfer 90

.......................... MCU Z-Bus Control of the SCC 92

.................................. ACKNOWLEDGMENTS 95

GLOSSARY .. 95

iii

AN/UYK-17(XB-l)(V) SIGNAL PROCESSING ELEMENT ARCHITECTURE

I. INTRODUCTION

Scope of This Report

The AN/UYK-17(XB-l)(V) Signal Processing Element (SPE) was developed at the
Naval Research Laboratory (NRL) to provide a high performance digital processor for
radar, sonar, and communications systems. The design of the microprogrammable SPE
enables realization of efficient, flexible solutions to problems which arise in signal
processing tasks.

The SPE is intended to be compatible with, and inplemented as part of, the Navy All
Applications Digital Computer (AADC) now under development. The SPE can also be
used as a stand-alone processor.

The SPE is a collection of several interconnected components. This report describes'
the organization of the SPE, explaining how SPE components are interconnected and how
they interact. Furthermore, detailed register-level descriptions of the programmable SPE
components - the Microprogrammed Control Unit (MCU) and the Signal Processing
Arithmetic Unit (SPAU) - are presented. The operation of the Selector Channel Controller
is also described. After understanding the material contained in this report the reader will
be able t o write microprograms for the MCU and SPAU. This Introduction surveys the
considerations that influenced the design of the SPE. Other parts of this report describe
the organization of the functional components that comprise the SPE, data transfers and
control interactions among these components, and structural arrangement of each of the
components. A glossary is included which can be used as a reference.

Support software to aid the SPE microprogrammer has been written at NRL. This
software includes simulators for the MCU and SPAU as well as microprogramming lan-
guages and microassemblers for use in the SPE. The microcoding support software is
detailed in a companion document.

The SPE Design

A characteristic of signal processing algorithms is their use of large arrays of complex
variables. These arrays represent input signals, intermediate data, and processing outputs.
In many real-time applications large arrays must be processed rapidly. Computations
with these arrays generally necessitate the rapid performance of two distinct functions:
data management and complex arithmetic. The SPE is structured to take advantage of
this natural partitioning to meet the high performance requirements of real-time operation.
One functional component of the SPE, the Microprogrammed Control Unit (MCU), is
designed to perform data management for signal processing tasks. Memory management array
manipulation and logical decision-making are efficiently carried out by the MCU. The
Signal Processing Arithmetic Unit (SPAU) is designed to perform the complex arithmetic

Note: Manuscript submitted December 13, 1973.

1

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

needed to execute signal processing algorithms. The SPAU efficiently carries out repetitive
arithmetic operations on large arrays of data for which little data-dependent logical
decision-making is necessary. Other functional components of the SPE facilitate t h e
accomplishment of the functions of the MCU and SPAU by providing (a) memory for data
storage, (b) intercomponent data transfer, and (c) input/output exchange with peripherals,
data sources, and data destinations. Since the entire SPE system operates with a 150-11s
basic cycle time, an n-point complex fast Fourier transform (FFT) can be performed on
the SPE in 150n*log2n ns.

Each of the SPE functional components operates upon entire data arrays independently
of other components. Although partitioning a signal processing task into computational
functions enables each SPE component to perform its assigned function efficiently, the
proper organization of the interactions among these components is essential to the rapid
execution of the entire processing task. There are two purposes for which functional
components must interact: data interchange and control information exchange. A
separate communications network among SPE components is used for each of these
communications purposes, and the functional components of the SPE are structured to
interface with the two networks. The protocols for the data network are organized to
facilitate block interchange of data arrays; the protocols for the control network o f the
SPE are organized to facilitate single word exchanges.

The partitioning of computational and communications functions not only results
in efficient processing of signal-oriented tasks, but also makes the SPE well suited for
other applications. Since the MCU has been designed to manipulate and tailor data, it
makes an excellent process controller (indeed, it serves as controller for the SPE). Data
transfers to and from data storage are possible during each SPE instruction cycle. This
together with the MCU's data handling ability makes the SPE an excellent candidate for
use as an emulator and as a peripheral controller. Moreover, both the MCU and SPAU
can effect complicated data storage addressing computations and still utilize full memory
accessing bandwidth. Thus, the SPE can be efficaciously employed to solve combinatorial
sorting and searching problems.

A description of design considerations for signal processing can be found in NRL
Report 7455*.

11. ANIUYK-17 SYSTEM ARCHITECTURE

Major Components

The ANIUYK-17(XB-l)(V) SPE contains major components which provide the func-
tions of control, arithmetic processing, storage, and input/output (110). Figure 1 shows
the major functional components of the SPE system. The Microprogrammed Control
Unit (MCU) provides the control necessary to allocate SPE system resources and to manage
activities of the various system components and peripheral devices. The Signal Processing
Arithmetic Unit (SPAU) furnishes the arithmetic processing capability required to perform
transformations on arrays of signal data. The Buffer Storage Modules (BSM) are high

* B.P. Shay, "Design Considerations of a Programmable Predetection Digital Signal Processor for Radar
Applications," Dec. 1972.

2

NRL REPORT 7704

""' f (STORAGE

I

t A'
t V V

SPAU MCU
(ARITHMETIC) (CONTROL)

EXTERNAL

DEVICES

Fig. 1 - SPE

speed memories. The Storage Control Unit (SCU) is a crossbar switch which allows all
system components direct access to all Buffer Storage Modules. The Selector Channel
Controller (SCC) enables fast and flexible movement of data between system storage and
peripheral devices.

Microprogrammed Control Unit (MCU) - The MCU is the SPE system controller.
Its functions include data management, process scheduling, 110 control, interrupt handling,
and applications routine processing. The MCU contains a simple add/subtract/logic unit,
local storage registers, internal instruction sequencing, and input/output logic. Micro-
instructions in a 64-bit wide memory (control store) control the operations of the MCU
hardware. Microprograms are executed by the MCU one microinstruction (one 64-bit
word) per clock cycle (150 ns). Operations in the MCU process 16-bit and 32-bit data
words accessed from system storage (Buffer Storage Modules).

Signal Processing Arithmetic Unit (SPAU) - The SPAU is the SPE system arithmetic
processor. Its function is to perform high-speed execution of processing operations on
arrayed data. These operations include Fourier transform, recursive filtering, and complex
'multiplication. The SPAU contains parallel multiply and add units to provide fast execu-
tion of these operations. Internal high-speed local storage and data addressing hardware
is also provided. Flexible control of the hardware elements in the SPAU is provided by
160-bit wide microinstructions executed from the SPAU control store, one microinstruction
per 150 ns clock cycle. Like the MCU, the SPAU processes 16-bit and 32-bit data words
accessed from BSMs.

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Buffer Storage - Buffer Storage is a central, high-speed (150-11s cycle time) memory
for the SPE system. It is composed of independent Buffer Storage Modules (BSM) each
of which may contain up to 4096 32-bit words. An SPE system can contain up to eight
BSMs, each of which can be accessed over its own 32-bit-wide poqt during any system
clock cycle (150 ns). Buffer Storage provides storage for MCU executive and applications
data tables, system data arrays, working storage for MCU and SPAU processing operations,
and buffer areas for I/O data movement.

Storage Control Unit (SCU) - The SCU provides a switching interface between the
independent Buffer Storage Modules and the other SPE system components. Each and
every MCU, SPAU, and SCC can make BSM accesses on every system clock cycle. Like-
wise, each BSM can be accessed by one of the system components on every clock cycle.
The SCU switches each component to the BSM to which it requests access. In the event
that two or more system components try to access the same BSM on the same clock
cycle a conflict arises. The SCU then connects the component with the higher priority
(determined by data channel position) and provides notification of connection to that
component. A rejected component halts execution and waits until notified by the SCU
that i t has gained access to the requested BSM.

Selector Channel Controller (SCC) - The SCC provides a fast and flexible means of
moving data between Buffer Storage Modules and peripheral devices. An SCC contains
address generation and data switching logic which allows it to transfer data in 16- o r 32-bit
groups between specified BSM locations and one of up to seven connected peripheral
devices. Depending on the peripheral device, an SCC can transfer data as fast as one 32-
bit word per 150 ns.

Interconnecting Data Paths; Data Movement

All system dilta movement in the SPE is between Buffer Storage Modules (via the
SCU) and the SPE processing units (MCUs, SPAUs, and SCCs). Figure 2 shows the data
movement paths as wide solid lines. Bidirectional channels, 32-bits wide, carry this data.
An SCU interfaces up to 16 Processing Unit Data Channels t o the BSMs. An SCU can
switch any 32-bit-wide processing unit channel to any 32-bit-wide BSM channel. Thus as
many processing unit channels can be transferring data simultaneously as there are BSMs
in the system. Each Buffered Data Channel can transfer one 32-bit word every 150 ns
between a BSM and an SPE processing unit, where a buffered data channel is either a
BSM or processing unit channel.

Each SCC has one data channel, each MCU has two, and each SPAU has two. Thus,
an SCC can transfer data between a peripheral device and one BSM at any time, whereas
an MCU or a SPAU can exchange data with two BSMs simultaneously. The double
channels on MCUs and SPAUs provide the ability to process data out of one BSM, moving
the results to a second BSM at a maximum rate of one 32-bit word per instruction cycle
(150 ns). This allows maximum use to be made of arithmetic hardware, especially in the
SPAUs.

The ability of system processing units to connect to arbitrary BSMs through multiple
data channels minimizes system overhead due to memory transfers. That is, while the

NRL REPORT 7704

- 32-BIT HIGH
SPEED DATA

- LOW SPEED
CONTROL BUS

BSM DATA CHANNELS --- HIGH AND LOW
SPEED
EXTERNAL

SCU
DEVICE
CHANNELS 1 (STORAGE CONTROL) I

I

DATA CHANNELS

S W U MCU

(ARITHMETIC) (CONTROL) DEVICES

Fig. 2 - SPE-DATA and CONTROL

SCC is bringing data into one BSM from the outside, MCU and SPAU processing can be
done from other BSMs which were loaded previously; a component need not be idled
waiting for a dedicated memory to be loaded or unloaded.

Each component accessing a Buffer Storage Module via a data channel provides an
address over that channel to the SCU. This address specifies the particular BSM and the
word location which is to be accessed. The address portion specifying the BSM is used
by the SCU t a switch the data channel to that module. The rest of the address is passed
on to the BSM. Thus, each SPE system component is responsible for doing its own
BSM addressing. An SPE component can address a new BSM during every 150-ns clock
cycle; the SCU can switch channels each clock cycle.

Intercomponent Communication and Control

SPAUs and SCCs receive direction from the MCU. The MCU, as system controller,
initiates actions in other system processing units and external devices and receives
notification from these units of changes in operating status. Two systems in the SPE
are provided for command and control interchanges. These are (a) the Z-bus command/
data channel and (b) the set of interrupt lines connected to each MCU.

Z-Bus ~nteraction - The Z-bus is a common system bus for intercomponent exchange
of command and control information. The Z-bus contains 16 data lines, 8 address lines,
and 6 control lines. The data lines provide two-way exchange of information between the

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Z-Register (result register) in an MCU and control, status, and data registers in another
system processing unit or peripheral device. The address lines allow an MCU to specify
the second device in the exchange. The control lines provide exchange of command,
acknowledge, and other signals for control of bus data transfers.

SPE system processing units are connected to the Z-bus (Fig. 2). Z-bus usage is under
MCU control. An MCU initiates a Z-bus interchange by driving the bus with appropriate
control signals and a Z-bus address. These control signals alert all other devices on the Z-
bus to the fact that a command is being generated to a particular addressed device. The
addressed device, if it is not busy, then either accepts information placed on the data lines
by the MCU or else drives the data lines itself, depending on whether the Z-bus command
was an input or output command. As part of its response to the Z-bus command, the
device sends an acknowledge signal back to the MCU over the Z-bus. This signals the MCU
that command interaction is satisfied, whereupon the MCU releases its signals from the
bus. Because Z-bus exchanges utilize this handshaking procedure, Z-bus communication is
slower than data channel transfers. Precise timing depends on the number and kinds of
devices connected to the Z-bus. Details of Z-bus operation can be found in the discussion
of "Z-Bus and Interrupt Lines."

A typical Z-bus exchange may entail a single transfer or many, depending on the
component and the reason for the exchange. For example, an MCU may send a series of
data words t o an SPAU in order to initiate some processing function, or an MCU may
simply send a command to an SCC asking for the contents of one of its status registers.

An MCU may also communicate with peripheral devices via the Z-bus. This may be
done with a device connected directly to the Z-bus or indirectly through an SCC. Com-
munication with a device interfaced directly to the Z-bus takes place as with an SPE
processing unit. Direct MCU exchanges with a device allow both commands and data to
be passed over the Z-bus. Z-bus data exchanges mean that direct, unbuffered 110 operations
can be carried out over the Z-bus without the use of an SCC and data channel. However,
unbuffered 110 is not as fast as 110 done using data channel transfers and the SCC.

Z-bus data exchanges may also take place between an MCU and a device connected
to the SPE through an SCC. The SCC itself connects to the Z-bus, and the device-SCC
connection is functionally identical to the Z-bus. Therefore, commands placed on the
Z-bus for a device connected to an SCC are switched by the SCC, over the Z-compatible
connection, t o that device.

Interrupt System - The function of the interrupt system is to provide system pro-
cessing units and peripheral devices with the ability to notify central control (the MCU)
of changes in their operation or status. Without interrupts, components would have to
depend on the MCU program to generate periodic requests for status over the Z-bus.
Besides being inefficient, MCU response to an important component status change could
not occur until the next scheduled check if the MCU had to poll for status.

The MCU has 15 interrupt lines. If one of these lines is activated, the MCU is forced,
after the following instruction cycle, to jump to a hard-wired address in control store.
From that location, the MCU can branch to an area of control store containing a

NRL REPORT 7704

microprogram which responds to the interrupting condition. At the end of that program,
a program-initiated interrupt-return operation can restore the MCU to its preinterrupt
processing point. Details of interrupt system operation can be found in the discussion of
"Interrupt Handling."

The MCU responds to multiple interrupt lines by a system of priorities. Each of the
15 lines is hard wired to a fixed priority by its position number at the MCU interface.
A new interrupt is not recognized until all pending interrupts of equal or greater priority
have been processed.

Several of the interrupt lines are devoted to the MCU and can be used to notify the
MCU of internal events such as 110 timeout and control store address faults. The remain-
ing lines can be connected to components, peripheral devices, or groups of devices as is
desired. The MCU can always resolve an interrupt source by using the Z-bus to inter- '
rogate all devices sharing the same interrupt line.

SPE System Configurations

SPE system components can be connected in a variety of ways, depending on the
needs of the processing applications. The basic, simplex SPE (Fig. 3) consists of a single
MCU, a single SPAU, an SCU with four Buffer Storage Modules and eight channels, and
an SCC. Expansion for more processing throughput can be attained by adding components
such as shown in Fig. 4.

When expanding a configuration, one must balance the throughput of the components
in the system with the storage bandwidth available in buffer storage. Thus, when adding
SPAUs or MCUs, an addition of Buffer Storage Modules is-likely to be needed. This can
be accomplished either by adding another 4-memory, 8-channel SCU and judiciously
connecting component channels (see Fig. 5) or by using an 8-memory, 16-channel SCU
(Fig. 6). The latter alternative provides more flexibility and virtually eliminates storage
bottlenecks but requires somewhat more hardware in the larger SCU as opposed to the
two small SCUs. As shown in Fig. 4, if backup storage is required it can be provided in
the form of secondary storage connected via an SCC.

I/O is intended to be implemented through SCCs. However, it is possible, if all
Buffer Storage Modules on an SCU are not required, to connect a peripheral 110 device
with its own buffer storage directly to a buffer storage module port on the SCU
(Fig. 6). This type of 110 is also a possible method of interfacing the SPE with other
computer systems.

SMITH, IHNAT,,SMITH, HEAD, FREEMAN, WU, AND WALD

Fig. 3 - Simplex SPE

BSM BSM

Fig. 4 - Simplex SPE, with additional components

I
I

BSM

I I ' '
rl

BSM

I
I

-
BSM BSM

BULK
STORE - SCC SPAU SPAU MCU SCC -

-

BSM

2

BSM

I

1/0

SCU

II I' - I

I

SPAU

I
I

MCU

I

SCC

.
r I /O

NRL REPORT 7704

Fig. 5 - Expanding the configuration by adding a 4-memory, 8channel SCU

Fig. 6 - Expanding the configuration by expanding the SCU

BSM BSM

I I I 1 1 5 + I I /O

I

SCU

I

BSM

I/O

BSM BSM BSM BSM

- SCC SPAU SPAU MCU MCU SCC - 1/0

-

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

111. STORAGE CONTROL UNIT AND
BUFFER STORAGE

Storage Control Unit (SCU) and
Buffer Storage

Figure 7 shows the SCU together with several Buffer Storage Modules (BSMs). The
SCUIBSM system provides a set of independent Buffer Storage Modules all of which can
be accessed by all SPE processing units (MCUs, SPAUs, SCCs) using 32-bit-wide bidirectional
data channels.

An 8 X 4 (8 processing unit data channels, 4 BSM data channels) SCU is shown
schematically in Fig. 8. Possible connections are shown by X. As is evident from the fig-
ure, the SCU is a crossbar switch. The SCU can connect any processing unit data channel
to any BSM data channel, and all BSMs may be connected by the SCU to processing unit
data channels simultaneously. However, no two BSM channels can be connected to the
same processing unit channel a t the same time, and no two processing unit channels can
be connected to the same BSM channel a t the same time. This corresponds, in Fig. 8, to
the statement that two connections cannot be made simultaneously if they are in the same
row or the same column of the connection diagram. The connection pattern of the SCU
can be altered every SPE system clock cycle (every 150 ns). Each SPE processing unit is
responsible for generating its own requests for BSM accesses. Attempts made by more
than one processing unit data channel to access the same BSM simultaneously are resolved
by the SCU, connection being made to the requesting processing unit channel having the
highest priority assigned to it.

Buffer Storage Access

The SPE system standard data word size is 32 bits. Buffer Storage Modules contain
32-bit data words. Each word can be treated by SPE system components as two inde-
pendent 16-bit half-words. The pair of half-words may or may not be related depending
on their use (complex data pairs, 16-bit real data, etc.). The maximum buffer storage
configuration comprises 32K 32-bit words (64K 16-bit half-words)*. SPE addressing
enables half-words to be accessed independently. Sixteen bits of address must be supplied
to the SCU by a processing unit in order to access single 16-bit data words. Figure 9a
depicts the format of the 16-bit addressing used internally by the MCU and SCC, which
access single 16-bit half-words as well as full 32-bit words. The upper three bits of a
buffer storage address point to a particular BSM and the remaining lower bits point t o a
word within that BSM. Up to eight BSMs can be accessed with each BSM containing up
to 8K 16-bit half-words. SPAUs access only 32-bit words; bits 12 through 14 of a
buffer storage address point to a particular BSM, and the remaining bits point to a 32-bit
word within that BSM. Figure 9b shows the SPAU internal address format. Up to eight
BSMs can be accessed with each BSM containing up to 4K 32-bit words.

SPE system components have 32-bit data channels connected to the SCU. During a
16-bit buffer read by an MCU or SCC the full 32-bit word is fetched from the BSM even

NRL REPORT 7704

BUFFER

MODULE

32- BIT BUFFER STORAGE
MODULE DPTA CHANNELS

0 0 0 0 0

1 STORAGE CONTROL I
UNIT

32-BIT PROCESSING UNIT
DATA CHANNELS

TO SPE
PROCESSING UNITS

Fig. 7 - Storage Control Unit and Buffer Storage Modules

5 5 5 5
m m m m

PROCESSING UNIT
DATA CHANNELS

X POSSIBLE CONNECTION

Fig. 8 - Storage Control Unit 32-bit data
path connections

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Bit 0 performs half-word selection

BSM
Address

Fig. 9a - MCU and SCC Addressing of Buffer
Storage (MCU and SCC internal format)

16-bit half-word address within the BSM

\
unused

15 14 12 11 0

Fig. 9b - SPAU Addressing of Buffer Storage
(SPAU internal format)

I I BSM
Address

though the processing unit is performing a half-word read. The selection of the addressed
upper (odd address) or lower (even address) 16-bit half-word is performed in the processing
unit itself after the data are received over the data channel from the SCU. A buffer stor-
age write operation causes a 32-bit or 16-bit write into a BSM as addressed by the writing
component. The low order (right-most) bit of buffer address determines the 16-bit half t o
be selected for the write into the BSM.

32-bit word address within the BSM

Storage Control Unit Operation

The SCU records BSM requests from SPE processing units, resolves multiple requests
for the same BSM, and switches BSMs to requesting data channels. The SCU carries out
these operations during each SPE system clock cycle. Thus, the SCU can alter its entire
connection pattern every clock cycle, enabling a high degree of BSM accessing flexibility.

Each processing unit data channel must raise a buffer storage request line and deliver
a BSM address t o the SCU prior to the beginning of the cycle in which buffer storage
access is desired. The SCU records all such requests each clock cycle in its,Buffer Request
Register. I t may be that more than one processing unit data channel requests access to
the same BSM. To resolve this situation, each BSM has an associated priority resolution
circuit in the SCU which examines all requests and generates the number of the highest
priority component channel requesting that BSM. The highest priority channel is granted
access to the BSM and a Priority Go-ahead Signal is generated by the SCU to the SPE
processing unit on this channel. Those lower priority channels seeking access to the BSM
do not get a Priority Go-ahead Signal, and the processing units on these channels halt
operation until they do obtain access. The physical location at which a data channel is
connected to the SCU determines that channel's priority. Processing unit data channel

NRL REPORT 7704

CHANNEL 4 7 CHANNEL-0 CHANNEL-7
REQUESTS HIGH-ORDER HIGH-ORDER

T I I I

CHANNEL PRIORITY "/-NIT CHANNELCODE-1 , f i ; ~ : ; ~ NIT CHANNEL C O O E ~

GO AHEAD LINES FROM
EACH

CHANNEL . . .
I I I I . .*

DATA DATA DATA DATA
) SELECTORS SELECTORS + SELECTORS SELECTORS

BUFFER 0 BUFFER 1 BUFFER 2 BUFFER 3 + 4 +
BUFFER BUFFER BUFFER BUFFER
MEMORY MEMORY MEMORY MEMORY

0 1 2 3

Fig. 10 - Storage Control Unit (SCU). Each channel data width is 32 bits and each
channel is two-way. Input C to the data out selectors consists of two buffer-
selection bits plus a write control to disable outputs.

ports on the SCU are labeled 0, 1 , 2, . , ., N with N+1 the total number of SCU processing
unit data channel ports. Channel N has the highest priority and channel 0 has the lowest
priority. Figure 10 shows the priority logic in the SCU.

Buffered Data Channels

SPE processing unit and BSM data channels (32-bit) are functionally equivalent. De-
dicated BSMs can be connected directly to SPE processing units without use of an
intervening SCU. These channels are capable of transmitting 32 bits of data every SPE

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Data Bit 31 -
Date Bit 16
P

Data Bit 15 -
Data Bit 0

4-

32 BIDIRECTIONAL DATA LINES

High order l b b i t half-word (selected if Address Bit
0 is a ONE and Control Line 2 is a ZERO).

Low Order 16-bit half-word (selected i f Address Bit
0 is a ZERO and Control Line 2 is a ZERO).

16 UNIDIRECTIONAL ADDRESS LINES

Address Bit 15
BSM Address

Address Bit 13
P

Address Bit 12
32-bit word address within a BSM.

Address Bit 1

High OrderlLow Order half-word select for half-word
Address Bit 0
p buffer operations (not used by SPAU).

CONTROL LINES

Priority Go-Ahead

(Control Line 3))} Asserted when BSM access is not granted

FulllHalf Word Select

(Control Line 2)
Asserted when component is accessing full 32-bit words.

ReadMlrite

4 (~on t ro l Line 1)
Asserted when component is writing data

Buffer Request - Asserted when component is attempting to obtain

(Control Line 0) BSM access

OVERVIEW

I m p S C U H PROCESSOR "' I Channel Description above refers
to the two types of channels at

1- - -- left, using the orientation shown.

Fig. 11 - High Speed 32-bit data channels

clock cycle and are therefore referred to as the high-speed data channels in the SPE system,
as opposed to the lower speed Z-bus and SCC 110 data paths shown in Fig. 2. Each
buffered data channel has 32 bidirectional data lines, 16 address lines and 4 control lines.
Figure 11 displays these channel lines.

All 32 data lines are always driven during a data channel transfer. However, the re-
ceiving unit in a data transfer only uses half these lines when a processing unit is doing a

NRL REPORT 7704

half-word transfer. An MCU or an SCC will make the half-word or full-word decision
internally. In the case of half-word BSM writes, the MCU or SCC must drive control line
2 to a logical zero.

The 16 address lines are driven by an SPE processing unit. The three high order
address lines (bits 1 5 through 13) are used by the SCU to do priority resolution and channel
switching. The low order 13 bits (bits 12 through 0) are used by a particular BSM for 32-
bit data word and 16-bit half-word addressing.

The four control lines are Priority Go-ahead, Full/Half-Word Select, Read/Write, and
Buffer request. Figure 12 shows the time sequence of control signals. Buffer request is
sent by a processing unit to the SCU along with the 16-bit address to request a storage
cycle access. Priority Go-ahead is sent -from the SCU to an SPE processing unit to indi-
caterthat the requested buffer storage access has been granted. The Readprite control
is driven by an SPE processing unit and specifies the direction of data transfer on the
channel. Full/Half-Word Select is driven by an SPE processing unit and is used by a BSM
to control writes into memory.

IV. ZBUS AND INTERRUPT LINES

MCU Control of the SPE

The Microprogrammed Control Unit (MCU) is the SPE system controller. Two SPE
subsystems directly support the MCU in its controller role: the SPE Z-bus and the SPE
interrupt structure. Figure 13 shows an SPE configuration with Z-bus and interrupt
interconnections. The Z-bus is the common SPE system bus to which all MCUs, SPAUs,
and SCCs are connected; it is used for the transfer of command and status signals
among SPE processing units. The interrupt scheme allows SPE components to give
immediate notification of status changes to the MCU. Each SPAU and SCC has an inter-
rupt line connected directly to the MCU. Since processing units operate on large data
arrays with little intercomponent interaction, an MCU makes effective use of the common
bus to control SPAUs, SCCs, and other MCUs. The interrupt structure obviates component
status-polling on the bus by an MCU and enables an MCU to respond rapidly to processing
unit requirements.

MCUs control Z-bus usage. Only an MCU can initiate Z-bus transfers; Z-bus trans-
fers are carried out between two devices at a time and one of the two devices must be an
MCU. Before a device (other than an MCU) can have access to the Z-bus, it must alert
an MCU using an interrupt. A SPAU or an SCC does this by placing a signal on its inter-
rupt line. The interrupt signal forces the MCU to cease execution of its current micro-
program and to begin execution of an interrupt service routine. The MCU gains control
of the Z-bus, obtains status information over the Z-bus from the interrupting device, and
uses the Z-bus to transmit appropriate commands to the interrupting device.

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Dato: Bits 0 - 31 ACTIVE IF BSM

requert granted

Address Lines; Bits 0 - 111

I One cycle I time

Fig. 12 - Signal sequencing on high speed data channels

ACTIVE

FullIHalf Select
Reed~Write
Buffer Request

TO SCU - 32-BIT HIGH SF€ED DATA

- LOW SPEED CONTROL BVS

---- HIGH AND LOW SPEED
EXTERNAL DEVICE
CHANNELS

ACT1 VE

1 A I (A A I ----- INTERRUPT LINES

CONTROL LINES
Priority Go-Ahed

SCC * 2

ACTIVE IF BSM
request granted

t+ TO SCU

Fig. 13 - SPE Z-bus and Interrupt scheme

NRL REPORT 7704

16 DATA LINES

---DATA B I T 15
Z-bus data

--DATA BIT o

8 DEVICE ADDRESS LINES

Address - Bit 7

- Address
B i t 0

6 CONTROL LINES

--- COMMAND Specifies that a Z-bus operation is in progress - REJECT Signals the MCU that the addressed device is busy

--- ACKNOWLEDGE Signals the MCU that the addressed device has wmpleted
the required 2-bus operation

-------t DIC Specifies that a data word or control word is pmsent on
the Z-bus data lines

Specifies direction of word transfer on the Z-bus data
lines - CONTINUE Specifies that another Z-bus operation t o the same
device is forthcoming

OVERVIEW

Fig. 14 - Z-bus signal lines

CONTROLLING
MCU

Z-Bus Description

The 2-bus has 30 signal lines. Sixteen of these lines are data lines, eight are Z-bus
addressing lines and the remaining six are control lines. Some of the signal lines are
driven only by MCUs, one signal line is driven only by devices other than MCUs, and
several signal lines are driven by all devices connected to the Z-bus. Figure 14 shows the
2-bus signal lines.

2-BUS
DEVICE

Other Devices

,

Sixteen Data Lines - The 16 data lines can be driven by any device connected to
the Z-bus. An MCU places command words on the data lines and receives status words
on the data lines. The sixteen data lines also enable the 2-bus to be used by the MCU
for data inputloutput exchange with external devices (albeit at a slower rate than the
32-bit high-speed data paths to BSMs) via the Selector Channel Controller.

CONTROLLED

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Eight Device Address Lines - Processing units (MCUs, SPAUs and SCCs) each have
a distinct hardwired Z-bus address. The MCU uses the addresses to select the device with
which it is exchanging commands and data on the Z-bus. The device address lines can
only be driven by MCUs. A device responds to Z-bus signals only if its own address
appears on the device address lines.

MCUs and SPAUs can have arbitrary Z-bus device addresses. SCCs must have addresses
whose three low order bits (address bits 0 to 2) are all zeros and whose five high order
bits (address bits 3 to 7) do not all agree with the five high order bits of some other de-
vice's Z-bus address. The previous discussion of system architecture points out that
devices other than SPE processing units can be connected directly to the SPE system Z-
bus. When such a device is connected to the Z-bus, it has its own arbitrary Z-bus address
and obeys the Z-bus protocols. Devices can also be interfaced to the Z-bus via an inter-
vening SCC. Such devices must have device addresses whose five high order bits (address bits
3 td 7) all agree with the five high order bits of the intervening SCC's device address.

Six Control Lines - The MCU always initiates a Z-bus operation by placing a signal
on the command control line and placing an address on the Z-bus address lines. For
normal Z-bus operation the addressed device performs as directed by the MCU and returns
an acknowledge line signal to the MCU signifying completion of the Z-bus exchange.
During this time the MCU ceases program execution. If the addressed device (other than
another MCU) is busy and cannot carry out the Z-bus operation with the MCU, it sends a
signal to the controlling MCU on the reject control line. Two other control lines (110
and D/C) are used in Z-bus operation by the MCU to specify the direction and type of
transfer to occur on the Z-bus data lines. The sixth control line (Continue) is used by
the MCU to alert addressed devices that more than one transfer is to be made consecu-
tively over the Z-bus data lines.

Command line. The command line is driven by MCUs. It alerts all devices that an
MCU has control of the Z-bus, and that a Z-bus operation is in progress. Each device
connected to the Z-bus looks for its device address on the Z-bus device address lines
whenever the command line is asserted.

Reject line. The reject line is driven by devices other than MCUs. Upon recognition
of its Z-bus address, a device asserts the reject line if the device cannot perform the Z-bus
operation specified by the MCU.

Acknowledge line. The acknowledge line can be driven by all devices connected to
the Z-bus. The acknowledge line is asserted by a device when it has accepted and executed
the Z-bus operation initiated by the controling MCU.

Data/Control line. The D/C line is driven by MCUs. The MCU uses this line to specify
whether data or control information is to be transferred on the Zbus data lines.

Input/Output line. The I/O line specifies the direction of information transfer with
respect to the MCU.

NRL REPORT 7704

Continue line. The continue line is driven by MCUs. It can be used to specify, where
appropriate, that a device should be prepared to accept another Z-bus transfer operation as
continuation of the one currently in progress.

Z-Bus Operation

An MCU initiates and controls all Z-bus operations. Z-bus operation differs slightly
depending on whether the second device involved in the Z-bus transfer is or is not an MCU.
This difference arises because (a) the 110, D/C, and Continue control lines cannot be inputs
to the second MCU, (b) the Reject control line cannot be an output of the second MCU,
and (c) MCUs do not have interrupt signal lines available for input to other MCUs.

MCU-Device ZBus Transfers - A device other than an MCU requests service from
an MCU by asserting an interrupt line which is connected to the MCU. The servicing
MCU then uses the Z-bus to communicate with that device. Figure 15 shows sequences
of signals which can appear on the Z-bus. The MCU places the proper address on the
device address lines, places the proper values on the 110, D/C, and Continue control lines
(and on the 16 data lines as well, if the MCU is outputting a word), asserts the command
control line, and then waits for one of three events to occur.

Case 1. The addressed device asserts the acknowledge line. This 'indicates that the
data or control word placed on the 16 data lines has been accepted (if the MCU is out-
putting) or it indicates that the device itself has placed data or status information on the
Z-bus data lines (if the MCU specifies input).

Case 2. The device raises the reject line indicating that it cannot accept communication
with the MCU on the Z-bus.

Case 3. The device does not respond on either the acknowledge or reject lines within
a prespecified (by the MCU programmer) period of time.

The MCU reacts to each situation as follows:

Case 1 is the expected response and it will cause the MCU to continue with its normal
operation.

Case 2 is accepted by the MCU and results in a program jump to a prespecified point
in the MCU program.

Case 3 causes, after a specified period of time, a program jump to a special service
routine in the MCU.

MCU-MCU Z-Bus Transfers - MCUs do not have external interrupt lines to other
MCUs; MCUs merely address each other on the Z-bus. The 110, D/C, Continue, and
Reject control lines are not used in MCU-to-MCU Z-bus operations. The calling MCU
cannot specify to the called MCU the direction of transfer of data on the Z-bus data lines.
The convention is therefore established that the direction of transfer is always from the

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

CASE (1): NORMAL OPERATION

16 DATA LINES

(active)
(inactive) IF MCU OUTPUTS I

(active)
(inactive) IF MCU INPUTS

8 DEVICE ADDRESS LINES

(inactive)

COMMAND, 110, DIC, CONTINUE CONTROL LINES

(active)
(inactive) I

ACKNOWLEDGE LlNE

(active)
(inactive)

REJECT LlNE

(inactive)
time t

Fig. 15a - Z-bus Operation. MCU - Drive Transfers

CASE (2): REJECT BY ADDRESSED DEVICE

16 DATA LINES

(active)
(inactive) IF MCU OUTPUTS

8 DEVICE ADDRESS LINES

(active)
(inactive)

COMMAND, 110, DIC. CONTINUE CONTROL LlNES

(active)
(inactive) I

ACKNOWLEDGE LINE

REJECT LlNE

(inactive) (a c t i n) I time

Fig. 15b - Z-bus Operation. MCU - Drive Transfers

NRL REPORT 7704

CASE (3): NO RESPONSE BY ADDRESSED DEVICE

16 DATA LINES

(active)
(inact ive) I---I

8 DEVICE ADDRESS LINES

(active) I - - - 7
(inactive)

COMMAND, I/O, D/C, CONTINUE CONTROL LINES

(active) 1; - -- 1
(inactive)

ACKNOWLEDGE LINE

(inactive) -----
REJECT LINE

(inactive1 -----
time ,-*

Fig. 16c - Z-bus Operation. MCU - Drive Transfers

calling to the called MCU. Thus, when an MCU is addressed, it accepts input from the
Z-bus data lines and returns an acknowledge signal to the calling MCU. Figure 16 shows
the sequence of signals appearing on the Z-bus. If the called MCU wants in tun to trans-
mit information over the Z-bus to the calling MCU, it must first obtain control of the
Zbus and then address the other MCU on the Z-bus address lime.

MCU Z-Bus Control

In an SPE having more than one MCU, the several MCUs compete for control of the
common 2-bus. When an MCU requests control of the Z-bus, which it does by attempting
to execute a Z-bus 110 microinstruction (see discussion of Microprogrammed Control Unit,
which follows), one of three situations can obtain:

1. No other MCU has control of the Z-bus, in which case the requesting MCU is
granted control and executes its Z-bus 110 instruction.

2. Another MCU has control of the Z-bus, in which case the requesting MCU must
wait until control is released by the other MCU.

3. Another MCU is requesting the Z-bus simultaneously and no MCU has control of
the Z-bus. In this case, Z-bus control is resolved according to predetermined hard-wired
priority.

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

CASE (1):' NORMAL OPERATION

16 DATA LINES

(active)
(inactive)

8 DEVICE ADDRESS LINES

(active)
(inactive) I

COMMAND LlNE

(active)
(inactive)

ACKNOWLEDGE LlNE

(active)
(inactive)

110, D/C, CONTINUE, REJECT CONTROL LINES

Fig. 16a - Z-bus Operation. MCU - MCU Transfers

1 6 DATA LINES

(active)
(inactive)

8 DEVICE ADDRESS LINES

(active)
(inactive)

COMMAND LlNE

(active)
(inactive) I

ACKNOWLEDGE LlNE

(inactive)

110, DIC, CONTINUE, REJECT CONTROL LINES

(inactive)

time d

Fig. 16b - Z-bus Operation MCU - MCU Transfers

NRL REPORT 7704

V. MICROPROGRAMMED CONTROL UNIT

Introduction

The MCU is the microprogrammable executive for the SPE. It is the responsibility of
the MCU to initiate and coordinate all 110 operations. Concurrently, it can do preprocessing and
postprocessing of data blocks upon which the SPAU operates as well as processing of its own.

Microinstructions from a 64-bibwide control store specify the operations executed by
the MCU hardware. One microinstruction is read from control store and executed each
150-11s clock cycle. All microinstructions have the same format; each microinstruction has
17 control fields. A control field specifies the operation which is to be performed by a
particular part of the MCU.

The following paragraphs describe operation of the primary MCU data manipulating
elements, how microinstructions are sequenced from the control store, how interrupt
handling is performed in the MCU, how the MCU interfaces with the SPE Z-bus, and
operation of the MCU. Tables and charts for reference use are included. A list of MCU-
related acronyms and their meanings follow the text.

MCU Data Manipulation; MCU Basic Architecture

Figure 17 shows schematically the basic architecture of the Microprogrammed Control
Unit. The MCU has three data paths with which it communicates with other SPE compo-
nents. I t exchanges data words with Buffer Storage Modules over two 32-bit high speed
data paths and it uses the SPE Z-bus to control the SPE system. The Arithmetic Logic
Unit and Barrel Shifter (ALUISHIFTER) in the MCU performs addition, subtraction,
Boolean logic, and shifting. Local storage is provided for saving intermediate computa-
tional results and data words for BSM-MCU transfers via the SCU and for Z-bus 110
operations. BSM addresses for MCU accesses of buffer storage are taken from the Buffer
Address Registers in the MCU. As seen in Fig. 1 7 these BSM addresses can be computed
using the ALUISHIFTER. This addressing facility directly supports the MCU's role as a
data manipulator. Figure 17 also shows that the ALUISHIFTER output is used to drive
the Z-bus data lines and that the Z-bus data lines can be input into MCU local storage.
This facility enables the MCU to use the Z-bus effectively to control the SPE system.
Control words can be computed and transferred t o other SPE components. The MCU can
also use status information from other components to perform control calculations.

Figure 18 shows the primary data manipulation elements of the MCU (BARA, BARB,
ALUISHIFTER, ZREG, LSA, LSB, and FSU) and the data paths among them; 32-bit and
16-bit data transfer paths appear. Elements are labeled with their abbreviated names and
their bit widths.

MCU registers BARA, BARB, ZREG, LSA, and LSB handle one 16-bit word a t a
time. The ALUISHIFTER can operate upon one 16-bit word or upon a pair of 16-bit
words. The FSU operates upon 32-bit data words obtained from a buffered data channel.
All registers can be loaded with new data words each clock cycle or maintain their previous
contents, under microprogram control. The particular input(s) used for BARA, BARB,
ALUISHIFTER, LSA, and LSB is (are) selected by the executing microinstruction.

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

FROM 2-BUS
DATA LINES

LSA AND LSB

(LOCAL STORAGE

+
Y

ALU/SHIFTER
ARITHMETIC LOGIC UNI
AND BARREL SHIFTER

CHANB

LINES)

ADDRESS
LINES

v
TO SCU TO z-BUS

DATA LINES TO SCU

Fig. 17 - Schematic of MCU basic architecture

CHANA TO SCU CHANB TO SCU

- 32-BIT DATA FYITHS

- 16- BIT DATA PATHS

TO SCU TO SCU
BSM ADDRESS BSM ADDRESS

FOR CHANB FOR CHANA

Fig. 18 - MCU primary elements and data paths

NRL REPORT 7704

Data Transfer between MCU and BSM - All data entering or leaving the MCU does
so over one of two independent bidirectional data channels, CHANA or CHANB. These
channels are connected via the SCU to the BSMs (Buffer Storage Modules). Each data
channel can be used for one buffer storage read or write (but not both) during every MCU
clock cycle. Both data channels are 32 bits wide. If the BSM desired for either buffered
data channel is busy when it is requested, the MCU will halt until that BSM becomes
available.

BSM Addressing; BARA and BARB - BARA and BARB (Buffer Address Registers
for channels A and B, respectively) provide the SCU with 16-bit BSM addresses (the MCU's
BSM address has the three high-order bits selecting a particular BSM while 1 2 bits select a
BSM 32-bit word (see previous discussion of "Storage Control Unit and Buffer Storage").
Figure 19 shows the MCU's BSM address format. Since data are read from a BSM 32-bits
a t a time, the low order bit of BARA (BARB) determines which of the two words is
transmitted t o LSA and/or LSB. Data are written from the MCU to a BSM one 16-bit
word a t a time; the low order bit of BARA (BARB) then determines which half of CHANA
(CHANB) is used as well as ensuring that only that half of the data channel is written
into a BSM. The MCU can transmit data over CHANA and CHANB from LSA, from
LSB, or from the output register of the ALUISHIFTER (ZREG).

BARA and BARB can each be incremented by one if so desired. BARA can be
loaded from the ALUISHIFTER output or directly from the microprogram control store
(the CSLIT microinstruction control field). BARB can be loaded from the ALUISHIFTER
output or from the FSU.

ALUISHIFTER and ZREGISTER - The Arithmetic Logic Unit and Shifter performs
binary and unary operations on selected sets of its inputs. Binary operations include two's
complement addition and subtraction and logical OR, AND, XOR, and EQV. Unary oper-
ations include identity, one's complement and left, right, and circular shifts. Certain
inputs and pairs of inputs can be operated upon by each of the operations mentioned
above. Possible combinations are detailed under "MCU Operational Description." The
ALUISHIFTER result is stored in the Z-Register (ZREG) and can be loaded into BARA
and BARB.

The ALUISHIFTER has inputs other than those depicted in Fig. 18. Figure 20 shows
a block diagram of the ALUISHIFTER. (Starred lines are those which are depicted in
Fig. 18.) Inputs to the unit used as operands are shown entering from the top of the
figure. FSU, LSA, LSB, CSLIT, and CTR (CTR is discussed later) are 16-bit inputs.
ACSAR here is a 16-bit input with zeros in the four highest bits; ACSAR is a 12-bit
register described later in this report. SAR as an operand input is 1 6 bits with zeros in
the twelve highest bits, since SAR is only a Cbit register. SAR also specifies the number
of positions an operand is shifted during right, left, and circular shift operations. For
this purpose SAR outputs directly to the shifting logic of the ALUISHIFTER. SAR can
be loaded from the four low order bits of the Z Register (ZREG) or from the four low
order bits of the C S L ~ microinstruction control field.

Local Store A and B - Local Store A (LSA) and Local Store B (LSB) are two small
memories (16 words by 1 6 bits per word) provided to store data and intermediate results

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

BSM Bits 0 1 2 give the address ol a 16-bit
Address word within the BSM

Bits 1-12 give the address of a 32-bit
word within the BSM

Fig. 19 - MCU internal BSM address format

BARB LSA CSLlT

LOW OR6!& BlfSli- , ALU/SHlFTER
CSLlT COMBINATIONAL LOGIC

(LOW ORDER 4 BITS) I

I * ALL LINES 16 BITS
ZREG UNLESS NOTED
BARA
BARB

Fig. 20 - ALU/SHIFTER

generated by the MCU. LSA and LSB may be written into from CHANA, from CHANB,
or from the Z Register. LSA and LSB output to the ALUISHIFTER and to data channels
CHANA and CHANB. Local stores may be read and written during the same MCU clock
cycle; the read and write locations for a local store need not be the same. Local store
addresses are determined from the microprogram control store; there are four control
fields in each microinstruction provided for this purpose. One field contains the LSA
write address, another the LSA read address, another the LSB write address, and another
the LSB read address. Provision is also made for using the four low-order bits of BARA
and BARB as local store addresses, as explained in "MCU Operational Description."

Field Select Unit - The Field Select Unit (FSU) allows the MCU to access sets of
contiguous bits (fields) within the 32 bits that are read from a BSM on CHANA. Figure
21 shows a block diagram of the FSU. The FSDR (Field Select Data Register) is a 32-bit
register which can be loaded during a BSM read operation. The width of the selected
field is specified by loading the FSCR (Field Select Control Register) from the 10 high
order bits of the microinstruction literal control field. The five left-most bits specify the
width of the selected field and the other five bits specify the right-most bit of the field in
the FSDR. FSU output is always 16 bits; the selected field is right justified and the re-
maining bits of the output are zero filled. FSU outputis all zeros if bits 9 to 5 of FSCR
are all zeros.

NRL REPORT 7704

CHANA

1
r------- ------- 1 32 BITS
I

CSLIT
16 BITS ORDER 10 BITS)

I

Fig. 21 - Field Select Unit

As an example, consider

If the FSDR and FSCR contain the above data, then the FSU output is 5 (13 leading
zeros then a 1, 0, I)*.

31 9 8 6 5 0 9 5 4 0

Microinstruction Sequencing

MCU operation is controlled by sequencing microinstructions from the MCU control
store (CS); one microinstruction is executed each MCU clock cycle. (Each microinstruction
consists of 64 bits, and it is divided into several control fields. Each control field controls
the operation of a part of the MCU hardware.) MCU clock cycles are indexed by i. Let
the CSAR (Control Store Address Register) hold the address of the currently executing
microinstruction. During MCU clock cycle i the next value to be loaded into CSAR is
determined. This next value is the address of the microinstruction to be executed during
MCU clock cycle i + 1. The following paragraphs detail the possible CS addresses which
can be generated and describe the events in the MCU upon which CS address generation
can be conditioned.

ACSAR; Next Address Computation - An Alternate Control Store Address Register
(ACSAR) is provided to save the contents of the CSAR for subroutine returns or loop

Width Start

,00011 - - - = FSDR - - -

returns or to be used as a general means of storing and restoring the contents of the
CSAR. The ACSAR can be loaded under microprogram control from the ZREG or from
the literal field of the currently executing microinstruction (CSLIT). Furthermore, the
ACSAR is loaded automatically when certain next-CS-address operations occur. Figure 22
illustrates ACSAR and its relation to the control store.

00110 = FSCR. 101

*Throughout this report, 0 represents a logical false, 1 represents logical true.

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

CONTROL OF THE MCU

TEST CONDlTlqNS
I

t------- i - j T I LOGIC

(I~ -LOW ORDER BITS)

Fig. 22 - Control store addressing

The value to be loaded into CSAR for clock cycle i + 1 is determined by a control
field in the microinstruction executing during clock cycle i. The following operations can
occur (these are discussed again in "MCU Operational Descriptions") when sequencing
from one microinstruction to the next:

1. STEP - CSAR is incremented by 1 (thus the microinstruction in the next higher
CS location executes).

2. SKIP - CSAR is incremented by 2.

3. SAVE - CSAR in incremented by 1 and the new value is loaded .into ACSAR.

4. CALL - The current value of CSAR is incremented by 1 and loaded into ACSAR.
The low-order 12 bits of the CSLIT control field of the currently executing microinstruction
are loaded into CSAR.

5. JUMP TO LIT - same as CALL except ACSAR is not loaded.

6. JUMP TO ACSAR - the contents of ACSAR are loaded into CSAR.

7. JUMP TO ZREG - the low order 12 bits of ZREG (see "MCU Data Manipulation")
are loaded into CSAR.

NRL REPORT 7704

One of the seven microinstruction sequencing operations occurs during every normal
cycle of MCU operation. A special sequencing operation, RETURN FROM INTERRUPT,
is also provided for use in environments having system executive programs. The use of
this sequencing operation is explained in "Interrupt Handling."

Conditional CS Address Sequencing - CS address operations can occur unconditionally
or, address generation operations can be conditioned upon certain events occurring or n o t
occurring during MCU operation. If the required condition is not fulfilled, then the CS
address operation which occurs is STEP. If the required condition is fulfilled then the CS
address is determined by the operation specified by the executing microinstruction (1
through 7 above). The test conditions are as follows:

1. MOST - the most significant (leftrmost) bit of the ZREG is 1.

2. LEAST - the least significant (rightrmost) bit of the ZREG is 1.

3. ADROV - the high order bits of both ALUISHIFTER inputs are the same (both
zeros o r ones) and differ from the high order bit position of the ALUISHIFTER output
(a 1 or a 0). (ADROV is only TRUE for ALUISHIFTER arithmetic operations on two
input operands. This condition represents arithmetic overflow in two's complement
representation.)

4. CARRY - the carry out of the high order bit position of the ALUISHIFTER
output is 1. (Again, this may only be TRUE for arithmetic operations on two operands.)

5. ZERO - the 16-bit ALUISHIFTER output is all zeros.

6. FSU ZERO - the FSU output is all zeros.

7. CTRZERO - CTR (see below) is all zeros.

Table 1 summarizes possible control store sequencing and the conditions upon which
the sequencing can depend.

Counter - The CTR is a 16-bit register. I t can serve as one of the ALUISHIFTER
input operands. It can be loaded from the CSLIT microinstruction control field or from
ZREG. CTR is decremented by 1 every time the test conditions CTRZERO and NOT
CI'RZERO are specified in a microinstruction; this is the only way in which CTR can be
decremented.

Interrupt Handling

Interrupts enable an MCU to be alerted to occurrences of events in a real-time
environment. SPE components such as SCCs (Selector Channel Controller) and SPAUs
(Signal Processing Arithmetic Unit) can request service from the MCU by signalling the
MCU on the interrupt lines. Upon recognition of an interrupt, the MCU ceases execution
of its current program and jumps to a special interruptrhandling routine. When interrupt
service has been complete, normal execution is resumed.

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, A N D WALD

Table 1
MCU Control Store Sequencing

Microprogram Specified
Sequencing

1. STEP

2. SKIP

3. SAVE

4. CALL

5. JUMP TO LIT

6. JUMP TO ACSAR

7. JUMP TO ZREG

8. RETURN FROM
INTERRUPT

Action if Condition
is True

CSAR -+ CSAR + 1

CSAR +- CSAR + 2

CSAR -+ CSAR + 1

ACSAR -+ CSAR + 1

CSAR -+ CSLIT

ACSAR -+ CSAR + 1

CSAR -+ CSLIT

CSAR -+ ACSAR

CSAR + ZREG

CSAR -+ ACSAR

Action if Condition
is False

-

CSAR -+ CSAR + 1

CSAR -+ CSAR + 1

CSAR -+ CSAR + 1

CSAR + CSAR + 1

CSAR +- CSAR + 1

CSAR -+ CSAR + 1

CSAR -+ CSAR + 1

CSAR -+ ACSAR

Microprogram specified conditions are as follows:

1. NONE ' 6. ADROV 11. NOT ZERO
2. MOST 7 . NOT ADROV 12. FSU ZERO
3. NOT MOST 8. CARRY 13. NOT FSU ZERO
4. LEAST 9. NOT CARRY 14. CTRZERO
5. NOT LEAST 10. ZERO 15. NOT CTRZERO

The MCU has sixteen priority levels a t which it can operate. Interrupts have priority
levels assigned t o them. If an MCU is operating a t priority level k, then all interrupts
occurring at levels k and lower are not acted upon. Any interrupt occurring a t level k t
greater than k is recognized by the MCU and the MCU then services that interrupt. If an
interrupt is present a t level k"< k' but not serviced, then that interrupt will be serviced as
soon as the MCU drops below priority level k". While the MCU is servicing an interrupt
whose level is k' the MCU operates a t priority level k'.

Most MCU application programs run a t priority level zero. The SPE system executive,
which is implemented on the MCU, runs a t all higher priority levels. For this reason, the
zero-level programmer is provided with a means of requesting service from the system
executive; a level one interrupt can be generated under microprogram control. This opera-
tion is detailed under "MCU Operational Description." I t is the only instance in which the
MCU can raise its priority level directly by executing a microinstruction.

MCU Interrupt Servicing* - Fifteen lines are provided for interrupts: one for each
interrupt level except level zero (level zero is by definition the level for which no interrupts
are present). The interrupt line for level 1 is raised internally under MCU microprogram

*The applications programmer can safely skip to "MCU Operation of the Z-Bus." Only the interrupt-
generating protocol need be provided t o the zero-level programmer by the system software designer.

30

NRL REPORT 7704

MCU clock cycle: i-2 i- 1 I i+l

NORMAL I INTERRUPT INTERRUPT
INSTRUCTION PROCESSING SERVICE

interrupt line
raised

-
XXX

Fig. 23 - Interrupt processing

control. The interrupt line for level 1 5 is raised by an internally generated 110 time-out
interrupt. (See "MCU Operation of the Z-Bus.) Interrupt lines 2 through 1 4 are available
for connection to SPE devices external to the MCU and to other internal MCU signals.

EXECUTED
XX

Figure 23 shows a succession of MCU clock cycles over which interrupt processing
occurs. Interrupt lines are sampled a t the beginning of each MCU clock cycle and their
states are recorded. Interrupt line status during cycle i-2 is recorded at the beginning o f
cycle i-1. Normal program microinstruction execution takes place during cycle i-1. If t h e
level of an interrupt recorded at the beginning of cycle i-1 is higher than the priority level
at which the MCU operates during cycle i-1, then interrupt processing begins during cycle i.

The first cycle in any interrupt servicing (cycle i in this case) is standard; the contents
of certain registers are pushed onto a stack and the starting address of the interrupt routine
is set up in the CSAR. The stack is capable of saving 1 5 distinct values for each MCU
register it serves, thus ensuring that no register contents are lost if interrupt service routines
are themselves interrupted. The registers saved are BARA, BARB, ZREG, FSCR, and
ACSAR. Test condition bits ADROV and CARRY are also placed on the stack. Further-
more, the address of the MCU instruction that would normally have been processed (in
this case the instruction which would have been executed during cycle i) is placed in the
ACSAR after ACSAR has been saved. The system programmer is responsible for placing
the interrupt service routine starting address (the address of the microinstruction to be
executed during cycle i+2) in control store; a microinstruction which executes during cycle
i+l and which jumps to the proper address for priority k interrupt service is stored in CS
location k. CS words 1 through 1 5 are reserved for these interrupt jump instructions.

REGISTERS
SAVED

Completion of Interrupt Servicing - A special code point in the microinstruction
code field referenced under "ACSAR; Next Address Computation" (which specifies how
next-address generation is to occur) is reserved for completion of interrupt servicing.
This instruction, RETURN FROM INTERRUPT, reverses the process carried out during
clock cycle i in Fig. 23. RETURN FROM INTERRUPT is effectively a JUMP TO ACSAR
followed by an operation which pops all saved registers and test conditions from the stack
back t o their proper locations. Thus, if an interrupt service routine has not disturbed
the contents of ACSAR, control can be returned to the interrupted program at the location
which was about to be executed when it was interrupted. It is not necessary to always do
this, however, since the service routine may want to return control to another location in
control store.

- t
ROUTINE
BEGINS

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Note: After ACSAR is used as the jump address it is written over by the stack pop,
since a value for ACSAR (as well as for BARA, BARB, ZREG, FSCR, ADROV, a n d
CARRY) is popped from the stack back t o its proper location.

SPE System Programming; Interrupt Status Register - It is contemplated that the
system executive routines will run a t MCU priority level one; applications programs will run
at level 0; 110 device and MCU internal servicing routines will run at levels 2 through 14 ;
and level 1 5 will be used for time-out functions (see "MCU Operation of the Z-Bus" for
time-outs). The SPE operating system programmer has the responsibility for informing the
level-0 programmer of calling protocols, etc. The level 0 programmer has the capability of
generating a level-1 interrupt and he can thus request service from the operating executive.

Programs running a t level 1 can mask interrupts at levels 2 through 14. This facility
is provided to enable the MCU operating system to execute critical pieces of code without
interruption except from level 15 time-outs.

Program control of interrupts is provided via a two-bit register, TSR (Interrupt Status
Register). Bit 0 of ISR is designated as the Inhibit Interrupt Flag (IIF) and Bit 1 of ISR
is designated as the Software Interrupt Flag (SIF). If the IIF is set, then MCU interrupts
at levels 2 through 1 4 are ignored by the MCU hardware. IIF can be set and reset only
when the MCU is operating a t priority level 1. If the SIF is set, a hard-wired interrupt is
generated at priority level 1 in the MCU. SIF may be set and reset when operating at any
level.

ISR is controlled by the low order four bits of the CSLIT microinstruction control
field when the INTC control field is a 1. The function of these four bits is depicted in
Fig. 24.

MCU Operation of the Z-Bus

An MCU exchanges commands and control and status information with other SPE
devices by using the Z-bus. MCUs control Z-bus usage. If more than one MCU is present
in an SPE configuration, then a hard-wired priority resolution scheme is employed t o
resolve MCU Z-bus accessing requests. The Z-bus and MCU control of the Z-bus is
described under "Z-Bus and Interrupt Lines."

An MCU interrupt routine servicing an external SPE device interrupt will normally
make use of the Z-bus to query the interrupting device and t o command it. The Z-bus
has three.categories of lines: data, device address, and control. Z-bus data lines are driven
by and write into the MCU Z Register (ZREG). The control lines are driven by an MCU
Local Store (LSA) word. These two MCU elements, LSA and ZREG, are of course used
for other purposes in the MCU. However, upon specification of a Z-bus 110 command in
the appropriate control field in control store, LSA and ZREG perform their Z-bus
functions.

NRL REPORT 7704

Fig. 24 - CSLIT Field for ISR
control

LSA, ZREG, and the 2-bus - A 2-bus control word must be set up in LSA prior to
the 110 microinstruction. The LSA location containing the 2-bus control word is specified
by the LSA address control field in the 110 microinstruction. Figures 25 and 26 show
how the LSA outputs are connected to the 2-bus control lines.

As indicated in the description of "2-Bus and Interrupt Lines," the MCU halts after
transmission of a 2-bus word until it receives an acknowledge or reject from the addressed
device. A time-out counter is provided to limit the time an MCU will wait for the acknowl-
edge or reject signal. A 16-bit counter is loaded with a 1 in the bit position indicated by
the clock time-out field in the LSA 2-bus control word (see Fig. 25). The counter is then
decremented by 1 every 150 ns. When the counter goes through 0 an internal interrupt is
generated to the MCU at priority level 15 (see "Interrupt Handling"). This enables an
interrupt service routine to be invoked to deal with the absence of the acknowledge and
reject signals.

Figures 26 and 27 show how the ZREG is connected to the bidirectional data lines
of the 2-bus. ZREG and the 2-bus data lines are effectively disconnected when an 110
operation is not specified in an MCU microinstruction.

MCU Z-Bus 110 Operation - 2-bus operations are initiated by a 2-bus I/O microin-
struction. Devices other than MCUs cannot initiate action on the 2-bus; rather they appeal
to the MCU for service via interrupts. In SPEs having more than one MCU, 2-bus access
must be granted to a requesting MCU by the 2-bus priority resolution hardware. The 110
microinstruction specifies the 110 operation itself as well as the location in LSA of the
2-bus control word; it also specifies, in the CSLIT control field, the CS location of the
microinstruction to be executed in case a reject signal (rather than an acknowledge signal)
is received from a device. If the I/O is an output from the MCU to the 2-bus then the
2-bus data line drivers (Fig. 27) are energized. If the operation is an input from the 2-bus
to the MSU, then 'ZREG is loaded from the 2-bus data lines. Table 2 details the bit defi-
nitions in the LSA 2-bus control word. 2-bus control line definitions and operations are
described explicitly under "Z-Bus and Interrupt Lines." The LSA control words used to
control the SPAU and the LSA control words for the SCC are discussed later in the report.

MCU Operational Description

Figure 28 summarizes the MCU architecture. MP in the figure signifies Maintenance
Panel inputs.

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Fig. 25 - LSA Z-Bus control word

1 CONTROL WORD IN LSA I

Fig. 26 - Z-bus Control and Data Lines

W
(1

2 s
0
LT 0

0

FROM ALU

I I
DATA SELECTOR 1

I
Z REGISTER

I
1 1 1 1 8 4 I DRIVERS

I DATA LINES -
?

TO TIMER
DEVICE ADDRESS LINES - -

CONTINUE LlNE -
DATAICONTROL LINE - -

INPUTIOUTPUT LlNE -
COMMAND LlNE *

ACKNOWLEDGE LINE - -
TO REJECT REJECT LINE -
CONTROL

-

NRL REPORT 7704

Fig. 27 - Z-Register and the Z-bus
TO MCU
ELEMENTS

t t
ZREG

DATA
LINE

DRIVERS

I
t

Z-BUS DATA LINES

Table 2
%bus Control Word in LSA

Note: Logical 1 is asserted by a low level on the Z-bus

Control Word
Bit Position

15

14

13

12

11-4

3-0

Control Word Contents

ZERO Z-bus command line active
ONE Z-bus acknowledge line active

ZERO Input to MCU on Z-bus data lines
ONE Output to device on Z-bus data lines

ZERO Data on Z-bus data lines
ONE Control or status word on Z-bus data

lines

ONE Z-bus continue line active

Device address specified - ONE corresponds to
logical ONE on the Z-bus. .
Integar j(0 d j < 15) specified here determines
length of time-out, where length of time-out is
2j.

- 32-BIT WlDE DATA PATHS
- DATA PATHS 16BIT WlDE OR LESS

TO
SCU

TIME COUNTER

OUT

SELECT +
ACSAR

TO ADDER

SELECT

z BUS-

Fig. 28 - Microprogrammed Control Unit (MCU)

NRL REPORT 7704

MCU operation is under microprogram control: Each microinstruction is 64 bits wide.
All microinstructions have the same format: the 64 bits are partitioned into control fields,
each of which controls part of the MCU hardware. There are 1 7 control fields in an MCU
microinstruction.

The functions of each of the MCU microinstruction control fields are listed and ex-
plained in this section. Notation is introduced to facilitate the explanation as well as t o
provide a simple, concise machine description.

Notation; Definitions -

1. MCU clock cycles (150 ns each) are indexed by the letter i. Clock cycle i follows
clock cycle i-1 and precedes clock cycle i+l .

2. MCU register contents (or, equivalently, register outputs) are denoted by the name
of the register and indexed with an MCU clock cycle index. The register contents denoted are
always those which reside in the designated register a t the end of the indicated clock cycle.

Example: ZREG (i) denotes the contents (and output) of the Z-Register at
the end of clock cycle i.

Registers whose contents are denoted in this manner are BARA, BARB, FSDR, FSCR,
CSAR, ACSAR, SAR, CTR, and ISR.

3. MCU combinational logic unit outputs are denoted by the name of the logic unit
and indexed with an MCU clock cycle index. The logic unit outputs denoted are always
those which appear during the indicated clock cycle.

Example: FSU (i) denotes the output of the Field Select Unit during clock
cycle i.

FSU and ALUISHIFTER are the logic units whose outputs are denoted in this
manner.

4. MCU Local Store contents are denoted by the name of the local store and are
indexed with an MCU clock cycle index and with a memory location designator (address).
The local store contents denoted are always those which reside in the designated local
store location at the end of the indicated clock cycle.

Example: LSA (i,j) denotes the contents of location j in Local Store A at the
end of clock cycle i.

LSA and LSB are both denoted in this manner. Note that since LSA and LSB both
have 16 words, j can take a value of 0 through 15.

5. Buffer Storage Module contents are denoted by "BSM" indexed with an MCU
clock cycle index and a memory location designator (address). The BSM contents thus
denoted are those which reside in the designated location a t the end of the indicated clock
cycle.

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Example: BSM (jk) denotes the contents of location k in buffer storage at t h e
end of MCU clock cycle i.

Note that k not only designates an address in a particular BSM, but that it also
designates which BSM is being addressed.

6. MCU microinstruction control field contents are denoted by control field name
and indexed with an MCU clock cycle index. The control field contents thus denoted are
the contents of the designated control field of the microinstruction executing during the
MCU clock cycle indicated by the index.

Example: CSLIT (i) denotes the contents of the literal control field of the
microinstruction executing during clock cycle i.

Microinstruction Control Fields - The control fields of MCU microinstructions are
described. Operations controlled by each field are detailed. The discussion is summarized
in Table 3. A code point of a control field is a particular binary value which that control
field can take on. Only one code point can appear in a particular control field in any
microinstruction. Thus all code points which utilize the same control field represent
mutually exclusive operations. The microinstruction code point described below is in all
cases executing during MCU clock cycle i.

The output values of several MCU components can be affected by code points from
distinct control fields appearing simultaneously in the same microinstruction. Therefore,
although this discussion is organized about the microinstruction control fields,, the
discussion which follows, under "MCU Element Operations" describes MCU operations
organized by MCU components. There, cross references are made to this discussion.

Control Field COND - This 4-bit control field indicates the test condition which
must be true in order that the microinstruction sequencing specified in control field
NEXT of the same microinstruction can be carried out. In all cases if the test condition
is not fulfilled, the specified sequencing operation is not performed but defaults t o STEP
(see below).

Code point 0 - NONE. Sequencing specified in the NEXT (i) control field occurs
unconditionally.

Code point 1 - 110. Sequencing specified in the NEXT (i) control field is executed
unconditionally. Furthermore, the MCU executes a Z-bus operation according to the
Z-bus control word found in the LSA location specified by the SAAL (i) control field.

Code point 2 - MOST. Sequencing specified in the NEXT (i) control field occurs
only if bit 1 5 of ZREG (i-1) is a 1. Otherwise, sequencing defaults to STEP.

Code point 3 - NOT MOST. Sequencing specified in the NEXT (i) control field
occurs only if bit 1 5 of ZREG (i-1) is a 0. Otherwise, sequencing defaults to STEP.

NRL REPORT 7704

(1) COND

0 - NONE
1 - %bus 110
2 - MOST
3 - NOT MOST
4 - LEAST
5 - NOT LEAST
6 - ADROV
7 - NOT ADROV
8 - CTRZERO
9 - NOT CTRZERO

10 - ZERO
11 - NOT ZERO
12 - FSU ZERO
1 3 - NOT FSU ZERO
14 - CARRY
16 - NOT CARRY

(6) SLSA

0 - NONE
1 - CHANA
2 - CHANB
3 - ZREG

(9) FSCR

6 - NOOP
1 - FSCR - CSLIT

(H.O. 1 0 bib)

(11) ADXN

Left Right

b - L S A CSLIT
1 - LSA FSU
2 - L S A
3 - LSA
4'- LSB
5 - L S B
6 - LSB
7 - LSB
8 - BARA

BARB
LSB
CSLIT
FSU
BARB
BARA
CSLIT

Table 3
MCU Control Field Definitions

(2) NEXT (3) SAUX

0 - STEP 0 - NONE
1 - SKIP 1 - ACSAR = CSLIT
2 - SAVE 2 - ACSAR = ZREG
3 - CALL 3 - SAR - CSLIT
4 - JUMP TO CSLIT 4 - SAR - ZREG
5 - JUMP TO ACSAR 5 - CTR - CSLIT
6 - J U M P T O Z R E G 6 - CTR - ZREG
7 - RETURN FROM INTERRUPT 7 - LOAD FSDR

(4) SARA

0 - NONE
1 - CSLIT
2 - +1
3 - ALU/SHIFTER

(7) SLSB

0 - NONE
1 - CHANA
2 - CHANB
3 - ZREG

(10) INTC

0 - NOOP
1 - ISR - CSLIT

(L.O. 4 bib)

(5) SARB

0 - NONE

(8) WBUF

0 - NO WRITE
1 - CHANA - LSA ,

2 - CHANB - LSA
3 - CHANA - LSB
4 - CHANB - LSB
5 - CHANA - ZREG
6 - CHANB - ZREG
7 - CHANA - LSA &

CHANB - LSB

(12) ADOP (13) SAAL

0 - NOOP 0 - U e BARA to select
1 - L + R LSA location
2 - L - R 1-15 - Use numbers to
3 - 0 specify LSA location
4 - L + l
6 - L - 1
6 - L
7 - L COMP
8 - R
9 - L O R R

1 0 - L A N D R
1 1 - L X O R R

9 - BARA LSA 1 2 - L EQV R
1 0 - BARB CSLIT 1 3 - L LEFT Shifted
11 - BARB BARA 14 - L RIGHT Shifted
12 - FSU CSLIT 16 - L CIRC Shifted
1 3 - CTR CSLIT
14 - ACSAR CSLIT
16 - SAR CSLIT

(15) SBAL

0 - Use BARB to select
LSB location

1-16 - Use numbers to specify
LSB location

(14) DAAL

Same as SAAL except
destination selection.

(16) DBAL

Same as SBAL except
destination selection.

(17) CSLIT

A l 6 b i t integar value.

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Code point 4 - LEAST. Sequencing specified in the NEXT (i) control field occurr
only if bit 0 of ZREG (i-1) is a 1. Otherwise, sequencing defaults to STEP.

Code point 5 - NOT LEAST. Sequencing specified in the NEXT (i) control field
occurs only if bit 0 of ZREG (i-1) is a 0. Otherwise, sequencing defaults t o STEP.

Code point 6 - ADROV. Sequencing specified in the NEXT (i) control field occurs
only if bit 1 5 of ALUISHIFTER inputs for cycle i-1 are both the same and yet different
from bit 1 5 of ALUISHIFTER (i-1). Otherwise, sequencing defaults t o STEP. ADROV is
always FALSE when a two's complement operation is not performed by the ALUISHIFTER.

Code point 7 - NOT ADROV. Sequencing specified in the NEXT (i) control field
occurs if bit 1 5 of ALUISHIFTER inputs for cycle i-1 and bit 1 5 of ALUISHIFTER (i-1)
are all the same. Otherwise, sequencing defaults to STEP. Not ADROV is always TRUE
when a two's complement operation is not performed by the ALUISHIFTER.

Code point 8 - CTRZERO. Sequencing specified in the NEXT (i) control field
occurs only if CTR (i-1) bits 1 5 through 0 are all 0 (i.e., CTR has value 0). Otherwise,
sequencing defaults to STEP. Furthermore, CTR is decremented after the test is made.

Code point 9 - NOT CTRZERO. Sequencing specified in the NEXT (i) control
field occurs if any one of CTR (i-1) bits 1 5 through 0 is a 1 (i.e., CTR has value other
than 0). Sequencing defaults to STEP. CTR is decremented after test.

Code point 10 - ZERO. Sequencing specified in the NEXT (i) control field occurs
only if all 1 6 bits of ZREG (i-1) are 0. Otherwise, sequencing defaults t o STEP.

Code point 11 - NOT ZERO. Sequencing specified in the NEXT (i) control field
occurs only if a t least one of the 1 6 bits of ZREG (i-1) is 1. Otherwise, sequencing
defaults t o STEP.

Code point 1 2 - FSU ZERO. Sequencing specified in the NEXT (i) control field
occurs only if all bits of FSU (i-1) are ZERO. Otherwise, sequencing defaults to STEP.

Code point 1 3 - NOT FSU ZERO. Sequencing specified in the NEXT (i) control
field occurs only if a t least one bit in FSU (i-1) is 1. Otherwise, sequencing defaults to
STEP.

Code point 1 4 - CARRY. Sequencing specified in the NEXT (i) control field occurs
only if ALUISHIFTER (i-1) has a carryout of bit position 15. Otherwise sequencing
defaults t o STEP. CARRY is always FALSE when a two's complement operation is not
performed by the ALUISHIFTER.

Code point 15 - NOT CARRY. Sequencing specified in the NEXT (i) control
field occurs only if ALUISHIFTER (i-1) does not have a carryout of the high order (bit
15) position. Otherwise, sequencing defaults t o STEP. NOT CARRY is always TRUE
when a two's complement operation is not performed by the ALUISHIFTER.

NRL REPORT 7704

Control Field NEXT - This &bit control field specifies how to obtain the control
store address for the microinstruction to be executed during clock cycle i+l. Let CSAR (i)
be the address of the microinstruction executing during clock cycle i. The sequencing
specified in this field is conditioned upon the tests specified in the COND (i) control field.
If the condition is not fulfilled, the sequencing specified in this field is ignored and the
STEP sequence is executed.

Code point 0 - STEP. The microinstruction in the next higher location is control
store is executed during cycle i+l.

CSAR (i+l) = CSAR (i)+l.

Code point 1 - SKIP. The microinstruction two locations higher in control store is
executed during cycle i+l.

CSAR (i+l) = CSAR (i)+2.

Code point 2 - SAVE. The sequence STEP is executed and the address of the next
microinstruction is saved in ACSAR.

CSAR (i+l) = CSAR (i)+l
ACSAR (i) = CSAR (i)+l.

Code point 3 - CALL. The microinstruction whose address is the 12 low-order bits
of the CSLIT (i) control field is executed during cycle i+l. The address of the micro-
instruction which would have been executed during cycle i+ l had STEP occurred is loaded
into ACSAR.

CSAR (i+l) = bits 11 through 0 of CSLIT (i)
ACSAR (i) = CSAR (i)+l.

Code point 4 - JUMP TO LIT. The microinstruction whose address is the 12 low-
order bits of the CSLIT (i) control field is executed during cycle i+l.

CSAR (i+l) = bits 11 through 0 of CSLIT (i).

Code point 5 - JUMP TO ACSAR. The microinstruction whose address is resident
in ACSAR is executed during cycle i+l.

~ CSAR (i+l) = ACSAR (i-1).

Code point 6 - JUMP TO ZREG. The microinstruction whose address is the 12 low-
order bits of ZREG (i) is executed during cycle i+l.

CSAR (i+l) = bits 11 through 0 of ZREG (i-1).

SMITH, MNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Code point 7 - RETURN FROM INTERRUF'T. This code point is equivalent t o a
JUMP TO ACSAR followed by popping register contents from the interrupt stack. ACSAR,
BARA, BARB, ZREG, FSCR, and test conditions ADROV and CARRY are all loaded from
the interrupt stack.

CSAR (i+l) = CSAR (i)
{ACSAR (i), BARA (i), . . .I = values stored
in the stack at the end of cycle i-1.

Note: No other operations can occur in the MCU during the execution of this code
point. Executing this code point while operating at priority level 0 results in zero being
popped from the stack. The operating level remains at 0.

Control Field SAUX - This &bit control field specifies how several of the auxiliary
registers are loaded for cycle i. These registers are ACSAR, SAR, CI'R, and FSDR.

Code point 0 - NONE. No loads occur unless specified elsewhere (see "MCU Element
Operations").

Code point 1 - ACSAR = CSLIT. ACSAR is loaded with the low order 12 bits of the
currently executing microinstruction's literal control field.

ACSAR (i) = bits 11 through 0 of CSLIT (i).

Code point 2 - ACSAR = ZREG. ACSAR is loaded with the low order 12 bits of
the Z Register.

ACSAR (i) = bits 11 through 0 of ZREG (i).

Code point 3 - SAR = CSLIT. SAR is loaded with the low order four bits of the
currently executing microinstruction's literal control field.

SAR (i) = bits 3 through 0 of CSLIT (i).

Code point 4 - SAR = ZREG. SAR is loaded with the low order four bits of the
currently executing microinstruction's literal control field.

SAR (i) = bits 3 through 0 of ZREG (i).

Code point 5 - CTR = CSLIT. CTR is loaded with the contents of the currently
executing microinstruction's literal control field.

CTR (i) = CSLIT (i).

Code point 6 - CTR = ZREG. CTR is loaded with the contents of the Z-Register.

CTR (i) = ZREG (i).

NRL REPORT 7704

Code point 7 - FSDR LOAD. FSDR is loaded with the 32-bit word pair read f rom
a BSM over CHANA. The address of this word pair (actually the address of one of t h e
other of the two data words which comprise the word pair) is the contents of BARA.
The odd (higher of the two) address data word is placed in the high order 16 bits of
FSDR while the even (lower of the two) address data word is placed in the low order 1 6
bits of FSDR.

FSDR (i) = 2BSM (i-1,BARA (i-1)),
where "2" denotes a word pair being
addressed by contents of BARA.

Control Field SARA - This control field specifies the loading of BARA and consists
of 2 bits.

Code point 0 - NONE. No loads occur unless specified elsewhere. (See "MCU
Element Operations").

BARA (i) = BARA (i-1).

Code point 1 - BARA = CSLIT. BARA is loaded from the literal control field of
the currently executing microinstruction.

BARA (i) = CSLIT (i).

Code point 2 - INCREMENT BARA. BARA is incremented by 1.

BARA (i) = BARA (i-l)+l.

Code point 3 - BARA = ALUISHIFTER. BARA is loaded from the output of the
ALUISHIFTER.

BARA (i) = ALUISHIFTER (i).

Control Field SARB - This control field specifies the loading of BARB and consists
of 2 bits.

Code point 0 - NONE. No loads occur unless specified elsewhere (see "MCU
Element Operations").

BARB (i) = BARB (i-1).

Code point 1 - BARB = FSU. BARB is loaded from the FSU output.

BARB (i) = FSU (i-1).

Code point 2 - INCREMENT BARB. BARB is incremented by 1.

BARB (i) = BARB (i-l)+l.

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Code point 3 - BARB = ALUISHIFTER. BARB is loaded from the output of the
ALUISHIFTER.

BARB (i) = ALUISHIFTER (i).

Control Fieid SLSA - This control field specifies the source when writing in to Local
Store A and consists of 2 bits.

Code point 0 - NONE. No Local Store A write occurs.

LSA (i,j) = LSA (i-1,j); j = 0, . . ., 15.

Code point 1 - LSA from CHANA. The selected local store location is loaded from
data channel CHANA. All other LSA locations remain the same.

LSA (i j) = BSM (i-1, BARA (i-1))
j, the LSA location, is determined
by the DAAL (i) control field.

LSA (i,j) = LSA (i-1 j) +f j # j.

Code point 2 - LSA from CHANB. The selected local store location is loaded from
data channel CHANB. All other LSA locations remain the same.

LSA (ij*) = BSM (i-1, BARB (i-1))
i, the LSA location, is determined
by the DAAL (i) control field.

LSA (i,j) = LSA (i - l j) U j # j.

Code point 3 - LSA from ZREG. The selected local store location is loaded from
the ZRegister, All other LSA locations remain the same.

LSA (i,j) = ZREG (i)
E, the LSA location, is determined
by the DAAL (i) con$ol field.

LSA (i,j) = LSA (i - l j) U j Z 1.

Control Field SLSB - This 2-bit control field specifies the source when writing into
Local. Store B.

Code point 0 - NONE. No Local Store B write occurs.

LSB (i j) = LSB (i-lj); j = 0, . . ., 15.

Code point 1 - LSB from CHANA. The selected local store location is loaded from
data channel CHANA. All other LSB locations remain the same.

NRL REPORT 7704

LSB (i j) = BSM (i-1, BARA (i-1))
j, the LSB location, is determined
by the DBAL (i) control field.

LSB (i j) = LSB (i-1,j) V j f i.
Code point 2 - LSB from CHANB. The selected local store location is loaded f rom

data channel CHANB. All other LSB locations remain the same.

LSB (id) = BSM (i-1, BARB (i-1))
j, the LSB location, is determined
by the DBAL (i) control field.

LSB (i,j) = LSB (i-1,j) V j f j.

Code point 3 - LSB from ZREG. The selected local store location is loaded from
the Z-Register. All other LSB locations remain the same.

LSB (i i) = ZREG (i)
j, the LSB location, is determined
by the DBAL (i) control field.

LSB (i,j) = LSB (i-1,j) V j f j.

Control Field WBUF - This control field specifies the write operations over data
channels CHANA and CHANB and' consists of 3 bits.

Code point 0 - NO WRITE. No writes occur to the buffer storage modules.

Code point 1 - BSM on CHANA = LSA. A data word is written to a BSM over
CHANA.

BSM (i, BARA (i-1)) = LSA (i-1;)
j, the LSA location, is determined
by the SAAL (i) control field.

Code point 2 - BSM on CHANB = LSA. A data word is written t o a BSM over
CHANB.

BSM (i, BARB (i-1)) = LSA (i-1,j)
j, the LSA location, is determined
by the SAAL (i) control field.

Code point 3 - BSM on CHANA = LSB. A data word is written t o a BSM over
CHANA.

BSM (i, BARA (i-1)) = LSB (i-l,j)
j, the LSB location, is determined
by the SBAL (i) control field.

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Code point 4 - BSM on CHANB = LSB. A data word is written to a BSM over
CHANB.

BSM (i,*BARB (i-1)) = LSB (i - l j)
j, the LSB location, is determined
by the SBAL (i) control field.

Code point 5 - BSM on CHANA = ZREG. A data word is written to a BSM over
CHANA.

BSM (i, BARA (i-1)) = ZREG (i-1 j.

Code point 6 - BSM on CHANB = ZREG. A data word is written t o a BSM over
CHANB.

BSM (i, BARB (i-1)) = ZREG (i-1).

Code point 7 - BSM on CHANA = LSA and BSM on CHANB = LSB. The operations
specified by code points 1 and 4 above occur simultaneously.

BSM (i, BARA (i-1)) = LSA (i - i jA)

BSM (i BARB (i-1)) = LSB (i - i jB)
fA and L are determined by
SAAL (i) and SBAL (i), respectively.

Control Field FSCR - This l-bit control field determines whether or not FSCR is
loaded from the literal control field of the currently executing microinstruction.

Code point 0 - NOOP. The contents of FSCR remain unchanged unless otherwise
specified.

FSCR (i) = FSCR (i-1).

Code point 1 - FSCR = CSLIT. The high order 1 0 bits of CSLIT are loaded into
FSCR.

FSCR (i) = bits 1 5 through 6 of CSLIT (i).

Control Field INTC - This l-bit control field determines how interrupts are handled
in the MCU (see "SPE System Programming Interrupt Status Register") by setting up the
ISR.

Code point 0 - NOOP. The contents of ISR remain unchanged.

Code point 1 - ISR determined by CSLIT. The low order 4 bits of CSLIT (i) set
and/or reset the 2 bits of the ISR.

NRL REPORT 7704

Control Field ADIN - This control field (5 bits; high order bit not used) determines
which ALUISHIFTER inputs are t o be used as the operand(s) of the operation specified
by control field ADOP. ALUISHIFTER has two operands, one designated by L (left) and
the other by R (right). The 1 6 code points and their L and R operands are listed here.

Code Point L Operand (i)

LSA (i-1,))

LSA (i-1,j)

LSA (i-I,))

LSA (i-I,))

LSB (i-13)

LSB (i-1,))

LSB (i-1,))

LSB (i-1,))

BARA (i-1)

BARA (i-1)

BARB (i-1)

BARB (i-1)

FSU (i-1)

CTR (i-l)/CTR (i-1)-I*

ACSAR (i-1)

SAR (i-1)

R Operand (i)

CSLIT (i)

FSU (i-1)

BARB (i-1)

LSB (i-1,;)

CSLIT (i)

FSU (i-1)

BARB (i-1)

BARA (i-1)

CSLIT (i)

LSA (i-1,;)

CSLIT (i)

BARA (i-1)

CSLIT (i)

CSLIT (i)

CSLIT (i)

CSLIT (i)

(3 is in all cases determined by SAAL (i) or SBAL (i) (as
the case may be)).

*See "MCU Element Operations."

Control Field ADOP - This 4b i t control field determines which ALUISHIFTER
operation is performed during clock cycle i. Operands L (i) and R (i) are determined by
the ADIN control field. "+" and "-" are two's complement operations. The sixteen code
points and their corresponding operations are listed here. For all code points, except
code point 0, ZREG (i) = ALUISHIFTER (i).

Code point 0 - NOOP. ALUISHIFTER output is ALUISHIFTER (i) = 0. ZREG (i) =
ZREG (i-1).

Code point 1 - ALUISHIFTER (i) = L (i) + R (i). CARRY and ADROV may each
be 1 or 0.

Code point 2 - ALUISHIFTER (i) = L (i) - R (i). CARRY and ADROV may each
be 1 or 0.

SMITH, MNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Code point 3 - ALUISHIFTER (i) = 0. All 1 6 bits are ZERO. CARRY and ADROV
are both 0.

Code point 4 - ALUISHIFTER (i) = L (i)+l. CARRY and ADROV may each be
1 or 0.

Code point 5 - ALUISHIFTER (i) = L (i)-1. CARRY and ADROV may each be
1 or 0.

Code point 6 - ALUISHIFTER (i) = L (i). CARRY and ADROV are both 0.

Code point 7 - ALUISHIFTER (i) = One's complement of L (i). CARRY and
ADROV are both 0.

Code point 8 - ALUISHIFTER (i) = R (i). CARRY and ADROV are both 0.

Code point 9 - ALUISHIFTER (i) = L (i) or R (i). Bit-by-bit logical OR. CARRY
and ADROV are both 0.

Code point 1 0 - ALUISHIFTER (i) = L (i) AND R (i). Bibby-bit logical AND.
CARRY and ADROV are both 0.

Code point 11 - ALUISHIFTER (i) = L (i) XOR R (i). Bibby-bit logical EXCLUSIVE
EXCLUSIVE-OR. CARRY and ADROV are both 0.

Code point 1 2 - ALUISHIFTER (i) = L (i) EQV R (i). Bibby-bit logical
EQUIVALENCE. CARRY and ADROV are both 0.

Code point 13 - ALUISHIFTER (i) = L (i) shifted to the left by the number of bits
specified by SAR (i-1). Zeros are filled in the resulting unspecified low order bits. CARRY
and ADROV are both 0.

Code point 1 4 - ALUISHIFTER (i) = L (i) shifted to the right by the number of bits
specified by SAR (i-1). Zeros are filled in the resulting unspecified high order bits.
CARRY and ADROV are both 0.

Code point 15 - ALUISHIFTER (i) = L (i) circularly shifted left by the number of
bits specified by SAR (i-1). CARRY and ADROV are both 0.

Control Field SAAL - This 4-bit control field determines the Local Store A location
which is used whenever LSA is specified as a source of some value.

Code point 0 - the 4 low order bits of BARA are used as the LSA read address.

LSA read address = bits 3 through 0 of BARA (i-1).

Code point j, j = 1, 2, . . ., 1 5 - j is used as the LSA read address.

LSA read address = j.

NRL REPORT 7704

Control Field DAAL - This 4b i t control field determines the Local Store A location
which is used whenever LSA is specified as a destination of some value.

Code point 0 - the 4 low order bits of BARA are used as the LSA write address.

LSA write address = bits 3 through 0 of BARA (i).

Code point j, j = 1, 2, . . ., 15 - j is used as the LSA write address.

LSA write address = j.

Control Field SBAL - This 4-bit control field determines the Local Store B location
which is used whenever LSB is specified as a source of some value.

Code point 0 - the 4 low order bits of BARB are used as the LSB read address.

LSB read address = bits 3 through 0 of BARB (i-1).

Code point j, j = 1, 2, . . ., 15 - j is used as the LSB read address.

LSB read address = j.

Control Field DBAL - This 4-bit control field determines the Local Store B location
which is used whenever LSB is specified as a destination of some value.

Code point 0 - the 4 low order bits of BARB are used as the LSB write address.

LSB write address = bits 3 through 0 of BARB (i).

Code point j, j = 1, 2, . . ., 15 - j is used as the LSB write address.

LSB write address = j.

Control Field CSLIT - This control field contains 16 bits which may be arbitrarily
specified and used for a source of input for many of the MCU elements. CSLIT must be
specified at control store load time and cannot be altered by the MCU.

MCU Element Operations - This discussion detdls the operations of the MCU ele-
m e n t s n s t r u c t i o n control. The particular microinstruction control
field which effects each operation is referenced.

ALUBHIFTER - In general, ALUISHIFTER (i) = L (i) OP R (i). L (i) and R (i)
are selected according to the ADIN (i) control field. OP is selected according to the
ADOP (i) control field.

Input operand selection is straightforward except for ADIN (i) code point 13. Two
possibilities for CTR are shown in Table 2: CTR (i-1) and (;TR (i-1)-1. CTR (i-1) is the
input operand if neither code point 8 nor code point 9 appears in the COND (i) control
field. CTR (i-1)-1 is the input operand if either code point 8 or code point 9 does appear
in the COND (i) control field.

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

If a specified input operand is less than 1 6 bits wide, it is right justified with zero
fill at the ALUISHIFTER input. ACSAR and SAR are 12 bits and 4 bits wide, respectively.

ADROV (i) and CARRY (i) are two test condition results which are generated b y
ALUISHIFTER (i) operation. Both ADROV (i) and CARRY (i) are 0 if a two's complement
operation is not performed. However, if either a two's complement "+" or "-" is specified
in ADOP (i), then ADROV (i) and CARRY (i) may become 1. ADROV (i) is a 1 if a "+"
or "-" results in an arithmetic overflow. (Result is less than -215 or result is greater than
215-1 in 16-bit two's complement representation.) CARRY (i) is a 1 if a "+" or a "-"
results in a carryout of the high order bit position, i.e., bit position 15. (Result is positive
and ADROV (i) is 1 or result is negative and ADROV (i) is 0, sign of result being
determined from bit 1 5 using 16-bit two's complement representation.)

ADROV (i) and CARRY (i) are both loaded from the interrupt stack when a RETURN
FROM INTERRUPT is executed (code point 7, control field NEXT). Since no ALU/
SHIFTER operation can occur during the same clock cycle as a RETURN FROM
INTERRUPT, no ambiguity in ADROV (i) and CARRY (i) values can result.

2-Register - Unless code point 2 appears in COND (i), or unless code point 7 appears
in NEXT (i), or unless code point 0 appears in ADOP (i),

ZREG (i) = ALUISHIFTER (i).

1. If code point 2 (Z-bus 110) appears in COND (i), then either ZREG (i) = ZREG
(i-1) (for Z-bus output from MCU) or ZREG (i) is loaded from the Z-bus (for Z-bus input
to MCU). Which of these two operations occurs is specified in the LSA Z-bus control
word. (See description of "LSA, ZREG, and the Z-bus.")

2. If code point 7 (RETURN FROM INTERRUPT) appears in control field NEXT (i)
then ZREG (i) is loaded from the interrupt stack.

3. If code point 0 appears in ADOP (i) and neither of the two operations above are
specified, then ZREG (i) = ZREG (i-1).

N.B. Cases (1) and (2) may not be specified in the same microinstruction. ,

BARA - If code point 7 of NEXT (i) is specified, then BARA (i) is loaded from the
interrupt stack. Otherwise, BARA (i) is determined by the SARA (i) control field:

BARA (i) = BARA (i-1) code point 0
BARA (i) = CSLIT (i) code point 1
BARA (i) = BARA (i-l)+l code point 2
BARA (i) = ALUISHIFTER (i) code point 3

BARB - If code point 7 of NEXT (i) is specified, then BARB (i) is loaded from the
interrupt stack. Otherwise, BARB (i) is determined by the SARB (i) control field:

BARB (i) = BARB (i-1) code point 0
BARB (i) = FSU (i-1) code point 1

NRL REPORT 7704

BARB (i) = BARB (i-l)+l code point 2
BARB (i) = ALUISHIFTER (i) code point 3

Field Select Unit - FSU (i) is determined by the field selected from FSDR (i) as
specified by FSCR (i). See description of FSU.

FSCR (i) loads are controlled by control field FSCR unless code point 7 is specified
in the NEXT (i) field. If RETURN FROM INTERRUPT is so specified then FSCR (i) is
loaded hom the interrupt stack. If not, then control field FSCR specifies:

FSCR (i) = FSCR (i-1) code point 0
FSCR (i) = Bits 15 through 6 of CSLIT (i) code point 1

FSDR (i) loads are controlled by the SAUX control field:

FSDR (i) = FSDR (i-1) if code point 7 is not specified.
FSDR (i) = 2BSM [i, BARA (i-1)] * if code point 7 is

specified. The 15 high-order bits of BARA (i-1)
determine the word-pair loaded into FSDR.

ACSAR - ACSAR (i) is determined by SAUX (i) and NEXT (i) as follows:

ACSAR (i) is loaded from the interrupt stack if code point 7 appears in NEXT (i).

ACSAR (i) = CSAR (i) + 1 if code point 2 appears in NEXT (i) and neither code
points 1 nor 2 appear in SAUX (i).

ACSAR (i) = CSAR (i) + 1 if code point 3 appears in NEXT (i) and neither code
points 1 nor 2 appear in SAUX (i).

ACSAR (i) = bits 11 through 0 of CSLIT (i) if code point 1 appears in SAUX (i)
and code point 7 does not appear in NEXT (i).

ACSAR (i) = bits 11 through 0 of ZREG (i) if code point 1 appears in SAUX (i)
and code point 7 does not appear in NEXT (i).

SAR - SAR (i) is determined by SAUX (i):

SAR (i) = bits 3 through 0 of CSLIT (i) code point 3
SAR (i) = bits 3 through 0 of ZREG (i) code point 4

CTR - CTR (i) is determined by COND (i) and SAUX (i) as follows:

CTR (i) = CTR (i) if none of the following are specified: code points 8 and 9
of COND (i) and code points 5 and 6 of SAUX (i).

*See Control Field SAUX.

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

CTR (i) = CTR (i-1)-1 if either code points 8 or 9 appear in COND (i) a n d code
points 5 and 6 do not appear in SAUX (i). CTR counts MODULO 216.

CTR (i) = CSLIT (i) if code point 5 appears in SAUX (i).

CTR (i) = ZREG (i) if code point 6 appears in SAUX (i).

ISR and Interrupt Stack - ISR (i) is determined by INTC (i) control field:

ISR (i) = ISR (i-1) code point 0
ISR (i) determined by bits 3 through 0 of CSLIT (i) code point 1

See "SPE System Programming; Interrupt Status Register" for ISR operation in
conjunction with MCU interrupt handling.

Any hard-wired interrupt service starting with cycle i+l pushes the following onto the
stack: ACSAR (i), FSCR (i), BARA (i), BARB (i), ZREG (i), ADROV (i), and CARRY (i).
These values are all popped from the stack whenever code point 7 of NEXT (i) is specified.

Local Stores A and B - The operation of LSA and LSB is identical. LSA is described
here; everything also applies to LSB unless noted otherwise. During cycle i LSA may be
loaded by so specifying in the SLSA (i) condition field. The DAAL (i) control field
specifies the address into which the data is to be written.

Similarly, LSA may be read during cycle i by so specifying in the WBUF (i) and/or
ADIN (i) control fields. The SAAL (i) control field specifies the address from which the
data word is to be read. LSA (but not LSB) is also read during an 110 operation o n the
Z-bus (code point 1 of the COND (i), control field).

Data Channels CHANA and CHANB - A data channel cannot be used in both direc-
tions at the same time. For each data channel, there is a set of mutually exclusive code
points appearing in several of the control fields. No data channel can be used to read and
write in the same microinstruction,

CHANA - BSM read operations are eode point 7 of SAUX, code point 1 of SLSA,
and code point 1 of SLSB. BSM write operations are code point 1 of WBUF, code point
3 of WBUF, code point 5 of WBUF, and code point 7 of WBUF.

CHANB - BSM read operations are code point 2 of SLSA and code point 2 of SLSB.
BSM write operations are code point 2 of WBUF, code point 4 of WBUF, code point 6 of
WBUF, and code point 7 of WBUF.

Channels are addressed by BARA and BARB. It should be kept in mind that pairs of
words are read from memory. The odd addressed 16-bit word is one higher in memory
than the even addressed word.

NRL REPORT 7704

VI. SIGNAL PROCESSING ARITHMETIC UNIT

Introduction

Under direction of the MCU, the Signal Processing Arithmetic Unit (SPAU) performs
special data processing operations such as FFT, recursive filtering, and correlation. Par-
allel organization of fast multiply and add logic units allow for high speed execution of
these functions.

The SPAU has been designed to attain two primary objectives, high speed and
efficiency, in the execution of signal processing algorithms. High speed has been attained
by using four parallel hardware multipliers and four adders in the section which performs
arithmetic operations on the input data, and by concurrently generating memory addresses
in a separate section which uses three parallel adders and three counters. High efficiency,
that is, the ability to keep most of the hardware busy most of the time, is attained by
providing many data path options to the multipliers and adders.

Microinstructions from a 160-bit-wide control store specify the operations executed
by the SPAU hardware. One microinstruction is read from control store and executed
each 150-11s clock cycle. All microinstructions have the same format; each microinstruction
has 63 control fields. A control field specifies the operation which is to be performed by
a particular part of the SPAU.

"SPAU Operation" describes the basic functional components of the SPAU. A de-
tailed register level description of the SPAU is given under " ~ a r d w k e Description." The
paragraphs under "Control Word" describe the format of the SPAU control word and lists
the operations effected by each of the code points in each control field. A list of SPAU-
related acronyms and their meanings follows the text.

SPAU Operation

Figure 29 illustrates the relationship of the SPAU to the other elements in the SPE.
The SPAU communicates with the Microprogrammed Control Unit (MCU) by means of the
Zbus and buffer storage. Input and output data areas in buffer storage are assigned t o the
SPAU each time the MCU issues a "macro" command to the SPAU on the Z-bus. After
receiving a macrocommand, the SPAU operates in a stand-alone mode until it has finished
the assigned task. Then, it sends an interrupt signal to the MCU indicating that the
macrocommand has been completed.

To operate in this manner there are six functional sections within the SPAU, as
illustrated in Fig. 30. These are the Control Store (CS), the Arithmetic Section (AS), the
ROMICoefficient Store (CFS), the Address Generator (AG), the Sequence Unit (SU), and
the Inputloutput Control Unit (IOCU).

The Control Store (CS) contains the microinstructions which control the operation of
the SPAU. A new microinstruction is executed every 150 ns. The CS is addressed by the
Control Store Address Register (CSAR). The value of the CSAR is determined by the
Sequence Unit.

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

- 32-BIT HIGH SPEED
DATA PATHS

- LOW SPEED CONTROL
BUS

BSM DATA CHANNELS - HlGH AND LOW SPEED
EXTERNAL DEVICE
CHANNELS

SCU
ISTORAGE CONTROL) I

L

PROCESSING UNIT t
'

DATA CHANNELS

SPAU MCU SCC

(ARITHMETIC) (CONTROL) (I/OI
-

Fig. 29 - SPE-DATA and CONTROL

CS
ADDRESS SEOUENCE STATUS , 110

CONTROL 4 UNIT *------ CONTROL
STORE A A 1 A

I

i
I - 32-BIT HIGH

I I t -- - - - - -- - - -. - SPEED DATA
t--------- 71 WTH

I
I I 1 1 ---

t I SPAU INTERNAL
I -
I TEST I TEST I I I CONTROL LINE

CONDITIONS CONDITIONS I - DATA AND
1 1 ADDRESSING - I

I
v LINES

ARITHMETIC I * ADDRESS
SECTION * - GENERATOR

I I I
I
I

4 m

a m

SCU TO
SCU

Fig. 30 - SPAU-Functional Unit

NRL REPORT 7704

The Arithmetic Section (AS) performs arithmetic operations on data accessed from
Buffer Storage Modules (BSMs) via the Storage Control Unit (SCU). The AS can execute
four 16-bit multiplies and four 16-bit additions each 150-11s clock cycle.

The Read Only Memory and Coefficient Store (CFS) is used to store trigonometric
and filter coefficients used in the execution of SPAU macrocommands. Coefficients from
this storage are used in AS calculations. A read-only memory (ROM) contains 1025 sine
and cosine coefficients for use in the FFT plus additional space for f i r coefficients and
other constants. This additional space may be readlwrite memory where desired for
variable processing environments. CFS addresses are calculated by the Address Generator.

The Address Generator (AG) performs arithmetic calculations of the BSM addresses
used to access buffer storage for AS data operands and outputs. The AG also calculates
addresses for the ROM/Coefficient Store to access coefficients for AS operations. The AG
has data paths to and from the AS to facilitate data-dependent addressing calculations.

The Sequence Unit (SU) controls the addressing of control store, thereby controlling
the sequence of microinstruction execution in the SPAU. The SU uses information from
the IOCU, the CS, the AG, and the AS to control CS addressing. The normal sequence of
control is an unconditional step from one instruction to the next; however, this sequence
can be altered by testing any one of 15 conditions in the AS and AG hardware and
transferring control to one of 7 other successors.

The Z-bus Input/Output Control Unit (IOCU) monitors the Z-bus for commands and
status requests from the MCU. The IOCU can alter the addressing of control store (via the
Sequence Unit), can pass parameters t o the AG from the Z-bus, can output parameters from
the AG to the Z-bus, and can output status information on the Z-bus, all under MCU
control. A SPAU operation may be initiated by an MCU sending an inquiry signal on the
Z-bus and receiving a "not busy" reply from the SPAU. The MCU then sends a linkage
message which includes the identity of the macrocommand being requested and its associ-
ated parameters. The message is transmitted via the IOCU to storage in the AG. The
starting address of the particular SPAU macrocommand to be executed is set up in the
CSAR and operation of both the AS and the AG begins.

Hardware Description

The SPAU is composed of the following functional sections:

Control Store (CS)
Arithmetic Section (AS)
ROM/Coefficient Store (CFS)
Address Generator (AG)
Sequence Unit (SU)
I/O Control Unit (IOCU).

Control Store (CS) - The SPAU control store is a read-only or read-mostly memory
with a 150-11s cycle time. The basic memory size is 256 words by 160 bits with expand-
ability to 4096 words. The CS holds 160-bit microinstructions which control the operation

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

of the SPAU. Input to the CS in the case of a writable memory is via an independent
buffered channel by which block loads of microprogram can be made from an external
store. CS output is to a 160-bit command register (CR) which holds the microinstruction
under execution. The address of the microinstruction to be fetched is provided by the
Control Store Address Register (CSAR).

Arithmetic Section (AS) - The Arithmetic Section of the SPAU contains the high
speed arithmetic and storage elements which provide the processing capability of t h e
SPAU.

The AS contains four multipliers and four adders and their associated output regieers.
In addition, there are four coefficient registers and four local stores which can serve as in-
put, output, and intermediate data scratch pads. These arithmetic and storage elements are
reconfigurable under program control as to allow high hardware utilization and processing
throughput for each SPAU application. The AS receives data from 32-bit-wide buffer mem-
ories via two 32-bit-wide channels. These two channels serve as data output channels as
well. Consequently, data are always received and transmitted in pairs of 16-bit words at a
maximum rate of two 32-bit data transfers per instruction cycle.

Figure 31 is a simplified block diagram of the SPAU Arithmetic Section. The circles
in the figure represent the computational elements of the AS: the Ms represent the four
multipliers, the As represent the four adders, and Ps represent the product registers for
multiplier results, and LS represents the AS local storage. 'Words can be sent out from
local storage and multiplied together, and the result stored in a product register each
SPAU instruction cycle. Furthermore, output words can be sent from local storage (or a
register) and added together, and the result written into local storage in one instruction
cycle. The same addition result also can be added to a third local store output word and
stored in local storage in the same instruction cycle.

Figure 32 is a block diagram of the SPAU arithmetic section.

Multipliers - There are four multipliers in the AS: MI, M2, M3, and M4. Each
multiplier forms the product of two 16-bit numbers in two's complement arithmetic. The
products are rounded to 16 bits in all the multipliers; 16 bits of product starting at bit 30
(MSB), bit 29, bit 27, or bit 15 can be specified in the microinstruction word. The time
required to form a product is one SPAU cycle. At the end of an instruction cycle then,
one product will be output from inputs received at the beginning of the same cycle.

The multipliers have selectable inputs from the X and Y stores, from the Z coefficient
registers, and from the Result (R) registers. Each multiplier outputs to its own product
register P and to an R register.

Arithmetic-Logic Units (ALU) - The AS contains four ALUs: Al , A2, A3, and A4.
The ALUs perform two's complement arithmetic and logic operations on 16-bit data words.
Each ALU can perform one ALU function (add, logical AND, etc.) every instruction cycle.
The functions available from each ALU are described under the subject "Control Word" in
this report in the description of microinstruction control fields. The inputs to the ALUs
are selectable and can come from the product register, the X and Y stores, and the result
registers. In addition, ALUs A2 and A4 have inputs directly from the output of A1 and

NRL REPORT 7704

Fig. 31 - SPAU Arithmetic Section (simplified)

A3, respectively. This allows two ALU operations to be cascaded in a single instruction
cycle. The ALUs have outputs to the result registers and to the X and Y local stores.

Local Stores X and Y - The AS contains two 16-word by 32-bit local stores: X and
Y. X and Y can be independently addressed from fields in the control word. Each local .
store can be both read and written in each instruction cycle, and double addressing capa-
bility is provided whereby separate addresses can be specified for the read and write
operations. To allow computable X and Y addressing, AG register RAR can be specified
as a readlwrite address source for X or Y.

Each local store is divided vertically into two distinguishable stores each 16 bits wide.
These are designated as X Upper (XI), X Lower (X2), and Y Upper (Yl), Y Lower (Y 2).
Although both halves of X or Y are not separately addressable, they are separately
readable and writable; that is, XI can be accessed in a given instruction cycle while X2 is
idle.

The local stores have inputs from Channels A and B, adders Al , A2, A3, and A4, the
literal field of the command register, and from the W store in the Address Generator Section
of the SPAU. When Channel A or B is a source to X or Y, then the left 16-bit half of the
addressed buffer word inputs to XI or Y1 and the right half to X2 or Y2. This same
relationship holds in a buffer write operation.

Stores X and Y have outputs to Channels A and B, to the multiplier and ALU inputs,
and to the W store in the Address Generator.

TO SCU
A

T
CH A CH B

CONTROL CONTROL

FROM R1 RZ
R 3 R 4
R I R 3
R 2 R 4
X l X 2
Y 1 Y 2

3 2 - B I T PATHS -
16 - B I T PATHS -

ARITHMETIC SECTION

v
TO M 's AND CFS

Fig. 32 - SPAU Arithmetic Section

NRL REPORT 7704

Data paths from X to W provide for communication between the Arithmetic Section
and Address Generator.

Coefficient Registers Z - Four 16-bit registers Z1, 22, 23, and 24 are provided to
receive coefficients from the CFS. They have outputs to the multipliers and are intended
primarily to enable efficient processing of FFT and recursive filter algorithms. The Z
registers also output to the SPE coefficient store to allow updating of the coefficient store
with computed or external data. Z1, 22, 23, and 24 have inputs from the first, second,
third, and fourth 16-bit quarters, respectively, of a 64-bit CFS word. The Z registers also
have inputs from the X and Y stores. Z1 can receive the X1 output, 22 the X2 output,
23 the Y1 output, and 24 the Y2 output. This arrangement provides the ability to set the
Z registers (and subsequently the coefficient store) with computed or externally supplied
data The Z-registers serve as right inputs to the multipliers.

Product Registers P - Each multiplier has an associated 16-bit register to receive its
output product. These registers are PI, P2, P3, and P4. The P registers have outputs t o
the ALUs.

Result Registers R - There are four 16-bit registers R1, R2, R3, and R4 provided to
receive the outputs of ALU operations. Each R register can receive data from its associated
ALU or from one adjacent ALU, from its associated multiplier or from the control word
literal field.

The R registers have outputs back to the multiplier and ALU inputs to facilitate
continuous sum or product operations. They also output to the X and Y stores and t o
Channels A and B for direct data outputting. When outputting to buffer, the R registers
output in pairs over the 32-bit channel width. The allowable pairs are RlR2, R3R4,
RlR3, and R2R4.

ROM and Coefficient Store (CFS) - The ROM and Coefficient Store are used to store
trigonometric and filter coefficients used in AS calculation. A ROM in the CFS contains
1025 sine and cosine coefficients, each 16 bits wide, for use in the FFT. The CFS also
has 16-bit-wide readlwrite memory. CFS addresses are calculated by the Address Generator.
The CFS writes into and is loaded from the Z registers in the AS. The CFS cannot be
written and read in the same SPAU instruction cycle.

Figure 33 shows the format of the CFS.

Address Generator (AG) - The Address Generator Section of the SPAU contains
three independent address formation units which provide addresses for buffer Channels A
and B and for the ROM. The AG operates concurrently with the AS, taking instructions
from the same control words. A 32-word by 16-bit local store in the AG provides scratch
storage for data needed in computing address sequences. Each address formation unit is
a simple structure composed of a 16-bit ALU and associated registers which hold addresses
and address increments. In addition, there are three counter registers included in the AG
for the purpose of allowing control of indexing and counting operations. Figure 34 is a
block diagram of the Address Generator.

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

a 0 CFS

FROM FROM FROM FROM
21 22 23 24

Fig. 33 - Coefficient Store format

TO W STORE, SEQUENCE CONTROL + t t
CTRX 1 CTRJ CTRK

A A A

Fig. 34 - Address Generator

60

LIT

TO A S , I / O O -

SHIFTER DS

ttt HFl 16 BITS
4 I os I r os 1

A
DS

I/O (I - -
X 1

A - 41

CTR K

1 1
CH A CH B ROM TO SEQUENCE

ADDRESS ADDRESS ADDRESS CONTROL

NRL REPORT 77 04

ALU's - There are three ALUs in the AG which perform two's complement arithmetic
and logic operations on 16-bit data words. The AG ALUs are designated A5, A6, and A7
to distinguish them from the four ALUs in the arithmetic section of the SPAU. Each ALU
in the AG has two associated registers - a buffer address register and an address increment
register - which have direct inputs t o the ALU. In addition, each ALU has inputs from
local store W and from the command word literal field.

A5, A6, and A7 operations are described under "Control Word" in this report.

Result Register R 7 - A7 has its own associated 16-bit register which can store the re-
sult of its operations. This register is designated R7. R7 does not output back to A7 but
has outputs to the sequence unit to enable AG control of control store sequencing.

Buffer and CFS Address Registers - Each ALU has its own associated address register.
These supply addresses to buffers over Channel A and Channel B and to CFS, and they are
designated BARA, BARB, and RAR, respectively. The BARS are 16 bits wide and are
intended primarily to hold the current buffer or CFS address being accessed by the arith-
metic section. Normally, these registers are updated periodically by the ALUs using the
values in the increment registers for incrementing or decrementing. Each BAR has an input
from its associated ALU result register and outputs to the ALU.

The lower 12 bits of BARA or BARB address a 32-bit word in a buffer memory, and
the upper 4 bits point to one of up to 16 buffer memories. The upper 4-bit sections of
these registers can be controlled independently of the lower 12 bits in two ways. First, the
write line can be inhibited on the upper 4 bits so that a buffer word address can be changed
without changing the buffer memory pointer. Second, the contents of the BARA and the
BARB upper 4 bits can be swapped to facilitate reversal of data flow in buffer-to-buffer
operations. These two control fields are described under "Control Word."

Increment Registers INC - Each ALU has its own associated increment register -
LNCA, INCB, and INCR. These are 16-bit registers intended to hold the address increment
which is added to or subtracted from the BARS. Each INC register has an input from its
associated ALU output and outputs to the ALU.

Local Store W - Local store W is a 32-word by 16-bit store which provides scratch
storage of data required in data address generation. The W store can be both read and
written in a single instruction cycle but only at a single address (namely, the contents of
WSAR, the W Store Address Register). The W store has data paths to the AG ALUs and
registers. The W output can be shifted right or left one bit during a read. Inputs to W
come from A5, A6, and A7, from two counters CTRJ and CTRK, and from the XI and
X2 stores in the PPAU arithmetic section.

There is also an input from the SPE Zbus via the SPAU 110 control unit. This enables
communication of command and data messages between the SPAU and the MCU, and is
described in more detail under "110 Control Unit (IOCU)" of this report.

The W store outputs to the AG ALUs, to counter CTRI, CTRJ, and CTRK, and to X1
and X2 in the AS.

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Counters CTR - Three 16-bit counter registers are provided in the AG to facilitate
control of indexing and counting operations. These counters can be set from the control
word literal field or from the W store. A four-bit Condition field in the SPAU microin-
struction includes code points for testing the contents of each counter for zero. Another
2-bit field provides for decrementing the counters. A positive response to a specified
counter test will change the control store sequence as specified by the Control Sequence
field in the control word. The counters have data paths to the SPAU Sequence Unit for
this purpose. Counters CXRJ and CTRK have outputs to W to enable saving of counter
contents when necessary.

Sequence Unit (SU) - The Sequence Unit comprises that hardware which controls the
sequence of SPAU operations by determining the order in which control words are fetched
from the Control Store and by controlling the timing of arithmetic and data operations in
other units of the SPAU. Sequence Unit operations are controlled by the condition and
control sequence control fields, AS and AG element status, Buffer Memory cycle
availability, and I/O control status.

Next Address Formation - The SU has a number of next address formations, both
conditional and unconditional, as well as an 110 controlled jump.

Possible control address sequences are

1. STEP - Increment Control Store Address Register (CSAR) by 1.

2. SKIP - Increment CSAR by 2.

3. SAVE - Increment CSAR and save contents in Alternate CSAR (ACSAR).

4. CALL - Jump to address specified in LIT field. CSAR + 1 is saved in ACSAR.

5. JUMP (LIT) - Jump to address specified in LIT field.

6. JUMP (ACSAR) - Jump to address specified by the contents of the ACSAR.

7. JUMP (W) - Jump to address specified by the output of the W store.

8. JUMP (R7) - Jump to address specified by the contents of R7.

9. I/O CONTROLLED JUMP - Jump to fixed control point address (0000). This
jump is generated by an MCU command sent over the Z-bus and initiates the sequence of
instructions which sets up a specified macro-operation.

All next address formations except 110 controlled jump can be conditioned upon the
true or false states of certain SPAU conditions such as counter overflows, adder outputs
zero or negative, etc. A description of the selectable conditions is given under "Control
Word" in this report.

The default next address is always a STEP.

NRL REPORT 7704

Registers - The Sequence Unit uses two 12-bit address registers to enable efficient
control of sequencing. The CSAR contains the current address which is sent to the control
store. The CSAR is a counter register which can be incremented or loaded directly from
the LIT field of the control register, from the ACSAR, from W, from R7, or cleared t o 0
by the 110 control unit.

The ACSAR acts as a temporary store of an address which can be directly transferred
to the CSAR when required as in a CALL or JUMP (ACSAR) successor specification.

Sequence Timing - The Sequence Unit together with the system clock controls the
occurrence of specified data operations in the SPAU. The 150-11s basic clock cycle is
subdivided into five subintervals called phases. Each phase is initiated by a clock pulse
P/1, P/2, P/3, P/4, or P/5. Figure 35 is a chart of the timing of events in the SPAU.

The Control Store (CS) cycle comprises those operations which address and fetch
words from the control store and set its output into the command register. The control
store is addressed and read one instruction ahead of the instruction in process. At P/1,
the CSAR and ACSAR receive the addresses, specified in the previous instruction, which
are to be used to fetch the next instruction. By P/4, the CS output is available and is
set into the Command Register (CR). At P/5, CSAR in incremented by 1 in preparation
for a step or skip successor specification for the next address. By the end of the cycle
at PI, the CR successor and condition fields have been decoded and the test condition
states are available to control the sources to be clocked into CSAR and ACSAR for the
next cycle. Also at PI, the instruction saved in the CR at P4 is read into the Secondary
CR (SCR).

The Arithmetic Section cycle comprises data transfer and arithmetic operations spec-
ified for data processing operations. At PI1 of the AS cycle, those registers, local stores,
and arithmetic units which are specified as sources to other registers, local stores,
arithmetic units, or buffer channels are selected by the data selectors. Also, at P/1,
specified source addresses for local stores X and Y are set into the X and Y address registers.
By P/3, the X and Y outputs are available and are latched for the remainder of the cycle,
and specified destination addresses are set into the X and Y address registers. By P/5, the
outputs of sources, adders and multipliers, and buffer channels are available for setting into
their destination registers or local stores. P/5 clocks data into destinations which are then
available by PI1 for the start of the next cycle.

The Address Generator cycle is similar to the AS cycle. Registers and local store W
are selected and addressed at PI1 and set at P/5 with adder or source register outputs.
Local store W, being singly addressed, does not have its address register reset at P/3.
Counters I, J, and K are decremented at P/2.

110 Control Unit (IOCU) - The 110 Control Unit comprises that logic which controls
communication between the SPAU and MCU via the Z-bus. The SPAU operates under
control of an MCU, receiving commands to execute algorithms stored in the control memory
and sending interrupts back upon completion of activity.

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

AG CYCLE

AS CYCLE

DELATCH W

SET W
ADDRESS

SET X,Y SOURCE
ADDRESSES

LATCH X ,Y

I I + + 4 I I

CS CYCLE

1
SET DESTINATION
STORE, REGISTERS DECCWNTERS

CS OUTPUT

Fig. 35 - Event timing

LATCH W

Interrupt Line - The interrupt line is the sole means by which the SPAU can directly i

establish communication with an MCU. The Z-bus is under MCU control, and the SPAU
can put data on the Z-bus only in response to a command from the MCU. The interrupt
line outputs from a flip-flop in the 110 Control Unit and is set by a bit in the SPAU micro-
instruction word. The presence of this bit in an instruction causes the SPAU, upon
completion of that instruction, t o set the interrupt flip-flop in the IOCU and to suspend
clock pulses to the AS, AG, and SU. The SPAU remains stopped and the interrupt line
raised pending receipt of 110 commands from the MCU over the Z-bus. The interrupt
flip-flop will be reset by the receipt of any MCU command.

SET R 7

Z-Bus Communication - The IOCU continually monitors the 12 command'lines of
the Z-bus. Eight of these lines carry the address of the device to which a command is being
sent. and another line (command line) indicates to all devices on the bus that a command is
being sent. The IOCU is wired to recognize a command and a fixed device address as being
its own. Two types of information are recognized by the 110 system. The first is control
information and the second is data. Table 4 summarizes Z-bus communication between the
MCU and SPAU (see "MCU Operation of the Z-bus").

Control commands include requests for status, SPAU start and stop, etc. Control
information goes directly to the IOCU. A 16-bit register in the IOCU contains all available
SPAU status information. This register may be accessed by the MCU via the Z-bus at any
time whether the SPAU is running or stopped. All MCU output commands identified by
the "Control" bit cause the IOCU to interpret the 16 data bits as a control command and
to signal the SPAU to take appropriate action.

NRL REPORT 7704

Table 4
MCU - SPAU Z-Bus Input-Output Commands

*SPAU will respond to these commands while running; SPAU raises the REJECT line (on
the 2-bus) t o all other commands if it is running.

MCU ZREG Contents

Bits 15-2: Immaterial
Bit 1: 0
Bit 0: 0

Bits 15-2: Immaterial
Bit 1: 1
Bit 0: 1

Bits 15-2: Immaterial
Bit 1: 1
Bit 0: 0

Bits 15-2: Immaterial
Bit 1: 1
Bit 0: 0

Bit 15: 1 if SPAU is busy
0 if SPAU is idle

Bits 9-0: Contents of CSAR
(i.e., address of the
microinstruction about
t o be executed)

Bits 15-0: Data t o be loaded
into W(WSAR)

Bits 15-0: Data read from
W(WSAR)

Command

SPAU STOP*

SPAU ceases
execution a t end
of current instruction

SPAU RESUME

SPAU starts
operation from current
value of CSAR

SPAU START

SPAU starts operation
from CS location zero

INIT WAR

W store address
register is set t o zero

SPAU STATUS*

SPAU Status Register
loaded into ZREG

W LOAD

W Store is loaded
from ZREG
If Bit 12 is 1, WSAR
is incremented after
the load

W READ

W Store is loaded
into ZREG
If Bit 1 2 is 1, WSAR
is incremented after
the read

MCU LSA Control Word
Contents

Bit 15: 0
Bit 14: 1
Bit 13: 1
Bit 12: Immaterial
Bits 11-4: SPAU Address

Bit 15: 0
Bit 14: 1
Bit 13: 1
Bit 12: Immaterial
Bits 11-4: SPAU Address

Bit 15: 0
Bit 14: 1
Bit 13: 1
Bit 12: Immaterial
Bits 11-4: SPAU Address

Bit 15: 0
Bit 14: 1
Bit 13: 1
Bit 12: Immaterial
Bits 11-4: SPAU Address

Bit 15: 0
Bit 14: 0
Bit 13: 1
Bit 12: Immaterial
Bits 11-4: SPAU Address

Bit 15: 0
Bit 14: 1
Bit 13: 0
Bit 12: 1 o r 0
Bits 11-4: SPAU Address

Bit 15: 0
Bit 14: 0
Bit 13: 0
Bit 12: l o r 0
Bits 11-4: SPAU Address

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Data commands from the MCU can be both input and output commands, and when
the IOCU recognizes the "data" bit it signals the AG to output or input a 16-bit W store
word via the Z-bus. Upon the transfer of each data word, if the "Continue" bit in the
command is a 1, the W store address register is incremented to prepare for the next trans-
fer. The W store address can be initialized to 0 by a control command from the MCU.

Figure 36 is a functional diagram of the MCU - SPAU command interface.

MCU - SPA U Command Interface Operation - When the MCU has data ready in
buffer memory for processing by the SPAU, the MCU can first send a control input
command requesting the SPAU's status. The SPAU IOCU, upon recognition of the request,
causes its status register to drive the Zbus data lines and drives the Acknowledge line to
inform the MCU that the response is ready. Upon processing the received status, t he MCU
would then proceed with commands to set up the SPAU for the desired function. It is
not necessary for the MCU to check the SPAU status prior to a command, but, if the
SPAU is in a running mode, it will raise the Z-bus Reject line in response to any command
except SPAU STOP or SPAU STATUS.

To set up the SPAU for a processing function, the MCU should send at least one data
word over the Z-bus to the W store in the SPAU AG. This data word would contain an
absolute or relative address code pointing to the SPAU control store location where the
desired function resides. Additional data words can be transmitted defining parameters such
as the starting addresses of data in buffer store, the number of data words, etc. Each out-
put data command from the MCU which has an active Continue line will cause the W
store address register t o be incremented by 1 in preparation for the next data word.

When the MCU has transmitted the necessary parameters t o the W store, a Start
command can be issued to the SPAU. The Start Command causes the SPAU CSAR to be
set to 0 and the Sequence Unit to resume SPAU operations. This trap to control store
location 0000 provides for a system control point which can be programmed with instruc-
tions which retrieve the contents of W store location zero and process it to generate a
computed jump to the first instruction of the requested routine.

The function routine proceeds to use the remaining data in W to set up the necessary
registers and then carries out the indicated data processing.

Alternatively, the MCU can send to W a buffer address pointing to a list of the
parameters necessary to set up the processing function. The SPAU routine at CS (0000)
would then bring these into W and proceed as described above.

Upon completion, a 1 in the Interrupt bit in the last instruction of the routine causes
the SPAU to stop and the interrupt line to be energized. The interrupt line remains
energized until the MCU responds with a command over the Z-bus.

If desired, data can be stored in W by the SPAU routine for transmission back to the
MCU. The 110 procedure in this case is the same as described above except that the MCU
would send data input commands rather than output commands, and W words would be
output over the Z-bus under control of the SPAU IOCU.

NRL REPORT 7704

I SPAU

Fig. 36 - MCU - SPAU command interface

MCU

Once the process is completed, another SPAU processing cycle may be initiated as
above.

Control Word

W STORE

Summary of Control Word Fields - The control fields listed below are discussed in
the following text.

MACRO
ADDRESS

INPUT DATA
ADDRESS

OUTPUT DATA
AWRESS

BLOCK SIZE

OTHER
PARAMETERS

L/

Field Width
5
4
4
4
5

16
3
2
3
3
3
3
3
1

Z BUS v v

Field -
X Read Address
X Write Address
Y Read Address
Y Write Address
W Address
Literal
W Source
Z Register Source
X1 Source
X2 Source
Y1 Source
Y2 Source
Literal Destination
CFS Write

CONTROL
CS

ADDRESS STORE

-

W
ADDRESS

LINES'

A

r

DATA

i + I

,

LINES CONTROL

IOCU

A

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Field Width
2
2
2
3
3
3
2
2
2
2
1
2
1
4
1
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

Field
W Store Shift Control
Counter Decrement
Channel Control
Counter Input
Channel A Source
Channel B Source
Adder 5 Destination
Adder 6 Destination
Adder 7 Destination
Local Store Remote Addressing
Buffer Pointer Hold
Multiplier Outputs
I/O Interrupt
Condition
Condition Mode
Control Sequence
Adder 1 Operation
Adder 2 Operation
Adder 3 Operation
Adder 4 Operation
Adder 5 Operation
Adder 6 Operation
Adder 7 Operation
R1 Source
R2 Source
R3 Source
R4 Source
A1 Left Source
A1 Right Source
A2 Left Source
A2 Right Source
A3 Left Source
A3 Right Source
A4 Left Source
A4 Right Source
A5 Left Source
A5 Right Source
A6 Left Source
A6 Right Source
A7 Left Source
A7 Right Source
M 1 Left Source
M 1 Right Source
M2 Left Source
M2 Right Source
M3 Left Source
M3 Right Source
M4 Left Source
M4 Right Source

NRL REPORT 7704

Control Field Definitions -- Field 1. The X Read Address field specifies the location
in the X1 or X2 store, which is to be a data source unless code point 1 of field 24 is
specified. Code points 16 to 31 are unused.

Code Point Store Address

0

15

Field 2. The X Write Address field specifies the location in the X1 or X2 store, which
is to be a data destination unless code point 1 of field 24 is specified.

Code Point

0
Store Address

0

Field 3. The Y Read Address field specifies the location in the Y1 or Y2 store, which
is to be a data source unless code point 2 of field 24 is specified.

Code Point Store Address

Field 4. The Y Write Address field specifies the location in the Y or Y2 store, which
is to be a data destination unless code point 2 of field 24 is specified.

Code Point Store Address

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Field 5. The W address field specifies the location in the W store, which is to b e a data
source and/or destination.

Code Point Store Address

Field 6. The Literal field defines a 16-bit value which may be used as a source of data
and/or addresses to various portions of the SPAU arithmetic section and address generator.

Field 7. The W Source field specifies the data source for the W store.

Code Point Source -
None
X1
X2
rnRJ
rnRK
AS
A6
A7

Field 8. The Z Register Source field specifies the data source for the Z registers (Zl,
22, 23, 24).

Code Point Source

None
CFS
Load Z1 and 22 with X1 and X2
Load 23 and 24 with Y1 and Y2

Field 9. The XI Source field specifies the data source for the Xlhalf of the X store.

Code Point Source

None or Literal (see Field 13)
A1
A2
A3
A4
Upper half of Channel A (MSB)
Upper half of Channel B (MSB)
W

NRL REPORT 7704

Field 10. The X2 Source field specifies the data source for the X2 half of the X store.

Code Point Source

None or Literal (see Field 13)
A1
A2
A3
A4
Lower half of Channel A (LSB)
Lower half of Channel B (LSB)
W

Field 11. The Y1 Source field specifies the data source for the Y1 half of the Y store.

Code Point Source

None or Literal (see Field 13)
A1
A2
A3
A4
Upper half of Channel A (MSB)
Upper half of Channel B (MSB)
W

Field 12. The Y2 Source field specifies the data source for the Y2 half of the Y store.

Code Point Source

None or Literal (see Field 13)
A1
A2
A3
A4
Lower half of Channel A (LSB)
Lower half of Channel B (LSB)
W

Field 13. The Literal Destination field specifies the destination of the value in the
literal field of the command word.

Code Point Destination

0 None
1 X1
2 X2

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Code Point Destination

Y1
Y 2
Both R1 and R2
Both R3 and R4
ACSAR

Field 14. The CFS Write field controls the CFS write operation. The data source,
registers Z1, 22, 23, and 24, are simultaneously transferable into the four 16-bit fields of
the 64-bit CFS.

Code Point Operation

None (no write)
Z1, 22, 23, 24 + CFS

Field 15. The W Store Shift Control field specifies a shift to be applied to data
being read out of the W store.

Code Point Amount of Shift

None
Right one bit
Left one bit
Unused

Field 16. The Counter Decrement Control field specifies a counter decrement of 1.

Code Point Counter Decrement

None
Counter I
Counter J
Counter K

Field 17. The Channel Control field specifies a change in Channels A and B data
line connections.

Code Point Operation

None (no change)
Connect A and B for one bit right

shift on input data
Resume normal, unshifted connection
Exchange A and B buffer pointers

Field 18. The Counter Set field specifies a counter register write operation.

NRL REPORT 7704

Code Point Operation

0 None
1 W + CTRI
2 W + CTRJ
3 W + CTRK
4 Unused
5 Literal -+ CTRI
6 Literal -+ CTRJ
7 Literal + CTRK

Field 19. The Channel A Source field specifies the sources for a 32-bit data output
transfer over Channel A.

Code Point Source

None (no operation)
R1 and R2
R1 and R3
R2 and R4
R3 and R4
X
Y
Unused

Field 20. The Channel B Source field specifies the sources for a 32-bit data output
transfer over Channel B.

Code Point Source

None (no operation)
R1 and R2
R1 and R3
R2 and R4
R3 and R4
X
Y
Unused

Field 21. The Adder 5 Destination field specifies the destination of the results of the
Adder 5 operation.

Code Point Destination

None
BARA
INCA
BARA and INCA

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Field 22. The Adder 6 Destination field specifies the destination of the results of the
Adder 6 operation.

Code Point Destination

None
BARB
INCB
BARB and INCB

Field 23. The Adder 7 Destination field specifies the destination of the results of the
Adder 7 operation.

Code Point Destination

None
RAR
INCR
R7

Field 24. The Local'Store Remote Address field specifies the right-most four or five
bits of the RAR as the address source for reads and writes of stores X, Y, or W.

Code Point Operation

None (Address from literal address
fields)

X(RAR)
Y (RAR)
W(RAR)

Field 25. The Buffer Pointer Hold field specifies that, during a write into BARA and/
or BARB, the higher four bits of both registers shall remain unchanged.

Code Point Definition

Full BARA, BARB Write
Hold high bits of BARA, BARB

Field 26. The Multiplier Outputs field specifies the 16 bits to be selected as the output
products of all four multipliers.

Code Point Product Outputs

Bits 30-15 (most significant)
Bits 29-14
Bits 27-12
Bits 15-0 (least significant)

NRL REPORT 7704

Field 27. The I/O Interrupt field specifies activation of the SPAU interrupt condition.

Code Point Definition
d

No operation
Raise the 110 interrupt line

and halt

Field 28. The Condition field specifies one of 16 conditions to be used as a basis
for determining the next control store address sequence.

Code Point Condition

Unconditional
CTRI zero
CTRJ zero
CTRK zero
AS adder overflow
AS adder magnitude limit
Adder 1 MSB
Adder 2 MSB
Adder 3 MSB
Adder 4 MSB
Adder 1 Zero
Adder 2 Zero
Adder 3 Zero
Adder 4 Zero
R7 MSB
R7 Zero

The AS adder overflow condition is TRUE when any of the AS adders overflows in
two's complement arithmetic (the two adder inputs have the same sign, and the adder
output has the opposite sign). The AS adder magnitude limit condition is TRUE when
any one of the AS adder outputs is greater than or equal to 112 or is less than -112 in
two's complement fractional representation (the two high order bits of any AS adder
output have opposite values).

Field 29. The Condition Mode field specifies a true or false test on the Condition
specified in the Condition field.

Code Point Definition

True
False

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Field 30. The Control Sequence field specifies the next control store address sequence.

Code Point Operation

Step (add 1 to the present address)
Skip (add 2 to the present address)
Save (load 1 plus the contents of

CSAR into ACSAR and step)
Call (jump to LIT and load 1 plus

the present contents of CSAR into
ACSAR)

Jump to literal value as an address
Jump to ACSAR
Jump to W
Jump to R7

Field 31. The Adder 1 Operation field specifies the arithmetic or logical operation
performed by Adder 1.

Code Point Operation

Left input - right input + 0
Left input + right input + 0
Left input + right input + 1
Logical AND

Field 32. The Adder 2 Operation field specifies the arithmetic or logical operation
performed by Adder 2.

Code Point Operation

Left input - right input + 0
Left input + right input + 0
Left input + right input + 1
Logical AND

Field 33. The Adder 3 Operation field specifies the arithmetic or logical operation
performed by Adder 3.

Code Point Operation

Left input - right input + 0
Left input + right input + 0
Left input + right input + 1
Logical AND

NRL REPORT 7704

Field 34. The Adder 4 Operation field specifies the arithmetic or logical operation
performed by Adder 4.

Code Point Operation

Left input - right input + 0
Left input + right input + 0
Left input + right input + 1
Logical AND

Field 35. The Adder 5 Operation field specifies the arithmetic or logical operation
performed by Adder 5.

Code Point Operation

Left input + right input + 0
Left input + right input + 1
Left input - right input + 0
0 + right input

Field 36. The Adder 6 Operation field specifies the arithmetic or logical operation
performed by Adder 6.

Code Point Operation

Left input + right input + 0
Left input + right input + 1
Left input - right input + 0
0 + right input

Field 37. The Adder 7 Operation field specifies the arithmetic or logical operation
performed by Adder 7.

Code Point Operation

Left input + right input + 0
Left input + right input + 1
Left input - right input + 0
Left input + 0

Field 38. The R1 Source field specifies the data source for R1.

Code Point Source

None or Literal
A1
A2
MI

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Field 39. The R2 Source field specifies the data source for R2.

Code Point Source

None or Literal
A1
A2
M2

Field 40. The R3 Source field specifies the data source for R3.

Code Point Source

None or Literal
A3
A4
M3

Field 41. The R4 Source field specifies the data source for R4.

Code Point Source

None or Literal
A3
A4
M4

Field 42. The A1 Left Source field specifies the source for the left input of Adder 1.

Code Point Source

Field 43. The A1 Right Source field specifies the source for the right input of Adder 1.

Code Point Source

P2
Y1
R1
Unused

NRL REPORT 7704

Field 44. The A2 Left Source field specifies the source for the left input of Adder 2.

Code Point Source

Field 45. The A2 Right Source field specifies the source for the right input of
Adder 2.

Code Point Source

Field 46. The A3 Left Source field specifies the source for the left input of Adder 3.

Code Point Source

Field 47. The A3 Right Source field specifies the source for the right input of
Adder 3.

Code Point Source

Field 48. The A4 Left Source field specifies the source for the left input of Adder 4.

Code Point Source

Y2
Y1
R4.
Unused

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Field 49. The A4 Right Source field specifies the source for the right input of Adder 4.

Code Point Source

Field 50. The A5 Left Source field specifies the source for the left side of Adder 5.
Code points 2 and 3 are unused.

Code Point Source

BARA
Literal

Field 51. The A5 Right Source field specifies the source for the right side of Adder 5.
Code points 2 and 3 are unused.

Code Point Source

INCA
W

Field 52. The A6 Left Source field specifies the source for the left side of Adder 6.
Code points 2 and 3 are unused.

Code Point Source

BARB
Literal

Field 53. The A6 Right Source field specifies the source for the right side of Adder 6.
Code points 2 and 3 are unused.

Code Point Source

INCB
W

Field 54. The A7 Left Source field specifies the source for the left input of Adder 7.
Code points 2 and 3 are unused.

Code Point Source

RAR
Literal

NRL REPORT 7704

Field 55. The A7 Right Source field specifies the source for the right input of Adder 7.
Code points 2 and 3 are unused.

Code Point Source

0 INCR
1 W

Field 56. The MI Left Source field specifies the source for the left input of
Multiplier 1.

Code Point Source

Field 57. The MI Right Source field specifies the source for the right input of
Multiplier 1.

Code Point

0
1
2
3

Source

z 1
XI
Y1
R1

Field 58. The M2 Left Source field specifies the source for the left input of
Multiplier 2.

Code Point Source

Field 59. The M2 Right Source field specifies the source for the right input of
Multiplier 2.

Code Point

0
1
2
3

Source

z 2
Y2
X2
R2

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Field 60. The M3 Left Source field specifies the source for the left input of
Multiplier 3.

Code Point Source

Field 61. The M3 Right Source field specifies the source for the right input of
Multiplier 3.

Code Point Source

Field 62. The M4 Left Source field specifies the source. for the left input of
Multiplier 4.

Code Point Source

Field 63. The M4 Right Source field specifies the source for the right input of
Multiplier 4.

Code Point Source

VII., SELECTION CHANNEL CONTROLLER

Introduction

The Selector Channel Controller (SCC) allows external devices to exchange data with
SPE. The SCC has two connections with other SPE components as shown in Fig. 37: a
32-bit-wide buffered data channel connected to the SCU and a Z-bus connection. (The

NRL REPORT 7704

SPEED I
DEVICE #I

DEVICE I 0 0
0 0
0 0

SPAU MCU SCC EXTERNAL

d DEVICE Y7

I
z-BUS - 32- BIT HlGH SPEED BUFFERED

DATA CHANNELS ---- 32-BIT LOW SPEED DATA PATHS

+%'+ 32-BIT HlGH SPEED DATA PATHS

- LOW SPEED CONTROL BUS

Fig. 37 - Selector Channel Controller (SCC)

description of "Storage Control Unit and Buffer Storage" explains the operation of the
SCU and the buffered data channels. The description of "Z-Bus and Interrupt Lines" de-
scribes the Z-bus operation.) An SCC can have up to seven external devices connected to
it. The function of the SCC is to connect one of the seven external devices with either
the buffered data channel or the Z-bus. The MCU controls the operation of the SCC
using the Z-bus. The MCU can initiate a data block transfer between a Buffer Storage
Module and an external device, or it can exchange data between its Z register and an ex-
ternal device directly over the Zbus. Only one data transfer can be carried out by the
SCC at a time. An external device must wait to transfer data until all other external
devices using the same SCC have completed their data transfers, each in turn capturing the
SCC for its transfer.

As shown in Fig. 37, each external device is connected to an SCC via a Device
Channel Controller (DCC). A DCC is used to make an external device compatible with
one of the SCC device channels (or with the Z-bus, both of which have the same protocols).
A distinct DCC must be designed for each distinct type of external device. Each of two
SCC device channels provides a 32-bit data transfer path between an SCC and a DCC.
The low speed device channel and the high speed device channel shown in Fig. 37 differ
only in the electrical transmission properties of the signal lines; functionally they are
equivalent.

This section describes the operation of the SCC and details how the SCC is controlled
by the MCU. The SCC operates in one of two modes: either data are transferred through
the SCC between an external device and the SCU or between an external device and the
MCU. The modes are denoted buffered mode and unbuffered mode, respectively. The
MCU not only uses the Z-bus for unbuffered mode operation of the SCC but also for
exchanging command, control, and status information with the SCC. The SCC in turn

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

can interrupt the MCU (see description of "Z-Bus and Interrupt Lines") and can pass inter-
rupts to the MCU from a DCC. The following three sections detail SCC buffered data
transfer operation, SCC unbuffered data transfer operation, and MCU - SCC control
interaction.

Buffered Mode Data Transfer

When operating in the buffered mode, the SCC controls the transfer of data between
external devices and Buffer Storage Modules. The SCC transfers data between a BSM and
an external device at whatever rate can be supported by the external device. The maximum
transfer rate is one 32-bit word per 150 ns. The MCU initiates a data transfer by issuing
a command to the SCC on the Z-bus. Following the single command the SCC assumes
complete control of the buffered data transfer until it is completed. One MCU command
can initiate transfer of a single data word, a group of data words, or transfers of several
groups of data words.

Control words are set up in a Buffer Storage Module by the MCU prior to its issuance
of the Z-bus command. These control words specify the precise nature of the buffered
data transfer and are read from the BSM by the SCC upon receipt of the MCU Z-bus
command. The SCC uses these stored control words to effect the data transfers between
Buffer Storage Modules and external devices independently of the MCU. During the
transfer, the SCC computes the proper BSM address for each word and requests access to
the BSM in the same manner as other SPE components; the SCC halts operation until it
is granted BSM access by the SCU. When it halts, the SCC, via a DCC, forces the external
device involved in the data transfer to halt also. Furthermore, the SCC requests BSM
access only if data are available for transfer from the external device or if the external
device is prepared to accept a data word from the SCC. Thus, slow external devices can
operate with minimal BSM interference independently of the SPE system clock and at
lower transfer rates than one data word per 150 ns.

MCU Initiation of Buffered Data Transfer; BSM ~ddressing- The MCU starts a
buffered data transfer by issuing a Z-bus command to the SCC. (Discussion of MCU Z-bus
control of the SCC shows the MCU LSA 110 control word which effects this command.)
The BSM address of the first control word for the data transfer must be in the MCU
Zregister when the command is issued.

Upon receipt of the buffered data transfer command from the MCU, the SCC begins
to read 32-bit control words from a Buffer Storage Module. The BSM address of the first
of these control words is received from the MCU on the Z-bus data lines. The 16-bit
BSM address generated by the SCC is initially the address received from the MCU. After
each control word is read this address is incremented by 2. After all control words have
been read from the BSM the SCC generates a BSM access request for the first BSM data
word location. Subsequent BSM data word addresses are generated by the SCC using
information contained in the initial control words. The SCC uses the same internal BSM
addressing format at the MCU. See Fig. 38a.

NRL REPORT 7704

Bit 0 performs half-word selection

15 13 12 0

Fig. 38a - MCU and SCC addressing of
Buffer Storage (MCU and SCC Internal
format)

BSM
Addrem

Address n: CCWl

16-bit half-word address within the BSM

Address n+2: CCW2

Address n+4:

Address n+2k+2: DCWk

CCW = Channel Control Word
DCW = Device Control Word

Address of CCWl is sent from
MCU to SCC over the Z-bus.

Fig. 38b - Transfer Control Block Resident in BSM

As each data word is read from or written into BSM, a data word is transmitted t o or
from an external device. The SCC exchanges data with a DCC using a full handshaking
procedure: the SCC communicates with an external device on a device channel in precisely
the same manner in which an MCU communicates with a device on the Z-bus.

Transfer Control Blocks - Thirty-two-bit control words must be placed in a BSM by
the MCU according to the format shown in Fig. 38b. Two Channel Control Words (CCW1
and CCW2) as well as Device Control Words (DCWs) must be specified. Different external
devices may require different numbers of DCWs (including none). The Buffered Data
Transfer Control Block (two CCWs and the required number of DCWs) completely specifies
the buffered data transfer which is to take place. Upon reading the control block, the
SCC initiates the specified data transfer, requesting BSM access, generating the proper BSM
addresses controlling the specified DCC, and formatting the data transferred. Any number
of Transfer Control Blocks can be concatenated in the BSM. Upon completion of the data
transfer specified by a control block, the SCC begins the data transfer specified by the follow-
ing control block (if one exists). After executing all concatenated control blocks the SCC
interrupts the MCU, indicating completion of the entire set of buffered data transfers. The
format of the two channel control words (CCW1 and CCW2) for any control block are given
in Fig. 39. The formats of the DCWs are not given here sincd they must be specified by the
designers of the Device Channel Controllers.

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

ccw 1
31 30 29 27 26 16 15

with C - Continue Bit

CC - Concatenation Bit
Dev Adder - External Device with which transfer takes place

Increment - Skip address increment

BSM Start Address - Address of first data word in transfer

C l ncrement

with-c - Continue Bit

Timeout -Wait time for external device response

RI - Record Increment

M - Transfer Method

I - InputlOutput

Record Repetition - Number of Records in Data Trankfer

Word Transfer - Number of Words per Record

BSM Start Address CC

Fig. 39 - CCWl and CCW2 formats

Dev Addr

C

Channel Control Word Formats - Figure 39 displays the CCW formats.

M

CCWl - Continue bit. A 1 in bit 31 indicates that the Transfer Control Block includes
DCW1.

Timeout

Concatenation bit. A 1 in bit 30 indicates that a Transfer Control Block follows the
present one.

R I I

Device address. External device with which buffer storage is to exchange data.
Device addresses 1 through 6 are reserved for external devices on the low speed device
channel. Device address 7 specifies the external device on the high speed channel. The SCC
is device address 0.

Increment and BSM start address. The BSM Start Address field contains the half-word
(16bit word) address of the first word of data to be read from or written into a BSM.
After each successive data word transfer the increment field is added to the previous BSM
address, a B$M access request is sent to the SCU when the SCC is ready for a transfer, and
the SCC transfers the next data word upon receipt of go-ahead from the SCU. The SCC
ignores the low-order bit of the BSM address when doing 32-bit data transfersto or from
BSM.

Record Repetition Word Transfers

NRL REPORT 7704

--

CCW2 - Continue bit. A 1 in bit 31 indicates that the Transfer Control ~ l o c k -
--

includes DCW2. -

Timeout. This field gives the number of SPE clock cycles the SCC will wait for a
response from an external device before it interrupts the MCU. If i is the value of the
field then 2i is the number of clock cycles before interrupt.

Transfer method. The Transfer Method field determines the packing and unpacking
done by the SCC. Table 5 shows the four possibilities. Bit 24 of CCW2 determines the ,
direction of data transfer.

Table 5
M-Field Definition

Code point 0 signifies that the half-word specified by the current BSM address is trans- -
ferred to or from the high-order 16 data bits of the device channel. The BSM address is
recalculated for each 16-bit BSM transfer. See Fig. 40a.

Code
Point

0
1
2
3

Code point 1 packs or unpacks pairs of BSM lSbi t half-words into or from a 32-bit
external device word. The BSM address is recalculated for each 16-bit BSM transfer. The
half-word specifikd by the current BSM address is packed into or unpacked from a 32-bit
word on the device channel. The first of the two half-words (in time) on the BSM channel
packs into or unpacks from the high-order half of the 32-bit device channel word. The
second half-word on the BSM channel packs into or unpacks from the low-order half of
the 32-bit device channel. See Fig. 40b.

Code point 2 packs or unpacks 16-bit device half-words into or from 32-bit BSM words.
The BSM address is recalculated for each 32-bit BSM transfer. The first 16-bit word on the
device channel is unpacked from or packed into the high-order half of the BSM channel
word and the second 16-bit word on the device channel is unpacked from or packed into
the low-order half of the BSM channel word. The 16-bit word on the device channel is
always on the high order half of the 32 device channel data lines. See Fig. 40c.

Transfer

Code point 3 signifies 32-bit to 32-bit direct data transfers. See Fig. 40d.

BSM Channel

16
16
3 2
32

Input/Output. Specifies direction of data transfer. A 1 in bit 24 indicates data
transfer from an external device to the SPE.

Device channel-

16
3 2
16
32

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

DATA BIT 16

BUFFERED
DATA CHANNEL
TO SCU

CHANNEL

Fig. 40a - Buffered data code point 0, transfer
method field, CCW2

0
DATA BIT 0

DATA BIT I 6

\ IS EVEN
/

TO SCU ,,, , ,, + TO EXTERNAL DEVICE

Fig. 40b - Buffer data transfer, code point
1, transfer method field CCW2

NRL REPORT 7704

DATA BIT 31

DATA BIT 16
DATA BIT 15

DATA BIT 0

1st A DEVICE CHANNEL

' 16-BIT WORD 2
DATA BIT 31

DATA BIT 16
DATA BIT 15

DATA BIT 0

Fig. 40c - Buffer data transfer, code point 2, transfer
method field CCW2

DATA BIT 31 UNCONDITIONALLY -
DATABIT16 -C--C
DATA BIT 15 UNCONDITIONALLY -

TO SCU 4 - l ~ k - - L T o EXTERNAL E V I E

Fig. 40d - Buffer data transfer, code point 3, transfer
method field CCW2

SMITH, IHNAT, SMlTH, HEAD, FREEMAN, WU, AND WALD

Record increment, record repetition, and word transfer. The BSM start address is
stored by the SCC. At the completion of the number of data transfers called for in the
Word Transfer field a Record has been completed. The BSM address is reset to the original
BSM start address or to the BSM start address incremented by 1 or by 2, depending on the
RI bit and the M field (Table 6). The total number of records which comprise the data
transfer is given by the Record Repetition field.

Table 6
BSM Start Address Increment

After Record Completion

Unbuffered Mode Data Transfer

External device channels are functionally equivalent to the SPE system Z-bus. When
operating in the unbuffered mode of data transfer, the SCC allows the MCU toexchange
command and data directly with Device Channel Controllers over the Z-bus. In this mode
the SCC merely connects the proper SCC device channel (high speed or low speed) directly
to the Zbus. See Figs. 41a and 41b. Each device channel is functionally equivalent to
the Z-bus except that (a) the device channels have 32 data lines while the Z-bus has only
16 and (b) the number of device address lines are different. In the unbuffered mode the
high order 1 6 data lines of the device channel are connected to the 16 Z-bus data lines.

BSM Start
Address Increment

None

Add 1

Add 1

Add 2

Add 2

Transfer Method Field

All four code points

Code point 0

Code point 1

Code point 2

Code point 3

Z-bus operation was described under "Z-Bus and Interrupt Lines." The MCU normally
controls the SCC using the SCC's Z-bus address iq the LSA Z-bus control word. This Z-bus
address has zeros in the three low-order bits (bits 4, 5, and 6 of the LSA control word). To
place the SCC in unbuffered mode the MCU does the normal Z-bus 110 operation using
the SCC Z-bus address together with the external device address (1 through 6 for devices in
the low speed device channel and 7 for the high speed device channel) in the low order
three bits of the Zbus address. When the SCC sees such a Z-bus address, it connects the
proper external device channel directly to the SPE system Z-bus. The SCC then becomes
transparent to the MCU, and the MCU carries out a Z-bus operation with the external
device in the normal manner.

Record Increment Bit

ZERO

ONE

ONE

ONE

ONE

NRL REPORT 7704

DATA BIT I 5 +--t - DATA BIT 31

0
DATA BIT 0 f---t DATA BIT I6 - DATA BIT IS

l o
DATA BIT 0

DEVICE ADWI
USED INTERNALLY

DEVlCE AODR -* BY SCC
BIT 0

COMMAND, I/O, ----+

REJECT LINE - '2

DEVICE~DEVICE
TO MCUc= *-BUS ADDRESS SEWN

DEVICE CHANNEL

Fig. 41a - Unbuffered mode data transfer, MCU- high
speed device

0
DATA BIT 16

14% DATA BIT 0

DEVICE ADm BIT 7

DEVICE ADDR BIT 3
DEVICE ADDR BIT 2

DEVICE ADDR BIT 0 ADDRESS BIT 0

CQMMAND,I/O, DIC, 7)
CONflNUE LINES -
ACKNOWLEDGE LINE .C----

REJECT LINE -} '2

TO EXTERNAL
TO MCU - -----t DEVICES, DEVICE

Z-BUS ADDRESSES 1-6
DEVICE CHANNEL

Fig. 41b - Unbuffered mode data transfer, MCU - low
speed device

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

MCU Z-Bus Control of the SCC

The MCU uses the Z-bus to control the operation of the SCC. Table 7 lists the SCC
control commands together with the MCU LSA control word Z register contents which
effect the commands (see previous description of "MCU Operation of the Z-bus").

The SCC can interrupt the MCU. An SCC interrupt occurs if (a) the SCC has com-
pleted a buffered data transfer, (b) a DCC has interrupted the SCC, (c) the SCC has timed
out (received no response) from an attempted external device channel transfer when in the
buffered mode, or (d) the SCC has received a reject from an attempted device channel
transfer when in the buffered mode.

The SCC has six status words which can be read over the Z-bus data lines by the
MCU. Figure 42 shows the formats of the six status words. Status words can be read in
one of two modes: single or step. In the single mode, the MCU sets a pointer to the
desired status word. All status word reads by the MCU then read this status register, which
is automatically updated every SPE clock cycle. In the step mode, the MCU sets a pointer
to the desired status word it w b t s to read initially. The SCC then loads all status registers
simultaneously. Each successive status read then causes the status word pointer to increment
by 1 (with 6+1 = 1). The status registers are not automatically reloaded.

Status Word One - Status Word One contains DCC and SCC interrupt information.
The SCC has only one interrupt line to the MCU; however, several conditions can cause the
SCC to interrupt the MCU. SW1 is used by the MCU to ascertain the cause of the SCC
interrupt.

Status Word Two - Status Word Two indicates which external devices have power
failures and which external devices are busy.

Status Word Three - Status Word Three contains the address of the BSM word being
accessed by the SCC when the status word is updated. Address format is the same as that
used internally by the MCU.

Status Word Four - Status Word Four contains the number of data words (16-bit or
32-bit, depending on the transfer mode) remaining to be exchanged with the SCU to
complete the current record. The count includes the word being transferred when the
status word is updated.

Status Word Five - Status Word Five contains the number of records remaining to be
transferred to complete the transfer specified by the current transfer control block. The
count includes the record being transferred when the status word is updated.

Status Word Six - Status Word Six contains the address of CCWl of the current
transfer control block.

NRL REPORT 7704

Table 7
MCU-SCC Z-Bus Input/Output Commands

*SCC will reject the MCU if SCC is busy doing a buffered data transfer.

Command

START SCC BUFFERED
MODE*
Buffered mode data
transfer initiated

SCC STOP
Buffered mode data
transfer aborted

SCC STATUS WORD
SELECT SINGLE MODE
Sets Status Word Selector
to one of six status registers.
Selected status register is
loaded.

SCC STATUS WORD
SELECT - STEP MODE
Sets Status Word
Selector to one of six status
words
All six status registers loaded.

SCC STATUS READ
Single Mode. Read Status
Word.
Step Mode. Read Status
Word and Increment Status
Word Selector.

SCC UNBUFFERED MODE*
MCU uses Z-bus protocol to
communicate directly with
DCCs.

MCU LSA Control Word
Contents

Bit 15: 0
Bit 14: 1
Bit 13: 0
Bit 12: Immaterial
Bits 11-4: SCC Z-bus address

Bit 15: 0
Bit 14: 1
Bit 13: 1
Bit 12: Immaterial
Bits 11-4: SCC Z-bus address

Bit 15: 0
Bit 14: 1
Bit 13: 1
Bit 12: 0
Bits 11-4: SCC Zbus address

Bit 15: 0
Bit 14: 1
Bit 13: 1
Bit 12: 1
Bits 11-4: SCC Zbus address

Bit 15: 0
Bit 14: 0
Bit 13: 1
Bit 12: Immaterial
Bits 11-4: SCC Z-bus address

Bit 15: 0
Bits 14-12: As designated by DCC

designer
Bits 11-4: SCC Z-bus address except

low order three bits not
all zeros.

MCU Z-Register Contents

Bits 15-0: BSM address of
first CCWl

Bits 15-0: all zeros

Bits 15-4: Immaterial
Bit 3: 1
Bits 2-0: Status word number

Bits 15-4: Immaterial
Bit 3: ONE
Bits 2-0: Status word number

Bits 15-0: Status Word pointed
to by Status Word
Selector.

Bits 15-0: As designated by
DCC designer

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

With asserted (other than buffered data transfer completion) bits meaning:

A = Abnormal interrupt has been given to MCU.
T = SCC has timed-out (gotten no response) from a DCC when attempting a

data transfer in buffered mode.
R = SCC has received a Reject from a DCC when attempting a data transfer

in buffered mode.
B = SCC is busy doing a buffered transfer.
F = SCC power has failed.

Dw Addr = External device address of highest priority device interrupt (SCC, device
address zero, is highest priority - then 7, 6, 5, 4, 3, 2, 1) .

Bits 7-0 = Corresponding external device has caused an MCU interrupt.

A T R B F

F i = Asserted bit means that device i power has failed.
Bi = Assarted bit means that device i is bury in buffered data transfer or bury

with some other external function.

2

I Current BSM address

Dev Addr

Buffer Storage half-word addreg - Bits
15-13 give BSM number and bits 12-0
give address of half-word within the BSM.

3 1

I Number of word transfers remaining

Gives the number of data transfers with the SCU
remaining until a record is completed.

4

Number of records remaining

Gives the number of records remaining to be completed.

5

15 0

BSM Address of CCWl

Gives the BSM address of the CCWl of the
current transfer control block.

6

Fig. 42 - SCC Status Word formats

7 0

NRL REPORT 7704

ACKNOWLEDGMENTS

The authors wish to thank all the Navy personnel whose comments and work have
contributed to the success of the AN/UYK-17 Signal Processing Element design. Deserving
special mention for their roles in the architectural evolution of the SPE are W. David Elliott,
Honey Sue Elovitz, Tomlinson G. Rauscher, John D. Roberts, Jr., Leonard E. Russo, and
Barry P. Shay of the Naval Research Laboratory and James L. Schilling of the Naval
Undersea Center, San Diego, California.

GLOSSARY OF SPE TERMS AND ACRONYMS

AADC

AN/UYK-17

BSM

BSM Data Channel

Buffered Data Channel

Buffered Data Transfer
Control Block

Buffered 110

Buffered Mode

Buffer Storage Channel

Buffer Storage

CCW

All Applications Digital Computer. The SPE can be used
as a component of the AADC.

Military Standard Electronic Equipment designation for
the SPE

Buffer Storage Module. High speed 4000-word by 32-bit
memory accessible by SPE components via the SCU

32-bit-wide data transfer path between a BSM and the
SCU

(1) Processing Unit Data Channel
(2) BSM Data Channel
(3) The entire data transfer path from BSM to SCU to

SPE Processing Unit
A Buffered Data Channel supports 32-bit word transfers
at the rate of one per System Clock cycle.

Transfer Control Block

Data 110 done by SCC in Buffered Mode

Mode of operation of SCC when transferring data
between a BSM and an External Device

Buffered Data Channel

The BSMs comprise the SPE Buffer Storage. Used for
SPE data storage

Channel Control Word. Part of Transfer Control Block.
See System Clock.

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Clock Cycle

Code Point

Command Register

Complex Data

Control Field

Control Store

Control Store Word

CR

CS

Data Channel

DCC

DCW

Device Address

Device Channel

External Device

See System Clock

A combination of values taken on by the bits in a
control field. For example, code point 6 of a three-bit
control field has the following bit values:

weight 22 2l 2 O
value 1 1 0

Register containing the microinstruction being executed
by the MCU or SPAU

Data which take on values over the complex field of
numbers. One complex data point is represented by
two real data words.

A set of contiguous bits in an MCU or SPAU micro-
instruction which controls a well-defined set of MCU
or SPAU resources.

Memory in SPAU and MCU which stores micro-
instructions

Microinstruction

Command Register

Control Store

Buffered Data Channel

Device Channel Controller. Interfaces an External
Device to an SCC.

Device Control Word. Part of Transfer Control Block.

Z-bus device address

Data transfer path between an SCC and a DCC. Has
32-bit data path and functions like the Z-bus with the
DCC slaved to the SCC.

Device which inputs to or outputs from the SPE via
DCCs. Examples are tape drives, other computers,
data channels.

NRL REPORT 7704

Fast Fourier Transform

FFT

Handshaking

A digital algorithm for converting a time series represen-
tation of a signal to a frequency spectrum representation.*

Fast Fourier transform

Communications protocol observed during Z-bus and
Device Channel operation. The MCU or SCC, respectively,
asserts the command line to indicate the beginning of an
operation on the Z-bus or Device Channel. The operation
is not completed nor is a new operation begun until an
acknowledge is returned to the MCU or SCC by the de-
vice addressed by the MCU or SCC.

High-speed Data Channel Buffered Data Channel

High-Speed Device Channel

Interrupt

Low speed device channel

LSB

MCU

Microinstruction

MSB

Peripheral device

Device Channel which supports data transfers at the rate
of one 32-bit word per System Clock cycle.

Signal generated by SCC or SPAU or external devices to
an MCU or generated internally by an MCU to itself.
Alerts the MCU to a change in the status of an SPE
Processing Unit or External Device.

Input/Output:
(1) A Z-bus operation is called Z-bus 110 or 110.
(2) A data transfer between an SCC and an External

Device is also called 110.

Device channel which does not support data transfer
rates of one 32-bit word every System Clock cycle

Least significant bit. Lowest-weight bit in a data word
representing real data.

The Microprogrammed Control Unit of the SPE.
Controls the SPE and provides data manipulation.

Word in Control Store which controls the internal
operation of the processing unit during one clock -cycle.

Most significant bit. Highest-weight bit in data word
representing real data.

External device

*See B. Gold and C.M. Rader, Digital Processing o f Signals, McGraw-Hill, New York, 1969.

97

SMlTH, MNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Priority Go-Ahead Signal

Processing Unit Data Channel

Record

Recursive filter

SCC

SCU

SPAU

SPE

SPE component

SPE Processing Unit

STACK

System Clock

System Clock cycle

Tirneout

Transfer Control Block

Two's complement

Used in Buffered Data Channel operation. Sent b y the
SCU to an SPE Processing Unit to indicate that t h e
Processing Unit has been granted access to the BSM it
requested.

32-bit-wide data transfer path between an SPE Processing
Unit and the SCU

Group of data words treated by the SCC as a logical unit

A digital computation of a filter which has feedback*

The Selector Channel Controller. Connects External
Devices to the SCU or to the Z-bus.

The Storage Control Unit of the SPE. Crossbar switch
enabling each SPE Processing Unit to access any BSM.

The Signal Processing Arithmetic Unit of the SPE. Does
high data-bandwidth calculations.

The Signal Processing Element. Also designated as the
AN/UYK-17(V).

BSM, MCU, SCC, SCU, or SPAU

MCU, SCC, or SPAU

Last-in, first-out nonaddressable memory. The ICU in
the MCU uses stacks for automatic register storage while
processing interrupts.

All SPE Components operate synchronously from a
common clock. The clock cycle is 150 ns. The SPAU
and MCU execute one microinstruction every System
Clock cycle.

See System Clock

1. Internal interrupt generated by an MCU when an
addressed device fails to respond to a Z-bus 110
command.

2. Interrupt generated to an MCU by an SCC when a
DCC fails to respond to a Device Channel command.

Composed of CCW1, CCW2, and any number of DCWs.
Resident in a BSM and used to specify to an SCC how to
control a data transfer between BSMs and an External
Device

Weight assignment used to represent real numbers with
binary words

NRL REPORT 7704

Two's complement fraction SPE data word having the following bit weights:

Bit: 15 14 13 . . . 1 0

Weight: -1 2-I 2-2 . . . 2-14 2-15

Two's complement integer SPE data word having the following bit weights:

Bit: 15 14 13 . . . 1 0

Weight: -215 214 213 . . . 2l 2O

Unbuffered 110

Unbuffered mode

Z-bus

Z-bus Device Address

1. Z-bus 110
2. Operation performed by SCC when in Unbuffered

Mode

Mode of operation of SCC when transferring data or
control information between the Z-bus and an external
device

The SPE command bus which an MCU uses to control
the SPE

Each device connected to the Z-bus has a unique 8-bit
code assigned to it. An MCU places this &bit code o n
the Zbus device address lines when it wishes to
communicate with that device over the Z-bus.

Z-bus 110 See I/Q

MICROPROGRAMMED CONTROL UNIT (MCU) ACRONYMS

ACSAR

ADIN

ADOP

ADROV

ALUISHIFTER

BARA

BARB

Alternate Control Store Address Register

Control Store instruction field. Specifies ALUISHIFTER
operands.

Control Store instruction field. Specifies ALUISHIFTER
operation.

Adder overflow test condition on ALUISHIFTER output

Arithmetic Logic Unit and Barrel Shifter

Buffer Address Register A

Buffer Address Register B

CALL

CARRY

CHANA

CHANB

COND

CSAR

CSLrr

CTR

CTRZERO

CR

CS

DAAL

DBAL

FSCR

FSDR

FSU

FSUZERO

ICU

IIF

INTC

ISR

JUMP to ACSAR

JUMP to LIT

SMITH, MNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

Control Store instruction sequence

Test condition on ALUISHIFTER output

Buffer memory channel A

Buffer memory channel B

Control Store instruction field. Specifies test conditions
for Control Store sequencing.

Control Store Address Register

Control Store instruction field. Specifies the Control
Store literal.

Counter

Test condition on Cl'R output

Command Register

Control Store

Control Store instruction field. Write address for LSA.

Control Store instruction field. Write address for LSB.

Field Select Control Register

Field Select Data Register

Field Select Unit

Test condition on FSU output

Interrupt Control Unit

Interrupt Inhibit Flip-flop

Control Store instruction field. Changes values of IIF
and SIF.

Interrupt Status Register

Control Store instruction sequence

Control Store instruction sequence

NRL REPORT 7704

JUMP to ZREG

LEAST

LIT

LS A

LSB

MOST

NEXT

RETURN FROM INTERRUPT

SAAL

SAR

SARA

SARB

SAUX

SAVE

SBAL

SIF

SLSA

SLSB

STER

WBUF

ZERO

ZREG

Control Store instruction sequence

Test condition on bit 0 (LSB) of ALUISHIFTER output

Local Store A

Local Store B

Test condition on bit 15 (MSB) of ALUISHIFTER
output

Control Store instruction field. Specifies Control Store
sequencing.

Control Store instruction sequence

Control Store instruction field. Read address for LSA.

Shift Amount Register

Control Store instruction field. Source for address
register A.

Control Store instruction field. Source for address
register B.

Control Store instruction field. Source for auxiliary
registers.

Control Store instruction sequence

Control Store instruction field. Read address for LSB.

Software Interrupt Flip-flop

Control Store instruction field. Specifies source for
LSA writes.

Control Store instruction field. Specifies source for
LSB writes.

Control Store instruction sequence

Control Store instruction field. Specifies writes into BSM.

Test condition on ALUISHIFTER output

SMITH, IHNAT, SMITH, HEAD, FREEMAN, WU, AND WALD

SIGNAL PROCESSING ARITHMETIC UNIT (SPAU) ACRONYMS

ACSAR Alternate Control Store Address Register

AG Address Generator

Ai, i = 1, . . ., 4 ALU i, in AS

Ai, i = 5, 6, 7 ALU i, in AG

ALU Arithmetic Logic Unit

AS Arithmetic Section

BARA Buffer Address Register A

BARB Buffer Address Register B

CFS ROM and Coefficient Store

CHANA Buffer memory channel A

CHANB Buffer memory channel B

CR Command Register

CS Control Store

CSAR Control Store Address Register

CTRI Counter I in AG

CTRJ Counter J in AG

CTRK Counter K in AG

INCA Increment Register for A5 in AG

INCB Increment Register for A6 in AG

INCR Increment Register for A7 in AG

110 Z-bus I/O

IOCU I/O Control Unit

LIT Literal control field in SPAU instruction word

Mi, i = 1, . . ., 4 Multiplier i, in AS

NRL REPORT 7704

Pi, i = 1, . . ., 4

RAR

Ri9 i = l9 . . .? 4

ROM

R7

SU

WSAR

W STORE

XSAR

X STORE

YSAR

Y STORE

Zi, i = l , . . ., 4

Product Register i, in AS

CFS Address Register

Result Register i, in AS

Read Only Memory

Result Register for A7 in AG

Sequence Unit

W Store Address Register

Local store in AG

X Store Address Register

Local store in AS

Y Store Address Register

Local store in AS

CFS Input/Output Register to AS

