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ABSTRACT 

Modeling and simulation of the proposed Naval Advanced Avionic Mgital Com - 
puter (AADC) has been undertaken in order to study system performance and arrive 
at  optimum hardware configurations. 

The AADC baseline design assumes that the workload consists of a set of nearly 
independent tasks, each of which runs periodically. A task memory of 0.5 K to 4 K 
words is directly addressed by the computer module during the execution of a task, 
but the binding together of tasks and of their references to data sets sharedby more 
than one task is the responsibility of a separate Master Executive Control (MEC). 

In the simulations reported here, these assumptions have been accepted, and a 
set of assumed task characteristics have been derived from a previous study of the 
E-2B avionic system. However, the tasks have been further broken down into sequences 
of smaller segments, and, although it  is assumed that the address space of the com- 
puter is large enough to span a task, smaller task memories and a paging mechanism 
are considered. 

The simulation shows increases in operating efficiency with decreasing page 
sizes and increasing task memory sizes, with the improvement waning as the task 
memory becomes large enough to contain most of a task's code. Simulations on an 
unpaged task memory reveal that an unpaged task memory must be considerably 
larger than a paged memory to yield the same efficiency. 

For the one -processor configurations studied, large task memories a r e  best 
used in a multiprogrammed mode; i.e. segments from more than one task should be 
permitted to reside simultaneously in task memory. 

The simulations suggest that, if the virtual address space of task memory is 
around 4000 words, the efficiency of a considerably smaller, but paged, task memory 
is nearly as high a8 that of an unpaged task memory of size equal to i ts virtual size. 
Since the former approach should be significantly less costly for high-performance 
task memories, the small paged task memory should yield better costeffectiveness. 

These conclusions a re  based on baseline MEC assumptions. It should be noted 
that the relatively short processing times of the segments suggests that more atten- 
tion should be given to the amount of system overhead devoted to managing transfers 
and to the efficiency of job scheduling. 

PROBLEM STATUS 

This is an interim report on one phase of the problem ; work on this and other 
phases is continuing. 

AUTHORIZATION 

NRZ, Problem B02 -06 
Project NAVAJR W F  15-241-601 

Manuecript eubmitted February 3 ,  1971. 



SIMULATION OF AADC SYSTEM OPERATION 
WITH AN E-2B PROGRAM WORKLOAD 

INTRODUCTION 

A Navy program has been instituted to develop an Advanced Avionic Digital Computer 
(AADC) (1) to counteract proliferation of hardware and software as future avionics mission 
requirements grow and vary. Development of a system which will perform efficiently on 
a variety of platforms under different workload environments demands consideration of 
modular growth, logistic computability, and balancing of computer resources. 

The baseline configuration of the M C  system (2) i s  that of a multiprocessor with a 
two-level memory hierarchy engaged in exchange of program tasks from read-only bulk 
store to small, high-speed working memories for real-time processing. Cost considera- 
tions suggest that these local working memories (task memories) be designed as small 
as possible consistent with efficient processing of the mission workloads. 

The optimum size of task memory is dependent upon features of the hardware surround- 
ing it and of the program workloads to be processed. Processor speed and bulk-store 
data-transfer rate directly influence overhead-processing time ratios. Advantage can be 
taken of inherent modularity of processes within task programs to reap maximum use of 
load cycles and working storage space. 

Program modularity has been well recognized as a key to improved operating efficiency. 
System implementations of cache memories, paging, and overlays (3,4) make use of the 
tendency of processing to be concentrated over a limited portion of program in a limited 
interval of time. Indeed, the task memory concept in AADC is a manifestation of such 
recognition. 

Just how much shrinking of task memory size is feasible overtly depends upon how 
finely the mission program workload can be subdivided into separate tasks or  job. Any 
such task then can be loaded into an appropriately sized task memory for processing. 
Less overtly, individual tasks can themselves be subdivided into smaller units o r  pages. 
Then, processing might take place in a system with smaller task memories sized to con- 
tain some subset of a task's pages and having a facility to replace pages as new ones 
request processor service. Simulation of the AAM: baseline architecture and attendant 
workload has been chosen as the vehicle for examining the performance, under varying 
characteristics, of proposed architectures in representative workload environments (5). 
Models have been devised to provide meaningful representations of the behaviour of the 
AADC system and avionic programs. 

This report presents a description of the system simulation and results obtained. 

Note-A brief version of this report was presented at the AADC Program Revue at the 
Naval Air Development Center, Warminster, Pennsylvania on February 18,  1971.  
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THE WORKLOAD MODEL 

In order to make useful conclusions about the interaction of AADC software with 
various hardware configurations, one must know something about the characteristics of 
such software. Delineation of program segments and their patterns of computer resource 
demand provides a means for defining such characteristics. The efficiency with which 
resource demands are  met depend upon the amount of time the system consumes in  shuffling 
program and data among various areas of storage space as requests for services by 
different programs arise. 

Each segment of a task is a group of contiguous words of code such that they constitute 
a set of functionally related instructions. Thus defined, each time a segment goes into 
execution, it can be considered as placing a known demand on the system, such as memory 
space, processor time, and data references. Then, the complete processing of a given 
task involves the consecutive processing of a chain of segments where their order of 
execution is governed by the pattern of predecessor-successor dependencies designed into 
the program when it is written. 

In order to have meaningful workloads for simulation, work has been prosecuted by 
others to analyze avionics-type programs and algorithms. In particular, a study of the 
Navy E-2B digital avionics computer system was made (6) for the purpose of gleaning 
such program characteristics as mentioned above. Program segments, their attributes, 
and reference patterns were compiled into data suitable for implementing a simulated 
workload. 

Figure 1 shows a segmented program description of one of the tasks in the simulated 
workload derived from the E-2B study. The arrows represent the sequence of processor 
demand from one segment to the next with probabilities for branching segment.. Size in 
words, number of instructions executed, and number of data words transferred are shown 
for each segment. Note that on the average, and indeed for any given execution of this 
task, only a fraction of the entire program is called into service. Since computing efficiency 
is degraded by overhead due to program loading, it would be desirable to bring into task 
memory only those segments actually needed for a particular execution. 

Loading programs on a segment-demand basis implies the inefficiencies and compli- 
cations of loading scattered and various sized groups of code from a block-oriented 
secondary memory (BORAM) into taskmemory. Instead, if the program segments are  
packed into uniform blocks or  pages sized to be consistent with BORAM blocks and task- 
memory size, the blocked structure of secondary memory would be utilized effectively, 
and program address translation would be made a simple procedure. There is one caveat 
associated with program paging, and that is that internal fragmentation or  packing ineffi- 
ciency can waste BORAM resources by allowing some unfilled space at the end of each 
page. Fortunately, judicious partitioning and packing of pages at compile time can result 
in fractionally small areas of empty storage. It might be desirable to have empty space 
reserved at the bottom of pages for storage of transient data or  for other scratch-pad use. 

Table 1 shows how the program segments of Fig. 1 have been grouped into pages of 
256 words. The criterion for assigning segments to pages is that most frequently used 
segments which are closely related in terms of order of execution should fall into common 
pages. This criterion ensures that a page brought into task memory has a low likelihood 
of containing unreferenced words of program. Referring to Fig. 1, we see that segments 
1, 4, and 11 will be referenced every time the task is executed, and as such belong on 
the same page. Any space left is best utilized by choosing some lesser used segments 
which will approximately f i l l  the remainder of the 256 words. Segment 7 is the choice in 
this case. The other low use segments have been paged for efficient packing. 
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Appendix A contains the segmented program descriptions of the entire simulated 
workload. 

Table 1 
Paging Structure of Program Segments of Figure 1 

THE AADC MODEL 

The computer model has been configured from an assumed structure of the AADC 
baseline (2) architecture. The model contains the essential operating features of bulk 
store, task memories, and random-access, temporary-store memory. Figure 2 displays 
the block diagram of the modeled system. 

Certain assumptions have been made about the system architecture and operating 
strategy. The purpose is to produce a system simulation which will best reveal the 
dependence of workload processing efficiency on variations in memory resource allocation 
such as task memory size and program paging. 

4 

8 

3 

3,5 
12,13 

Program Page 
Number 

Program Segment 
Number 

The model is set  forth in this section as follows. 

System Hardware Units 

5 

9 

1 

1,4 
7,11 

1. BORAM (Block Oriented Random Access Memory)-BORAM is a read-only store 
for the entire workload and is of unlimited size. Concurrent loading of two different 

6 

10 

2 

2,6 

- 
blocks of program into different task memories is possible. 

2. TM (Task Memory)-A 'I'M is a random access store fo r  program instructions 
and data. TM receives program from BORAM and can exchange data with RAMM. TM 
can be page oriented. 

3. Processors-All processing is done out of TM. A processor gives up TM cycles 
to RAMM-TM data transfers. 

4. RAMM (Random Access Main Memory)-The RAMM structure is modular, con- 
sisting of one o r  more independent units. Each module can communicate with any TM o r  
1/0 channel. RAMM is not page oriented. 

5. Busses-The RAMM-to-TM bus system is multiplexed, allowing any number of 
TM-RAMM module pairwise communication paths to be active concurrently. 1/0 busses 
allow one o r  more concurrent I/O-RAMM module communication paths. RAMM-1/0 word 
transfers have priority over RAMM-TM transfers, which must wait until the RAMM 
module is free. The BORAM-to-TM bus structure allows BORAM to concurrently load 
up to two TM's, with different blocks of program. 
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System Operating Strategy 

1. The system is multiprogrammed with each CPU running one job a t  a time. 

2. Jobs arrive cyclically and a r e  processed on a first-come-first-served basis. 

3. Once a program s tar ts  execution, it runs to completion without interruption. 

4. Program processing and storage take place in a paging environment. 

5. Page-loading into TM takes place on a demand basis. 

6. Pages to be written over by newly demanded pages coming into TM a r e  chosen by 
some "reasonable" algorithm, such as #least recently used." 

7. Processing is done out of TM only. 

8. There is no communication between adjacent CPUs. 

9. RAMM is used f o r  temporary storage of data only and does not serve a s  a secondary - 
level program store. 

10. Requests for RAMM data transfers a r e  initiated by program control with the RAMM 
in charge of servicing the requests. Requests a r e  assumed to be distributed uniformly 
over the processing time of a segment generating them, with a given percentage represent- 
ing requests for the data that must be satisfied before that segment's execution can start .  
The number of words in a data transfer is dependent on the total number of data words and 
the expected number of requests associated with the processing of a segment. Requests 
a r e  distributed uniformly over the number of RAMM modules. Finally, if a request has 
not been serviced by the time a processor needs the data, then that processor must stop 
and wait . 

11. Space for  storage of transient data in TM is set  aside either as predefined loca- 
tions of block storage loaded into TM within each page of program o r  a s  a collective area  
of storage location in each TM. 

12. The system can be run with task memory containing pages only from the task in 
process (monoprogrammed task memory) o r  with task memory retaining pages from 
previously run tasks, to the extent that these pages a r e  not displaced by tasks in process 
(multiprogrammed task memory). 

Parameter Definition 

To provide flexibility, the following workload and system parameters have been given 
the status of user-specified constants in the simulation model and can be arbitrarily se t  
before the s tar t  of a simulation run. 

Workload 

1. Number of programs in the workload. 

2. Inter-arrival time of each program, and whether it is fixed o r  exponentially 
distributed. 

3. For  each segment in a program, the next segments referenced and the associated 
probabilities, 
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4. Number of words of storage required by each segment. 

5. Number of instructions executed in each segment. 

6. Number of words of data transfer during the processing of each segment. 

7. Number of words of 1/0 during the processing of each segment. 

8. The particular page into which a segment is grouped. 

9. Page size in words. 

System 

1. Number of CPU's 

2. Number of BORAM busses. 

3. B O W  transfer rate in words per microsecond. 

4. B O W  block access time in microseconds. 

5. Processor speed (average) in instructions per microsecond. 

6. TM size in words. 

7. Number of RAMM modules. 

8. RAMM speed in words per microsecond. 

Operation 

1. CPU memory usage strategy (choose monoprogrammed o r  multiprogrammed TM). 

2. Page loading strategy (choose page loads o r  complete program loads). 

THE SIMULATION 

The system modeling is implemented in SIMSCRTPT, an event-oriented process 
simulation language. The characterization of a computing system at work by the occurrence 
of a series of related events is particularly appropriate where the workload computation 
is represented as a chain of program segment executions. 

A simulated event is defined such that everything occurring in that event takes place 
a t  the same instant of time. The simulated process is endowed with dynamic behavior 
by virtue of the fact that any event can schedule the occurrence of other events at  future 
instants, depending on conditions. 

The progress of a job through a computer thus can be characterized by chains of 
events, such as "Start Page Loading into TM," which schedules upage Load CompleteH 
at a future time dependent on the interval required to transfer the page. upage Load 
Complete" then immediately schedules "Start Segment Execution, " etc. 

The scheduling or  not scheduling or  the deferment of events will depend upon the 
status of various system parameters such a s  the availability of CPU's or busses. 
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It will be noted that, in this model, the MEC is not simulated a s  a separate identifiable 
entity but is included in the system a s  the entirety of decisions which cause events to occur 
as if the MEC were in control. It will be advantageous to explicitly simulate a controlling 
MEC block where MEC algorithms a r e  being assessed o r  a software MEC is to be simulated. 

Figure 3 shows a simplified block diagram of the AADC system simulation, where 
each block represents a separate event comprising a routine of computations, checks, and 
alterations on various system parameters. Arrows between events represent the scheduling 
of one event by another. The time interval between events is indicated along the arrows. 

A brief description of the functions of each event follows. 

Generate job-Causes programs to arrive for service at  fixed or  random intervals 
as specified by the user. 

Start Job-Attempts to start  programs waiting for  service. If no CPUs a re  available 
at this time, the system must wait. 

Start TM Load-Attempts to load a program's pages into TM. If the busses are all 
busy at  this time, then the load must wait. 

TM Load Complete-Releases the BORAM bus and schedules Start TM Load in case 
any programs a r e  waiting for  a bus to load with. 

Start Sement  Execution-Starts the processor and, based on the amount of associated 
data, generates a set  of RAMM requests to be initiated over the processing time of the 
segment. 

Schedule Request-Causes a RAMM request to be scheduled to occur. Jf no requests 
remain, causes completion of execution to be scheduled. 

Segment Execution Complete-Stops the processor and goes on to cause reference of 
the next segment. 

Call Next Segment-Uses the workload input data to pick the next segment to s tar t  
execution. If the program is completed at  this point, the CPU is released and the "Start 
Job" event is caused. If the next segment referenced is already in TM, we go right to 
'Start Segment Execution;" otherwise the %tart Page Load" event is called to bring the 
new segment into TM. 

Make Request -A request is initiated at this time for a given RAMM module. 

Demand Data-Data requested by a processor a r e  needed at this point. If the request 
has not been satisfied yet, the processor is stopped. 

Start Data Transfer-Attempts to start transferring data specified by a request. If 
the RAMM module is busy, the transfer must wait, 

Request Satisfied-The data transfer is complete and the appropriate RAMM module 
is released. A jump to &Start Data Transfer" is made in case other requests a r e  waiting 
for  this module. 

Detailed flow charts of events and subroutines a r e  shown in Appendix B. 
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Fig. 3 - Block diagram of AADC system simulation 
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SIMULATION RESULTS 

Monoprogrammed Simplex Processor 

The E-2B program workload constitutes a processor load of less than 100,000 instruc- 
tions per second. By AADC standards (2x106 instructions per second), this is a very 
light demand and would warrant the service of only a single CPU as  in the simplex version 
of the AADC. The design iteration rates of the E-2B program modules were doubled for 
this simulation to increase the loading. 

The average system resource demands by each program in one iteration are listed 
in Table 2. These data were obtained from an analysis of the program segment flow charts 
shown in Appendix A. 

Table 2 
Summary Characteristics of Simulated 

Workload Tasks 

Task 
Number 

Program 
Size 

Program Words 
Processed 

per iteration 
(average) 

Iterations 
in ten 

seconds 

Instructions 
Executed 

per iteration 
(average) 

The effect of task-memory size on paged workload processing can be assessed by the 
relative amount of time the system spends in keeping task memory loaded with required 
sections of program. We will define the efficiency with which memory is allocated to 
program tasks as the ratio of processing time to loading time plus processing time. 
Processing time, for a given set of programs run over a given time, is invariant with 
changes in paging structure or  working memory size. The assemblage of segments 
referenced and processed will be fixed; only their patterns of inter-memory transfers 
will vary. 

Data Word 
Transfers 

per iteration 
(average) 

The range of interest for task memory sizes appears to center around 2048 words. 
For monoprogrammed memories, if no task is greater than 4096 words in size, then 
certainly additional memory for program storage beyond this is being wasted. Since the 
i~lformation on segment structure in the simulated workload did not allow a partitioning 
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finer than 256 words per page, a 256-word lower limit was set upon the investigated size 
of simulated task memory; fractional pages are not allowed. The lower bound on usable 
page size is actually set by the characteristics of the BORAM. BORAM blocks will probably 
be 128 o r  256 words in size, and efficient use of its high word transfer rate (7 words/psec) 
demands that page transfers comprise an integral number of blocks. With an access time 
of only 2 psec, BORAM is used very efficiently (95 percent) where accesses are  made to 
transfer entire blocks of 256 words. 

Simulation runs were made under the following conditions: 

1. Monoprogrammed task memory 

2. Paged processing 

3. One CPU 

4. One RAMM module 

5. One BORAM bus 

6. Processor Speed-2 instructions/psec 

7. BORAM Speed-7 words/psec 

8. BORAM Access Time-2 p sec 

9. RAMM Speed-3 words/~sec 

10. Task memory and page size combinations a s  listed in Table 3. 

Table 3 
Page Size-TM size combinations run 

Page Size TM Sizes 

256, 512, 1024, 2048, 4096 

Table 4 displays results of simulation under the conditions specified above. 

Program transfer efficiencies a s  measured by the ratio of total task processing time 
to CPU in-service time are  given in Table 5. 

The data of Table 5 are plotted in Fig. 4. For a given page size, transfer efficiency 
increases with task-memory size, as  would be expected. The larger task memory is, the 
greater the likelihood of it containing segments needed by a given reference. Conversely, 
for a given task-memory size, efficiency decreases with increasing page size. Smaller 
pages brought into task memory have a lower likelihood of containing segments unneeded 
in the near processing future, Since the B O W  access time is very short, the time 
required per page load increases nearly linearly with increasing page size, leveling off 
only in the region where the block transfer time is  down near access time (approximately 
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Table 4 
Results of 10 -Second Simulated Runs with Various Paging 

(Monoprogrammed TM) 

Table 5 
Mean Program Loading Efficiency 

for Various Paging 

CPU 
Time 
(psec) 

1573191 
1432872 
1364791 
1333981 
1333981 
1599496 
1484461 
1429831 
1429831 
1690755 
1565902 
1565902 

20 words per block). At the same time, the paging rate or page-fault frequency decreases 
less than linearly with increasing page size. The reason for this, as  already alluded to, 
is that larger pages, while they would otherwise run through processing at a lower per 
unit rate, more frequently contain wasted space committed to unreferenced code; pages, 
then containing the needed code must be referenced at a correspondingly higher rate. 

Load 
Time 
(psec) 

562940 
422621 
354540 
323730 
323730 
589245 
474210 
419580 
419580 
680504 
555651 
555651 

TM 
Size 

(Word) 

256 
512 

1024 
2048 
4096 

The plots for eachpage size level off at a task-memory size of 2048 words. Although the 
largest task comprises 4096 words and one other is greater than 2048 words, no task 
requires the processing of more than 2048 words of code in any given iteration. In fact, 
analysis using the segmented program descriptions in Appendix A reveals that the expected 
amount of program actually referenced for processing, averaged over all the tasks, is 
approximately 400 words! Thus, there is only marginal increase in efficiency once task- 
memory size exceeds the working requirements of the average job in the processing 
workload. 

Page 
Loads 

14,814 
11,121 

9,330 
8,519 
8,519 
7,857 
6,323 
5,594 
5,594 
4,598 
3,754 
3,754 

The data in Table 4 allow us to determine the instruction usage. Dividing processor 
time by the number of tasks run gives a mean of 240 Fsec processor time per task, or  
480 instructions executed at a 2-mips rate. Instruction usage is then about 120 percent 
in referenced segments. 

Segment 
References 

18,819 

Page Size in Words 

Data 
Request 
Time 
(psec) 

159,327 

256 

64.3 
70.6 
74.0 
75.0 
75.0 

Processor 
Time 
(psec) 

850,924 

TM 
Size 

(Words) 

256 
512 

1024 
2098 
4096 

512 
1024 
2048 
4096 
1024 
2048 
4096 

Jobs 

3537 

512 

- 
63.3 
68.1 
70.8 
70.8 

Page 
Size 

(Words) 

256 

512 

I 
1024 

1 

1024 

- - 
59.9 
64.7 
64.7 
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Fig. 4 - Loading efficiency versus task memory 
size and page size 

It is of interest to examine the paged simulation data in light of ideas presented by 
Peter Denning in his papers on virtual memory and working sets (7). A working set of 
program is defined to be the average set of program segments which are  referenced during 
some moving time window At. In a virtual memory system, Denning judges the size of 
working (taek) memory to be adequate for good loading efficiency, provided that it will 
contain the working set defined over a time interval equal to two page-load times. 

Note that the simulation results with a page size of 256 words and task memory equal 
to 4096 words provides a means for determining the program working set defined over a 
short time interval. Dividing the number of page loads by the number of tasks run gives 
us 2.5 pages per task. This figure represents the average number of unique pages 
referenced into working memory for each program run. Since a 4096-word task memory 
is large enough to hold all of any task's referenced pages, there is no page swapping, and 
any page is loaded only once per run when it is first  referenced. Using the average task 
processing time of 300 psec (including data transf era), we find that one page is brought 
into the task working set every 120 psec. Now, the time required to load one 256-word 
page from BORAM into task memory is only 2 + 36.5 = 38.5 psec. Therefore, a task- 
memory size of only 256 words is more than sufficient, on Denning's basis, to allow 
processing with efficient memory allocation. The reason for this unusually small working- 
memory requirement as compared to most virtual memory systems is, of course, the 
very short BORAM block load time. In a conventional rotating secondary storage with 
millisecond range access times, many pages will be referenced in the transfer time of 
a page, and the working memory must be large enough to ensure that a high percentage 
of references will find the needed page already in residence; otherwise, thrashing will 
occur. 
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Multiprogramming Task Memory 

If files of task-memory page contents are  kept available from job to job, then a 
modicum of mulitprogramming will occur as larger task-memory size increases the likeli- 
hood of a job's needed pages already being in residence from the previous iteration of 
that job. This effect is limited to the simplex version of the system, where only one task 
memory is available for running a task. 

Simulation runs were made under the same conditions as in the monoprogrammed 
task-memory case. However, task-memory page contents were left intact between job 
iterations, except for normal loading due to page faults. Since, now, twelve tasks a r e  
competing for storage, the increasing of task-memory size brings about increasing effi- 
ciencies as  each new job begins finding its referenced pages already available. 

Table 6 displays the results of the multiprogrammed runs. Except for the extended 
task-memory size, all conditions are  identical to the monoprogrammed case. 

Jobs 
Run 

3537 

Table 6 
Results of 10-Second Simulated Runs with Various Paging 

(Multiprogrammed TM) 

'I'M 
Size 

(Words) 

Page 
Size 

(Words) 

Processor 
Time 
O.sec) 

2 

5 

1024 

Request 
Time 
(psec) 1 159,327 

56 

12 

Segment 
References 

18,819 

page , 
Loads 

14,814 

11,121 

9,186 

5,645 

1,375 

372 

7,857 

6,287 

4,838 

1,084 

260 

4,598 

3,601 

1,616 

320 

Load 
Time 
bsec) 

CPU 
Time 

Multiprogrammed loading efficiencies given in Table 7 have been superimposed on 
the monoprogrammed results and plotted as shown in Fig. 5. At the low end of the curves, 
the monoprogrammed and multiprogrammed efficiencies coincide. The smaller task 
memory is not able to hold the working sets of enough tasks to allow the residence of a 
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Table 7 
Mean Program Loading Efficiency 

for Various Paging 

TM 
Size 

(Words) 

2 56 

5 12 

1024 

2 048 

4096 

8192 

A - - - - - - - 
Complete Tanka 

100 

BO 

* 80 P 
B 
ff 

lo 

60 

4 I I I I I I " 266 512 1024 2048 4046 8192 Words 

Page Size in Words 

- 

- 

- 

- 266 
word 
paee - 

Task memory size 

Fig. 5 - Program loading efficiencyversus task 
memory size and page size. Multipr ogrammed 
resul ts  superimposed on monoprogrammed r e -  
sults.  Also plot tedare the e f f i c i e n c i e s  for 
c o m p 1 e t e task loading a n d segment loading 
operations. 

1024 

- 
- 

59.9 

65.5 

81.0 

95.7 

2 56 

64.3 

70.5 

74.5 

82.6 

96.0 

98.7 

512 

- 
63.3 

68.3 

73.7 

92.7 

98.3 
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task's pages from one iteration to the next. However, once the most frequently used 
pages of the most frequently executed tasks can all occupy working memory, the page- 
loading rate s t a r t s  dropping rapidly, and high efficiency results. Thus, the spread in 
efficiencies between the multiprogrammed and monoprogrammed system operations 
represents the saving in start-up loads as jobs arrive for  service. Eventually, as t a s k  
memory becomes larger,  the entire workload can reside permanently in working storage, 
and the system reduces to a standard multiprogrammed system with a one-level memory. 

The efficiencies shown represent the twelve-task simulated workload. With a g rea te r  
number of separate tasks running, task memory would have to be correspondingly l a rge r  
to handle the jobs with the same efficiency. 

Non-paged Monoprogramm ed Operation 

We wish to make some judgments about the effectiveness of the system under the 
various simulations. Comparisons of efficiencies between the paged system and other 
architectures is an aid in making such judgments. 

Some standards a r e  needed by which to make comparisons. To obtain these, simula- 
tions were run with the same workload being processed in the more conventional, non- 
paged mode. Two strategies were investigated. First,  as in the baseline AADC architecture, 
each task is fully loaded into task memory for processing. Consistent with the largest  
program in the se t  of twelve, task-memory size would then have to be 4096 words. Second, 
assuming some foreknowledge of which segments of a task will be required in a given 
iteration, only those required segments a r e  loaded into task memory for processing. The 
working -memory requirement in this case, from examining the workload description, 
would not be larger than 2048 words. 

Data for  case one was obtained by simulating each task as consisting of one 4096-word 
page and then compiling load times based on the task program size rather than page size. 
For case two, using the computed figure of 400 words of program referenced per task 
execution, the number of jobs run and the processing time from case one, the appropriate 
efficiency data was obtained. The results a r e  displayed in Table 8. In order to show the 
significance of these two cases, the respective efficiencies a r e  plotted on the composite 
graph of the monoprogrammed and multiprogrammed paging data in Fig. 5. 

Table 8 
Results for AADC Baseline and Demand 

Segment Loading Operation 

Considering the already demonstrated characteristics of program segment usage, it 
is not surprising that fully loading each task for processing significantly reduces memory 
usage efficiency. With an average program size of about 1500 words, a penalty is being 
paid in transferring unprocessed code from BORAM to task memory. 

System 

Baseline 

Segment 
Loading 

Loading Time 
GLsec) 

764,767 

202,200 

CPU Time 
( ~ e c )  

1,775,028 

1,212,461 

Efficiency 

57.0 

83.5 
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In case two, loading is minimal as each job arrives for service, and the resulting 
efficiency bounds the best possible efficiency that could be obtained with monoprogrammed 
paging. U~lfortunately, implementation of the prespecified segment loading scheme is for 
practical purposes unachievable, and a task memory of 2048 words is still required. Also, 
the computed efficiency is somewhat better than that which would be obtained in the actual 
system. Each load still requires access to and transfer from a BORAM block of all loca- 
tions ahead of the needed segment as well as the segment itself. 

CONCLUSIONS AND IMPLICATION OF 
RESULTS TO AADC 

Workload analysis and modeling have been incorporated with computer models having 
AADC-like characteristics. Simulated runs on this system have provided data revealing 
some dynamic properties inherent in processing with such software-hardware systems. 
Attention was given to presenting the simulated processor with a representative workload 
mix. No dependence on methods of job scheduling was necessary to the relevancy of the 
results. 

A number of immediate observations spring from a study of the results herein. 

For the Workload: 

1. Tasks tend to be inefficient in their use of code (considerably less than 100 percent 
of a task's program code is actually processed in one iteration). 

2. Code actually processed is not utilized at much better than a 100% rate (looping 
and instruction repetition do not comprise a large percentage of processing activity). 

3. Even with coarse partitioning, tasks can be broken into separate segments enabling 
efficient selective usage of needed code. 

For the system: 

1. Paged processing of the workload provides operating efficiencies a s  good as o r  
better than non-paged operation, even for small task memory sizes. 

2. Decreasing program page size has a more beneficial effect on memory utilization 
efficiency than a corresponding increase in task memory size. 

3. Multiprogramming task memory in a simplex processor can eliminate much of 
the overhead of program initial loading, although at the expense of increased task memory 
size. 

- 4. Task-processing times at the AADC processing rate tend to be so short as to 
render task-memory loading time a significant percentage of the CPU time. 

5. Data transfers represent a significant but moderate portion of task-processing 
time. 

Clearly, a feasible approach to reducing task memory size in the AADC is the paged 
operating system. Besides the advantage of small task memory, such a system allows 
the inclusion in the workload of tasks larger in size than working memory and limited 
only by the virtual range of the address bits in an instruction word. Although the address 
space assumed in these simulations is limited to 4K, the paging concept easily allows for 
the processing of tasks larger than 4K. 
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A paged operating system can be implemented in hardware with only page-fault inter- 
rupts requiring the services of the executive. A possible hardware implementation requires 
one small associative memory stack for each CPU. Each associative memory contains a s  
many words as page frames in a task memory. Each word contains a resident page number 
and its base address in task memory. The associative memory then serves a s  an address 
translator from program virtual addresses to the local task-memory addresses. Additionally, 
by always having the address word last referenced brought to the top of the stack, the 
number of the least recently used page is automatically kept at the bottom for first removal. 
An address reference to a page number not in the associative stack creates an interrupt to 
transfer that page from BORAM to task memory. Each time the executive loads a page, 
the appropriate word in the stack is updated with the new page number. For a more detailed 
description of such an associative stack, see Appendix C. 

It is tempting to consider the relatively good performance of the paged system simula- 
tion with a 256-word task memory containing one 256-word page at a time. Use of such a 
small amount of memory might allow the selection of ultra-fast but costly or  power- 
consuming technologies. Additionally, the presence of only one page frame in task memory 
would eliminate the need for maintaining page location and address translation tables as 
well as order of page usage. Not to be neglected, however, is the need for  space to store 
system and local variable data. The constraint on segmenting and paging imposed by 
requiring appropriate amounts of space to be left available in pages for such usage is rather 
tight, not to mention the waste of BORAM for scratch space storage. A workable compromise 
to the dilemma might be the extension of task memory to 512 words, with the additional 
256-word frame reserved for data and scratch space. 

In any case, for the paged system, the extension of task-memory size beyond 1024 
words appears inappropriate and wasteful. Page faulting rates are  reduced only marginally, 
because the bulk of loads represent those few pages consistently needed by tasks each time 
they a re  serviced. 

If processors are  given direct access to RAMM modules, the bulk of working-memory 
space normally given to storing data would be freed for  program storage. Task-memory 
reduction in these circumstances might be achievable by defining and coding all workload 
tasks such that they contain less than, say, 1024 words. Observing an average task size 
of 1500 words and a usage of only 400 words per run in the simulated workload, it is not 
unreasonable to propose the partitioning of task processes into separately defined tasks 
which will process in a 1024-word memory. In a sense, tasks would be broken into 1024- 
word pages. The beneficial difference between this and the normal paged system is that 
all pages a r e  now identifiable tasks scheduled by the executive in the usual way. The only 
concession to paging operation might be the inclusion of an internal-program -module 
interrupt capable of being activated by a task in process. This would provide for the 
repeat assignment of a task forming, with another task, a closed processing cycle needed 
in occasional jobs. 

Under any circumstances, however, it appears that a paged system with a 1024-word 
task memory bears some attention. The benefit of reduction in task-memory size by 50 
o r  75 percent over the non-paged implementation is available, along with less overhead 
due to program loading. If MEC (Master Executive Control) participation in the paging 
process .can be limited to a single routine to initiate page transfers, total system operat- 
ing efficiency ought not be compromised and might well be improved. 

Implementing a paged AADC with multiprogrammed task memory can be considered 
appropriate in the case of the simplex processor. A software MEC will be a characteristic 
feature of the simplex processor due to the comparatively high cost of a hardware executive. 
Sharing of working memory by executive routines and program will create a need for a 
task memory larger than the nominal 2K to 4K range. Now, putting a larger memory to 
work in a multiprogrammed mode will result in less loading overhead, the amount becoming 
smaller a s  more pages of frequently processed tasks are resident. 
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Interestingly enough, executive routines separated into pages can also become part 
of the multiprogram workload and be paged in as needed. 

Caution must be exercised in trying to apply the results of multiprogramming to the 
multiprocessor version of AADC. The likelihood that a given task's referenced pages a r e  
already resident in a given working memory will be decreased as more CPU's are  active 
in task processing. However, with a MEC capable of assigning tasks to CPU's on the basis 
previous assignments, multiprogramming task memories in a multiprocessor could be 
very fruitful. 

Besides the c o ~ e c t i o n  of the simulation results to paged operation, they also relate 
closely to some aspects of AADC executive control. The results show that the average 
CPU time per job including processing, data transfer, and program loading is about 500 
psec. This, of course, represents the E-2B workload, but given the constraints of 4K 
maximum task size and the code-usage efficiency already in evidence, there is reason to 
believe that average task CPU time for most AADC workloads will not exceed the one- 
millisecond range. 

It follows that, given the baseline AADC operating system, program load times could 
constitute from 20 to 40 percent of CPU time. It is important, then, that the MEC avoids 
standing watch over BORAM to task memory transfers and consuming large amounts of 
time in the process. Use of interrupts which leave the MEC free from program transfers 
except for attention to their initiation and completion is almost mandatory. 

If there are several CPU1s all heavily loaded, it is evident that the BORAM loading 
time can become a high percentage of overhead. It may be appropriate to have two or  
more busses from BORAM to task memories to eliminate a bottleneck at that point. Then, 
the executive should be capable of initiating and servicing concurrent program transfers. 

Executive timekeeping and job-scheduling procedures also bear some inspection in 
the light of such short job-processing times. If the scheduler task load is limited by the 
total of free-running times in a given cycle of jobs, some under-usage of resources might 
occur. Executive updating of job-processing progress limited by a clock interrupt quantum 
which is much greater than average job running time could cause CPU time to be left 
unused because of jobs completing in a much shorter time than the scheduler anticipated. 

Another aspect of executive contrbl that merits attention is the control of data transfers 
between RAMM and task memory. The number of data references and the size of data 
lists revealed in the E-2B workload study show that the entirety of data sets referenced 
by a given task during processing is generally much larger than the room available in 
task memory for complete storage of such data. This means that instead of one or  two 
initial and final transfers of data, there will be much swapping of data in and out of task 
memory during processing. To ask the MEC to handle each transfer is to ask it to spend 
most of its time servicing data-transfer interrupts, as they will be by far the most frequent 
interrupt in the entire system. 

All results and interpretations contained in this report have been brought forth in an 
attempt to reveal characteristics inherent in AADC processing of avionics workloads. 
All data represents the E-2B workload, and caution must be used in applying the results 
coldly to all avionics processing applications. Certain features of the avionics software 
might be susceptible to improvements. These include coding structure, instruction usage, 
and data manipulation. Other features, like average task size and iteration rates, are  
bound to the characteristics of the systems in which the workload is serving. 

It should be apparent that improvements in basic avionics workload structure should 
be a major goal of existing and future development programs. Whatever system architec- 
tures are  chosen for final designs, they will benefit from efficiencies inherent in process- 
ing optimized software. 
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Appendix C 

ASSOCIATNE MEMORY STACK FOR PAGE 
ADDRESS TRANSLATION 

In the paged system, address translation must occur at every instruction referencing 
some virtual memory location. To avoid significant reduction in processing rate, page 
locating and address translation should be implemented with a direct, search-f ree  hard- 
ware device employing the parallel-associative technique. 

Fortunately, the required number of words in the associative stack is only the number 
of page frames in the working memory. A reference to a page in virtual address space 
is, in one operation of parallel search, translated to the local address of the page frame 
in task memory in which the referenced page is resident. Figure C-1 illustrates the 
essential functions of this associative stack. 
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Modeling and simulation of the proposed Naval Advanced Avionic Digital Com- 
puter (AADC) has been undertaken in order to study system performance and a r r ive  
a t  optimum hardware configurations. 

I I .  SUPPLEMENTARY NOTES 

The AADC baseline design assumes that the workload consists of a set of nearly 
independent tasks, each of which runs periodically. A task memory of 0.5 K to 4 K 
words i s  directly addressed by the computer module during the execution of a task, 
but the binding together of tasks and of their references to data sets  shared by more  
than one task i s  the responsibility of a separate Master Executive Control (MEC) . 
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In the simulations reported here,  these assumptions have been accepted, and a 
set  of assumed task characteristics have been derived from a previous study of the 
E-2B avionic system. However, the tasks have been further broken down into 
sequences of smaller segments, and, although it i s  assumed that the address space 
of the computer i s  large enough to span a task, smaller task memories and a paging 
mechanism a r e  considered. 

13. ABSTRACT 

The simulation shows increases in operating efficiency with decreasing page 
sizes and increasing task memory sizes,  with the improvement waning as  the task 
memory becomes large enough to contain most of a task's code. Simulations on an 
unpaged task memory reveal that an unpaged task memory must be considerably 
larger than a paged memory to yield the same efficiency. 

(Continues) 

j/N 0101-807 .6801  Securitv C l a s s i f i c a t i o n  



1 

4 

Security C l a s s ~ f ~ c a t l o n  

1 4  
K E Y  W O R D S  

Simulation 
AADC 
System performance 
Computer p rograms  
SIMSCRIPT 
AVIONICS 

. 
F o r  the one-processor  configurations studied, 

i n  a mult iprogrammed mode; i.e. segments  f r o m  more  than one task should be per - 
mitted to r e s ide  simultaneously i n  t ask  memory .  

The simulations suggest that ,  if the vir tual  add re s s  space of task memory  is 
around 4000 words,  the efficiency of a considerably smal le r ,  but paged, t a sk  mem-  
o r y  i s  near ly  a s  high as that of an  unpaged task memory  of s ize  equal to i t s  vi r tual  
s ize .  Since the fo rmer  approach should be significantly l e s s  costly for  high- 
performance t a sk  memor i e s ,  the smal l  paged task  memory  should yield bet ter  cost  
effectiveness.  

These conclusions a r e  based on baseline MEC assumptions.  It should be noted 
that the re la t ively short  processing t imes  of the segments suggests that m o r e  atten- 
tion should be given to the amount of sy s t em overhead devoted to managing t r ans f e r s  
and to the efficiency of job scheduling. 

FORM DD , N,v..1473 ( B A C K )  
( P A G E  2 )  

54 
Secur~ty C l a s s l f ~ c a t ~ o n  

L I N K  

R O L E  

l a rge  

A 

W T  

task 

L I N K  

R O L E  

memor ies  

B 

W T  

L I N K  

R O L E  

a r e  best  

C 

W T  

used 




