
NRL Report 7259

Simulation of AADC System Operation
With an E-2B Program Workload

Information Systems Group
Ofice of the Associate Director

of Research for Electronics

April 22, 197 1

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited pj)c -A

CONTENTS

Abstract
Problem Statue
Authorization

INTRODUCTION

THE WORKLOAD MODEL

THE AADC MODEL

System Hardware Unite
System Operating Strategy
Parameter Definition

THE SIMULATION

SIMULATlON RESULTS

Monoprogrammed Simplex Processor
Multiprogramming Task Memory
Non-paged Monoprogrammed Operation

CONCLUSIONS AND IMPLICATION OF RESULTS
TOAADC 17

REFERENCES 20

APPENDIX A-Simulated Workload Segment Structures
and Page-Segment Relations 2 1

APPENDIX B-Simulation Routine F'bwcharts 3 5

APPENDIX C-Aesociative Memory Stack for Page 49
Address Translation

ABSTRACT

Modeling and simulation of the proposed Naval Advanced Avionic Mgital Com -
puter (AADC) has been undertaken in order to study system performance and arrive
at optimum hardware configurations.

The AADC baseline design assumes that the workload consists of a set of nearly
independent tasks, each of which runs periodically. A task memory of 0.5 K to 4 K
words is directly addressed by the computer module during the execution of a task,
but the binding together of tasks and of their references to data sets sharedby more
than one task is the responsibility of a separate Master Executive Control (MEC).

In the simulations reported here, these assumptions have been accepted, and a
set of assumed task characteristics have been derived from a previous study of the
E-2B avionic system. However, the tasks have been further broken down into sequences
of smaller segments, and, although it is assumed that the address space of the com-
puter is large enough to span a task, smaller task memories and a paging mechanism
are considered.

The simulation shows increases in operating efficiency with decreasing page
sizes and increasing task memory sizes, with the improvement waning as the task
memory becomes large enough to contain most of a task's code. Simulations on an
unpaged task memory reveal that an unpaged task memory must be considerably
larger than a paged memory to yield the same efficiency.

For the one -processor configurations studied, large task memories a r e best
used in a multiprogrammed mode; i.e. segments from more than one task should be
permitted to reside simultaneously in task memory.

The simulations suggest that, if the virtual address space of task memory is
around 4000 words, the efficiency of a considerably smaller, but paged, task memory
is nearly as high a8 that of an unpaged task memory of size equal to i ts virtual size.
Since the former approach should be significantly less costly for high-performance
task memories, the small paged task memory should yield better costeffectiveness.

These conclusions a re based on baseline MEC assumptions. It should be noted
that the relatively short processing times of the segments suggests that more atten-
tion should be given to the amount of system overhead devoted to managing transfers
and to the efficiency of job scheduling.

PROBLEM STATUS

This is an interim report on one phase of the problem ; work on this and other
phases is continuing.

AUTHORIZATION

NRZ, Problem B02 -06
Project NAVAJR W F 15-241-601

Manuecript eubmitted February 3 , 1971.

SIMULATION OF AADC SYSTEM OPERATION
WITH AN E-2B PROGRAM WORKLOAD

INTRODUCTION

A Navy program has been instituted to develop an Advanced Avionic Digital Computer
(AADC) (1) to counteract proliferation of hardware and software as future avionics mission
requirements grow and vary. Development of a system which will perform efficiently on
a variety of platforms under different workload environments demands consideration of
modular growth, logistic computability, and balancing of computer resources.

The baseline configuration of the M C system (2) i s that of a multiprocessor with a
two-level memory hierarchy engaged in exchange of program tasks from read-only bulk
store to small, high-speed working memories for real-time processing. Cost considera-
tions suggest that these local working memories (task memories) be designed as small
as possible consistent with efficient processing of the mission workloads.

The optimum size of task memory is dependent upon features of the hardware surround-
ing it and of the program workloads to be processed. Processor speed and bulk-store
data-transfer rate directly influence overhead-processing time ratios. Advantage can be
taken of inherent modularity of processes within task programs to reap maximum use of
load cycles and working storage space.

Program modularity has been well recognized as a key to improved operating efficiency.
System implementations of cache memories, paging, and overlays (3,4) make use of the
tendency of processing to be concentrated over a limited portion of program in a limited
interval of time. Indeed, the task memory concept in AADC is a manifestation of such
recognition.

Just how much shrinking of task memory size is feasible overtly depends upon how
finely the mission program workload can be subdivided into separate tasks or job. Any
such task then can be loaded into an appropriately sized task memory for processing.
Less overtly, individual tasks can themselves be subdivided into smaller units o r pages.
Then, processing might take place in a system with smaller task memories sized to con-
tain some subset of a task's pages and having a facility to replace pages as new ones
request processor service. Simulation of the AAM: baseline architecture and attendant
workload has been chosen as the vehicle for examining the performance, under varying
characteristics, of proposed architectures in representative workload environments (5).
Models have been devised to provide meaningful representations of the behaviour of the
AADC system and avionic programs.

This report presents a description of the system simulation and results obtained.

Note-A brief version of this report was presented at the AADC Program Revue at the
Naval Air Development Center, Warminster, Pennsylvania on February 18, 1971.

2 W. R. SMITH

THE WORKLOAD MODEL

In order to make useful conclusions about the interaction of AADC software with
various hardware configurations, one must know something about the characteristics of
such software. Delineation of program segments and their patterns of computer resource
demand provides a means for defining such characteristics. The efficiency with which
resource demands are met depend upon the amount of time the system consumes in shuffling
program and data among various areas of storage space as requests for services by
different programs arise.

Each segment of a task is a group of contiguous words of code such that they constitute
a set of functionally related instructions. Thus defined, each time a segment goes into
execution, it can be considered as placing a known demand on the system, such as memory
space, processor time, and data references. Then, the complete processing of a given
task involves the consecutive processing of a chain of segments where their order of
execution is governed by the pattern of predecessor-successor dependencies designed into
the program when it is written.

In order to have meaningful workloads for simulation, work has been prosecuted by
others to analyze avionics-type programs and algorithms. In particular, a study of the
Navy E-2B digital avionics computer system was made (6) for the purpose of gleaning
such program characteristics as mentioned above. Program segments, their attributes,
and reference patterns were compiled into data suitable for implementing a simulated
workload.

Figure 1 shows a segmented program description of one of the tasks in the simulated
workload derived from the E-2B study. The arrows represent the sequence of processor
demand from one segment to the next with probabilities for branching segment.. Size in
words, number of instructions executed, and number of data words transferred are shown
for each segment. Note that on the average, and indeed for any given execution of this
task, only a fraction of the entire program is called into service. Since computing efficiency
is degraded by overhead due to program loading, it would be desirable to bring into task
memory only those segments actually needed for a particular execution.

Loading programs on a segment-demand basis implies the inefficiencies and compli-
cations of loading scattered and various sized groups of code from a block-oriented
secondary memory (BORAM) into taskmemory. Instead, if the program segments are
packed into uniform blocks or pages sized to be consistent with BORAM blocks and task-
memory size, the blocked structure of secondary memory would be utilized effectively,
and program address translation would be made a simple procedure. There is one caveat
associated with program paging, and that is that internal fragmentation or packing ineffi-
ciency can waste BORAM resources by allowing some unfilled space at the end of each
page. Fortunately, judicious partitioning and packing of pages at compile time can result
in fractionally small areas of empty storage. It might be desirable to have empty space
reserved at the bottom of pages for storage of transient data or for other scratch-pad use.

Table 1 shows how the program segments of Fig. 1 have been grouped into pages of
256 words. The criterion for assigning segments to pages is that most frequently used
segments which are closely related in terms of order of execution should fall into common
pages. This criterion ensures that a page brought into task memory has a low likelihood
of containing unreferenced words of program. Referring to Fig. 1, we see that segments
1, 4, and 11 will be referenced every time the task is executed, and as such belong on
the same page. Any space left is best utilized by choosing some lesser used segments
which will approximately f i l l the remainder of the 256 words. Segment 7 is the choice in
this case. The other low use segments have been paged for efficient packing.

NRL REPORT 7259

r-----
I
1 b I
I
I
I
N - Segment number

I W - Segment size in words 1 1 D - Data word transfers
I - Instructions executed

I P - Branching probability
I

RETURN

Fig. 1 - Segmented taek etructure

W. R. SMITH

Appendix A contains the segmented program descriptions of the entire simulated
workload.

Table 1
Paging Structure of Program Segments of Figure 1

THE AADC MODEL

The computer model has been configured from an assumed structure of the AADC
baseline (2) architecture. The model contains the essential operating features of bulk
store, task memories, and random-access, temporary-store memory. Figure 2 displays
the block diagram of the modeled system.

Certain assumptions have been made about the system architecture and operating
strategy. The purpose is to produce a system simulation which will best reveal the
dependence of workload processing efficiency on variations in memory resource allocation
such as task memory size and program paging.

4

8

3

3,5
12,13

Program Page
Number

Program Segment
Number

The model is set forth in this section as follows.

System Hardware Units

5

9

1

1,4
7,11

1. BORAM (Block Oriented Random Access Memory)-BORAM is a read-only store
for the entire workload and is of unlimited size. Concurrent loading of two different

6

10

2

2,6

-
blocks of program into different task memories is possible.

2. TM (Task Memory)-A 'I'M is a random access store fo r program instructions
and data. TM receives program from BORAM and can exchange data with RAMM. TM
can be page oriented.

3. Processors-All processing is done out of TM. A processor gives up TM cycles
to RAMM-TM data transfers.

4. RAMM (Random Access Main Memory)-The RAMM structure is modular, con-
sisting of one o r more independent units. Each module can communicate with any TM o r
1/0 channel. RAMM is not page oriented.

5. Busses-The RAMM-to-TM bus system is multiplexed, allowing any number of
TM-RAMM module pairwise communication paths to be active concurrently. 1/0 busses
allow one o r more concurrent I/O-RAMM module communication paths. RAMM-1/0 word
transfers have priority over RAMM-TM transfers, which must wait until the RAMM
module is free. The BORAM-to-TM bus structure allows BORAM to concurrently load
up to two TM's, with different blocks of program.

NRL REPORT 7259

I

, - - - - - - - -
9

I . I - - - l ;
I

1

I
I

I
I
I
I
I

U

4
E c

I
I
I
I
I
I
I
I
1
I
I
I
I
I
I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
J

I ! . I

I
w

I I
I I

U
a
4

I 1
,--I I

- - - J

F -

U

4

-

-
3
8

T
i

a E t

- -
- ,

T
- - - - - - - - -

W. R. SMITH

System Operating Strategy

1. The system is multiprogrammed with each CPU running one job a t a time.

2. Jobs arrive cyclically and a r e processed on a first-come-first-served basis.

3. Once a program s tar ts execution, it runs to completion without interruption.

4. Program processing and storage take place in a paging environment.

5. Page-loading into TM takes place on a demand basis.

6. Pages to be written over by newly demanded pages coming into TM a r e chosen by
some "reasonable" algorithm, such as #least recently used."

7. Processing is done out of TM only.

8. There is no communication between adjacent CPUs.

9. RAMM is used f o r temporary storage of data only and does not serve a s a secondary -
level program store.

10. Requests for RAMM data transfers a r e initiated by program control with the RAMM
in charge of servicing the requests. Requests a r e assumed to be distributed uniformly
over the processing time of a segment generating them, with a given percentage represent-
ing requests for the data that must be satisfied before that segment's execution can start .
The number of words in a data transfer is dependent on the total number of data words and
the expected number of requests associated with the processing of a segment. Requests
a r e distributed uniformly over the number of RAMM modules. Finally, if a request has
not been serviced by the time a processor needs the data, then that processor must stop
and wait .

11. Space for storage of transient data in TM is set aside either as predefined loca-
tions of block storage loaded into TM within each page of program o r a s a collective area
of storage location in each TM.

12. The system can be run with task memory containing pages only from the task in
process (monoprogrammed task memory) o r with task memory retaining pages from
previously run tasks, to the extent that these pages a r e not displaced by tasks in process
(multiprogrammed task memory).

Parameter Definition

To provide flexibility, the following workload and system parameters have been given
the status of user-specified constants in the simulation model and can be arbitrarily se t
before the s tar t of a simulation run.

Workload

1. Number of programs in the workload.

2. Inter-arrival time of each program, and whether it is fixed o r exponentially
distributed.

3. For each segment in a program, the next segments referenced and the associated
probabilities,

NRL REPORT 7259

4. Number of words of storage required by each segment.

5. Number of instructions executed in each segment.

6. Number of words of data transfer during the processing of each segment.

7. Number of words of 1/0 during the processing of each segment.

8. The particular page into which a segment is grouped.

9. Page size in words.

System

1. Number of CPU's

2. Number of BORAM busses.

3. B O W transfer rate in words per microsecond.

4. B O W block access time in microseconds.

5. Processor speed (average) in instructions per microsecond.

6. TM size in words.

7. Number of RAMM modules.

8. RAMM speed in words per microsecond.

Operation

1. CPU memory usage strategy (choose monoprogrammed o r multiprogrammed TM).

2. Page loading strategy (choose page loads o r complete program loads).

THE SIMULATION

The system modeling is implemented in SIMSCRTPT, an event-oriented process
simulation language. The characterization of a computing system at work by the occurrence
of a series of related events is particularly appropriate where the workload computation
is represented as a chain of program segment executions.

A simulated event is defined such that everything occurring in that event takes place
a t the same instant of time. The simulated process is endowed with dynamic behavior
by virtue of the fact that any event can schedule the occurrence of other events at future
instants, depending on conditions.

The progress of a job through a computer thus can be characterized by chains of
events, such as "Start Page Loading into TM," which schedules upage Load CompleteH
at a future time dependent on the interval required to transfer the page. upage Load
Complete" then immediately schedules "Start Segment Execution, " etc.

The scheduling or not scheduling or the deferment of events will depend upon the
status of various system parameters such a s the availability of CPU's or busses.

W. R. SMITH

It will be noted that, in this model, the MEC is not simulated a s a separate identifiable
entity but is included in the system a s the entirety of decisions which cause events to occur
as if the MEC were in control. It will be advantageous to explicitly simulate a controlling
MEC block where MEC algorithms a r e being assessed o r a software MEC is to be simulated.

Figure 3 shows a simplified block diagram of the AADC system simulation, where
each block represents a separate event comprising a routine of computations, checks, and
alterations on various system parameters. Arrows between events represent the scheduling
of one event by another. The time interval between events is indicated along the arrows.

A brief description of the functions of each event follows.

Generate job-Causes programs to arrive for service at fixed or random intervals
as specified by the user.

Start Job-Attempts to start programs waiting for service. If no CPUs a re available
at this time, the system must wait.

Start TM Load-Attempts to load a program's pages into TM. If the busses are all
busy at this time, then the load must wait.

TM Load Complete-Releases the BORAM bus and schedules Start TM Load in case
any programs a r e waiting for a bus to load with.

Start Sement Execution-Starts the processor and, based on the amount of associated
data, generates a set of RAMM requests to be initiated over the processing time of the
segment.

Schedule Request-Causes a RAMM request to be scheduled to occur. Jf no requests
remain, causes completion of execution to be scheduled.

Segment Execution Complete-Stops the processor and goes on to cause reference of
the next segment.

Call Next Segment-Uses the workload input data to pick the next segment to s tar t
execution. If the program is completed at this point, the CPU is released and the "Start
Job" event is caused. If the next segment referenced is already in TM, we go right to
'Start Segment Execution;" otherwise the %tart Page Load" event is called to bring the
new segment into TM.

Make Request -A request is initiated at this time for a given RAMM module.

Demand Data-Data requested by a processor a r e needed at this point. If the request
has not been satisfied yet, the processor is stopped.

Start Data Transfer-Attempts to start transferring data specified by a request. If
the RAMM module is busy, the transfer must wait,

Request Satisfied-The data transfer is complete and the appropriate RAMM module
is released. A jump to &Start Data Transfer" is made in case other requests a r e waiting
for this module.

Detailed flow charts of events and subroutines a r e shown in Appendix B.

N R L R E P O R T 7259

TIME

Fig. 3 - Block diagram of AADC system simulation

BETWEEN JOB ARRIVALS

> GENERATE START <
START JOB IMMEDIATE >

IMMED

JOB

IATE

v

) START TM
LOAD

<

TIME
LOAD

T O
T M

T M LOAD
COMPLETE

IMMED - IATE

V

DEMAND
DATA

START
SEGMENT
EXECUTION

MAKE
REQUEST

TTME INTERVAL

<BETWEEN REQUESTS

TIME INTERVALTO

NEED FOR DATA
Y

IMMEDIATE
IMMED

START

U T E

>

v

DATA
TRANSFER

'

TIME
TRANSFER

SCHEDULE
REQUESTS

CALL
NEXT n

H

SEGMENT -

T O
DATA

TIME
COMPLETE

T O
PROCESS-

"ING

SEGMENT
EXECUTION

IZ1
COMPLETE

V

REQUEST
SATISFIED

IMMED U T E
..

10 W. R. SMITH

SIMULATION RESULTS

Monoprogrammed Simplex Processor

The E-2B program workload constitutes a processor load of less than 100,000 instruc-
tions per second. By AADC standards (2x106 instructions per second), this is a very
light demand and would warrant the service of only a single CPU as in the simplex version
of the AADC. The design iteration rates of the E-2B program modules were doubled for
this simulation to increase the loading.

The average system resource demands by each program in one iteration are listed
in Table 2. These data were obtained from an analysis of the program segment flow charts
shown in Appendix A.

Table 2
Summary Characteristics of Simulated

Workload Tasks

Task
Number

Program
Size

Program Words
Processed

per iteration
(average)

Iterations
in ten

seconds

Instructions
Executed

per iteration
(average)

The effect of task-memory size on paged workload processing can be assessed by the
relative amount of time the system spends in keeping task memory loaded with required
sections of program. We will define the efficiency with which memory is allocated to
program tasks as the ratio of processing time to loading time plus processing time.
Processing time, for a given set of programs run over a given time, is invariant with
changes in paging structure or working memory size. The assemblage of segments
referenced and processed will be fixed; only their patterns of inter-memory transfers
will vary.

Data Word
Transfers

per iteration
(average)

The range of interest for task memory sizes appears to center around 2048 words.
For monoprogrammed memories, if no task is greater than 4096 words in size, then
certainly additional memory for program storage beyond this is being wasted. Since the
i~lformation on segment structure in the simulated workload did not allow a partitioning

NRL REPORT 7259 11

finer than 256 words per page, a 256-word lower limit was set upon the investigated size
of simulated task memory; fractional pages are not allowed. The lower bound on usable
page size is actually set by the characteristics of the BORAM. BORAM blocks will probably
be 128 o r 256 words in size, and efficient use of its high word transfer rate (7 words/psec)
demands that page transfers comprise an integral number of blocks. With an access time
of only 2 psec, BORAM is used very efficiently (95 percent) where accesses are made to
transfer entire blocks of 256 words.

Simulation runs were made under the following conditions:

1. Monoprogrammed task memory

2. Paged processing

3. One CPU

4. One RAMM module

5. One BORAM bus

6. Processor Speed-2 instructions/psec

7. BORAM Speed-7 words/psec

8. BORAM Access Time-2 p sec

9. RAMM Speed-3 words/~sec

10. Task memory and page size combinations a s listed in Table 3.

Table 3
Page Size-TM size combinations run

Page Size TM Sizes

256, 512, 1024, 2048, 4096

Table 4 displays results of simulation under the conditions specified above.

Program transfer efficiencies a s measured by the ratio of total task processing time
to CPU in-service time are given in Table 5.

The data of Table 5 are plotted in Fig. 4. For a given page size, transfer efficiency
increases with task-memory size, as would be expected. The larger task memory is, the
greater the likelihood of it containing segments needed by a given reference. Conversely,
for a given task-memory size, efficiency decreases with increasing page size. Smaller
pages brought into task memory have a lower likelihood of containing segments unneeded
in the near processing future, Since the B O W access time is very short, the time
required per page load increases nearly linearly with increasing page size, leveling off
only in the region where the block transfer time is down near access time (approximately

W. R. SMITH

Table 4
Results of 10 -Second Simulated Runs with Various Paging

(Monoprogrammed TM)

Table 5
Mean Program Loading Efficiency

for Various Paging

CPU
Time
(psec)

1573191
1432872
1364791
1333981
1333981
1599496
1484461
1429831
1429831
1690755
1565902
1565902

20 words per block). At the same time, the paging rate or page-fault frequency decreases
less than linearly with increasing page size. The reason for this, as already alluded to,
is that larger pages, while they would otherwise run through processing at a lower per
unit rate, more frequently contain wasted space committed to unreferenced code; pages,
then containing the needed code must be referenced at a correspondingly higher rate.

Load
Time
(psec)

562940
422621
354540
323730
323730
589245
474210
419580
419580
680504
555651
555651

TM
Size

(Word)

256
512

1024
2048
4096

The plots for eachpage size level off at a task-memory size of 2048 words. Although the
largest task comprises 4096 words and one other is greater than 2048 words, no task
requires the processing of more than 2048 words of code in any given iteration. In fact,
analysis using the segmented program descriptions in Appendix A reveals that the expected
amount of program actually referenced for processing, averaged over all the tasks, is
approximately 400 words! Thus, there is only marginal increase in efficiency once task-
memory size exceeds the working requirements of the average job in the processing
workload.

Page
Loads

14,814
11,121

9,330
8,519
8,519
7,857
6,323
5,594
5,594
4,598
3,754
3,754

The data in Table 4 allow us to determine the instruction usage. Dividing processor
time by the number of tasks run gives a mean of 240 Fsec processor time per task, or
480 instructions executed at a 2-mips rate. Instruction usage is then about 120 percent
in referenced segments.

Segment
References

18,819

Page Size in Words

Data
Request
Time
(psec)

159,327

256

64.3
70.6
74.0
75.0
75.0

Processor
Time
(psec)

850,924

TM
Size

(Words)

256
512

1024
2098
4096

512
1024
2048
4096
1024
2048
4096

Jobs

3537

512

-
63.3
68.1
70.8
70.8

Page
Size

(Words)

256

512

I
1024

1

1024

- -
59.9
64.7
64.7

NRL REPORT 7259

Percent

90

80

9 266 512 1024 2048 40)6 8192 Words

Fig. 4 - Loading efficiency versus task memory
size and page size

It is of interest to examine the paged simulation data in light of ideas presented by
Peter Denning in his papers on virtual memory and working sets (7). A working set of
program is defined to be the average set of program segments which are referenced during
some moving time window At. In a virtual memory system, Denning judges the size of
working (taek) memory to be adequate for good loading efficiency, provided that it will
contain the working set defined over a time interval equal to two page-load times.

Note that the simulation results with a page size of 256 words and task memory equal
to 4096 words provides a means for determining the program working set defined over a
short time interval. Dividing the number of page loads by the number of tasks run gives
us 2.5 pages per task. This figure represents the average number of unique pages
referenced into working memory for each program run. Since a 4096-word task memory
is large enough to hold all of any task's referenced pages, there is no page swapping, and
any page is loaded only once per run when it is first referenced. Using the average task
processing time of 300 psec (including data transf era), we find that one page is brought
into the task working set every 120 psec. Now, the time required to load one 256-word
page from BORAM into task memory is only 2 + 36.5 = 38.5 psec. Therefore, a task-
memory size of only 256 words is more than sufficient, on Denning's basis, to allow
processing with efficient memory allocation. The reason for this unusually small working-
memory requirement as compared to most virtual memory systems is, of course, the
very short BORAM block load time. In a conventional rotating secondary storage with
millisecond range access times, many pages will be referenced in the transfer time of
a page, and the working memory must be large enough to ensure that a high percentage
of references will find the needed page already in residence; otherwise, thrashing will
occur.

14 W. R. SMITH

Multiprogramming Task Memory

If files of task-memory page contents are kept available from job to job, then a
modicum of mulitprogramming will occur as larger task-memory size increases the likeli-
hood of a job's needed pages already being in residence from the previous iteration of
that job. This effect is limited to the simplex version of the system, where only one task
memory is available for running a task.

Simulation runs were made under the same conditions as in the monoprogrammed
task-memory case. However, task-memory page contents were left intact between job
iterations, except for normal loading due to page faults. Since, now, twelve tasks a r e
competing for storage, the increasing of task-memory size brings about increasing effi-
ciencies as each new job begins finding its referenced pages already available.

Table 6 displays the results of the multiprogrammed runs. Except for the extended
task-memory size, all conditions are identical to the monoprogrammed case.

Jobs
Run

3537

Table 6
Results of 10-Second Simulated Runs with Various Paging

(Multiprogrammed TM)

'I'M
Size

(Words)

Page
Size

(Words)

Processor
Time
O.sec)

2

5

1024

Request
Time
(psec) 1 159,327

56

12

Segment
References

18,819

page ,
Loads

14,814

11,121

9,186

5,645

1,375

372

7,857

6,287

4,838

1,084

260

4,598

3,601

1,616

320

Load
Time
bsec)

CPU
Time

Multiprogrammed loading efficiencies given in Table 7 have been superimposed on
the monoprogrammed results and plotted as shown in Fig. 5. At the low end of the curves,
the monoprogrammed and multiprogrammed efficiencies coincide. The smaller task
memory is not able to hold the working sets of enough tasks to allow the residence of a

NRL REPORT 7259

Table 7
Mean Program Loading Efficiency

for Various Paging

TM
Size

(Words)

2 56

5 12

1024

2 048

4096

8192

A - - - - - - -
Complete Tanka

100

BO

* 80 P
B
ff

lo

60

4 I I I I I I " 266 512 1024 2048 4046 8192 Words

Page Size in Words

-

-

-

- 266
word
paee -

Task memory size

Fig. 5 - Program loading efficiencyversus task
memory size and page size. Multipr ogrammed
resul ts superimposed on monoprogrammed r e -
sults. Also plot tedare the e f f i c i e n c i e s for
c o m p 1 e t e task loading a n d segment loading
operations.

1024

-
-

59.9

65.5

81.0

95.7

2 56

64.3

70.5

74.5

82.6

96.0

98.7

512

-
63.3

68.3

73.7

92.7

98.3

16 W. R. SMITH

task's pages from one iteration to the next. However, once the most frequently used
pages of the most frequently executed tasks can all occupy working memory, the page-
loading rate s t a r t s dropping rapidly, and high efficiency results. Thus, the spread in
efficiencies between the multiprogrammed and monoprogrammed system operations
represents the saving in start-up loads as jobs arrive for service. Eventually, as t a s k
memory becomes larger, the entire workload can reside permanently in working storage,
and the system reduces to a standard multiprogrammed system with a one-level memory.

The efficiencies shown represent the twelve-task simulated workload. With a g rea te r
number of separate tasks running, task memory would have to be correspondingly l a rge r
to handle the jobs with the same efficiency.

Non-paged Monoprogramm ed Operation

We wish to make some judgments about the effectiveness of the system under the
various simulations. Comparisons of efficiencies between the paged system and other
architectures is an aid in making such judgments.

Some standards a r e needed by which to make comparisons. To obtain these, simula-
tions were run with the same workload being processed in the more conventional, non-
paged mode. Two strategies were investigated. First, as in the baseline AADC architecture,
each task is fully loaded into task memory for processing. Consistent with the largest
program in the se t of twelve, task-memory size would then have to be 4096 words. Second,
assuming some foreknowledge of which segments of a task will be required in a given
iteration, only those required segments a r e loaded into task memory for processing. The
working -memory requirement in this case, from examining the workload description,
would not be larger than 2048 words.

Data for case one was obtained by simulating each task as consisting of one 4096-word
page and then compiling load times based on the task program size rather than page size.
For case two, using the computed figure of 400 words of program referenced per task
execution, the number of jobs run and the processing time from case one, the appropriate
efficiency data was obtained. The results a r e displayed in Table 8. In order to show the
significance of these two cases, the respective efficiencies a r e plotted on the composite
graph of the monoprogrammed and multiprogrammed paging data in Fig. 5.

Table 8
Results for AADC Baseline and Demand

Segment Loading Operation

Considering the already demonstrated characteristics of program segment usage, it
is not surprising that fully loading each task for processing significantly reduces memory
usage efficiency. With an average program size of about 1500 words, a penalty is being
paid in transferring unprocessed code from BORAM to task memory.

System

Baseline

Segment
Loading

Loading Time
GLsec)

764,767

202,200

CPU Time
(~ e c)

1,775,028

1,212,461

Efficiency

57.0

83.5

NRL REPORT 7259 17

In case two, loading is minimal as each job arrives for service, and the resulting
efficiency bounds the best possible efficiency that could be obtained with monoprogrammed
paging. U~lfortunately, implementation of the prespecified segment loading scheme is for
practical purposes unachievable, and a task memory of 2048 words is still required. Also,
the computed efficiency is somewhat better than that which would be obtained in the actual
system. Each load still requires access to and transfer from a BORAM block of all loca-
tions ahead of the needed segment as well as the segment itself.

CONCLUSIONS AND IMPLICATION OF
RESULTS TO AADC

Workload analysis and modeling have been incorporated with computer models having
AADC-like characteristics. Simulated runs on this system have provided data revealing
some dynamic properties inherent in processing with such software-hardware systems.
Attention was given to presenting the simulated processor with a representative workload
mix. No dependence on methods of job scheduling was necessary to the relevancy of the
results.

A number of immediate observations spring from a study of the results herein.

For the Workload:

1. Tasks tend to be inefficient in their use of code (considerably less than 100 percent
of a task's program code is actually processed in one iteration).

2. Code actually processed is not utilized at much better than a 100% rate (looping
and instruction repetition do not comprise a large percentage of processing activity).

3. Even with coarse partitioning, tasks can be broken into separate segments enabling
efficient selective usage of needed code.

For the system:

1. Paged processing of the workload provides operating efficiencies a s good as o r
better than non-paged operation, even for small task memory sizes.

2. Decreasing program page size has a more beneficial effect on memory utilization
efficiency than a corresponding increase in task memory size.

3. Multiprogramming task memory in a simplex processor can eliminate much of
the overhead of program initial loading, although at the expense of increased task memory
size.

- 4. Task-processing times at the AADC processing rate tend to be so short as to
render task-memory loading time a significant percentage of the CPU time.

5. Data transfers represent a significant but moderate portion of task-processing
time.

Clearly, a feasible approach to reducing task memory size in the AADC is the paged
operating system. Besides the advantage of small task memory, such a system allows
the inclusion in the workload of tasks larger in size than working memory and limited
only by the virtual range of the address bits in an instruction word. Although the address
space assumed in these simulations is limited to 4K, the paging concept easily allows for
the processing of tasks larger than 4K.

18 W. R. SMITH

A paged operating system can be implemented in hardware with only page-fault inter-
rupts requiring the services of the executive. A possible hardware implementation requires
one small associative memory stack for each CPU. Each associative memory contains a s
many words as page frames in a task memory. Each word contains a resident page number
and its base address in task memory. The associative memory then serves a s an address
translator from program virtual addresses to the local task-memory addresses. Additionally,
by always having the address word last referenced brought to the top of the stack, the
number of the least recently used page is automatically kept at the bottom for first removal.
An address reference to a page number not in the associative stack creates an interrupt to
transfer that page from BORAM to task memory. Each time the executive loads a page,
the appropriate word in the stack is updated with the new page number. For a more detailed
description of such an associative stack, see Appendix C.

It is tempting to consider the relatively good performance of the paged system simula-
tion with a 256-word task memory containing one 256-word page at a time. Use of such a
small amount of memory might allow the selection of ultra-fast but costly or power-
consuming technologies. Additionally, the presence of only one page frame in task memory
would eliminate the need for maintaining page location and address translation tables as
well as order of page usage. Not to be neglected, however, is the need for space to store
system and local variable data. The constraint on segmenting and paging imposed by
requiring appropriate amounts of space to be left available in pages for such usage is rather
tight, not to mention the waste of BORAM for scratch space storage. A workable compromise
to the dilemma might be the extension of task memory to 512 words, with the additional
256-word frame reserved for data and scratch space.

In any case, for the paged system, the extension of task-memory size beyond 1024
words appears inappropriate and wasteful. Page faulting rates are reduced only marginally,
because the bulk of loads represent those few pages consistently needed by tasks each time
they a re serviced.

If processors are given direct access to RAMM modules, the bulk of working-memory
space normally given to storing data would be freed for program storage. Task-memory
reduction in these circumstances might be achievable by defining and coding all workload
tasks such that they contain less than, say, 1024 words. Observing an average task size
of 1500 words and a usage of only 400 words per run in the simulated workload, it is not
unreasonable to propose the partitioning of task processes into separately defined tasks
which will process in a 1024-word memory. In a sense, tasks would be broken into 1024-
word pages. The beneficial difference between this and the normal paged system is that
all pages a r e now identifiable tasks scheduled by the executive in the usual way. The only
concession to paging operation might be the inclusion of an internal-program -module
interrupt capable of being activated by a task in process. This would provide for the
repeat assignment of a task forming, with another task, a closed processing cycle needed
in occasional jobs.

Under any circumstances, however, it appears that a paged system with a 1024-word
task memory bears some attention. The benefit of reduction in task-memory size by 50
o r 75 percent over the non-paged implementation is available, along with less overhead
due to program loading. If MEC (Master Executive Control) participation in the paging
process .can be limited to a single routine to initiate page transfers, total system operat-
ing efficiency ought not be compromised and might well be improved.

Implementing a paged AADC with multiprogrammed task memory can be considered
appropriate in the case of the simplex processor. A software MEC will be a characteristic
feature of the simplex processor due to the comparatively high cost of a hardware executive.
Sharing of working memory by executive routines and program will create a need for a
task memory larger than the nominal 2K to 4K range. Now, putting a larger memory to
work in a multiprogrammed mode will result in less loading overhead, the amount becoming
smaller a s more pages of frequently processed tasks are resident.

NRL REPORT 7259 19

Interestingly enough, executive routines separated into pages can also become part
of the multiprogram workload and be paged in as needed.

Caution must be exercised in trying to apply the results of multiprogramming to the
multiprocessor version of AADC. The likelihood that a given task's referenced pages a r e
already resident in a given working memory will be decreased as more CPU's are active
in task processing. However, with a MEC capable of assigning tasks to CPU's on the basis
previous assignments, multiprogramming task memories in a multiprocessor could be
very fruitful.

Besides the c o ~ e c t i o n of the simulation results to paged operation, they also relate
closely to some aspects of AADC executive control. The results show that the average
CPU time per job including processing, data transfer, and program loading is about 500
psec. This, of course, represents the E-2B workload, but given the constraints of 4K
maximum task size and the code-usage efficiency already in evidence, there is reason to
believe that average task CPU time for most AADC workloads will not exceed the one-
millisecond range.

It follows that, given the baseline AADC operating system, program load times could
constitute from 20 to 40 percent of CPU time. It is important, then, that the MEC avoids
standing watch over BORAM to task memory transfers and consuming large amounts of
time in the process. Use of interrupts which leave the MEC free from program transfers
except for attention to their initiation and completion is almost mandatory.

If there are several CPU1s all heavily loaded, it is evident that the BORAM loading
time can become a high percentage of overhead. It may be appropriate to have two or
more busses from BORAM to task memories to eliminate a bottleneck at that point. Then,
the executive should be capable of initiating and servicing concurrent program transfers.

Executive timekeeping and job-scheduling procedures also bear some inspection in
the light of such short job-processing times. If the scheduler task load is limited by the
total of free-running times in a given cycle of jobs, some under-usage of resources might
occur. Executive updating of job-processing progress limited by a clock interrupt quantum
which is much greater than average job running time could cause CPU time to be left
unused because of jobs completing in a much shorter time than the scheduler anticipated.

Another aspect of executive contrbl that merits attention is the control of data transfers
between RAMM and task memory. The number of data references and the size of data
lists revealed in the E-2B workload study show that the entirety of data sets referenced
by a given task during processing is generally much larger than the room available in
task memory for complete storage of such data. This means that instead of one or two
initial and final transfers of data, there will be much swapping of data in and out of task
memory during processing. To ask the MEC to handle each transfer is to ask it to spend
most of its time servicing data-transfer interrupts, as they will be by far the most frequent
interrupt in the entire system.

All results and interpretations contained in this report have been brought forth in an
attempt to reveal characteristics inherent in AADC processing of avionics workloads.
All data represents the E-2B workload, and caution must be used in applying the results
coldly to all avionics processing applications. Certain features of the avionics software
might be susceptible to improvements. These include coding structure, instruction usage,
and data manipulation. Other features, like average task size and iteration rates, are
bound to the characteristics of the systems in which the workload is serving.

It should be apparent that improvements in basic avionics workload structure should
be a major goal of existing and future development programs. Whatever system architec-
tures are chosen for final designs, they will benefit from efficiencies inherent in process-
ing optimized software.

REFERENCES

1. "AADC Proposed Technical Approach," Naval Air Systems Command, 72-653,
January 1970

2. Entner, Ronald, "MDC Baseline Definition, " AIR5333F4, Naval Air Systems Command,
July 23, 1969

3. "Structual Aspects of the System/360 Model 85, I1 - the Cache," IBM Systems J.
(NO. I), 15-21 (1968)

4. "Dynamic Storage Allocation Systems," Randell and Keuhner, Comm ACM 11, May 1968,
pp. 297-305

5. Smith, W. R., "Simulation Model for the MDC," NRL Memorandum Report 2 172,
September 1970

6. "Final Report on Defining the E-2B Digital Avionic System Characteristics f o r the
Simulation of Alternative AADC Hardware Configurations" (Secret report, Unclassified
title), System Consultants Inc., Wash., D. C., Naval Air Development Center Contract
No. N62269-70-C-0274, November 1970

7. Denning, Peter J., 'The Working Set Model for Program Behavior," Communications
of the ACM, 11 (No. 5), 323-333 (May 1968)

=-TED mUCTURE6 AND
PAGE- RBuTmNa

Table A1
Assignment of Program Segment Numbers to Pages for ~ 1 . 1 Tasks

NRL REPORT 7259

START (7

RETURN 0
Fig. A1 - T a s k I

NRL REPORT 7259

START i-i

Fig. A 3 - T a s k 3

W. R. SMITH

-d(+)

Fig. A4 - Task 4

NRL REPORT 7259

START T

Fig. A5 - Task 5

W. R. SMITH

START Cr'

RETURN

Fig. A6 - Task 6

NRL REPORT 7259

START

Fig . A7 - Task 7

W. R. SMITH

1 RETURN)

Fig. A8 - Task 8

NRL REPORT 7259

START

.025

Fig. A9 - T a s k 9

W. R. SMITH

RETURN Cb
Fig. A10 - Task 10

START (7'

Fig. A1 1 - Task 1 1

NRL REPORT 7259

RETURN

Fig. A12 - T a s k 12

PM numbers
and start
times.

Schedule
PM first
arrivals.

W . R. SMITH

GEN JB (7
Queue PM
for CPU
service.

Determine.
PM arrival
interval.

Compute next
Yes arrival interval

from exponential
distribution.

Schedule
PM next
arrival.

Fig. B1 - Event START Fig. B2 - Event GENJB

NRL REPORT 7259

STPRG (T'

RETURN

Assign first
PM in queue

to free CPU.

No Set TM
contents to

zero.

Schedule
load to
start.

Schedule PM
execution to

start.

RETURN (3

Yes
<

Fig. B3 - Event STPRG

RETURN

W . R. SMITH

STLOD G'

No
RETURN

BORAM FI
Call paging
subroutine.

L l r n B . I \ system / I time. I
Determine
page load

A,__ _

Schedule -
Load complete.

(RETURN -7

No
< Yes

Fig. B4 - Event STLOD

Determine
PM load

NRL REPORT 7259

processor (7) Fl
Release Vl

Schedule load
for any CPU
waiting for
BORAM bus.

Schedule
execution
to start.

Inialize
execution start
and processor

idle time.

Call subroutine
to compile

data requests.

Schedule
data request
generation.

RETURN i?
Fig . B5 - Event LODCM Fig. B 6 - Event STEXN

W . R. SMITH

SCREQ i-'

Find time
interval to

its occurmce.

-

Schedule
segment

processing
complete.

RETURN

Fig. B7 - Event SCREQ

NRL REPORT 7259

EXCOM 0
Set processor

status to
not buey .

Update last
time of use
of the page.

Schedule
reference to

next segment.

Fig. B8 - Event EXCOM

W. R. SMITH

Determine next
segment from

segment
reference tables.

Schedule load
into this

Release

Schedule
next PM to

RETURN 23

Schedule
reference to
next segment

Fig. B9 - Event CNXSG

Yes start.

<

RETURN

Schedule
execution of

for a BORAM

NRL REPORT 7259

File request
for RAMM
module.

Schedule the
data transfer

for this request.

Determine time
interval to

demand for this

Schedule
data demand.

RETURN 0
Fig. BIO - Event M K R Q

W. R. SMITH

DEDAT 'r'
Interrupt

\ processor.

RETURN

Fig. B11 - Event DEDAT

NRL REPORT 7259

DATRA

RETURN

< module

Seize

module.

I

I Determine
time required I for data I

transfer. 'r'
Schedule-
Request

satisfied.

RETURN 23
Fig. B12 - Event DATRA

W. R. SMITH

RQSAT C?
Release

module.

>

Yes
Restart

Drocessor.

Schedule data
transfer for
any request

Schedule
generation of

next data

RETURN)
Fig. B13 - Event RQSAT

NRL REPORT 7259

F i g . B14 - Subroutine PAGING

PAGING

6

Increase TM Yes No
word load by

one page size.

I

Find Least
recently used

page in TM

Remove it
from TM

-

File new

W . R. SMITH

REQGEN Cr>

Compute the
1/0 interference

on data
transfers.

Compute the
1/0 transfers

during the
segment.

Find the
request data

lengths.

No
(RETURN

Fig. B15 - Subroutine REQGEN

- I

Find the
request

intervals.

Determine
all attributes

for next
request.

No

s

File
request.

Yes
RETURN

Appendix C

ASSOCIATNE MEMORY STACK FOR PAGE
ADDRESS TRANSLATION

In the paged system, address translation must occur at every instruction referencing
some virtual memory location. To avoid significant reduction in processing rate, page
locating and address translation should be implemented with a direct, search-f ree hard-
ware device employing the parallel-associative technique.

Fortunately, the required number of words in the associative stack is only the number
of page frames in the working memory. A reference to a page in virtual address space
is, in one operation of parallel search, translated to the local address of the page frame
in task memory in which the referenced page is resident. Figure C-1 illustrates the
essential functions of this associative stack.

NRL REPORT 7259

Program Virtual Address

Program page
o r 1 1 i2:r 1 Address

Number of newly loaded page and its
location is filed in the top word.
The other words a r e displaced down
with the bottom shifted out.

A
I \

Local
Program Search page
Page Response Frame
Number Bit Number - A Top word

contains most
recently ref-

*Associative
Search by

page number

Bottom word
contains least
recently ref-
erenced page

*Associative match with a
word not a t the top of the
stack (not referenced at
time t-1) causes a displace-
ment of the responding word
to the top stack location.
The upper words are shifted
down to fill the 'hole".

generator.
A page fault occurs if Address Address
no bit responds to
search. TM Local Address
Initiates load of newly
referenced page.

Fig. C1 - Associative memory s tack for page addressing

Sec l~n lv C l a s s i f i c a t i o n

DOCUMENTCONTROLDATA- R L D

- - -
3 R E P O R T T I T L E

SIMULATION OF AADC SYSTEM OPERATION WITH AN E-2B PROGRAM
WORKLOAD

!Srrur i fy r l ass i l i r a t ion 0 1 l i t le , body 01 nbs t ra r l nrnd indexinp imnolnlion "turf bc entered whcn rlte overal l report i s r lnssi l ied)

4 . D E S C R I P T ! V E N O T E S (Type o f report a n d inclusive dates)

I , O R I G I N A ~ I N G A C T I V I T Y (C o ~ p o r a l ~ author)

Naval Research Laboratory
Washington, D .C. 20390

An interim report on a continuing project.
5 . nu THoRlS l (F irst name, middle in i t ia l , l a a l name)

28. R E P O R T SECURITY CLASSIF ICATION

Unclassified
2b. G R O U P

William R. Smith

NAVAIR WF 15-241-601
C .

6 . R E P O R T D A T E

April 22, 1971
8a. C O N T R A C T O R G R A N T N O .

NRL Problem No. B02-06
b. P R O J E C T NO.

9b. 0 THER R E P O R T NO(Sl (Any other numbers that mey be ass igned
this report)

d.
I , 10. D ISTRIBUTION S T A T E M E N T

I

7a. T O T A L NO. O F P A G E S

56

I

Approved for public release ; distribution unlimited.

76. N O . O F R E F S

7
9a. ORIGINATOR.^ R E P O R T NUMBERIS)

NRL Report 7259

Modeling and simulation of the proposed Naval Advanced Avionic Digital Com-
puter (AADC) has been undertaken in order to study system performance and a r r ive
a t optimum hardware configurations.

I I . SUPPLEMENTARY NOTES

The AADC baseline design assumes that the workload consists of a set of nearly
independent tasks, each of which runs periodically. A task memory of 0.5 K to 4 K
words i s directly addressed by the computer module during the execution of a task,
but the binding together of tasks and of their references to data sets shared by more
than one task i s the responsibility of a separate Master Executive Control (MEC) .

12. SPONSORING MIL ITARY A C T I V I T Y

Department of the Navy
Naval Air Systems Command
Washington, D.C. 20360

In the simulations reported here, these assumptions have been accepted, and a
set of assumed task characteristics have been derived from a previous study of the
E-2B avionic system. However, the tasks have been further broken down into
sequences of smaller segments, and, although it i s assumed that the address space
of the computer i s large enough to span a task, smaller task memories and a paging
mechanism a r e considered.

13. ABSTRACT

The simulation shows increases in operating efficiency with decreasing page
sizes and increasing task memory sizes, with the improvement waning as the task
memory becomes large enough to contain most of a task's code. Simulations on an
unpaged task memory reveal that an unpaged task memory must be considerably
larger than a paged memory to yield the same efficiency.

(Continues)

j/N 0101-807 .6801 Securitv C l a s s i f i c a t i o n

1

4

Security C l a s s ~ f ~ c a t l o n

1 4
K E Y W O R D S

Simulation
AADC
System performance
Computer p rograms
SIMSCRIPT
AVIONICS

.
F o r the one-processor configurations studied,

i n a mult iprogrammed mode; i.e. segments f r o m more than one task should be per -
mitted to r e s ide simultaneously i n t ask memory .

The simulations suggest that , if the vir tual add re s s space of task memory is
around 4000 words, the efficiency of a considerably smal le r , but paged, t a sk mem-
o r y i s near ly a s high as that of an unpaged task memory of s ize equal to i t s vi r tual
s ize . Since the fo rmer approach should be significantly l e s s costly for high-
performance t a sk memor i e s , the smal l paged task memory should yield bet ter cost
effectiveness.

These conclusions a r e based on baseline MEC assumptions. It should be noted
that the re la t ively short processing t imes of the segments suggests that m o r e atten-
tion should be given to the amount of sy s t em overhead devoted to managing t r ans f e r s
and to the efficiency of job scheduling.

FORM DD , N,v..1473 (B A C K)
(P A G E 2)

54
Secur~ty C l a s s l f ~ c a t ~ o n

L I N K

R O L E

l a rge

A

W T

task

L I N K

R O L E

memor ies

B

W T

L I N K

R O L E

a r e best

C

W T

used

