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PREFACE

Thie i~ the firet of a two-volume set of reports describing a modular underwater
acoustics ray-tracing and transmission-loss prediction system called GRASS (Germinating
Ray-Acoustics Simulation System). This system is called “germinating’’ because, although
it is presently cpsrational, it could grow into a more powerful system.

The first volume is intended for the reader who is interested in gaining an overview
of the system. It includes the theory behind each of the seven system modules, some of
the guiding philosphy and techniques used in their implementation, qualitative compari-
sons with other ray-tracing and normal-mode approaches, the results of some sample test
cases, and some recommendations for improvement.

The second volume (cited on the inside front cover) is intended for those who wish
to use the system, or to compare it quantitatively with other ray acoustic systems. It
describes in détail how to use the programs, and it contains a sample test case. The in-
put data for this test case were obtained from experimental measurement. In addition,
experimental transmission loss measurements were obtained and are given so that direct
comparison can be made between computed and predicted results
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GRASS: A DIGITAL-COMPUTER RAY-TRACING AND TRANSMISSION-LOSS-
PREDICTION SYSTEM, VOLUME 1—OVERALL DESCRIPTION

1. INTRODUCTION
1.1 Comparison of Ray Theory and Normal-Mode Theory

To a good first approximation, sound propagates in the ccean according o a linear
hyperbolic second-order time-dependen’ partial differential equation, commonly referred
to as the scalar wave equation:

Vipg=— — . 1

In this equation V2 is the Laplacian operator, c is the speed of sound, and & is either the
acoustic pressure, the density perturbation, the particle velocity, or the scalar velocity
potential. Eq. (1) follows directly from the equations of continuity, state, and motion
[1]. This tirst approximation assumes only linear terms are kept, the condensation is
small compared to unity, only irrotational motion is considered, and the derivative of
pressure with respect to density is a constant. Throughout this report we will also asrume
that ¢ is space dependent but time independent.

Usually the wave equation is solved to varying degrees of approximation by either
ray or wave (normal-mode) theory. In reality the ray approach is an approximation of
the wave approach. Here we are primarily concerned with the computer implementation
of a ray theoretical approach. Fiaquently the normal-mode approach solves Eq. (1) by
assuming a set’of source and boundary conditions and applying standard techniques, such
as those of Ref. 2. The ray theory approach, on the other hand, assumes a particular
functional form for ¢ to obtain another differen‘ial equation which is somewhat more
amenable to solution. This new differential equation is commonly referved to as the
eikonal equation. The Appendix discusses the eikonal equation and other fundamentals of
ray acoustics in more detail.

Ray theory has the following advantages:

® It is versatile enough to handle highly variable bathymetry and complex depth-
and range-dependent sound-speed fields.

® It provides a quantitative and easily visualized description of the propagation of
sound in the form of ray diagrams.

® It is relatively straightforward and its equations are more tractable than those of
normal-mode theory.

Manuscript submitted June 8, 1973.



2 JOHN J. CORNYN
® 1t fairly easily handles directive sources and receivers as well as pulsed sources,
Some of the disadvantages of ray theory are the following:

®  In general, unmodified ray theory does not compare well with experiment at
very low frequencies. One often quoted rule of thumb [3] is that ray theory is more
“appropriate” than normal-mode theory provided

h
AL 1o0° (2)

where h is the water depth and \ is the wavelength. Thus according to this rule a lower
frequency limit for ray theory is approximately given by

L 10

=%

(3)

If we set h to 3000 meters and ¢ to 15600 meters/second, Eq. (3) gives a lower limit of
approximately 5 Hz. Continuing with rules of thumb, the following statement by
Williams [4] seems applicable:

“For the ray approach to be safe the acoustic wavelength must be much smaller
than any other pertinent length. ‘Pertinent’ lengths include the water depth,
the size of obstacles, scale of surface and bottom roughness, distance in which
the refractive index changes appreciably, and the size of any predicted focal
region. It follows that at low acoustic frequencies any result of a ray calcula-
tion is suspect, although by no means necessarily wrong. No exact figure for
the onset of suspicion can be given; it depends upon the problem being tackled.
Examination of theoretical and experimental results suggests that, in the deep
ocean, calculations at some 200 Hz and lower warrant examination by wave-
acoustic theory; above some 1000 Hz, ray methods would usually be safe; in
the interval, intercomparisons are desirabie. Problems involving shallow-water
regions, or shallow ‘surface based ducts,” may require wave acoustic analysis at
frequencies well above 200 Hz.”

Substantiating the sentence italicized, comparison with experimental data using GRASS
and other programs at NRL indicates that though there is certainly a lower limit to the
frequencies amenable to ray-tracing technigues, even in the deep ocean, ray theory fre-
quently gives good results at 100 Hz and at times is useful at frequencies as low as 50 Hz.
Ray-tracing programs such as GRASS need not be strictly limited by all of the disadvan-
tages of unmodified ray theory discussed above. For example, several methods have been
proposed to more or less combine ray and wave theory and thereby correct intensities for
the diffraction effects in the vicinity of caustics [6-11]. These and similar hybrid ap-
proaches will no doubt in the future extend the lower frequency limit and usefulness of
ray-tracing programs. At pr--=nt GRASS does not attempt to correct intensities for dif-
fraction effects in the vicinity of caustics, although it could (and probably should) be
modified to do so. It does however generate frequency derendent transmission-loss curves,
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but only by using frequency dependint volume attenuation parameters, bottom loss tables,
and source and receiver directivity functions.

®  Prior to actuaily carrying out the ray calculations, one does not know exactly
how many rays should be traced, at what angles, or even the angular spacing that should
be used to achieve a certain degree of accuracy in the transmission-loss calculations.

®  Usually in carrying out transmission-loss calculations many more rays are traced
than are actually required. That is, only a small percentage of the rays traced will con-
tribute significantly to the intensity at a particular receiver iocation.

Some of the advantages of normal mode theory are:

® [t does not predict, as does unmodified ray theory, physically unrealistic false
caustics and sharp shadow-zone boundaries.

® Its predictions are frequency dependent, in contrast to the frequency independ-
ent predictions of ray theory.

® It is valid over a much larger frequency range than ray theory.

® Its predictions, where computationally possible, tend to give better agreement
with experimental data than those of ray theory.

® If only a few modes are excited, it tends to be more appropriatc computa-
tionally than ray theory. For example, at very long ranges waveguide effects tend to
dominate the propagation.

Some of the disadvantages of normal-mode theory ace:

® In most cases involving initial and boundary ccaditions resembling those actually
met in the ocean, the normal mode calculation is at best iaborious and at worst impossible.

®  Existing normal-mode programs and solutions assume an elementary form of
the bottom topography; indeed most solutions and programs mentioned in the literature
assume a flat ocean bottom. Experimental evidence indicates however that the shape of
the hottom can play a prominent role in propagation [12a].

¢  In normal-mode summations it is not always obvious how many modes (10 or
1007?) should be included to obtair meaningful results.

¢  Normal-mode calculations generally require extreme accuracy in the calculation
of mode contributions to obtain moderately accurate results [13]. Computer roundoft
errors are a significant problem.

¢ It is more difficult for the average parson to achieve an intuitive feel for the
propagation of sound by examining normal-mode plots than by examining ray diagrams.

®  For short ranges, wherein many modes are excited, ray theory solutions tend to
be more practical from a computational standpoint than normal-mode solutions [14].
Normal-mode solutions involve a summation over continuous and discrete modes [15].
For long ranges and shallow water the discrete modes generally dominate; so most
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solutions neglect the contribution from the continuous modes. For short ranges however
the continuous modes dominate and the calculation of their contribution is difficult.

®  The 2uthor knows of no normal-mode program which can handle multiple pro-
files and a variabie bottom topography. The multiple-profile capability is of considerable
importance, because it hus been demonstrated both theoretically and experimentally that
horizontal gradients are significant in long-range propagation {12a].

In summary, comparing the advantages and disadvantages of both ray and normal-
mode theory, we sse that from a theoretical point of view normal-mode theory has a
significant number of advantages over ray theory. Unfortunately for our application the
advantages of normal-mode theory are at present overshadowed by its computational dis-
advantages. For this reason we use the ray theory; the computational advantages and dis-
advantages tend to take precedence. But as advances continue to be made in computer
science and numerical analysis, the computational difficulties posed by normal-mode
theory will probably be overcome, and eventually it may replace ray theory, especially in
the domain of low frequencies and long ranges.

1.2 Computer Implementation of GRASS

GRASS, Germinating Ray-Acoustics Simulation System, is a set of linked com-
puter programs which comprises a ray-tracing and transmission-loss-prediction system.
This system wa: designed primarily for studying the propagation of low-frequency sound
over long ranges in the deep ocean. Because the ray-tracing technique described herein is
based on, but not limited by, geometrical optics, the system could prohably be adapted
to many of the fields concerned with the propagation of waves in inhomogeneous media.
For example, it could be modified for studying the propagation of acoustic waves in the
atmosphere, of radio waves in the ionosphere, or light through a medium having a widely
varying index of refraction [15-17].

The starting point in the development of this system was the Hudson Laboratories
Ruy-Tracing Program, HLR.P {12b]. Unfortunately, the majority of the HLRTP was
written in a two-dimensional higher level computer language, USER [18-20], whose only
compiler was located at the Huds. i Laboratories Rather than attempt to write a USER
compiler for the NRL computer, a CDC 3800, we chose to start from the basic formulas
contained in the HLRTP, to reanalyze and reformulate them, and .0 congtruct a com-
pletely new set of programs in the relatively universally understood higher level computer
language Fortran. Since this new system is written in Fortran [21], it should be readily
adaptable to most medium- and large-scale computer systems. The largest program re-
quires 36,800 words of core (exclusive of CDC system routines).

GRASS bears only a slight resemblance to the HLRTP. Many of the algorithms and
equations used in the HLRTP were initially adopted and modified, and some were
eventually discarded. The resulting algorithms differ significantly from those in the HLRTP.

Figure 1 shows the present state of GRASS. The overall system is modular and
contains seven program modules. Each module communicates with its neighboring pro-
grams via cards, or magnetic tape. This type of structure has several advantages over a
single program that “does everything.” Individual modules are easier to write, understand,
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modify, and document. In addition each module is easily adapted to several applica-
tions, whereas a ‘‘do everything” program would probably contain many irrelevant and
core-consumming routines, Since each program has sole use of the computer’s
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memory while in execution, many of the difficulties experienced in writing large programs
are avoided, such as having to overlay core. Further, the modular structure allows for
uninhibited growth. As new ideas, experimental evidence, and applications arise, the
existing programs can b revised and new »rograms linked into the system.

Briefly the seven modules (programs) shown in Fig. 1 perform the following functions:

Program Function
DTSTOV g;mverts depth, temperature, and salinity data to sound-speed pro-
es.

VFC Intexpolates and extrapolates the ound-speed field.

PRFPLT Cenerates sound-speed, sound-speed-gradient, and sound-speed-
curvature profile plots.

CTOUR Generates a contour plot and three-dimensional isometric plot of the
sound-speed field.

SERPENT Carries out ray-iracing and transmission-loss computations.

RAPLOT Generates cay diagrams.

LOSSPLT Generates transmission-loss plots.

All of the above modules are stored in binary object form on & CDC 813 disk to
allow for easy access by NRL scientists. The entire system requizes approximately 55,000
(decimal) words of disk storage.

Some of the input features of GRASS are the following:

e It can handle a two-dimensional range- and depth-dependent sound-speed field.

® It can handle sound-speed profiles having up to 1000 points. There is no limit
to the number of input profiles, and there are no restrictions on the spacings of profile-
point depths.

® It permits the user to specify several bottom-loss tables and to indicate the
ranges over which each of these tables applies.

@ It has a free-field input routine for easy entry of data.

® It checks all data for proper entry and physical meaningfulness.

It enables the user to insert a surface-loss parameter.

e It allows the user to specify simple beain patterns at the ray source,
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Computational features of GRASS include the following:

® It uses multiple profiles having continuous first and second derivatives of sound
speed with respect to depth and a discontinuous first derivative of sound speed with
respect to range (if there are more than two input profiles).

® It allows the user to make tradeoffs between accuracy and running time.

® It traces up to 1500 rays concurrently in one pass through the sound-speed
field.

® It extends both “shallow” and “‘deep’ profiles to the ocean bottom. (These
terms will be discussed later.)

® It corrects the sound-speed profiles, bottom topography, and source and re-
ceiver depths for earth curvature, if requested.

® It uses very elementary coherent- and random-phase intensity calculations for
short ranges.

® [t uses a statistical interwsity calculation [12c] for intermediate and long ranges.
® It uses iterative rather than closed-form solutions to the ray equations.
Output characteristics of GRASS include the following:

® It produces Calcomp plots and printer list.ngs which may be used directly in
reports.

® It prints out complete ray statistics at ranges selected by the user.
® It generates three-dimensional plots and contour maps of the sound-speed field.

® It allows the user to generate ray diagrams directly from the ray tape. The user
may select the rays he wishes to plot.

® It enables the user to plot transmission-loss and reference and/or experimental
curves for multiple receiver depths on the same plot for comparison.

1.3 Comparison of GRASS and some Other Ray-Tracing Programs

Over most of the world’s oceans the horizontal dependence of the sound-speed field
is small compared to the depth dependence, but it is also true that for long-range propaga-
tion studies, of the distance of 100 miles or more, horizontal gradients cannot always be
ignored [12d, 22]. Further, in some areas of the ocean the temperature gradients are so
large that even for short ranges one cannot ignore horizontal gradients. An example of
this phenomenon occurs in the vicinity of the Gulf Stream’s circulating eddies [23]

(Figs. 2 and 38). In these regions the ray patterns obtained by horizontal-gradient programs
differ significantly from those obtained by programs which assume only a depth-depend-
ent sound-speed field. Experience with GRASS has shown that horizontal gradients

can move the sound channels up and down with respect to depth and also expand
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SOUND SPEED —=
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DEPTH —o

Fig. 3—Three-dimensional plot of the sound speed (ield for
the Gulf Stream in the test cave of Fig. 2

and contract them. Pigure 4, gmerated by GRASS for the sound-speed field shown in

Figs 2 and 3, illustrates this behavior. These effects cannot be predicted by programs

which use only a single profile to represent the sound-speed field. The reader may wish
to examine the reports of Murphy and Lovd [24] and Anderson [25] for some experi-

mental measurements and further discussion of horizontal gradients. Warfield and Jacob-
son [26) show that even a weak range gradient can have a significant effect on pressure
amplitudes and phase. Milder [27] discusses the relation of horizontal gradients to cer-
tain ray invariants.

Although there age a few notable exceptions {5, 16, 28-29), many of the ray-tracing
programs available today cannot handle a range-dependent sound-speed field. That is,
they assume the sound-epeed field has only a depth dependence. Those which provide
for only a depth-dependent sound-speed field give misleading results in numerous cases.
For example some programs model the sound-speed field with a profile having discon-
tinuous first and/or second derivatives of the sound speed with respect to depth. Dis-
continuities in the first derivative have been shown [30, 31) to lead to unrealistic regions
of low intensity, spurious (false) caustics, and the omission of real caustics. Discontinui-
ties in the second derivative can lead to layering effects in the form of infinite rates of
change in intensity [32, 33].

Many ray-tracing programs piace relatively severe limitations on the number of
points a sound-speed profile may have. For example some programs provide for less than
50 points.

GRASS avoids thesr problems by using a representation of the sound-speed field hav-
ing continuous first and second derivatives with respect to depth and taking into account
horizontal gradients.

The GRASS ray tracing program SERPENT achieves computational speed and ef-
ficiency by using iteration equations which allow for large increments in ray length; these
iteration step sizes can approach 1000 meters and still give meaningful results. These
large step sizes are motivated by the fact that in actual calculations the rays spend most
of their time in the deeper regions of the ocean where the vertical gradients ave small and
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nearly constant. As SERPENT traces a ray, it automatically adapts the ray’s iteration
step size to the local sound-speed field, contracts the ray arc increment in regions of high
profile curvature and near turning points, and insures that the iterations do not pass too
rapidly over the intervening profile structure. These procedures complement those con-
tained in the VFC program of GRASS which detect and print warning messages for un-
usually large gradients and curvatures. In addition these adaptive procedures may be con-
trolled by the user, allowing him to make a tradeoff between computation time and
accuracy.

Further distinguishing GRASS from other ray-tracing programs is a procedure for
estimating whether continued tracing of a ray is cost effective. Experience with GRASS
has shown that the rays which are both most expensive to trace, in terms of computer
time, and most difficult to trace, from a mathematical point of view, are also the ones
that contribute least to the intensity at a distant receiver. For example the rays which
leave the source at steep angles experience considerably more bottom hits than those
leaving the source at near horizontal angles, and as a result their loss is also greater.
Similarly it is quite common for rays to be trapped in very shallow surface ducts and
undergo numerous surface hits within the distance of a few nautical miles. These same
rays are ones for which ray theory may not be valid, as explained earlier. SERPENT con-
stantly checks the rays as they are being traced to see that they are cost effective. If not,
these rays are terminated, and the program goes on tracing more promising rays.

The GRASS ray-tracing technique uses an iterative rather than a closed-form solution
to obtain ray paths. Some closed-form solutions are more desirable than some iterative
solutions in that they are numerically stable and more conducive to analytic investiga-
tion [31a]. Nevertheless, closed-form solutions are not completely free of difficulties
{34), and there are a number of advantages to an iterative approach. For example some
closed-form solutions cannot be quickly evaluated on a computer, since they may require
the evaluation of relations containing logarithmic, hyperbolic, and even more complicated
functions Furthermore a closed-form solution must represent the sound-speed field in a
manner that adequately describes the actual physical phenomena, hence must avoid the
discontinuity problems mentioned earlier and allow for horizontal gradients. A curve-
fitting technique for obtaining a representation of the sound-speed field from ocean-
ographic data should be straightforward and easily implemented on a computer. In addi
tion, a closed-form solution should not restrict the shape of the bottom topography or
the ray angles that can be traced. For example, because they are limited to certain
closed-form solutions, some ray-tracing programs have difficulty accurately tracing near-
horizontal rays.

Finally some ray-tracing programs [28] use a triangular-region representation of the
sound-speed field. This representation forces the bottom profile to be linearly segmented.
In SERPENT this problem does not arise. The ray-tracing equations are completely in-
dependent of the shape of the bottom profile and vice versa. There is no reason a cur-
vilinear bottom, represented by a cubic spline, could not be incorporated into SERPENT,
and there would be an advantage in using a representation of the bottom profile having
continuous derivatives In particular, since ray- define a wavefront which physically must
be continuous and smooth, adjacent rays which reflect from different bottom segments
cannot represent physical reality.

A closed-form solution satisfying all of the desirable criteria mentioned is not easily
obtained. Of course, all so-called closed-form solutions, once put on a computer, are
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reduced to numerical approximations. Hence the problem of ray tracing really reduces to
the problem of determining the best method of carrying out a numerical approximation.

2, MODELING THE OCEAN ENVIRONMENT
21 Treatment of the Sound-Speed Field

Presently GRASS has foi.» programs (DTSTOV, VFC, PRFPLT, and CTOUR) for
interpolating, extrapolating, and displaying the sound-speed field (Fig. 1). Although each
program is complete in itself, its major input, with the exception of DTSTOV, is the out-
put of another program. Currently the media of intercommunication is cards and magne-
tic tape.

21.1 Conversion of Depth, Temperature, and Salinity Data to
Sound-Speed Profiles (DTSTOV Program)

21.1.1 Purpose

Frequently the prospective user of GRASS has only salinity, temperature, and depth
(STD) data at his disposal, obtained by XBT's, AXBT’s, andi/or Nansen casts. At any rate
it is necessary to convert these to sound-speed profiles DTSTOV uses Leroy’s second
equation, Eq. (7) of Ref. 385, to provide this conversion capability:

5
= )

i=1

%, 4)

where
T, = 1493 + 3(T - 10)- 6 X 1073(7'- 10)% - 4 X 10°%(T - 18)*
+1.2(5 - 35)- 10°%(T - 18)(S - 36) + = ,

L
€, = 107132 + 2 X 1074¢3(T'- 18)® +107'¢ o0

~

¢, = 26 X 107 T(T - 5)(T - 25),

€= -10%2¢ - )¢ - 8),

T = 15X 1079(5 - 85)2(1 ~ §) + 3 X 1078T2(T - 20)(S - 35)
and

¢ is the sound speed (m/s),

T is the temperature (°C),

S is the salinity (%),

z is the depth (m)
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{ is the depth (km),
L is the latitude (degrees).
For salinities greate: than 30%o the ¥5 term of Eq. (4) is omitted.

The user of DTSTOV has the option of printing out the pressure (kg/cm?2) corre-
sponding to each depth. Leroy’s geographically dependent pressure equations derived
empirically from many different areas [36] are used for this calculation.

2.1.1.2 Input

A free-field input routine {37] reads in IBM cards containing the STD data and
their corresponding lattitude and longitudes and containing output-control and data-
identifying parameters. If the data do not fall within the following limits, the program
prints out an error message and stops: salinity, 20 to 42°%e.; temperature, -2 to 34°C; and
depth, 0 to 10,000 meters. There i8 no limit to the number of STD profiles that may be
read in.

2.1.1.3 Output

The printer listing shows the profile ranges, latitudes, longitudes, depths, temperatures,
salinities, and sound speeds. Pressures may be printed as a user option. In addition the
minimum and maximum depths, temperatures, and salinities are printed for each profile.

Each profile’s range (n.mi.), latitude and longitude (deg and min), temperature (°C),
and salinity at its maximum depth of observation (MDOQ) and its depth-and-sound-speed
pairs are punched on cards. The MDO temperature and salinity are punched to facilitate
later extension of the profile to the ocean bottom by the VFC program.

2.1.1.4 Accuracy

Wilson's {38] second equation is widely usad to calculate the speed of sound in sea-
water. Leroy [35] proposed two formulas: one that approximates Wilson's equation and
one that approximates the data Wilson used when computing his second formula. These
formulas are simple and fairly accurate; in fact Leroy has demonstrated that Eq. (4), his
second equation, fits Wilson’s data better than Wilson’s equation itself. Another advantage
of Leroy’s equation is that it gives sound speed as a function of depth, temperature, and
salinity and thus aveids the intermediate and time-consuming conversion of depth to pres-
sure required by Wilson’s equation.

Equation (4) has been divided into five parts [39]:
® A minimum number of terms ¢; forming the “simplified” formula, which is

sufficient with a slightly reduced accuracy for depths of less than 1000 m at any latitude
provided that T < 25°C and 30%o < S < 42%o.
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® A depth-, temperature-, and latitude-dependent expression ¢, which is neces-
sary for depths greater than 1000 m. It extends the validity of the formula to depths of
7000 m and iniproves the accuracy to $0.1 m/s (for T < 23°C).

® A temperature correction ¢3 for T > 25°C. This correction still leaves the re-
sults at lower temperatures within 0.1 m/s of Wilson’s formula and permits the calculation
of sound speeds for temperatures up to 34°C.

® A correction term €, for very great depths, necessary only for depths greater
than 7000 m.

® A corrective term ¢ for low salinity to be applied only when S < 307,,.

In calculating Eq. (4) DTSTOV uses double-precision arithmetic to avoid roundoff
€errors.

2.1.1.5 Recommendations for Improvement

Frye and Pugh [40] derived an 11-term empirical sound-speed equation which is a
significant improvement over the published equations of Wilson. Unfortunately this
equation is valid only for salinities less than 36.6%c. Although the authors claim this
equation is valid over 99.5 percent of the open-ccean volume, it does not apply in im-
portant areas like the Mediterranean Sea, where the salinities lie in the vicinity of 38%oo.
Currently Frye and Pugh are acquiring new data to extend the domain of their equation,
but until that equation is published we have decided to use Leroy’s.

Concerning experimental data collection, the need exists for real-time computer
collection of depth, temperature, salinity, and sound-speed data. For example, at this
time it is relatively straightforwar.l to interface an XBT recorder through an analog-to-
digital recorder to a minicomputer. As the XBT is being dropped, the computer could
be digitizing the temperature profile according to adaptive algorithms, similar to those
suggested by Rattray [41], for determining optimum sampling depths and storing the re-
sults on magnetic tape. These algorithms tell the user how he should interpolate between
the data points, in addition to giving him a minimum number of points. The standard
practice today is to give the user an array of numbers and let him figure out how to in-
terpolate between them.

2.1.2 Interpolation and Extrapolation of the
Sound-Speed Field (VFC Progr. .)
2.1.2.1 Purpose
The purpose of the VFC (velocity-field construction) program is:
® To examine the input bottom-topography and sound-speed data for consistency
and physical meaningfulness. Unusually large gradients and curvatures are flagged. Other

inconsistencies may result in warning messages and possible termination of execution.

® To extend all input sound-speed profiles to the ocean bottom.
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® To correct, if requested, the extended sound-speed profiles and bottom depths
‘or earth curvature.

¢ To determine the first and second derivatives of the interpolated and extra-
polated sound-speed-field data.

®  To generate a magnetic tape (coefficient tape) containing the bottom profile
and the sound-speed fiald and its derivatives for input to other programs in the system.

21.2.2 Input

All input Jdata to the VFC program are punched on cards in {ree-field format. They
mclude:

®  Program-control parameters and data identification numbers

® The bottom topography in the form of up to 1000 nonuniformly spaced range-
and-depth pairs in user-defined units. The program assumes a linearly segmented bottom.

®  The sound-speed profiles Each profile may have up to 1000 nonuniformly
spaced depth-and-sound-speed pairs. There are no limitations on the number of profiles,
the ranges of the profiles, the maximum depths of observations, or the units of measure-
ment.

21.2.3 Output
The output consists of:

® A magnetic tape (coefficient tape) containing the corrected and extended sound-
speed profiles and their corresponding first and second derivatives and the bottom topog-
raphy.

® A printer listing containing control parameters, data identification numbers, and
error and warning messages. Optional output includes: listings and printer plots of the
input sound-speed profiles, a listing and printer plot of the bottom profile corrected for
earth’s curvature, listings and printer plots of the final corrected and extended profiles,
and listings of the first and second derivatives, that is, the vertical gradients and curvatures.

2.1.2.4 Interpolation in Depth

The VFC program uses a combination of cubic-spline and linear interpolation schemes
to model the sound-speed field. This representation differs significantly from that used
in the HLRTP and most other ray-tracing programs.

Interpolation in depth is carried out using cubic splines [42-48). The mathematical
mode! of the cubic spline is as follows: Let z,, z,, . . ., 2, be distinct, not necessarily
uniformly spaced, depths such that

a=zl<22<z3... <z,=b
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and let ¢y, ¢y, ..., ¢, be the sound speeds corresponding to these depths In our ap-

plication the denth a is normally, zero. The cubic-spline function f(z), for a < z < b, has
the following properties:

1fiz)=c; i=1,2, ..., n. The spline passes through all the input data pointa.
2) f(z), f (z), and /" () ave continunus.

8) In each interval [2;, 2;,11,i= 1, ..., n - 1, f(2) is a cubi: puiynomial

4) If g(z) is any other function satisfying properties 1 through 3, then*

b b
f [f"(zn’dz<f 8"(2))2dz. (8)
a a

One can show that property 4 is satisfied provided
r'@=1"(b)=0.

Since f(z) is cubic, f"'(2) is linear in the interval z; < z < z;,,. That is,

(") - (2]

Zz

f'@=1'@)+@-z) s (6)
ir1 =%

Hence, if we can determine f''(z) for i = 2, ..., n - 1, we can determine f(2), f'(z), and
f''(z) anywhere on the interval [a, b] by straightforward integration of Eq. (6).

By introducing the no‘1tion

hy =2, ~2,i=1,2,...,n-1,

£ =), i= 1,2, m,

C. - .
—'%,Fl,z,...,n-l,

cli+1,i}=

we can show [42, 48] that solving for the curvature f;’ reduces to the problem of solving
the system of linear equations

HF =D, )
*If one considers the spline /{z) to represent a flexible strip of plastic or wood (a mechanical spline), the

potential energy of that strip would be proportional to the integral of the square of the curvature *'(z).
Hence minimizing the potential energy is equivalent to minimizing | ° [/ “(z)] %dz.
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where
2(hl +.112': :"2 0 e . 0
hy 2(hy +hy) hy 0
H= 0 hy 2(hg +hy) ... 0
0 ... . h,,
0 Y hn-z 2(hn 2 +hn-1)
Iy \
fi
F= ’
fa-1
c(3, 2] - c[2, 1]
c[4, 3] - c[3, 2]
D= 6

c[n, n-1] —c[n-l,n-2]/

Note that H is a symmetric, tridiagonal, positive-definite, diagonally dominant,
(n - 2)-by-(n - 2) matrix. To solve this linear system, we use the method of successive
overrelaxation suggested by Greville [42].

The cubic spline has several advantages over other methods of interpolation:

®  In the sense of satisfying Eq. (5) the cubic spline is the smoothest function
which interpolates the given data.

® It yields continuous first and second deriva’ives.

®  Its characteristics and error bounds are well understood. (Further discussion of
splines, including error analysis, may be found in Refs. 44 and 45).

One disadvantage of the cubic spline, correctly pointed out by Weinberg [31b], is
that it can yield erroneous values of sound speed if precautions are not taken. To help avoid
these erroneous values, the VFC program flags unusually large gradients and curvatures.
“Unusually large” is defined by the user in the form of input parameters. Typically an
unusuaily large gradient wouid be one whose magnitude exceeded 1 s and an unusually
large curvature would be one which exceeded 0.1 m™ 5!. To be safe, the user may plot
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his profiles using PRFPLT and see exactly how the program will interpolate between data
points. If erroneous values of sound speed are detected, the user can delete or add points
and thereby force the spline to give a physically more meaningful representation. In the
future an algorithm could be implemented that automatically cerries out these deletions
and additions, based on the input parameters mentioned. That is, the interpolation pro-
cedure could be modified to take into account the maximum and minimum gradients and
curvatures likely to appear in a given region. These maxima and minima will of course be
depth dependent. As an alternative approach one could replace the pure cubic spline with
the least-squares cubic spline proposed by Powell [46]. Because Powell’s technique does
not insist on property 1 of Section 2.1.2.4, the resulting least-squares spline can have
more physically meaningful curvatures than the cubic spline. The use of such a technique
would probably diminish the difficulties pointed out by Weinberg. Additional recommen-
dations will be give-. in Section 2.1.2.9.

Weinberg [31b] claims that his continuous-gradient technique is superior to the pure
cubic spline for a sound-speed field having only a depth dependence. This may indeed be
true, but tne following points bear mentioning:

®  The Weinberg technique does not have second-derivative continuity and thus is
somewhat less desirable fror : theoretical point of view. Although it may be true, as
Weinberg suggests, that in most practical applications this is of no consequence, neverthe-
less Pedersen [32] has shown that discontinuities in the second derivative lead to the in-
finite rates of change of intensity mentioned in Section 1.3.

®  Curve fitting using a cubic spline is more straightforward than the Weinberg
technique.

The method used in the HLRTP for representing the sound-speed field was initially
implemented and later discarded because it led to unrealistic variations of the profile
curvature and is physically and mathematically less appealing than the cubic spline. Moier
and Solomon [47] discuss the use of cubic splines in a ruy-iracing program having only a
depth-dependent sound-speed field.

2.1.2.5 Interpolation in Range

Consider the interpolation of the sound-speed field and its derivatives at a point be-
tween two input profile ranges. In particular consider a point at range R, R; < R < R,,
and depth 2, where R; and R, are two adjacent input profile rangas.

Let f(R, z) be a two-dimensional interpolation function corresponding to the one-
dimensional function f(z) of the previous section. We use linear interpolation to approxi-
mate a value of sound speed at the point (R, 2) as follows:

[f(Rz.Z) "f(Rls Z)]
.._R.__—

8
=y 8)

f(R,2)=f(Ry,2)+ (R - Ry)

where the values of f at the arguments (R, z) and {Rg, z) are obtained by the cubic-
spline technique. Similarly, replacing each occurrence of f in Eq. (8) with f,, and f,,,
we can obtain approximations for the vertical gradient and curvature respectively at the
point (R, 2).
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To estimate the horizontal gradient f at the point (R, z) we use the first finite
divided difference:

Ry, ) - B, )]
fa @, = TE0 00 ®)

Thus we can obtain approximations for f, f,, f,, and fg at any point (R, 2) in the
range-and-depth plane.

2.1.2.6 Earth-Curvature Correction

If we consider the earth to be a sphere of radius ¢ and pass a plane through the
center of this sphere, we can describe the position of any point p at range r and depth
q by the complex number 2z, where z = x +iy. In the polar coordinates of Fig. 5 we
have, since r = af,

z=(a-q)"" (10)
The set of equations
u=ur,q)
v =u(r,q)

defines a transformation which establishes a correspondence between points in the z and
w planes. {In these next few paragraphs we will reiterate some of the discussion given
in Ref. 48.) If u and v are continuously differentiable and the Jacobian d(u, v)/d(x, y)
does not vanish in a region R, then the transformation is one to one in R. A special
case occurs when u and v are the real and imaginary parts of an analytic function of a
complex variable z = x + iy, namely, w = u + iv = f(z) = f(x +iy). In this case the Jaco-
bian of the transformation is given by

u,v
5§;—y’)— rre)

Hence it follows that the transformation is one to one in regions where f'(z) # 0.

Consider the definition of a conformal mapping. If under a transformation a point
(%9, ¥p) of the z plane is mapped into 2 point (ug, vy) of the w plnne, while curves Cy
and C, ‘ntersecting at (x(, ¥, ) are respectively mapped into curves C; and Cz intersecting
at (uo, Ug); then if the transformation is such that the angle at (xg, ¥o) between C; and
C, is equal to the angle at (g, vy) between C, and C both in magnitude ard sense, the
transformation is said to be conformal at (x, Yo) A fundamental theorem of complex-
variable theory states that if f(z) is ar.alytic and f'(z) # 0 in a region R, then the mapping
w = f(2) is conformal at all points of R.

We now consider a transformation, namely,

w=ae™2In (zfa) = u + iv. 1)
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v w = PLANE

oinfa/{a-q)) |emem==- -+

Fig. 5—Planes for the earth-curvature correction

This function is analytic at all finite values of z except at z = 0, where the derivative does
not exist. The point 2 = 0 is called a singular point of w. Clearly w is conformal at all
points of the region R provided R is defined as excluding the point z = 0. This point is
of no interest in our calculations,

Combining Egs. (10) and (11),
w=r~-ialn [(a-q)/a] =u + v a2

An interesting feature of this transfcrmation is that it maps the circumferential co-
ordinate r into the linear coordinate u and maps the depth coordinate q into the v coor-
dinate, which is independent of r. To see why this occurs, note that Eq. (11) first com-
presses the region R by the factor a and then uses the log function to map the resulting
annular region into 2 rectangular region. This rectangular region is then rotated clock-
wigse 90 degrees and stretched by the factor a.

Expressing the speed of sound at the point p in polar coordinates of the z plane,
we have
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- Jia-ay2(20)Z , [da-a)]?
= fla-an(B) +[4%
2 2 2
- 1/(a-a)(dr .t_i_q)
l/( a ) (dt) +(dt ;
In the w plane at a point corresponding to the point p of the z plane, the speed of
sound is given by
_ du 2 dv 2
w = y/at) + (&)
= ]/@.‘r)z + a2 (gg)z

Hence if one measures a sound speed in the z plane ¢,, the corresponding sound speed in
the w plane is given by

13)

(14)

cp = (agq) c, =e"¢,, (15)

and the coordinates corresponding to range and depth are respectively
u=r

and

v=-aln ("—‘ﬂ) (16)

a

These results are identical to those obtained by Watson [49]. Watson however based
his derivation on Fermat's principle rather than emphasizing the conformal-mapping as-
pects of the problem as we have done here. Watson also discussed the implications of
earth curvature to three-dimensional ray-tracing problems.

One naturally questions the importance of the earth-curvature correction. As an
estimate of the radius ¢ we will take the mean radius of the international spheroid [50],
namely, 6.37122935 X 10® meters. Expanding Eq. (16), we have

u=-aln(1-i)=a(_9.+!ﬂ£ +_];Q§ +...)
a @ 922 353
amn

2
=q +i-2a-=q+Aq,

In oceanographic work it is highly unusual to consider depths greater than 6000 meters.
If, to obtain a worst-case estimate, we let ¢ be 104 meters, we see Aq is approximately
7.85 meters. Also ¢, is approximately 1.0016 c,. Since c, is seldom greater than 1600
m/s, our maximum correction to the sound speed at this depth is about 2.5 m/s. Both of
these corrections are likely to be amaller than the experimental uncertainties. Thus for
almost all practical purposes the earth-curvature correction can be neglected.

. &4“'
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2.1.2.7 Algorithm

The following step-by-step procedure roughly describes how the VFC program works.

1. {nitialize certain variables,

2. Read in the bottom topography and write it on the final output tape, and then
read in parameters, such as:

TEMPDP —The depth in meters at which for further increases in depth the tem-
perature of the ocean remains approximately constant. This depth serves as the dividing
line between ‘‘deep” and ‘‘shallow” profiles and is normally about 1500 meters. Profiles
whose maximum depth of observation (MDO) lies at or below TEMPDP are called “deep.”

DPTHMX —The maximum depth allowed in the input data. If an input depth ex-
ceeds this depth, the program will print out an error message and stop. All profiles, both
deep and shallow, are extended to this depth.

VMIN and VMAX —The minimum and maximum sound speeds permitted in the
data. If these are exceeded, the program prints out an error message and stops.

ZMINFL, ZMAXFL, DMINFL, and DMAXFL—The minimum and maximum ex-
pected vertical gradients and curvatures. If these are exceeded, the program will print a
warning message.

DPINC—The depth interval used in extending the profiles.

3. Read in the next sound-speed profile on cards. The first card for each profile
contains its range along the track, its latitude, its longitude, and the temperature and
salinity at its MDO. Compare the sound speeds with VMIN and VMAX and check the
profile points for proper arrangement.

4, Compare the MDO with TEMPDP to determine if the profile is deep or shallow.
If the profile is deep, go to step 5, otherwise go to step 6.

5. If DPINC is not zero, extend the deep profile below the bottom using Leroy’s
equation, with the temperature and salinity assumed to remain constant at the values
described in step 3. Add points to the profile in depth increments of size DPINC meters
from the MDO to the depth DPTHMX and check to determine that the resulting profile
has no more than 1000 points.

6. If the user requested it, print and printer plot the profile. (These plots are help-
ful in detecting major errors in the input data; so users are encouraged to examine them
rarefully before proceeding with ray tracing.)

7. If requested, use Egs. (15) and (16) to correct the profile for earth curvature.

8. If the profile is shallow, go to step 9. Otherwise calculate the deep profile’s sec-
ond derivatives (curvatures) using the spline technique described in Section 2.1.2.4 and
store the depths, sound speeds, and curvatures temporarily on the drum; then go to
step 10.
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9. Store the shallow profile’s depths and sound speeds (not curvatures) m a separate
2a of the drum. Since the program requires the last profile to be deep, this cannot be
th e last profile; so go to step 3.

10. If this was the last profile, go to step 11. Otherwise go back to step 3.

11. Write some data-identifying information on the final output tape. Set the flag
pirameter NPOS to 0.

12, Read the next shallow profile from its temporary storage area on the drum, If
there are no more shallow profiles, go to step 26.

13. If the range of the next deep profile on the drum is less than the last-read shallow
profile, call it the “before™ profile with range Ry and read its depths, sound speeds, and
curvatures from the drum. Otherwise the range of the profile is greater than that of the
shallow profile, so go to step 15.

14. If requested, print and printer plot this deep profile. Also write its depths, sound
speeds, and curvatures on the final output tape. Then go to step 13.

15. Let R, be the range of the first deep profile after and nearest the shallow profile
and let Rg be the range of the shallow profile. In other words, in step 13 and tlus_step
find the two deep profiles which are closest to and have ranges Rz and R, bracketing the
shallow profile (Fig. 6). If the flag NPOS is set to 9, restore it to 0 and go to step 16.

Otherwise, read in the depths, sound speeds, and curvatures for the after profile from
the drum.

16. Use cubic-spline interpolation (the curvatures have already been determined) to.
obtain a value of sound speed ¢y p on the before profile at the depth z,,, corresponding
to the MDO of the shallow profile. Similarly, interpolate a value of sound speed cp4 on
the after profile at the same depth (Fig. 6).

17. Determine whether the after profile or the before profile has the next lowest depth
Z in its data. If the after profile has the next lowest depth, then let c; be its souml:l
speed at this depth and interpolate a value of sound speed cp on the before profile’at the
same depth using the cubic spline. If on the other hand the before profile has the next
lowest depth z, interpolate a sound speed c, on the after profile using the cubic spline.

18. To obtain the sound speed ¢(Rg, 2) at depth z on the shallow profile at range Rg,
combine the two sound speeds ¢, and cp at depth z as follows. Letting 2* = 1.1 25
(the constant 1.1 will be explained later), if z is greater than z*, then

c(Rg,2) = cg + DgD./Dp, (18)
but if z ie less than or equal to z* then

C(Rs' 2)= cg + DBDCIDR - D[(DB.D‘/DR +Cyp - Cus)IDz, (19)



24 JOHN J. CORNYN

RANGE

R Ry Ra

"
© O\

SURFACE

——T.

x

DEPTH

DPTHMX —=Xmmms mm = 2Dm = = - == e = =)

zZus - MDO OF SHALLOW PROFILE

R = RANGE OF AFTER DEEP PROFILE
Ry * RANGE OF BEFORE DEEP PROFILE
Ry » RANGE OF SHALLOYY PROFILE

x . a ORIGINAL PROFILE POINT

O  : TEMPORARY INTERPOLATION POINT
O = FINAL EXTRAPOLATION POINT

Fig. 6—Extrapnlation points of a shallow profile
where

cys = sound speed of the shallow profile at zy, g,
cy 4 = sound speed of the ater profile at zy, ¢,
cyp = sound speed of the before profile at zyc,
Dg = Rg - R,
Dg = Ry - Ry,

D, =cya-cyB,
D] = z% _ z,

Dz =2-2Zy9-

Equation (18) is a linear interpolation between two bracketing deep profiles. In general
the linearly interpolated values will be a satisfactory representation of the true sound-
speed field at great depths. It is unlikely however that the interpolated value of the sound
speed at the MDO of the shallow profile using Eq. (18) will match the observed value of
sound speed at the profile’s MDO. For this reason an adjustment [12e] is made by Eq.
(19) between the sound speed at the MDO and the sound speeds at greater depths to in-
sure that the extended profile will be continuous. The depth z* was chosen as the result
of experience to be 1.1 times the MDO of the shallow profile. It is assumed that at this
depth linear interpolation between the deep profiles is permissible.

19. ¥ the shallow profile has been fully extended to the depth DPTHMX, go to step
20; otherwise go to step 17.
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20. Determine the curvatures for the fully extended shallow profile using the cubic-
spline technique.

21. Write the extended shallow profile’s depths, sound speeds, and curvatures on the
output tape. If requested, printer plot the shallow profile and print its first and second
derivatives.

22. Read the next shallow profile from the temporary storage area. If there are none
go to step 25; otherwise go to step 23.

23. If this new shallow profile is at a range less than the after profile corresponding
to the last shallow prolile, set the flag NPOS to 9 and go to step 15. Otherwise go to
step 24.

24. Write the previous after profile on the final output tape and, if requested, print
and printer plot it. Call this “after” profile the “before” profile and go to step 13.

25. Write the last deep profile on the output tape. If requerted, printer plot and
print the profile.

26. Read the next deep profile and its curvatures from its temporary storage area on
the drum. If there are none, go to step 27. Otherwise write the profile on the output
tape. If requested, printer plot and print the profile. Repeat this step.

27. End.

2.1.2.8 Sinusoidal-Profile Test Case
Consider the sinusoidal sound-speed profile
¢ =cop+ A sin wz (20)

over the depth interval 0 < z € z,,,. For this test case we let ¢y = 1500 m/s, A = 100
m/s, w = 2¢/512 m™1, and z,,, = 1024 m. The first (gradient) and second (curvature)
derivatives of this profile are respectively

Z=Aw cos wz (21)
and
D = -Aw? sin wz. (22)
The profile was sampled eight times per cycle, and the digitized values of Eq. (20)
were fed into the VFC program to obtain the first and second derivatives. Table 1 com-
pares the exact gradients and curvatures calculated from Eqs. (21) and (22) with the VFC

output. Figure 7 shows the input data points as crosses and the interpolated values of
sound speed and its derivatives as solid lines.
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Table 1
Results of the Sinusoidal-Profile Test Case
Exact VFC Exact VFC
D(e'z t)h sou?:‘/ssl; e Gradient Gradient Curvature Curvature
s™!) 1) (51 m-1) ("1 m1)
0 1500.0000 1.22718463 1.22439344 | 0.000000000 0.00000000
64 1570.7107 0.86775068 | 0.86677718 |-0.010648902 |-0.01206758
128 1600.0000 0.00000000 | 0.00000041 |-0.015059821 | -0.01584885
192 1570.7107 | -0.867750568 | -0.86577217 |-0.010648902 | -0.01206938
256 1500.0000 | -1.22718463 | -1.22439142 | 0.000000000 | -0.00000001
320 1429.2893 | -0.86775058 | -0.865677772 | 0.010648902 0.01206787
384 1400.0000 0.00000000 | -0.00000040 | 0.015059821 0.01584884
448 1429.2893 | -0.86776058 | 0.86577213 | 0.010648902 0.01206940
512 1500.0000 1.22718463 1.22439144 | 0.000000000 0.00000001
576 1570.7107 0.86775058 | 0.86577656 |-~0.010648902 |-0.01206787
640 1600.0000 0.00000000 | 0.00000200 |-0.015059821 | -0.01584873
704 1570.7107 | -0.86775058 | -0.86577656 |-0.010648902 -0.01206787
768 1500.0000 | -1.22718463 | -1.22439375 | 0.000000000 0.00000000
832 1429.2893 | -0.86775058 | -0.86577656 | 0.010648902 0.01206787
896 1400.0000 0.00000000 | 0.00000000 | 0.015059821 (.01584873
960 1429.2893 0.86775058 | -0.86577656 | 0.010648902 0.01206787
1024 1500.0000 1.22718463 1.22439375 | 0.000000000 0.00000000
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2.1.2.9 Recommendations for Improvement
The VFC program could be improved in the following ways:

® The efficiency of SERPENT could be increased if a routine were built into the
VFC program to determine the minimum number of profile points required to represent
the sound speed within experimental accuracy. This increased efficiency would result
from reduced search and input/output times.

®  The efficiency of SERPENT could be still further increased if all of the profile
points were at the same depths, such as standard depths. This efficiency increase would
also result from reduced search and input/output times. The coefficient tape would need
to have only one array of profile-point depths, rather than an array for each profile. Un-
fortunately, this same recommendation would limit the ability of the program to accu-
rately represent an arbitrary sound-speed field. This recommendation could possibly be
incorporated as an option.

¢  The program could use two- or even three-dimensional splines [51-63]; rather
than the one-dimensional spline discussed. At least one investigator [5] believes that
linearly interr olating between sound-speed profiles may not be physically meaningful, be.
cause the sound channels do not develop in the manner suggested by linear interpolation.
This does not present a serious problem for GRASS, because the system has the ability to
handle an unlimited number of sound-speed profiles. By making the spacing between the
profiles arbitrarily small, it is possible to achieve any desired degree of accuracy. Admit-
tedly, this procedure will increase program running time and, at times, additional profiles
may not be available. Thus the multidimensional spline or some other representation may
be preferable. (Of course, determining the coefficients of a multidimensional spline will
require more running time and more core storage than those of a one-dimensional spline.
Hence multidimensional splines are not without their disadvantages.)

®  Along these same lines it would be helpful to know experimentally and by geo-
graphical area the depths at which the temperature of the ocean remains nearly constant
for further increases in depth. Also a knowledge of the range- and depth-dependent maxi-
mum and minimum gradients and curvatures of the sound speed, possibly by season and
by geographical area, together with the uncertainties in experimental measurements would
be of great value in revising and devising new interpolation schemes.

¢  The same comments given in Section 2.1.1.5 concerning the need for real-time
computer collection of data again apply here.

®  The speeds of the VFC, PRFPLT, CTOUR, and SERPENT programs could be
increased if the sound-speed profiles and their curvatures and the bottom profile were
stored on the disk or the drum rather than on magnetic tape because of the smaller ac-
cess times and the random access capability of these devices. Unfortunately users of the
CDC 3800 are not permitted to store information permanently on the drum. It is poesi-
ble to use the disk at NRL for permanent storage, however, and the drum can be used
for the storage of intermediate results of different runs in the same job. This means that
the VFC and SERPENT programs could be combined into one job with the profiles being
temporarily stored on the drum. Unfortunately, if SERPENT did not run successfully,
possibly because of an input error, the VFC program would have to be run again. On the

other hand there would be no difficulty in storing intermediate results permanently on
the disk.
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2.13 Profile Plotting (PRFPLT Program)

2.1.3.1 Purpose

The PRFPLT program generates Calcomp or Gerber [54) plots of sound-speed pro-
files selected by the user from the coefficient tape. The vertical gradients and curvatures
corresponding to a profile are plotted on the same graph as its sound speeds. Examina-
tion of these plots will give the user considerable insight into the validity of his data,
For example experience has shown that profiles having vertical gradients exceeding 1 5!
or vertical curvatures whose absolute values exceed 0.1 m-15-! at depths greater than a
few hundred meters are probably in error.

2.1.3.2 Input

The input data to the PRFPLT program are on both magnetic tape and punched
cards. The magnetic tape is the coefficient tape generated by the VFC program. The
punched cards contain:

® The maximum depth of the graph in meters.

® The maximum and minimum values of sound speeds, gradients, and curvatures
to be displayed. These values may be determined from the VFC printout.

®  Numbers identifying the profiles to be plotted.

@  Titles for each of the plots.

2.1.3.3 Output

Figures 7, 8, and 9 are examples of PRFPLT output. The crosses are the values of
the profile sound speeds and derivatives which have been entered on the coefficient tape.
The solid lines between the crosses are drawn by linearly interpolating between 501
equally spaced points which have been calculated using cubic-spline interpolation. These
lines indicate the gradients and curvatures used by SERPENT for ray tracing.

Graphical output may be of one of two forms: Calcomp plots or Gerber plots, The
Calcomp plots have the advantage that they are obtained directly and quickly from the
computation center. They do not require the services of a special plotter operator or the
transportation of tapes to a special plotting facility. Their major disadvantage is that their
thin wiggly lines do not reproduce well in reports. The Gerber plotter, on the other
hand, has three major advantages. First, it can produce much larger (up to 5 by 8 feet)
and more accurate plots than the Calcomp. Second, the plotting is done with India ink
pens of the Leroy type on high-quality drawing paper, making a solid black line that re-
produces well, even with ozalid or other direct processes. Several pen widths can be used
in one program, and different colors of ink can be used. Third, the plotter incorporates
a linear interpolator, so that the pen travels in a straight line between successive pairs of
plotted xy values, rather than wiggles. The resulting plot is much smoother.
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2.14 Contouring and Generating Three-Dimensional Isometric
Plots of the Sound-Speed Field (CTOUR Program)

2.14.1 Purpose

The CTOUR program arose out of a desire to geaphically display the dependence of
the sound-speed field on both range and depth, especially the range dependence.

This program contours and draws an isometric plot of the sound-speed field. Its
input consists of the coefficient tape and a specification of the dimensions of the range-
and-depth grid. The intersections of this grid define the points at which values of sound-
speed are interpolated. These interpolated values are plugged into contour [65] and iso-
metric [56] ploiiing routines, Interpolation is required because the plotting routines re-
quire values on a uniform grid whereas the coefficient tape usually contains profiles having
points at arbitrary ranges and depths. Up to 50 contour levels may be displayed.

The CTOUR program is designed so that the user can contour any rectangular range-
and-depth region in his sound-speed field. Hence it permits a detailed examination of the
field. The accuracy of the plots is a function of the accuracy of the input data, the in-
terpolation process, and the dimensions of the grid.
2.1.4.2 Input

The input to CTOUR consists of:

®  The coefficient tape generated by the VFC program.

®  Contour levels, control parameters, and grid specifications in free-field format
on cards.
2.1.4.3 Output

The output consists of:

® A Calcomp or Gerber contour plot of the sound-speed field.

@ If the user requests, a listing of the interpolated sound speeds at each intersec-
tion of the uniform grid.

® A listing of the input control parameters and contour levels.

® A three-dimensional (isometric) Calcomp or Gerber plot of sound speed versus
range and depth in the ocean.

2.1.4.4 Algorithm

Initially the control parameters, contour levels, and grid specifications are read and
checked against permissible values. Then the ranges and depths are calculated for each
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point of the user-defined grid. Next the program considers each range of the grid and
interpolates values of sound speed at the grid depths using Eq. (8).

Once the sound speeds are determined, the contouring subroutine CONTOUR is
called and a plo: is generated. Then CTOUR sets up the parameters required by the iso-
metric plotting routine PLOTISOM and calls i, and the plot is generated.

2.1.4.5 Test Methods and Results

Figure 2 is a contour plot corresponding to an actual sound-speed field in the vicinity
of the Gulf Stream. Figure 3 is a three-dimensional plot corresponding to Figure 2.

Figure 10 is a contour plot of the sound speed corresponding to the range-independent
hyperbolic-cosine profile shown in Fig. 9. Since there are no horizontal gradients present,
the contour plot is merely a series of unequally spaced horizontal lines.

2.1.4.6 Recommendations for Improvement

Close inspection of Fig. 3 indicates that the hidden-line algorithm used in PLOTISOM
does not always work as well as one would like. To improve this situation, PLOTISOM
could be replaced by Williamson’s [57] routine.

2.2 Treatment of the Ocean Bottom
2.2.1 Representing the Bottom Topography

The ocean bottom is assumed to be linearly segmented and is defined by up to 100G
bottom points at nonuniformly spaced ranges and depths.

2.2.2 Describing the Bottom Losses

SERPENT permits the user to specify up to five curves of bottom loss versus grazing
angle. The grazing angle is defined to be the angle an incident ray makes with the bot-
tom. The user may define, by range, up to 100 regions over the length of the bottom
topography and indicate which of the curves applies in each region. It is the user’s re-
sponsibility to provide the curves pertinent to his problem. The particular curve- chosen
by the user will depend on the frequency of the acoustic source and the type bottom
under consideration: rock, mud, sand, etc. The user defines his bottom-loss curves by
entering values of dB loss for up to 91 nonuniformly spaced grazing angles. These angles
must range from 0 to 90 degrees. SERPENT initializes its own hottom-loss tables by
linearly interpolating between the above input 'osses at each integer degree, so that each
internal table has 91 points. When a ray strikes the bottom, its angle of incidence is
rounded to the nearest degree, and the loss corresponding to that angle is extracted from
the pertinent bottom-loss table and is added to a variable which represents the total bot-
tom loss accumulated by that ray. SERPENT calculates the exact point at which the ray
intersects the bottom, the bottom slope at that point, and the angle of ray incidence; if
requested, it will print and/or store this information on the ray-statistics tape. It also
maintains a count of the number of accumulated bottom hits for each ray, and
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terminates a ray if its count. exceeds a user-determined limit. Although the program could
easily incorporate bottom-reflection phase shifts, it presently has no such provision, since
the average uscr would not likely have these at his disposal in cases of practical interest.
The program assumes all rays are speculurly reflected. If however a ray is reflected back
toward the source, it will be immediately terminated.

2.3 Treatment of the Ocean Surface
2.3.1 Describing the Surface

The surface is assumed to be flat. When a ray strikes the surface, it is specularly re-
flected and undergoes a phase shift of 7 radians.

2.3.2 Describing the Surface Losses

A uniform surface loss may be entered in the form of a surface-attenuation param-
eter. This parameter is the ratio of a ray’s intensity after reflection to its intensity before
reflection.

If requested, the program will print and/or store on the ray tape the location of each
surface hit and the angle of incidence of the ray at that point. The program counts the
number of accumulated surface hits for each ray and will terminate a ray when this count
exceeds a user-specified limit.

2.4 Treatment of Attenuation

The user may specify the attenuation coefficient o in dB/km (for refracted-only
paths) or he may request that the program calculate it for the source frequency using
Thorp’s equation [68]. Thorp’s equation describes the coefficient fairly well for frequen-
cies around and above 1000 Hz. In the calculation of intensity, each arrival is attenuated
according to the factor e *#  where R is the range to the receiver. This factor is not ex-
act, because different rays have different total path lengths. We assume that these path
differences can be neglected. The ray diagrams tend to exaggerate the path differences,
because the depth axis is greatly expanded in comparison to the range axis.

For frequencies about a few hundred hertz or lower, the absorption coefficient is
quite small and difficult to measure. Most experiments messure attenuation, rather than
absorption, at these frequencies. Attenuation includes everything that is not geometrical
spreading. This includes leakage out of the sound channel due to scattering, bottom
losses, and nonlinear effects. Hence the users of ray-trace programs must be wary of in-
advertently including bottom losses twice in their calculations. That is, they should use
attenuation coefficients for only refracted paths.
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3. MODELING THE PROPAGATION OF SOUND
3.1 Ray Tracing and Intensity Calculations (SERPENT Program)
3.1.1 Purpose
The SERPENT program has five major functions:

®  To trace rays through a two-dimensional range- and depth-dependent sound-
speed field bounded by a flat surface and variable bottom topography.

®  To provide a comprehensive description of the rays’ journey through the in-
homogeneous medium.

®  To calculate random, coherent, and statistical intensities for multiple
receivers at user-selected ranges and depths.

@ To generate a transmission-loss tape.

® To generate a ray-statistics tape.

3.1.2 Input
3.1.2.1 Punched Cards
The following input is on punched cards:

®  Source information—depth, frequency, beam pattern, intensity of the source
along the main beam axis at 1 yard (axial intensity), angular tilt of the main beam lobe,
and up to 1500 ray angles.

€  Receiver information—up to 1000 ranges and up to 250 depths per range.

®  Bottom information—bottom-loss curves, ranges over which loss curves apply,
and the maximum number of bottom hits a ray is allowed to experience before being
terminated.

®  Surface information —attenuation due to a surface hit and the maximum num-
ber of surface reflections a ray is allowed to experience before being terminated.

®  Output requests—ranges for output, parameters specifying whether to print out
complete ray-statistics at each output range, whether to generate a ray tape, whether to
calculate intensities, the types of intensity calculations desired, whether to print out the
results of intensity calculations, whether to generate a transmission-loss tape, whether to
draw printer plots of travel time and/or plots of ray depth versus initial ray angle (ray
depth-time distribution plots} at each output range, etc.

®  Parameters governing ray iteration—these are discussed in Section 3.1.4.2

® Run identification information.
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All of the above information is read from cards punched in free-field format. For most
problems only three or four cards are required.

3.1.2.2 Magnetic Tape

The coefficient tape gencrated by the VFC program is used for inputting the bottom
topography and the sound-speed profiles (Section 2.1.2.3).

3.1.3 Output

The minimum possible output consists of a printer listing of the information punched
on the cards described in Section 3.1.2.1 together with a tabulation cf the number of pro-
files, the number of bottom points, the maximum and minimum depth of the bottom
topography, and the maximum range of the bottom data contained on the input coeffi-
cient tape. The intemal bottom-loss tables and ithe initial ray anglcs at the source are
also listed. Outputs that are optional are described in Sections 3.1.3.1 through 3.1.3.3.

3.1.3.1 Ray-Statistics Maguetic Tape {Optional)

A ray-statistics tape must be generated if one wishes to draw Calcomp or Gerber ray
diagrams. This tape is an IBM 729 compatible, seven-track binary tape arranged as
follows:

® Logical record 1—80-character title identifying the data.

®  Logical record 2—source range, depth, angular frequency, frequency, number of
rays, and axial sound level (see Eq. (45) for x4 definition).

¢  Logical record 3—initial ray angles.

- ®  Logical record 4—bottom profile ranges, depths, number of bottom points,
minimum and maximum depths of the bottom, maximum range of the bottom.

®  Logical record 5—iteration-point statistics. (The rays are traced by stepping
them from one point in the sound-speed field to the next according to the iteration
sche.me described in Section 3.1.4. Each of these points is called a ray iteration point.
Logxf:al record 5 is repeated for each ray iteration point.) The iteration-point statistics
consist of the ray number, ray range, depth, travel time, sine with respect to the hori-
zgntal, sound speed at the iteration point, accumulated number of bottom hits, of surface
bnts, gnd of 'tuming points, an indicator specifying whether the ray is terminated at this
iteration point, and the factors S; and B; (see Section 3.1.5.2) containing the accumulated
surface- and bottom-loss information for the ray.

To save i_nput/output time and magnetic-tape space, SERPENT combinet the data
for 222 ltera_tlon points and buffers them out in one 2000-word record using a double-
buffer technique; that is, while one buffer is filling up, the other is simultaneously being
dumped onto magnetic tape.
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3.1.3.2 Transmission-Loss Magnetic Tape (Optional)

A transmission-loss tape is required if one wishes to generate Calcomp or Gerber
transmission-loss plots. The transmission-loss tape i8 an IBM '729 compatible, seven-track
binary tape and is arranged as followe:

®  Logical record 1—number of receiver depths and the values of the receiver
depths,

® Logical record 2—ranges at which the above receivers are located.
®  Logical record 3—identical to logical record 4 of the ray-statistics tape.
®  Logical record 4 —identical to logical record 2 of the ray-statistics tape.

®  Logical record 5—number of range intervals over which different types of in-
tensity calculations were carried out, maximum range of each interval, types of intensity
in each interval, and volume attenuation factor.

® Logical record 6 —output range, bottom depth at this range, and types of in-
tensity calculated at this range. This logical record is repeated for each range in logical
record 2.

®  Logical record 7—transmission losses for each receiver and type of intensity
calculation requested for the range in each logical record 6.

3.1.3.3 Printer Listings (Optional)

Sinice the generation of printer output can significantly increase the program running
time, printout options have been built into the program enabling the user to print only
those quantities of direct interest, such as intensities.

The user defines the ranges at which he wants information output (printer and/or
inagnetic tape). He also specifies the parameter NOPRINT. If NOPRINT is set to 0, no
ray statistics will be printed. If NOPRINT is set to 1, the following ray statistics will be
printed at each of the output ranges:

Output range in nautical miles and kilometers.

Bottom depth in meters.

Ray depths in meters.

Ray travel times in seconds.

Accumulated number of surface hits for each ray.
Accumulated number of bottom hits for each ray.
Accumulated number of turning points for each ray.
Termination status of each ray (whether terminated or not).

Sines of the ray angles at the output range.
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®  Accumulated ray phase in degrees.

® Location of the surface and bettom hits since the last output range, the bottom
slope and grazing angle at each bottom hit, and the angle of incidence at each surface hit.

If the user sets the input parameter NDIST to -1, ray-depth and/or ray-time distribu-
tion plots will be generated at each of the output ranges according to whether the param-
eters NDEPTHDS and NTIMEDS have been set to O or 1 respectively. The ray-depth
distribution plots are line-printer graphs of ray depth versus initial ray angle at the source
for constant range. The ray-time distribution plots are graphs of ray travel time to an
output range versus initial ray angle at the source. The slope of a ray-depth distribution
plot corresponds to the partial derivative of ray depth with respect to initial ray angle.
This derivative appears in the expression for intensity (Eq. (65)). Such a plot shows the
depth intervals that are illuminated by individual arrivals, and illustrates which initial
angles are mapped into which depths. Ray-depth distribution plots are discussed in more
detail in the HLRTP [12f]). The user may specify at which output ranges he would lize
distribution plots generated.

An option is provided the user for selecting ranges for intensity-calculation printouts.
Depending on whether the input parameter NINTENS has been set to 0, 1, or 2, SER-
PENT will not calculate intensities, will calculate intensities but not print the results, or
will calculate intensities and print out the results respectively. If printout is desired, the
program will list the intensity, the measured sound level, the transmission loss, and trans-
mission anomaly (Section 3.1.5.2 gives the definitions) at each output range. This print-
out will also include the number of arrivals at each receiver. The user has the option of
defining a set of ranges over which different types of intensity calculations are carried
out. For example he can request coherent summation out to 10 nautical miles, random
and coherent intensities from 10 to 50 nautical miles, and statistical intensities from 50
to 200 nautical miles. Any combination of random, coherent, and statistical intensity
calculations can be carried out in these user-defined regions. The reason for selecting
different types of intensity calculations over different range intervals is discussed in
Ref. 12g.

3.1.4 Ray-Tracing Theory
3.1.4.1 Derivation of the Iteration Algorithm

The derivation described herein is believed to be unique to this report and is based
on an iteration technique discussed by Montagnino [569]. (Basic ray theory is covered in
the Appendix.) This derivation differs from that given in the HLRTP {12h] and leads to
a similar but more generul set of iteration equations. The differences occur in the third-
and fourth-order terms of the expansions in ray arc length for the ray range, depth, and
travel time. This derivation is not restricted to a particular functional form of the
sound-speed field as is characteristic of most derivations. The functional form of the
sound-speed field we chose was motivated by considerations of physical meaningfulness
and convenience of implementation. There is no reason why one could not use two-
dimensional splines to represent the sound-speed field Tudeed there is no theoretical
reason why this derivation, or the entire program for that matter, could not be extended
to a three-dimensional field. The HLRTP [12i] cites why, in the case of small bottom
interaction, there would be no more than a formal advantage in this extension.
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Fig. 11—Iteration of a ray

Consider a curve described by the position vector r(S), where A is the path length
measured from some arbitrary point on the ray trajectory Sq (Fig. 11). According to
Taylor’s theorem, if we assume r(S) has n + 1 continuous derivatives, the position of a
point on the trajectory in the neighborhood of the point r(Sy) can be written exactly
in the fonn

spal | #rtDigant

m+1y (23)

FS) = F(So) + )
i=1

i!

where { lies somewhere between S and SO,?(")(SO) is the nth derivative of T (S) evaluated
at Sy, and A =S -8, is an increment in the ray-path length from S,.

Since (Appendix)

H1)Sg) = arl - §(Sp) = initial ray vector (24)
dS|g
0
and
42)g ) = 98 R(S.) = initi
r<’S,) = = K(Sg) = initial ray curvature, (259
o) = asi
“o
then
=T & KSg) va, 1dK| .3, ...
1(S) = 1(Sp) + S(Sg)A + % Ac + 31 dS SOA + (26)

Equation (26) gives the change in depth and range of a ray in an iteration of size A.

Differentiation [59] of Eq. (26) yields the ray vector, or sine and cosine of the ray
" angle, at the next iteration point, namely,
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3s) = 8iSy) + KiSg)a + 3, | 2%+ - @7
a5 g

To implement Eqs. (26) and (27), we need expressions for §(So), K(Sy), dK/dS Iso, etc.
The ray vector at the initial point S, is given by
§(Sg) = ¥i + 0j, (28)
where

v = cos O,
0 =sn 6,

6y = ray angle at the initial point (positive angles measured downward from the
horizontal),

A
i = a horizontal unit vector,

f = a vertical downward-pointing unit vector.

To obtain K(S;) and its derivatives, we apply Eq. (A20), namely,

KS) = 2{¥n - 8(vn-8), (29)
where 1 is the index of refraction.

We can approximate the sound-speed field ¢(S) in the vicinity of the point S, by a
Taylor’s series expansion about that point:

c8) = (R, 2) = c(Ry. 2g) + Z(Ry. 2oz - 2g) + D(Ry. 29z - 2)*/2
(30)
+ G(Rgy. 29)R - Ry),
where R and 2z, are the range and depth at the point S, ¢ is the sound speed, Z is the
sound-speed vertical gradient, D is the vertical curvature, and G is the horizontal gradient.
These quantities may be obtained from Eqgs. (8) and (9) for any point in the sound-speed
field as explained in Section 2.1.2.5.

The index of refraction 1 is given by

n(s) = ;':—g—). (31)

where a is a reference sound speed. Our final equations will be independent of the par-
ticular vaiue of a;.

Using Eq. (30) and assuming

z2-25 =04
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and
R - Ro x '7A,
we have
89
S) = , (32
) a; +agd +azA? )
where
a = C(Ro, Zo),
ag = Z(Ro. 20)0 + G(RO! 20)‘7,
ag = D(Ro. 20 )02/2.
The gradient of the index of refraction 51; is approximately,
Vn(S) = byi+ (by + b3A)j, (33)
where
b = -aoG(Ro, Zo)
l = 2 ’
a
b = ‘aoZ(Ro, Zo)
2 5
o
-aoon(Ro, 20)
by = ———— .

012

Assuming the ray vector § at the new point located an arc-length distance 4 from S is
given approximately by

8(s) ~ 71+ dj, (34)
we have the ray curvature, Eq. (29),

4

RS) =~ ) k(e i+ ) (35)
k=1
so that
R(So) = (d,1 +dgia, a5’ (36)
dK -1 < 3 37
ES— = a I(a]d2 +02d1 )l+(ald4 “"azds)]], 37
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2% ) A
Ll 2"6l [(apdy + agdy)i + (agdy +agdg)il, (38)
ds? |g

[1]
3_ A -~
L Bazagl(dyi + d, i), (39)
3
ds S,

where
dy = b;0? - ayb,,
dy = ~0o7by,
da = b2‘y2 - 07b1,
d4 = 7263.

To obtain an iteration equation for the travel time, we note

T(S) = T(Sg) + f c"TS—S) (40)
~
Expanding 1/c in a third-order Taylor series in 4, we obtain
3 i+1 .
AA
T®) ~ TS} * LGy (1)
i=0
where
Ao = a;l N

Al = '020;2,
Ag = (a2 - aza,)a73,
Ag = ay(2a,8, - a,%)a7?.

The travel-time integral could have been solved exactly instead of making an approxima-
tion for 1/c, but the resulting exact solution would require more computation time than
the expansion (41), except in special cases.

The ray plots shown in this report are not the result of the equations derived in this
section. Rather they resulted from direct implementation of the iteration equations given
in the HLRTP [12h]. We have chosen to include the derivation of Eqs. (23) through
(41) because it illustrates how equations of the type given in Ref. 12h can be derived.
Originally it was an attempt to verify the equations given in Ref. 12h. Unfortunately the
authors of the HLRTP did not choose to include a detailed derivation of their iteration
equations, and it is not immediately obvious how the third- and fourth-order terms in 4
given in that report were derived.

After further analysis it is expected that the equations given in this section will re-
place those currently implemented. This topic will be considered again in Section 3.1.7.
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3.1.4.2 Accuracy and Iterative Controls

SERPENT requires the user to specify certain “ray tuning parameters” and thereby
allows him to make a tradeoff between accuracy and computer running time. These pa-
rameters establish the limits for the built-in program controls which adapt the ray arc-
length iteration increment A to the structure of the sound-speed field. Both the accuracy
(up to a point) and running time increase with decreasing parameter sizes.

The user of SERPENT is cautioned agninst performing a highly accurate calculation
on data which because of the natural variability of the oceanographic environment and
the uncertainties or meagerness of the measurements may not be representative of the
environment at the time of the experiment. Highly accurate calculations are however of
value in comparing program results with exact analytic solutions. Comparisons with exact
solutions will give the user insight into the operation and interaction of the ray iteration
parameters. From another point of view, the program could be used to confirm the cor-
rectness of newly developed closed-form analytic solutions.

We will now briefly consider each of the ray iteration parameters. These are identical
to the ones discussed in more detail in the HLRTP report ['.2j]. The parameters are:

® Ay (DELMAX) and A, (DELMIN)—the maximum and minimum step size (in
meters) along the ray arc. If Ay, is too large, the program will have to reduce A a num-
ber of times to find a satisfactory step size. If A,, is too small, clearly the program will
have to perform a large number of calculations to accomplish a given iteration task.
Too large a A could lead to a breakdown of the iteration expansions. Thus there are
optimum values for Ay and A,,. Currently these are determined by user experience. In
practice, using oceanographic data, values for Ay, up to 1000 m lead to satisfactory op-
erating conditions. Typically A, is set to about the minimum depth interval between
input sound-speed profile points, such as 20 m.

® ¢ (VFAEPS)—the accuracy epsilon for the sound-speed field. The sound speed
¢, predicted at a final point by Eq. (30) for an iteration step size of length A is com-
pared with the sound speed ¢, at the same final point obtained by using the interpoiation
scheme described in Sections 2.1.2.4 and 2.1.2.6. If lc, - ¢, | is less than €, the program
contracts the ray arc increment so that the new ray arc increment A’ is given by

'x A —E | 42
A=t (42)
Clearly the value given € should depend on the uncertainty in the measurement of the
sound-speed field. Typicelly € is set to 0.5 m/s.

®  Agy (DELSINMX)—the sine increment test parameter. This parameter ex-
amines the effect of the gradients and curvatures of the sound-speed field on a tentative
iteration of size A. If these result in a change in the size of the ray angle greater than
Agy, the program contracts the iteration step size to A', where

A= (ASMllsin @ -sin 00!)1/2A’ (43)

in which sin 0 is the sine of the ray angle at an initial point S, and sin 0 is the sine of
the ray angle after a tentative iteration of size A. To avoid other higher order effects, the
iteration interval is first contracted to the lesser of A’ or
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Fig. 12—Order in which SERPENT traces rays in a
particular example

A" = (Agy /| w2Z(Sy)D (S A2 NY2A’, (44)
where
cosO0
YT ARy, Zy)

Note that equation (I1I1.14b)(ii) o: the HLRTP [12k] contains a typographical error and
should read as Eq. (44); Ag,, is typically set to 0.02.

3.1.4.3 An Example of the Order of Trecing All Rays Together in
Range Segments

The order in which SERPENT traces rays through the sound-speed field differs from
the HLRTP and that of most other ray-trace programs. Because of this unique tracing
order only two profiles need be resident in core at the same time (hence an unlimited
number of profiles can be used), and only one pass need be made through the coefficient
tape to trace all the rays, to do all the intensity calculations, to print the ray statistics,
and to generate the ray depth distribution plots. This feature also eliminates the need for
a time-consuming disk-sort routine (originally used in the HLRTP) to order the reys and
plot transmission losses.

Consider the following example illustrated in Fig. 12. Suppose SERPENT is asked
to trace three rays through a field having four profiles at ranges P, P, , Py, and P; and
also print out the ray statistics and the intensities for some receivers at output ranges O,
Oy, and O,. Assume all of the rays start at range P, and depth d,. SERPENT will
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begin by tracing the first ray out to range O,. Then it will trace the second ray to the
same range and then the third ray. At this time, since all of the rays are at range O,,
the intensities and ray statistics may be calculated for this output range. Once this out-
put operation is complete, SERPENT will go back io the first ray and trace it to range
P,. Similarly, the second and third rays are traced out to P,. Now since all of the rays
are at Py , profile Fy is no longer needed, so it is removed from core and profile P, is
brought in. This procedure continues as shown until all the rays have reached range P;,
whereupon the output is generated and the program stops.

3.1.4.4 Error Analysis

A detailed error analyzis should include considerations of local and global discretion
errors, convergence errors, and rounding errors. Underlying all of these is the question of
stability {60]. Consideration of these topics is beyond the scope of this report. Some
elementary error estimates are however given in the HLRTP [121].

3.1.5 Theory of Intensity Calculations
3.1.5.1 Describing the Source

The user specifies the source depth, frequency (assumed monochromatic), and beam
pattern. SERPENT assumes the source is at range 0 n.mi. Because of the beam pattern,
all of the rays will not start with the same initial intensity. In describing the beam pat-
tern the user inputs:

1. The beam tilt angle, which is the angle the main beam axis makes with the hori-
zontal (pogitive angles measured downward).

2. The axial intensity I, which is the intensity in ergs/s cm? along the main beam
axis 1 yard from the source. The axial sound level is given by

Ag =10 log, , I, (45)

3. The ratios of the intensities at angles off the main beam axis to the intensity /.
These beam pattern angles may be nonuniformly spaced and do not have to correspond
to the initial ray angles.

The user also specifies the initial ray angles and ray phases 0,0 at these angles. That is,
all of the rays do not have to begin with the same phase, From this input information
SERPENT assigns initial intensities Iyf) to each ray k according to its initial angle 6,9 at
the source (0 < f <1). For an omnidirectional beam pattem f;, would be 1 foraﬁ of
the rays.

3.1.5.2 Random Summatica
The phase-independent (Type I random summation in Ref, 12m) intensity I (R, 2*),

for a receiver at range R and depth z*, may be expressed as a summation over the inten-
sities of the individual reys which arrive at tie receiver (arrivals). That is,
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N
LR,2%) = ) I(R.2%), (46)
k=1

where N is th. aumber of arrivals and I, (R, z*) is the intensity in ergs/s cm? of the kth
arrival.

The measured sound level at the receiver is defined to be
M, = 10 log;o I.(R, z*). “4n
The transmission loss from the source to the receiver is given by
TL(R, 2%) = A, - M,,. (48)
Removing the effect of spherical spreading, we obtain the transmission anomaly [61]
TA(R,z*) = TL - 20 log;q (R/rg), (49)
where r, is the reference distance. Throughout this report ry will be 1 yard.

In traveling from the source to the receiver a ray undergoes a transmission loss L, , so
that

IL(R, 2*) = Iyf, 10”5410, (50)
The transmission loss L, in dB may be expressed as
L =A,+B, + S +G,, (51)
where A, is the attenuation loss (neglecting bottom loss), B,, is the loss due to bottom
reflections, S,, is the loss due to surface reflections, and G, is the loss due to geometrical
spreading.
The attenuation loss A}, is assumed to vary linearly with range. That is [58],
A} = 1000 (R - ro)a, (62)

where a is the attenuation coefficient (for refracted-only paths) in dB per kilometer and
R and ry are measured in meters (Section 2.4).

The bottom loss B,, for the kth arrival is given by
Rk
By =) by, (53)
i=1

where n;, is the number of bottom hits experienced by the kth arrival and b;), is the loss
due to the ith bottom hit (Section 2.2).

The surface loss S, for the kth arrival is



46 JOHN J. CORNYN
mpg
Sy =) 8, = 10m, logyg a, (64)

i=1

where m,, is the number of surface hits and a is the fractic.ial loss in intensity due to a
single surface hit (Section 2.3).

In carrying out our intensity calculations, we assume the medium is cylindrically
symmetric. In this approximation the geometrical spreading loss G, can be shown
[62-64) to be

cos @ iz—l |
k 0,0
G, = 10 logy, .112.__3_:__5. ) (65)
To cos 0,

where 0, is the angle at which the ray arrives at the receiver (Fig +>). In Eq. (66), z is
the ray depth and the partial derivative is evaluated at the receiver depth. When the partial
derivative is zero, G, approaches negative infinity. When this occurs, we say the ray has
touched a caustic. In effect the intensity of the ray blows up. Of course ray theory is
invalid in the vicinity of a caustic, as mentioned earlier.

Because SERPENT uses a two-dimensional sound-speed field, it, like other similar
ray-tracing programs, cannot trace rays directly to the receiver. Instead it traces a group
of rays out to the receiver range and then searches the group for those rays which sub-
tend the receiver (Fig. 14).

We will now derive an approximation for Eq. (55) by defining an arrival as two non-
terminated rays with indices j and j +1 which leave the source at adjacent angles (0,0 and
6}’,1 ), subtend the receiver at range R (one ray is deeper than the receiver, and the other
is shallower), and have the same number of surface and bottom hits (though they may
have a different number of turning points).

To determine the factors in Eq. (66) for the kth arrival, we use the following
approximations:

cos 0, ~ cos 0; + (:I—_zi%l)—)-(cos 6j4y - cos 6;), (66)
where
cos 6; = (1 - sin? oj)"“’ (57)
and
_ 1 |0z |~ lzj - 2j+q| . 58)
cos 8,0 20,0|R ' Isin 01.0 - sin 9})+1|

The denominator of Eq. (58) follows from the differential

d(sin 0) = cos 0 df.
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Fig. 14—Two rays subtending a receiver

The effects of surface and bottcm loss are included in Eq. (51) by linearly inter-
polating between the subtending rays. That is,

By, +Sp =10 log;o Qp,» (59)
where
- 2¥
Q~q+ %% @j+1 - 95)»
in which
gj=a" 107519 (60)

with m; being the number of surface hits (Eq. (54)).

From the preceding we see we are actually approximating the approximations of ray
theory. These approximations become more meaningful as the right-hand side of Eq. (58)
approaches the left-hand side. For this to occur, the angular increments between adjacent
rays typically have to be very small; as a result an extremely large number of rays have
to be traced to achieve meaningful results. As the rays propagate farther and farther



48 JOHN J. CORNYN

from the source, the number of rays required increases drastically. And, despite the very
large number of rays traced, only a very few satisfy the three conditions defining an
arrival.

Our experiences with GRASS indicate that though the preceding method of calcu-
lating intensities is widely discussed in elementary texts on ur-arwater acoustics, it is not
satisfactory for real-world computations. It is expected that more sophisticated proce-
dures will be incorporated into GRASS in the future. (See Section 3.1.7, Recommenda-
tions for Improvement.)

3.1.5.3 Coherent Summation

The coherent summation (Type I coherent in Ref. 12m) takes into account the rela-
tive phases of the arrivals at the receiver. If the pressure due to each arrival, neglecting
the time dependence, has the form

1/2 ik
I A lk/ e k, (61)

where [, is the intensity of the kth arrival and ¢, is the phase of the kth arrival, then the
resulting Type I coherent intensity at the receiver will be given by

N, |2 N, N,-1 N,
IR, |) Pl =D h+2 ) D L1 cos (0;- 9. (62)
k=1 k=1 i=1 j>i

This expression is simply a Type I random summation plus an interference term.

Coherent calculations were initially included in SERPENT to study the Lloyd mirror
effect in the case of a simple profile and to check the calculation of travel times. For
this purpose they are adequate as described. But for long-range and most short-range real-
world problems they are unsatisfactory. As pointed out earlier, SERPENT does not calcu-
late the phases correctly in the vicinity of caustics or correct for phase shifts due to bottom
interaction.

3.1.5.4 Statistical Summation

The statistical summation is the Type II intensity calcuhtipn described in the )
HLRTP [12n]. The expression given in that report has been slightly modified, as will
be explained.

The Type II intensity is determined as a probability dis.iribution which is obtain.ed
by mapping the arrival structure over the ocean depth at a given range. The summation
is “pseudo phase independent” and uses all the rays that have been traced out to the re-
ceiver range, rather than just those which subtend the receiver. Each ray receives a .
weight in the summation according to its distance from the receiver an_d othex: factors.. This
calculation assumes a “stable” sound-speed field. It is designed pnma.nly for_mtgrme@aw
and long ranges, in contrast to the random/coherent (Type I) ca{cu!at:on, which is mam!y
for short ranges. Rather than reiterate what has already b?en said in tl.'le HLRTP, we wm
simply state the expression we use in SERPENT and mention how it differs from that in

the HLRTP.
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N
IR, d)=)_ Le;, (63)
i=1
where ¢; = 0 if the ray was terminated, otherwise ¢; = 1. In Eq. (63)

xi 0

2
= M0 _-aR/
I = M—p " q,W,D; D} 2 1

(64)

where

’*’=\/Z T (o)
" eaflg] e

in which p = NO4/(/Z dp), erf (x) = 27A/T I et2dt, and

dp = the bottom depth

ro = reference distance (Eq. (49)),

« = attenuation coefficient (Eq. (52)),

a = aconversion factor for adjusting units,

q; = factor given by Eq. (60),

N = number of rays traced

W, = a Gaussian weighting factor = e 2(di-d)?s? |
d; = the depth of the itt ray,

D; = receiver directivity function*

rec rec

=2sin2<ig';d a,-). it xj“ <2,
/

in which d is the receiver depth, o; is the sine of the ith ray at the receiver, and A, is the
wavelength at the receiver (27f/c,,.), f is the frequency and ¢, is the sound speed at the
receiver.

*If we assume both up- and down-going rays are traced, the coefficient of the sine given in the HLRTP
[120] should be a 2 rather than 4. A factor of 4 leads to a sharp nonphysical discontinuity at d/A = 2.
If only down-going rays are traced, the factor 4 is approvriate.
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D = source directivity function

s A

. d*
=9 sin2(21; d o.°), it — <2, (68a)

d*
=1, if =2 (68b)

(4

in which d* is the source depth, 0,0 is the sine of the ith ray at the source, A, is the

wavelength at the source (2nf/c,, c, being the sound speed at the source). SERPENT
assumes that ¢, = ¢, = 1600 m/s.

0 0

Xi= 0;,,-0,,f1<i<N, (69a)
0,0-60, it i=1, (69b)
0y ~ 05,0 if i =N, (89c)

0

7v; = cosine of the ith ray angle at the source,

Yi = cosine of the ith ray angle at the receiver
=v1- 0,'! .

The main difference between the calculation just described and that of the HLRTP
occurs in the normalization factor M, given by Eq. (85). The coefficient M results from
normalizing the Gaussian weighte W; over the depth of the ocean. In performing this
normalization the HLRTP [12p] assumed that the bottom was at infinity rather thq.n at
the depth dg. Unfortunately this assumption leads to an error which can become sig-

nificant when tracing rays through an environment having a widely varying bottom
profile.

The Type II summation is called pseudo phase independent because of the terms
D and D;. These terms attempt tn sccount for the Lloyd mirror effect, a phase-
dependent phenomena.

3.1.6 Test Methods and Results
3.1.6.1 Untilted and Tilted Hyperbolic-Cosine Profiles

The following is a conceptually straightforward technique for generating range-depend-
ent sound-speed fields having exact ray-path solutions [65]. This technique is useful in that
it provides a test for those ray-tracing programs which handle range- and depth-dependent
sound-speed fields. The method involves a transformation between two coordinate systems.
In one coordinate system the sound-speed field has no depth dependence. In the trans-
formed coordinate system the sound-speed field has both a range and depth dependence.
Although this techniguz eould be easily applied to any profile, we will consider only the
hyperbolic-cosine profiie, which is a degenerate form of the Epstein profile [66, 82a].
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(Bucker and Morris [66] discuss the normal-mode solution for the Epstein profile, and
Pedersen and Gordon [32a] consider the ray-theory solution )

Initially two identical profiles were generated by digitizing the expression
V = A cosh B (Y - Yy),

where A4 = 1600 m/s, B = 8 X 10™* m™!, and Y, = 3000 m, at increments of 50 meters
from O to 6000 meters. These two profiles were inputted in the VFC program, one at 0
and the other at 200 nautical miles, and a coefficient tape was generated. This tape was
then fed into PRFPLT. ¥igure 9 was the result. Next the tape was fed into CTOUR
and Fig. 10 resulted. The horizontal lines indicate no horizontal gradients are present.

in the unprimed coordinate system of Fig. 16 it is possible to obtain an exact expression
for ray depth as a function of range with the source on the channel axis. This expression
is illustrated in Fig. 16. The coefficient tape mentioned earlier was fed into SERPENT,
and 13 rays (-30° to 30° in 5° steps) were traced through the field for 30 nautical miles.
Plotting the resulting ray tape with RATAPE, we obtained Fig. 17. Note the character-
istic focusing of the hyperbolic-cosine profile. The symmetry and focusing properties of
this profile provide ar. excellent visual test.

Next, with use of the X'Y’ coordinate system of Fig. 15, the expression for the cor-
responding sound-speed field is shown in Fig. 16. Specific rotation () and translation
(b) parameters of 1° and 75 meters respectively were chosen, and 18 profiles were gen-
erated from this expression spaced at 2-nautical-mile intervals along the X' axis from O to
30 nautical miles. Each such prcfile had 68 points, and the depths of these points cor-
responded to the profile depths of the previous example. Figures 18 and 19 show the
profiles at 0 and 30 nautical miles. These 16 profiles were entered into the VFC program
and another coefficient tape was generated. This tape was fed into CTOUR, and the re-
sults are shown in Fig, 20. The slanted lines clearly indicate the presence of a uniform
horizontal gradient. Next, 13 rays (-29° to 31° in 5° steps) were traced from a source
depth of 2000.3 meters through this sound-speed field. Again characteristic focusing
(Fig. 21) was obtained as the rays moved through the field. The exact ray depths versus
range can be obtained by applying Newton’s method to the corresponding ray-depth ex-
pression in Fig. 16.

From conuparison of the exact depths against the SERPENT generated depths for the
-30° ray in the XY coordinate system it was found that the difference oscillates with
range and has a maximum amplitude of +5 centimeters over a distance of 30 nautical
miles, when Ay, is set to 125 meters (Section 3.1.4.2).

Likewise comparing the exact depths against the SERPENT-generated depths for the
-29° ray in the X'Y’ coordinate system (corresponding to the ~30° ray in the XY system)
a difference was found which oscillates with range and has a maximum amplitude of +2
meters over the distance of 30 nautical miles. Again for this case we were using 4, set
to 126 meters.

This test case demonstrates that SERPENT can trace rays through a simple field having
a horizontal gradient and yield meaningful resuits. In testing some other horizontal-gradient
ray-tracing programs on this problem, focusing was found to be incomplete owing to an in-
sufficient representation of the sound-speed field.
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Fig. 15—Transformation of a coordinate system

RAY PATH EQUATIONS FOR HYPERBOLIC COSINE PROFILE
WITH SOURCE ON CHANNEL AXIS

IN X-Y COORDINATE SYSTEM:

- >

V=SOUND SPEED:Acosh B (Y -Yo)
Y « RAY DEPTH = Y, + § sinh™ [tan 83in 8 (x-2)]

IN X-Y/ COORDINATE SYSTEM:

V = SOUND SPEED=Acosh B(b * Y/c-X'S-Y,)
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Fig. 16 —~Ray-path equations for a hyperbolic-cosine profile with the source
on the channel axis
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to incorporating another iteration equation in the program for this purpose. This same
recommendation and numerous others were made in the HLRTP [12q] report. Another
possibility would be to completely revise the iteration equations, using time as the step-
ping parameter, rather than ray arc length, as proposed by Wesson [67].

® (Calculations at caustics. Along the same lines as the preceding recommendation,
consideration should be given to the problem of calculating the correct intensities and
phase shifts at caustics. There exists a large body of literature in this area, including Refs.
5,9, 10, 12r, and 23.

®  Optimum step size. The problem of choosing the optimum step size in the
iteration equations should be examined further. One approach > this problem might be
to consider the iteration equations given in Wesson’s paper [67] and then thoroughly
examine the numerical-analysis literature for the best approach to solving these equations.
Some advantages to this approach are:

~ If the numerical approach is a good on . it is likely that the questions of
convergence and stability have already been examin . d.

- Other numerical analysts will be aware of the procedure, and it is likely that
in the future more light will be shed on these questions.

®  Timesharing system. The current version of GRASS was developed using the
batch service on a CDC 3800. There would be a number of advantages if further devel-
opment was carried out in a timesharing environment—preferably with an interactive
graphics terminal. The advantages of a timesharing service are discussed in detail in
Watson [68]. One earlier objection to the use of timesharing systems was that the ray-
tracing programs required too much core. This objection no longer carries much weight
because:

~ We have partitioned the ‘“do everything”’ program into separately executable
modules as explained earlier.

- Current timesharing systems are allowing their user’s much more core. For
example the CDC Kronos system in Bethesda, Maryland, allows users to have up to 64K
words of core.

Another drawback of timesharing often cited is the high volume of cutput required
by ray-tracing programs and the slow speed (30 cps) of teletype terminals. This problem
can be circumvented by using high-speed (300 cps) line printer terminals such as available
on the CDC Export/Import 200 system.

The use of a timesharing system having nationwide coverage would also allow a sig-
nificantly larger number of scientists to use and participate in the development of the
acoustic model without havir~ to implement it on their own machines. The transfer of
even well documentes! Turtran programs from one machine to another can be expensive and
frustrating owing to variations in Fortran dialects [21].
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3.2 Generating Ray Disgrams (RAPLOT Program)
3.2.1 Purpose

The purpose of RAPLOT is to generate accurate Calcomp ray plots showing the
bottom-profile.
3.2.2 Input

The input to RAPLOT consists of:

®  The ray tape generated by SERPENT.

®  Control parameters on cards which select the number of plots to be generated,
the rays to be displayed on each plot, the plot sizes, scaling parameters, and the graph
titles to be displayed on each figure.
3.23 Output

‘The output consists of:

® Labeled Calcomp plots showing the rays and the bottom profile (Figs. 4, 17,
and 21).

® A printer listing of the input and control parameters.

3.24 Recommendation for Improvement

The utility of the ray diagrams could be increased by adding timing information to
them. Since the ray-statistics tape already contains timing information, this would be a
straightforward programming task. An example of how this information would appear on &
ray diagram is given in Fig. 1 of Ref. 16.
3.3 Generating Transmission-Loss Plots (LOSSPLT Program)

3.3.1 Purpose
The purpose ¢f LOSSPLT is to generate Culcomp plots of transmission-loss versus

range.
3.3.2 Input
The input consists of:

®  Transmission-loss tape generated by SERPENT.
® Control parameters and graph titles on cards.
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3.3.3 Output
The output consists of:

®  Labeled Calcomp plots of transmission loss versus range. If requested, these
plots will display random loss (Type I), coherent loss (Type I), and statistical (Type 1I)
transmission loss together with user input experimental data or theoretical curves for com-

parison.

® A printer listing of transmission-loss values and control parameters.

4. CONCLUSIONS AND RECOMMENDATIONS

The current version of GRASS should be considered as an initial step in the develop-
ment of a comprehensive model of long-range acoustic propagation in the deep ocean.
Theoretically and functionally the system is very similar to the Hudson Laboratories ray-
tracing program.

The main features of the system are described in Section 1.2. Currently, the system
yields very good ray-path results for complicated bathymetries, but it is not yet state of
the art in terms of intensity calculations. There is however a large bady of literature
pointing to directions in which the system could be developed. Some recommendations
are given in Sections 2.1.1.5, 2.1.2.9, 2.1.4.6, 3.1.7, and 3.2.4.
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APPENDIX

Basic Ray-Acoustics Theory

Starting with Eq. (1), we assume that ® may be expressed as

¢ = p(me’?, (A1)
where T is the spatial coordinate and w is the angular frequency.

Using the relation
=27 _w
k A e (A2)

between the wavenumber k, the angular frequency w, and the sound-speed ¢, and substitut-
ing the derivatives of ® into Eq. (1), we obtain the time-independent scalar wave equation

V29 + k2 =0, (A3)

We see that as A0 this equation degenerates. To obtain a quantitative conclusion
from the above equation, we assume

o) = Ae™ed (A4)

where A(F) = A(x, R, z) is an amplitude factor and § = § (x, R, z) is the eikonal (eikon
being the G-eek word for image).

This assumption takes us into the realm of ray theory as opposed to wave theory.
Wave theory attempts to solve Eq. (A3) for ¢ assuming a particular set of source and
boundary conditions. Ray theory, on the other hand, assumes a particular form for &
and then substitutes this form into the wave equation to derive another differential equa-
tion which is more amenable to solution. This new equation is referred to as the eikonal
equation.

We note that k, may approach infinity in Eq. (A4), s0 ¢ may be a rapidly varying
function of position while A and § are slowly varying functions which do not go to in-
finity with k. Differentiating Eq. (A4) and substituting the result into Eq. (A3), we
obtain

2 )
A2 - 1St + TA 4 Lug?s +2v495) = o,
kg2 "o

where 7 is the spatially dependent index of refraction

64
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C
a=.k (A8)

Of course the real and imaginary terms of Eq. (A5) must vanish independently. Noting
that A cannot be zero everywhere, and making the crucial assumptions [A1]

V%A < ky? (A7)
and
AVSE  + 2VA VS <k, (A8)
we obtain
Ivs 1 = 92 (A9)

Equation (A9), a first-order partial differential equation, is the eikonal equation men-
tioned earlier and represents one of several equivalent formulations of geometrical acous-
tics. Some of the other formulations include Snell’s law, the Hamilton-Jacobi equation,
and Fermat’s principle [A2].

The condition given as Eq. (A7) is violated in any region containing localized
sources. In addition significant changes in amplitude may occur as the result of diffrac-
tion effects in the vicinity of a shadow boundary, at the edges of obstacles, at a caustic,
or at a focal point. As a consequence VA may be large and the second condition, Eq.
(A8), may be violated. Further it can be shown [A3] that that validity of Eq. (A9)
requires

|V_n’7 |< k. (A10)

That is, the fractional change in the index of refraction over the distance of a wave-
length must be very small compared to unity. Clearly this condition will not be met at
the ocean’s surface and bottom or in regions where the sound speed changes significantly
over the distance of a wavelength. Diffraction effects are still possible around the edges
of obstacles even though they may be located in regions of a smoothly varying index of
refraction.

Another condition under which the eikonal equation is not a good approximate solu-
tion of the wave equation occurs when the wavefront curvature is large, or, in terms of
rays (a concept defined below), when the radius of curvature of a ray is the order of or
smaller than a wavelength.

Once Eq. (A9) has been integrated to obtain §, Eq. (A8) gives the component of
VA/A in the direction of V§. No statement is made about the component of VA/A per-
pendicular to VS . Hence these components can be discontinuous.

The solutions & to the eikonal equation are surfaces of constant phase, or wave-
fronts. The orthogonal trajectories of these surfaces are defined to be rays. Hence the
direction of the acoustic rays is given by a unit vector normal to the eikonal sur®ace and
passing through the point in question:
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N P
) TS| n (Al1l1)

This unit vector is frequently referred to as the ray vector. Since VX V§ = 0, it follows
that

VX (ns) = 0. (Al12)
This condition is equivalent to the existence of the eikonal [A4].

The ray curvature K is defined to be

i
153

B8

K , (A13)

where ds is a change in the ray vector and ds is an increment in ray arc length. Since

di _ d8dx , 98 dR , 38 dz

ds ~ oxds ' 3R ds * oz ds (A1)
and since dx/ds, ...is the x, ... component of the unit vector 8, we have (letting
8y = dx/ds, etc.)
s x sx ) SR. oz sz (A15)
or
2 dA Pl ”~
K =4 = Gvai (A1€)
For any two vectors F and G the following identity holds:
VWF-G) = FX(VXG)+G X (VXF)+ (F-v)G+(@G-V)F. (A17)

Using this relationship and replacing F and G with the unit vector § and noting 8-8 = 1,
we have

v@-8) = 28X (yX8)+K] =0 (A18)
or
K = (VX8 X8

Returning to Eq. (A12) and rewriting it as

VX%§ = %[a X 1) (A19)

and substituting this expression into Eq. (A18), we have



NRL REPORT 7621 67

it follows that

K = —~[Vn-8(Un-§)]. (A20)

3|

From this equation we see that K, Vn, and § ali lie on the same plane. We also see that
if the medium is homogeneous, V7 and thus K will be 0 and the rays will move in
straight lines.
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