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AMBIGUITY-RESISTANT THREE- AND FOUR-CHANNEL INTERFEROMETERS

1.0 INTRODUCTION

Electronics support measures (ESM) systems used in military applications such as
reconnaissance and threat reaction often require estimates of the angle of arrival (AOA)
of radio-frequency signals from distant emitters. Accurate real-time AOAs—to 1° yms '
resolution and accuracy or better—facilitate efficient emitter sorting routines as we
establish emitter locations through the processing of successive relative bearing meas re-
ments. For ESM use, increasing emphasis is being placed on the implementation of AQA-
techniques that can provide azimuth coverage over wide fields of view, approaching +60°
with respect to the direction-finding (DF) system boresight. Multiple-element phase-only
interferometers processing electrical phase differences between the signals received at~
spaced apertures turn out to be excellent for achieving accurate AOAs for certain ESM.
requirements. These techniques appear particularly applicable to implementing highs. =
accuracy DF from airborne platforms in the frequency bands of interest above 1 GHz. .

The three major goals of this report are

® To clarify some past misconceptions concerning the theory of multielement
interferometers. T

® To expound a general theory of interferometers which may stimulate re :
search into the less-well-qualified aspects of phase-only interferometers, such as the con-
straints imposed by operation in severe multipath.

® To provide the ESM system designer with exact, readily applied technigpes
for obtaining the lowest probability of ambiguity for a given overall array length in three-
and four-element arrays. e

This report treats the phase-only interferometer exclusively. Interferometers that . ..
process relative amplitude information as well as phase difference information from multi-.
ple apertures—techniques prevalent in radio astronomy—are beyond the scope of this .
report. Attention will further be constrained to line arrays. Within these appatentlih -
severe restrictions of scope, there are many areas of applications for interferometers.

The reason for fixing attention exclusively on the phase-only interferometer is that
in ESM systems, the designer often must maximize the instantaneous (nonscanned). field
of view. He is faced with the choice of implementing directive-gain antenna/receiver
channels, relatively nondirective antennas driving phase-only channels, or combinations
of these approaches. For those requirements in which the loss in system detection sensi-
tivity from nondirective apertures is acceptable, interferometer techniques that inhérq“ntly‘

Manuscript submitted March 31, 1976.




ROBERT L. GOODWIN

achieve a large variation in output parameter for a small change in input bearing angle
{large gradient) with comparatively few channels are guite suitable.

The simplest conceivable interferometer uses two essentially omnidirectional antennag
and must employ supplementary techniques to discriminate against energy arriving fyrom
the rear hemisphere vs energy arriving from the front. In this elemental interferometer,
the maximum altowable aperture spacing without ambiguous indications of AQA iz one-
half wavelength at the operating frequency. Arrays of n elements {rn> 3} provide {n — 1}
phase differences that can be used to resoive these ambiguities, even though the spacings
between one or more pairs of adjacent channels exceeds one-half wavelength. Multielement
arrays must be used in order to achieve both good angular resolution and low probability
of ambiguity for realistic values of receiving channel phase errors.

The amount of published material on radio direction finding is incredible. Travers
and Hixon [1} have assembled abstracts on the DF literature {including interferometers}
covering the period 1899-1965. Mare recently, Barton [2-4] has included entries on
interferometers in his index (and supplements) on material published in the LE.E.E, Trans-
actions on Aerospace and Electronic Systems and its predecessor publications. The em-
phasis of recent Russian work available in translation [5-7] is oriented more toward “fre-
quency” interferometers {mulifrequency ranging schemes) than toward addressing the
“spatial” interferometer synthesis problem. Apparently, no work clarifying past incon-
sistencies in three-element arrays, and extending the theory to optimum arrays of four
elements, has appeared to date.

Limiting the scope of this report to a consideration of only three- angd four-element
systems will not unduly restrict design freedom. These airays ate suifable for many re-
quirements, as the following example will show.

The example pertains to locating surface emitters from an airborne platform and is
offered to illustrate some of the tradeoffs between using arrays with either three or four
etements. Figure 1-1 is a plan view of the geometry typical of an airborne collection sys-
tem taking a series of relative bearings on a distant emitter. There are many treatments
of the factors affecting location system performance [8-11} for the problem depicted in
the illustration. The example shown is Butterly’s [8] “asymmetrical 15° sector.” The
emitter range, normal to the assumed straight-line flight track, is 100 n.mi. (185.2 kmj}.
A flat-earth approximation is made, and errors because of altitude are neglected. The
collection platform takes 16 successive bearings {forced to be equally spaced in Butterly’s
analysis, for convenience, with no great loss in generality). The first DF cut is made at
an angle of 45° right of the array boresighi; the tast is taken at a bearing of 38°. But-
terly’s analysis shows that to restrict the area of uneertainty of emitter location ta w
n.mi.2 {3.437 km?2) to a probability of 0.95 requires accuracies of 0.21° rms on the bear-
ings over this 15° range in angle.

The spatial accuracy in degrees rms, ¢g , of an interferometer is related to the elec-
trical phase error in the largest-spaced pair of antennas by the well-known expression

o
% = Bdcos b,

(1-1)

where
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TO ACHIEVE Thn. mi.2(7r x 3.43 Km?)
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=100 n. mi. F=23 (% WAVELENGTHS) - o -
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INTERFEROMETER SPACINGS
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% || 129msIELECTR.] | 3%ms (ELECTR.)
n Ps %, Pa %,
3 45% 0.26%
p.21° 0.053°
ms rms
4 0.075% NEGL.

Fig. 1-1--Problem geometry for emitter location example

Op = electrical phase error, degrees rms,
f = 2w/A = phase constant in the medium of propagation,
d = channel-pair spacing, longest-spaced channels.

If 04 = 12° rms (zero-mean) and if 6, is in the vicinity of 37.5° (mean of 45° and
30°), to achieve an accuracy in AOA of 0. 21 rms (zero-mean) requires an overall base--

line length d = 11.5 wavelengths = 23 half-wavelengths. (Note: In developing the. theory“

of low probability-of-ambiguity arrays, it is convenient to work with spacings expressed
in integer half-wavelengths.) The optimum three-element array employs a channel: .
spacing of 12 half- wavelengths and a channel 2 to 3 spacing of 11 half-wavelengths: For

a readily obtained oy = 12° rms, the probability of ambiguity of this array is 45% Thls
is clearly unacceptable performance.

The optimum four-element array, synthesized according to the principles preseﬁte‘d
in Secs. 4.0 and 5.0 of this report, has channel-pair element spacings of 8, 4, and 13
half-wavelengths between adjacent channels. For the same channel-pair phase error, 12°

rms, the probability of ambiguity is 0.075%—a 600:1 improvement over the three- o
element array. e

It is obvious that in dense signal environments, initial estimates of emitter locatiijp‘l:i“
(and later refinements of these estimates) can be accomplished much more rapidly using

E ey
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the more reliable estimates from the four-element array. It may also be observed that to
reduce the probability of ambiguity of the three-element array to 0.26% requires a re-
duction in channel-pair phase error to approximately 3.0° rms. At the present state of
the art in microwave componeni technology, it is doubtful whether such channel-pair
phase tracking can be obtained over more than 5% to 10% bandwidths, even with auto-
matic calibration,

The above example clearty shows the advantage of implementing a four-channel sys-
tem, if the obtainable performance can be justified against the need for (a} the addifional
channel and (b) the additional processing. There are, of course, less stringent require-
ments that can be addressed very competently by a three-clement array.

For example, suppose that it is possible to achieve system channel-pair phase track-
ing to 10° rms, and that a baseline length of d/x = 4 {¢ = 8 half-wavelengths) is available.
At boresight, the angular accuracy of such a system is 0.398° rms. Over the symmetric
sector defined by a starting bearing of +15°, and an ending bearing of —15°, a direction-
finding system need take only 21 bearing cuts, spaced at 1.5° increments, to attain a
0.95 probability of determining the location of an emitter to within a 7 n.mi.2 (3.43% km?2}
area of uncertainty at a cross-track range of 102.65 n.mi. (190.1 km). This particular
system has a probability of ambiguity of 1.01%, implying a somewhat longer initial
processing interval, on the average, before “sutliers” in the data could be identified and
discarded (in contrast to the 0.0756% p, of the four-element system}.

For many applications, the obtainable performance in three-element systems ig guite
satisfactory, provided that {a) the location geometry is favorable, {h) a sufficient nunber
of bearing cuts can be taken, and {c) the system channel-pair phase tracking is good.

Figure 1-2 is one configuration of a four-element interferometer. The four functional
elements shown are {a) relatively nondirective antennas for wide spatial coverage, {b} phase-
tracked receiver channels incorporating hard limiting of channel signal levels to remove
amplitude fluctuations, (c) phase comparators, and {@) an ambiguity-elimination and angle-
processing circuit. As shown in the diagram, the channel at the far left is the phase
reference, Other four-clement array configurations are possible. Sec. 4.0 will show that
this particular array configuration, called “cascaded end-phase,” i¢ the canonical configura-
tion for a four-element array. Other array configurations can equal, but not exceed, iis
tolerance to angular ambiguities. This configuration is optimal because of its relatively
simple processing compatred with other array configurations.

For the configuration shown in Fig. 1-2, the electrical phase differences between a
signal in the reference channel and signals in the other channels are

¢1!I = 5d1,}‘ Sin 95 M {1“2}

where dj ; is the physical spacing between the phase centers of antennas 1 and J in the
linear array (i = 2, 3, or 4). Thus, three phase differences—the necessary and sufficient
number to exiract all the AOA-dependent electrical phase information the array can
provide—are made available fo the processing circuits.

Suppose dy 4 = 4d13 = i6dy,=38 wavelengtuis. Normalized to hatf-wavelengths,
the spacing integers (see Fig. 1-2)arep=1,p+¢ = 4, and p + g + r = 186; these

4
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- dy 4 -
dy 3 —i
he— d1 3 —»|
Y Y 7 ANTENNAS
1 2 3 4 RECEIVERS -

-~

REFERENCE,
OR COMMON T g e
CHANNEL PHASE
® COMPARATORS
+ % dy 2= pA/2

dyz=Ip+qlr/2
AMBIGUITY ELIMINATION dy'e= —(p+q+nhi2

#1,j=Bdy jsing,,
j=23,4

AND
ANGLE PROCESSING

L 8, ESTIMATE OF g,

Fig. 1-2—Block diagram of four-element phase interferometer

define ¢ = 3 and r = 12. According to Eq. (1-2), as 0, increases, the electrical pha§§
angles associated with channel-pair 1 and 4 and channel-pair 1 and 3 will eventually ex-
ceed |tw| radians. However, since each member of the ensemble of phase comparatar .
outputs can only be known module 27, ambiguities—multiple-candidate AOAs—wﬂlwbe
manifested in the phase comparator outputs. On the other hand, the phase compamtor
output associated with channel pair 1 and 2 can never exceed |t7| radians. This fact
can be exploited to yield an ambiguity resolution process that will enable an estlmate of
AOA associated with the correct mean AOA to be recovered. I

There are £ — 1 ambiguous 0, in an array whose overall length is £ half—wavelengths.
The probability that one of these amblguous AOAs will be computed from the set: of
modulo 27 phase angles applied to the processing circuits is inversely related to the:
spacings d; ;j or more appropriately, to the spacing integers p, ¢, and r, when four—e men’b
arrays are under consideration.

The interferometer synthesis problem that is the main scope of this report is to.de-
termine p and g in three-element arrays; and p, ¢ and r in four-element arrays so that an
acceptable balance is achieved between the mutually incompatible objectives of maxi-= -
mizing the accuracy of the AOA estimate (increasing the overall array length) and: mini-
mizing the probability of ambiguity (minimizing the overall array length) subject to gwen
channel-pair phase errors.

The two groups of readers to whom this report is addressed are (a) electronics sup-
port measure (ESM) system designers whose direction-finding requirements may be met

5
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by implementing arrays synthesized according to the principles given here, and {b} those
who may find the general theory of assistance as a point of departure in discovering the
principles of arrays of more than four elements.

Array designs that achieve the best obtainable probability of ambiguity for given
overall arvay length and channel-pair phase errors, and are guaranieed decodable, are
described here. Thus, the report may be considered to be an extended “existence
theorem” on low-ambiguity arrays. These arrays are guaranteed decodable because the
spacing integets p, g, and r are relatively prime, but no speeific decoding procedures are
given in the report. The choice not to include some material on decoding was macle
reluctantly {in order to stress ambiguity aspects of array design), bui was done in the
knowledge that techniques based on the Chinese remainder theorem are well known.

Section 2.0 of this report is a short review of basic interferometer theory. It pro-
vides 2 thorough exposition of just what constitutes an ambiguity in arvays, and discusses
the ambiguity constraints in arrays defined by two spacing integers.

Section 3.0 begins with a discussion of the phase-error sources in muttichannet re-
ceiving systems, and the magnitudes of these errors in current-art receiver eomponents.
"Then an expression for probability of ambiguity based on a channel-pair phase error
formutation is given for three- and four-clement, two-integer set arrays. Finally, the
optimum spacings for these arrays is given, along with tabulations of p, for various array
lengths as a function of channel-pair phase error.

Section 4.0 reats the fundamentals of four-element, three-integer set interferometers
by first considering the properties of various configurations of four elements. Resolvable
and unresolvable ambiguities in the two distinct three-element subarrays that constitute
a four-element array are then discussed. The role of the integer factor common {0 mem-
bers of each of the subarray ratios as this factor influences overall array ambiguity is
explored. Then, explicit forms are given for the ambiguity variables in each of the two
subarrays, and some sample calculations are performed of probability of ambiguity. Last,
it is shown that a particular form of four-element array, the cascaded end-phase areay. is
the optimum array configuration.

Section 5.0 provides the theoretical basis for synthesizing optimum arrays of various
lengths. Two forms of array are introduced and defined o achieve a rapid, readily applied
procedure; the “ideal unrealizable™ array and the “optimum realizable™ amay. An approxi-
mate synthesis procedure, assuming independence of subarray ambiguities, is given. For
most cases of current practicat concern, this approximate synthesis proeedure is very sadis-
factory. Indeed, this procedure often provides several arrays of the same overall length,
but with differing p, ¢, and r spacings, that achieve the same overall probability of
ambiguity. However, by treating the two subarray ambiguity variables as members of &
joint probability density function, with correlation between the variables, it is possible
to derive an exact formulation for the overall probability of ambiguity in four-element
arrays. The impetus for presenting this exact analysis is threefold:

® The optimum array for a given overall array length and identical zero-mean
channel-pair phase errors can be unequivocally specified.
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® The analysis can be extended to arrays using antenna elements sequenced
into a shared channel to achieve component-usage economies. (This analysis is not-given
in the present report, but it is a straightforward extension of the analyses given here.)

® Extensions of the basic analyses oriented toward other aspects of multl-‘
element array performance may be encouraged.

A convenient classification of overall array length that leads directly to a readily applied
computer-aided synthesis is then given. The section closes with tabulations of probablhty
of ambiguity for optimum arrays for a wide variety of array lengths.

Extensions of the research presented in this report are in progress, and are d1§c ssed
briefly in a final section that summarizes the effort and provides some concludmgre;

2.0 BASIC INTERFEROMETER THEORY

This section presents the basic principles underlying multielement phase mtel:ferom-
eters. Initial attention is directed to the concept of characterizing arrays by two- mteger
sets. This generalized array concept emphasizes that the susceptibility of interferometers
to providing ambiguous (actually, grossly erroneous) estimates of angle of arrival'i lsw amfunc-
tion of two integers and two associated channel-pair phase errors. ;

This method of characterizing an interferometer is compatible with either-three-
element or four-element arrays. For the former, a portion of the channel-pair phi e -
errors reside in a “‘common-channel” phase error, whereas for the latter case, phas ‘errors
in one pair of channels are independent of phase errors in the other pair of chann‘e‘l‘s‘ -

There has been some confusion in the literature concerning the apparent superiority
of one configuration of three-element array with respect to another array configuration
as regards susceptibility to ambiguities for a given value of channel-pair phase error;as in
Kendall [12] and Margerum [13]. Apparently, Kendall’s efforts in generalizing three-
element array theory to embrace arbitrary ratios, i.e., arrays whose spacings were not:
relatively prime integers—obscured the fact that if one particular configuration of three-
element array is ambiguous {due to some set of channel-pair phase errors), then the other
configurations must also be ambiguous. The proof is trivial and is given in Sec 24.

Margerum analyzed a midphase three-element array, but neglected to cons1der the
effects of “‘common-channel” phase. Consequently, the ambiguity constraints he denved
were actually those for the four-channel (independent) two-integer set array. How:gver
Margerum’s use of the ambiguity-plane method of illustrating ambiguity boundary rela-
tionships seems to predate its employment by others. As will be seen in Sec. 2.3, the

ambiguity plane is a valuable concept for understanding the mechanism underlymg am
biguities in multielement interferometers.

2.1 Two-Integer Set Interferometer Fundamentals

Consider the linear array shown in Fig. 2-1 where the physical spacing between ‘
antennas 1 and 2 is d, and the spacing between antennas 3 and 4 is dg. As depicted,

7
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L

\ ; ANTENNAS

"‘—dL’pT)‘_’" a— d. = q;‘-—-b
4 ¥
1 2 3 4 RECEIVERS
PHASE COMPARATOHS
. N AND
# =pd, siné, #; =Gd;sing, ARE RELATIVELY
=27, A, =2m, R PRIME
e z}srné}a i 2Isum‘,{q, INTEGERS

Fig, 2-1—0One form of two-integer set interferameter

spatial angles of arrival are defined with respect to the normal to the baseline. With no
loss in generality as far as interferometer ambiguities are concerned, the sources of distant
signals are assumed to lie in the horizontal plane. It is further assumed that these spatial
angles of arrival are restricted to 18,1 < 90° or that other means have been employed to
resolve the gross front-to-back ambiguity inherent in phase interferometers using antenna
elements with little directivity.

The electrical phase differences between the signals in the two sets of antennas for
radio-frequency (RF) energy arriving from angle &, are

Elements 1 and 2

®; = fdg siné,
= 2% 4, sine, . (2-1a)
Elements 3 and 4
by = fdgsin g,
= 2% dgsin, . (2-1b)

These phase differences can be determined by applying the antenna outputs to phase-
tracked receiver channels incorporating hard limiters (to remove amplitude fluctuations})
and terminating in phase comparators, As is well known, in an elemental two-element

B
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phase interferometer that does not have any available supplemental amplitude informa- .

tion from the antennas for use in resolving ambiguities, the maximum spacing between

antenna phase centers is restricted to C
T - (—m)

[sin (90°) — sin (—90°)]

dmax ?T
x

A e

-4 @)

In interferometers providing two or more phase differences, it is possible to resol\.fe
ambiguities even though one or more spacings exceed a half-wavelength at the opgrai;mg
frequency. :

Suppose d;, and dg in the array of Fig. 2-1 are in the ratio of small integers,‘“as

@

: (23)

where p and ¢ are relatively prime.

If

p compiete cycles of 2a-rad phase change will occur between the output signals of an-
tennas 1 and 2 and g complete cycles of 27-rad phase change will occur between the out-
put signals of antennas 3 and 4 as 6, varies between -90° and +90°.

Electrical phase angles can be determined only (mod 27); hence, the true phasemdlﬂ
ferences ®; and ®g must be expressed as

Q7 = ¢p-pe (mod 27) + 27y - (2-4a)
and ‘
Py = @g_p (mod 2m) + 2mx ©(2-4b)

where

subscript pe = voltages available at the output of a phase comparator deﬁnmg
angles,

x, y = pair of integers which must be determined so that ¢; and fI>S of

Eq. (2-4) are equivalent to those of Eq. (2-1).
Determination of 1ntegers for x and Y is basic to any vermer-resolvmg problem: (e.g v

from a carrier are used to resolve range ambiguities) and is readily achieved. Notmg‘that ‘

9
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¢y = ‘g‘ Pg , (2-5)
and equating Eg. (2-4a) to (2-4b) yield
gior —pe (mod 27} + 2ay} = plog-p,e (mod 27} + 2ax}. {2-6}
An equivalent form is
peg — app t 2ripx—gy) = 6, (2-7}

where the pe subscripts and the {(mod 27) notations have been suppressed for clarity.

One method of solving Eq. (2-7) is to doubly iterate through the allowable sets of x
and y until the set giving equality is found. As will be shown in Sec. 3.0, the best strategy
in a system with phase errors is to accept the x,, ¥ that result in

fler, 0. x5y 0 < 7. {2-8)

2.2 Interferometer Array Classification

Figure 2-2 shows the four array configurations capable of providing two electrical
phase differences for estimating spatial angle of arrival. Only antennas and the associated
phase comparators are depicted; it is understood that receiving channels with phase devia-
tions {ag contrasted to ideal channels) are interposed.

Figure 2-2a, b, and ¢ illusirate the three possible ways of obfaining two phase dif-
ferences using three antennas, a consequence of the fact that the number of combinations
of three elements taken two at a time = 31/Z1{3 - 2)! = 3. Fig. 2-2d shows an array using
four elements.

The arrays may be classified according to the channel used for phase reference. Thus,
in Fig. 2-2a, channel 1 is the reference; the array is called End-phase Left. Similarly, in
Fig. 2-2¢, channel 3 is the reference; the configuration is called End-phase Right. Finslly,
in Fig. 2-2b, channel 2 is the reference; this array is called Midphase.

Obviously, for the array configuration in Fig. 2-2d, g is unaffected by phase errors
in channels 1 and 2. Hence, this four-channe! interferometer is called Independent.

Suppose that for each of the three-element interferometers of Fig. 2-2, the element-
to-element spacings {normalized to half-wavelengths at the operating frequency) are p be-
tween elements 1 and 2, and g between elements 2 and 3. Then, the interferometer
ratios in terms of electrical angles and spacing integers are

ER_@L+S pta

End-phase Left

L~ éL r

10
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p+a {A) END-PHASE LEFT
-—p——l %)_*pus_pﬂl

{C) END-PHASE RIGHT

b5 p+q
Jp o _ThtS P2
1{ 7 2( i Si 7 (}?H ¢'S q

L+S
fe— p —| |+— a —] (o)1 iNDEPENDENT
1 2\/ 3 4 W L
QA)I_ Pg B q
3, Yo

Fig. 2-2—Simplified block diagrams of the four possible
two-integer set interferometers

@
Midphase Ry = = = —E

End-phase Right ®Rp =

|
i

where
$; .5 = X @t dg) sin 8,
dp = 5 4 sin 8,
by = 5 dg sin 0.
For the four-element interferometer, the analogous quantities are

11
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Independent
2 %_p

A complete classification should include consideration of phase-error parameters so
as to account for unequal channel electrical lengths, Table 2-1 lists the channel-pair phase
error parameters appropriate to the four-interferometer array configurations, in accord
with the notation of Fig. 2-2. Expression of deviations from some nominal channel phase
length in terms of channel-pair ervors will be useful in establishing ambiguity constraints
for the various interferometer configurations. In following sections, a channel-pair phase
error formulation will be useful in deriving analytic expressions for probability of ambi-
guity in three- and four-clement arrays.

2,3 Ambiguity Constraints for Two-Integer Set Interferometers

The constraints on channel-pair phase errors that preclude erroneocus determination
of the spatial AOA {because of ambiguities) will now be derived for two-integer set
interferometers.

Consider an interferometer in which dy, and dg are in the ratio m:n. The integers
m and n are used to emphasize that a generalized interferometer, rather than one of the
specific four configurations introduced earlier, is being discussed. The maximum allow-
able spacings for the ratio R = m/n are, of course, dy, = mA/2, and dg = nif2. Otherwise,
more than one #, within the ~80° to +90° field of view (FOV) will produce a specific (mod
21y &, by set. Hm=3,n=2,dy = (3/2)7, dg = A, then

|95 mae| = [#25 - N = 227 = tna].

If it were possible to measure ®; and &g unambiguousty over their ranges, a phase-
plane plot of ®; vs ®g would appear as shown in Fig. 2-3a, in a form due {o Margerum
f13}. A more convenient representation is Fig. 2-3b, which is centered on g, = 90°
rather than on 8, = 0°. The expressions for &; and $g are thus modified to

$7 = Pdy, sin b,
0° < 8 < 90°, {2-9a)
&5 = fdg sin f,
and
@7 = fdz(2+sind,)
-90° < 8, < 0°. {2-95)
®y = fdg{Z +sind)
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i
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y 1
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—9&“&934 g9g°

5 5
=fg, (2+sinfy -90°SF <O
g

{A] CENTERED ON8, =0° {8} CENTERED ON 9, = +90°

Fig. 2-3—Phase-plane diagrams for mn = 3:2

Since P} and ¥j can be known only to within 27 rad at the outputs of phase com-
parators, the phase-plane plot must be collapsed to a square 27 rad on a side, as shown
in Fig. 2-4. In this diagram, the intersections of the ® vs By trajectories on the g axis
are spaced 2n/n (=7). The yg axis intersections are spaced 2w/m (= 273

e = PHASE
TRAJECTORY

_—— = AMBIGUTY
BOUNDTARY

Blﬂ :9l31 3‘3&

3

-fix 2w = GOBOT x 27,
2 )
1 )xizr - QIO X 20,
2

h]
LA™
1
—

]
w'ﬁ
#
———

FOR 8, = 9%°

22— 2
m

'Ps—h-

Fig. 2-4— Ambiguity diagram form:n = 3:2
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Suppose 8, = 45°. Then

by = 27 X 3/2X IA/Z,

and

pr = ®7 (mod 2m) = 27 (3/24/2-1).

Also,

Oy = 2r X 1X 10/2; 5 = 2n/4/2.

From Eq. (2-7), we have
mpg — npp + 2r(mx - ny) =

Substituting for (,oL and ¢g and dividing by 27 yields a tra_]ectory-estabhshmg equa-
tion of the form S

3% + 2= 2y, ({2!1‘0)

The only solution of Eq. (2-10) subject to constraints 0 < x < (n~1) and 0 < <y< (m 1)
isx=0,y=1. (Note: The Fig. 2-3b formulation of the amblgmty plane leads only t@

positive solutions of Eq. (2-10) and is much less cumbersome than an approach based on
Fig. 2-3a.) Thus,

iy wr + 2w(1)

3 3
= - 1)+ 27 = 27 X
N(2\/§ ) T 2+/2
and
Py = pg + 27(0)
- 2r
V2

The spatial angle of arrival 8, can be recovered, for example, from the expression

3., 1
2r X X —=¢
iy 2 (2
0, = sin"1 [,—Lﬂ] = sin71 -————3-[— = 45°.
CI)L—max 2r X —2—

Errors in the channel-pair signals sent to the phase comparators will move the t,DL,
¥s set off the phase trajectories (solid lines 0, la, 1b, or 2) in Fig. 2-4. For s1mp11c1ty,
the prime notation on ®;, 5 and gy, pg will be dropped henceforth. ‘
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If any ®;, $g set is in error because of channel deviations, then the (mod 2x} repre-
sentation at the phase-comparator output is also in error. The ectual phase differences
(including errors} compared to the phase differences made available by the instrumenta-
tion are ag follows:

Aetual Flectrical Phase Differences

Proer = “2% dpsind, + App, = ¥y + Ay {2-11a)
Pg ., = -2% dgsinf, + Apg = Pg + Agg. {2-11b}

Available Electrical Phase Differences

or,, = [@L + Apy} (mod 27} (2-12a)
Vs, = [Ps + Apgl (mod 27) . (2-12b)

The geometry of Fig. 2-4 shows that to equalize the possibility of incurring ambi-
guities over the —90° to +90° FQOV, the dashed boundaries separating the region around
one trajectory from the region around another should be located parallel to, and equi-
distant from, adjacent phase trajectories. The ambiguity boundary directly above trajec-
tory ‘@’ intersects the py axis at

i
&@L -AT = E‘? {2‘13&}
and the boundary directly below trajectory ‘@ intersects the ¢g axis at

T

In attempting to generalize the conditions for obtaining minimum tendency toward
ambiguities over the field of view, Kendall [12] considered ratios R=minforn/myin
which m and n were not restricted to relatively prime integers. He employed a need-
lessly complex analytical formulation, whereas, with just the previously used geomefric
arguments, it is easy to show that m and n must be relatively prime integers, as in the
following example.

Figure 2-5 shows a phase-plane plot of the trajectories for R = /11/2 = 3.3166/2,
subject to the element spacing associated with m equal to 1/11/2 wavelengths. The solid
trajectories in the figure thus terminate with 3a, at a ¢y value of 0.3166 X 27. This
indicates, of course, that over a 180° range on §,, ®; sweeps through 3.3166 X 2% rad,
and ®g sweeps through 27 rad. Since R is irrational, one can, in theory, extend the
array length indefinitely without encountering a condition where multiple , give rise to
the same ¢p, wg set. As more trajectories are added to Fig. 2-5 (implying increased array
length), the spacing between trajectories, and hence, the tolerance to ambiguities, decreases.

16
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FIRST FEW .
=PHASE TRAJECTORIES -

FOR G2 =V11/2

—— = ADDITIONAL PHASE
TRAJECTORIES {(when
element spacing
associated with m

increased to ~ —ig“- f

and ratio remains

=1/2)

8

m_ v_;J_ =1.6583.....nu.

2 ~ 5:3

Fig. 2-5~—-Ambiguity diagram for R = /11/2

Of the additional trajectories 3b and 4 (shown dashed in Fig. 2-5), 4 terminates near
the point ¢y, g = 2w, 27. This might have been anticipated by noting that the integer-
set ratio nearest R = /11/2 is R = 5:3. For the latter ratio, there would be five equally
spaced trajectory intersections on the horizontal axis of the phase plane and three inter-
sections on the vertical axis. Because 4/11/2 is irrational, however, there is no way'of
drawing ambiguity boundaries to equalize their spacing from adjacent trajectories,. thereby
making the tendency toward ambiguities implicitly independent of 4,. Consequen‘ ¥y
ratios formed by relatively prime integers are preferable. e

All phase trajectories and ambiguity boundaries in phase-plane plots intersect the
g axis at an angle v = tan™! {(27/n)/(27/m)] = tan"1 [(m/n) = R]. For any 8, it is easy-
to show that the two ambiguity constraints are e
Apy, > RAps + Agp_ar (2-14a)
and
App < RAgg — App_a1, (2-14b)

for R = m/n, with m and n relatively prime integers.

If the upper inequality is satisfied, the ambiguity boundary above a given tra]ectory
has been crossed; an analogous statement holds for the lower inequality.

An expressmn equivalent to Eq. (2-14a, b) which makes use of R = m/n and
App _a1=min is

InAg, - mAggl 2 T, (2:15)

where > implies an ambiguity, and < implies no ambiguity.
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Equation (2-15} is the ambiguity constraint for any two-integer sel interferometer,
provided that the channel-pair phase error terms Agy, and Agg are defined properly with
respect to the particular array configuration being analyzed.

2.4 Ambiguity Constraints for Specific Array Configurations

The ambiguity constraints for the four possible two-integer set interferometer con-
figurations are now obtained by making use of the constraint just presented for a gen-
eralized interferometer.

Equation {2-15) is expressed in terms of generalized array integers m and n and
channel-pair error parameters Agy and Agg. The array ratios {from Sec. 2.2} and the
channel-pair error parameters (from Table 2-1} for each of the array configurations are

End-phase Left

Apr = Mgy — Ag
+ L 1 3
gy =BT, , (2:16a)
Apg = Doy — Apg

Midphase

=g , {2-16bj
Agg = Agy — byy

Ry =

=3

End-phase Right

Apr = Apg — Ay
Rr

{2-16¢}

Il

2|3
T
+

L]

Apg = Apz — Avp
Independent
%, - % _ % ; App = Dgpp — &5‘2. (2-164)
Apg = Apg — Agy
Making the appropriate substitutions mto Eq. (2-15) yields
End-phase Left

{(2-17a)

AV
3

Ip(Apy — Agg) — (o + Q) {Apy — Bl

Midphase

lg(~Apy + Apy) — plAvy — Aps)l 2 7, {2-17b)

i8
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End-phase Right

lg(Aps — Apy) — (@ + ) (Dpg - Apg)l 2 @,

Independent
lq(Apy — Apy) = p(Aps — Apy)l 2 @ (2-174)

It is easily shown that Eq. (2-17a, 2-17b, and 2-17¢) are all equivalent to the. follow-
ing equation. ‘

Three-element Interferometer
Ambiquity Constraint
lgAg; — (p+q)Apy + pApgl Z m. (2-18)

Equation (2-18) is, of course, a consequence of the fact that the channel-pair errot ‘param-
eters in a three-element interferometer are related by v

a+c=25b, (2-19)
where .
a = Apy ~ Apy, onyp,
¢ = Apg — Ayg, on gg,
b = Apy - Agg, on grig.

The results of Sec. 2.0 are the basis for correcting past misconceptions concerning.
the tendency toward ambiguities for various configurations of three-element interferoms -
eters. Kendall [12] argued that the end-phase configuration is superior to the midphase
configuration. Margerum [13] analyzed only the midphase configuration, giving‘aq‘tué]ljy‘
an expression for the probability of ambiguity for the independent four-element con- -
figuration. This left the impression, perhaps by omission, that the end-phase array c}on-
figuration is inferior to the midphase configuration.

The correct statement for the ambiguity constraints in three-element interferometers,
based on the development given here, is the following: Any configuration of three- " =
element interferometer defined by spacing integers p and g (implying identical overall -
array length, regardless of configuration) has the same tendency toward ambiguity, re- .~
gardless of the channel employed as the phase reference. ‘

3.0 PERFORMANCE OF TWO-INTEGER SET INTERFEROMETERS
For many applications, the performance obtainable with two-integer set interferom- ‘

eters, either three- or four-element, is adequate. For example, a three-element array - ““““
8 half-wavelengths long at the frequency of operation with channel-pair phase errors‘of -
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10 electrical degrees rms can achieve a boresight angular accuracy of 0.40 spatial degrees,
and a probability of ambiguity of 1.01%. Performance such as this can satisfy those
requirements which do not need the “super” accuracy obtainable with multiclement
arrays that have longer overall baselines. The primary reason for presenting a compre-
hensive theory of two-integer set arrays is that they are the basic subarrays that can be
cascaded to form longer arrays of four or more elements. In Secs. 4 and 5, examples of
the dramatically improved performance that can be achieved with these arrays will be
given,

This section discusses error sources, carefully distinguishing between a “channel”
error description and a mare convenient formulation for design and analysis purposes—
the “channel-pair” description of error sources.

A channel-pair error correlation coefficient is introduced and defined for the end-
phase, midphase and independent array configurations. Although it s not mandatory to
use a channel-pair error and correlation coefficient formulation, this approach to deriva-
tion of probability of ambiguity facilitates the development of an exact expression for
it in four-element three-integer set arrays in Sec. 5.

A recurrence relationship for generating the aptimum spacings for three-element
arrays of arbitrary length is given next. It is interesting that the full tabulation of allow-
able spacings, i.e., nonredundant, for arrays of various lengths has a counterpart in the
Farey sequences of rational fractions from number theory. Travers [14] points out, how-
ever, that propagation anomalies in the HF band (3 to 30 MHz} may constrain the “small
spaced channel-pair’” spacing to one half-wavelength rather than the optimum “small-spaced
channel-pair” spacing for the overall array being used, resulting in fewer ambiguities,

The section concludes with a tabulation of probability of ambiguily vs array length
{with channel-pair phase error as a parameter) for both three-element {end-phase or mid-
phase) and four-element {independent) two-integer set array configurations. Historically,
two-integer set interferometer arrays seem to have been implemented first in the inde-
pendent configuration as in Bailey and Moller [15]. Watters, Rees, and Enstrom, [16]
have reported on a two-frequency technique equivalent to the independent configuration.
Later, as the theory of arrays improved and the component act advanced, the three-
element, two-integer set arrays became much more prevalent. A recent example of a
commercially oriented three-element array is reported by Watanabe, et al. [17]. Many
current military surveillance systems also employ the three-element array.

3.1 Interferometer Channel-Pair Errors
In an actual interferometer, the electrical length y; of a given channel may be many
thousands of electrical degrees, This length may vary because of changes in operating

frequency, as a function of temperature, or with input signal power level (AM-to-PM con-
version). The length @; can be represented (as in Sec. 2.0} by

+ Ay {3-1})

Y5 = ©nominal

where Ay; is the deviation of channel { in phase tength from @hominar
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Individual channel errors Ayp; are accessible only by measurement to some standard
However, channel-pair errors

Bp;; = 0 —
= (Ynominat ¥ A¢:) — (Pnominat * A‘pj)
= A‘,Oi - At,Dj ) (3'2)
are manifested in the outputs of phase comparators connected between pairs of channels.
It is convenient to define interferometer performance in terms of channel-pairsj;phase
errors, rather than channel errors, for the following reason. The individual components -
that constitute a channel are usually more readlly specified in terms of thelr dev1at10ns‘

their deviations from nominal (but not convenmntly measured) electrical lengths

The variance of channel-pair phase error between ith and jth channels for the kth
component in an n-element cascade is

of, + oy : “‘(313)

assuming that Ag; .., Ag;,, are independent and have zero-mean deviation from ‘Pnommal-k
over applicable parameters (RF frequency, power levels, supply voltage, angle of amval
etc.). o

The overall channel-pair error variance, summing over n components, is then o
n -
_ 2 . 2 .
ofj = ). ok = o + df. (3-4)

For a large number of cascaded components, all of whose variances are comparable,
the channel-pair phase error distribution tends toward Gaussian (central-limit theorem)
Statistical analyses of channel-pair errors obtained on actual multichannel systems. support
this contention. .

Figure 3-1 is a block diagram of one channel of a multichannel interferometer fshaw-
ing the principal contributors to channel-pair electrical phase error. The direct- outp -
from phase comparators is analog. That is, ®; i(8,) is defined by sin™1 (v, s 5 /Vmax) and

-1 o |
cos™! (v; e {Vmax ), where v; i s and v; .j:c are voltages from the sine and cosine phasamde-
tectors, respectively, of the phase comparator and Umax 15 the maximum phase detector‘
output voltage.

In automatic systems, it is convenient to perform ambiguity elimination and other
calculations digitally. Hence, additional contributions to channel-pair phase error are
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Fig. 3-1—Interferometer error sources

Ay due to multivoltage level detector nonlinearities, and Aypg due to the quantization of
electrical phase over 27 rad. Detailed consideration of the effects of Aypypp, and A@Q on
probability of ambiguity is beyond the scope of this report.

Table 3-1 lists typical values of the major contributors to channel-pair phase error.
1t is assumed that the individual channel-pair errors are uniformty distributed between
the Limits shown. Phase errors due to finite signal-to-noise ratic (SNR) are not specifically
included, but can be readily added with the aid of the relation g4 = 180°/7./SNR, where
SNR is in terms of power. The associated standard deviation of channel-pair phase error
i85 { APy - ey I/ Where Agy oo is the peak value of phase error for component-pair X.
Two values of phase “‘noise” due to quantizing are given, These represent upper and
lower bounds on the degree of quantizing typically employed in interferometer systems
of the type described in Sec. 1.0,

Table 3-1 shows that the phase ervror due to the quantizer group is more than half
the overall phase error on a root-sum-square basis for 4-bit quantizing. On the other
hand, quantizing-phase noise is negligible for 7-bit encoding. In general, higher-speed de-
coding {and possibly less complexity in the ambiguity algorithms) can he achieved with
low degrees of quantizing. Conversely, systems employing higher degrees of quantizing
perform closer to the theoretical probability of ambiguity for an analog processing system.

Radio-frequency calibration can be employed in interferometer systems to reduce the
magnitude of channel-pair phase errors. Alternatively, by the use of calibration technigues,
low-quality components {poor phase tracking) can provide performance comparable to that
achieved in uncalibrated systems using high-quality components. Calibration signals are
usually introduced into the channels directly behind the antennas.
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Table 3-1—One-Sigma Channel-Pair Phase Error®
No Calibration

Group Limits on Ag; ;T Standard Deviation
Antenna Group:
Antenna =+ 8 oanT = 4.619°
Transmission line =+ 4° orr, = 2.309°
RF filter =+ 5° orp = 2.887°
Root-Sum-Square = 5.9160“‘ | 3
Receiver Group:
RF mixer and L.O
power divider = +10° omxp = 5.7174°
IF preamplifier =% 3 oprg = 1.732°
IF filter =+ 4° o = 2.309°
RSS = 6.455°
Phase Comparator Group:
IF limiter =+ 7° Olim = 4.041°
Phase comparator =+ 8° opc = 1.732°
RSS = 4.397°
Quantizer Group:
Level detector =+ 1° oLp = 0.577°
Quantizer, 7 bit = + 1.406° og = 0.812°
Quantizer (4 bit) (= + 11.25%) (0q = 6.495%)
_ 0.996°
(6.521°)
Overall channel-pair phase error = 9'848: rms
(11.769° rms)

*‘Strong-signal” conditions. T Uniform distribution assumed.
Note: Present technology, wideband systems.
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The use of calibration signals whose frequencies are equal to signals of interest makes
possible, in principle, the removal of channel-pair phase errors due to RF and IF filters,
RF mixer and local oscillator power divider, IF preamplifier, and phase comparator (see
Fig. 3-1). Sinee the power level of an incoming signal within the system dynarmic range
is arbitrary relative to a fixed-level calibration signal, only a portion of the channel-pair
phase error from the IF limiters can be removed. Also, the signal angle of arrival is
arbitrary with respect to the fixed angle of arrival synthetically introduced into the sys-
tem during the calibration mode. Thus, quantizing group errors must be accounted for
twice: First, during the signal reception mode; and second, during the calibration mode.

The list of error sources and their magnitudes, typical of a system employing calibra-
tion, is given in Table 3-2. The independence of these errors during the two modes of
operation is assumed.

Table 3-2—One-Sigma Channel-Pair Phase Error™
With RF Calibration

Component Limits on Ay; ;¥ Standard Deviation

ANALOG PROCESSING

Antenna = tg° TanT = 4.619°
RF calibration network = +3° OCAL = 1.732°
IF limiter = £3° oL = 1.732°

Root-Sum-Square = 5.228°

DIGITAL PROCESSING

Antenna = 8° oane = 4619
RF calibration network = +3° oear, = 1.732°
IF limitey = +3° O = 1.782°
Level detector (signal} = *1° Orp.sig = 0.677°
Level detector (calibration) = +1° oLp.cap = 0-577°
Quantizer, 7-bit (signat) = +1.406° oqec = 0.812°
Quantizer, 7-bit (calibration) = +1.406° vg.car, = 0.812°
Root-Sum-Square = 5.415°

®“Oerongsignal’’ conditions,
TUniform distribution assumed,

Note: Present technology, wideband systems.
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3.2 Probability of Ambiquity for Two-Integer Set Interferometers

The ambiguity constraints for the three-element interferometer configurations of
Sec. 2.4 are

End-phase Left
p(Ap; — Apg) = ( +a)(Agy — Apg)l 2 @ (8-5a)
where

Ap; - Apy = App,, Ap; — Apy = Agg

g, =m=2"1,
Midphase
lg(-Apy + Apy) - p(Apy — Apg)l 2 7 (35b)
where

~Apy + Apy = Apy, Apy - Apg = Agg

End-phase Right

lq(Apg — Apy) = (p+ Aoy — Apy)l 2 7 - (350)

where
Apg = Apy = Agy,, Apg - Apy = Agg

p+q_
q

m_

In Sec. 2.4, it was shown that Eq. (2-17a, b, and ¢), repeated above for convemence,
are equivalent to a single ambiguity constraint

([qAp; — (0 +q)Apy + pApgl 2 7. (3-5d)

In this section, an expression for the probability of ambiguity of a generahzedwtwo-
integer set mterferometer will be derived, starting from Eq. (3-5a, b, and c) rather- than
from Eq. (3-5d), as could be readily accomplished. The motive for this indirect deriva-
tion is to focus attention on channel-pair errors and channel-pair error correlation coef~
ficients. A formulation of the probability of ambiguity in terms of these parameters
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which simplifies the derivation of an exact expression for the probability of ambiguity in
four-element interferometers will be seen later (in Sec. B).

Expressions for the channel-pair error correlation coefficient will be required. For
two zero-mean random variables § and B, the correlation coefficient between them is de-
fined {18} by

_ B3R}

g = ﬂA ﬁ_B ¥ {3‘5}
where E{x] = expected value of x.
From Eq. {3-5a), for the end-phase left configuration, is derived
_ E{(Agy ~ Ap3){Agy ~ Mgyl
_ ot
- 01.0g
= +0.5, all 0; equal. (3-T)

Measurements on the joint statistics of oy, and og are necessary to define g, ; separate
measurements of o and gg in Eq. (3-7) are insufficient. For array design purposes, the
assumption that

of,

(S

a _ .2 _ 2 _1 =2 _
01—02—63—"563—

is a reasonable one,

It is readily shown that p, = +0.5, all 0; equal, for the end-phase right configuration
as well.

From Eq. {3-5b), for the midphase configuration, is derived

E{(-Agy + Apy )} (Ags — Apg))
VoF + af fof + o

2
_0:2

f1.5g

i

= -0.5, all g; equal. {3-8}

26




NRL REPORT 8005

The variance of the left side of Eq. (3-5a), the end-phase left configuration, is-

62 = p2(c% +0%) — 2p(p + Q)E{(Apy — Apg)(Apy — Apy)}

+(p + q)2(0% + 03) .

(3-9)
Substituting p = n, p + g = m, 6§ + 0% = 0f, and 07 + 0§ = 0} yields
2 _ 2.9 _ - A Ao, — A + n2g2 (8-10)
O; = m“0§ — 2mnE{(Ay, w3)(Ap; w9 )t + néoy, . (
Since, from Eq. (3-7)
E{(Ap; ~ Ap3)(Apy ~ Apg)t = 0F = p.op05,
Eq. (3-10) becomes, for the end-phase configuration,
02 = m20% - 2p,mnopog + n0} , (3-11)
where
m = p + g, op, = channel-pair phase error standard deviation, channels 1 and 3
n = p, 6g = channel-pair phase error standard deviation, channels 1 and 2
Pe = U%/ULUS

+0.5, all g; equal.

The variance of the left side of Eq. (3-5b), the midphase configuration, is

2

Om

= ¢*(03 + 0%) ~ 2pqE{(-Apy + Ap;)(Apy - Apz)} + p2(0d + 0F). (3-12)
Substituting p = m, g = n, o2 2

{+a5= U%, and o% + o% = og vields

0% = m%0} — 2mnE{(-Aps + Ap;)(Apg ~ Apg)} + nlop, . (8-18)
Since, from Eq. (3-8), we have
E{(-Apy + Apy W (Apy — Apg)} = -0 = Pm01,0g8 ,
Eq. (3-13) becomes, for the midphase configuration,
o2, = m%0% - 2p,,mnogog + n20? (3-14)

where
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m = p, gy, = channel-pair phase ervor standard deviation, channels 1 and 2
n = g, 6g = channel-pair phase error standard deviation, channeis 2 and 3

2
&3
€1.0g

Pm =

= —0.5, all ¢; equal.

Equations (3-11) and (3-14) have the same functional form; hence a single relation
suffices provided m, n, oy, 0g, and g{g, or g, } are properly defined. In fact, if we
refer to Eq. (2-17d), Sec. 2.4, for the four-element independent interferometer, it is ap-
parent that

E{{Apy — Apy Y Aoz — Apy ) .

P = o 0, (3-15a)
and
o2 = g% + ¢}, af =03 +o}. {3-15b}
Thus, the variance of the ambiguity variable is
6% = m%6% - Zpmnopog + nzg:% , (3-16}
where
g = +0.5, end-phase
= 0 , independent> all o; equal.
= —{.5, midphase
An alternate expression for 0% is
0% = & [(mZ)2 ~ 2pmInA + (nA)1] {317
& CH-PR [ )

where

Ogp.pp = @ nominal, or design, value for channel-pair rms phase eiror

A= apfocha.pr
Z = 0g/dgn.pR-

For design purposes, all o; are usually specified equal, implying that o, = 6g = Gop-pR =
/2 0;. Thus Z = A = unity, and a simplified form of 0{% is

ag} = odppplim? - Zpmn + n?}. {3-18)
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The probhability of correct resolution, that is, the probability that the left sides of
Eq. (3-ba, b, or ¢) will not exceed *w rad, is

1 /Gy

p =
¢ 2r “nio,

exp (—t'2/2) dt’ . (3-19)

Setting t' = /2 ¢, dt' = \/2 dt and changing the limits of integration gives

9 /20, )
== —t2) dt
Al exp (~12)

= erf ( \/%" %). (3-20)

Thus, the probability of ambiguity (the probability that the left sides of Egs. (3-5a;-b, -
or ¢) will exceed 7 rad) is

Pg=1-p,

[T}

T a1
erfec ( i %) , (aa1)

where

05 = ocupr(ME)2 - 2pmEnA + (nA)2]Y?

m = integer associated with large spacing (m > n),
n = integer associated with small spacing,

0L, 0g = standard deviations of channel-pair phase errors for large and small spacmgs,
respectively,

o= E{SS}/ULUS, correlation coefficient between large and small channel-pau'
phase errors,

OcH.pr = design, or nominal, value for channel-pair phase error,

Z = 0g/0cy-prs A = 0L/0cH.pr-

An asymptotic expression for erfc () is [19]

erfe () =

+2
{ 1, .13 _ 1-3-5+_._}_

t\/— 2t2 (2t2)2 (2:2)3 (3'22)

If the first two terms above are utilized, p, is bounded by
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2.3 Optimum Array Ratios in Three-Element Interferometers

The argument of the complementary error function defining prabability of ambiguity
Eq. (3-21), with the simplified form of O, is

kil

SoH-PR ‘\/fmg - 2pmn + ﬁz

For three-element arrays of length £ = p + ¢ (in half-wavelengths at the operating fre-
quency), regardless of which element is phase reference, the quadratic form within the
radical in the denominator of the expression above can be wrilten as

p2 + pgtq?, p=aq

where
p = integer related to the channel 1—channel 2 baseline,
g = integer related to the channel 2—channel 3 baseline.

To determine which sets of integers p, ¢ are optimum—in the sense of providing
arrays having the lowest probability of ambiguity for given ¢—subject to the constraint
p + g = constant = &, it suffices to determine

ga; [p? + p-p) + (1-p)*} = O,

which reduces o
Z - -0

Por no restrictions on p and ¢, the solution is, of course, p = ¢ = ¢/2. To form an attow-
able interferometer ratio me = plg or q/p, however, the two parameters must be relatively
prime integers.

Thus p = g (=1} only for £ = 2. The optimum p,glor =2 3,4 are
8=2; p=1, g¢g=1
:3; =z, = i

= 4 = 3, 1 {p= g =2 is not allowable since itis
a degenerate formof p= ¢ = 1}.

For £ = 5 through 10, the optimum sets of p, g are
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Functions generated by induction for p and g, given £ = p + g, are

pi-1 = 2i, Q-1 =20 -1; & 4 =4-1
Pio = 2i + 1, di0 = 2i - 1; Qi,o = 4i
pjp =20+ 1, gy = 2 £,0 =4 +1
and .
Pig =20+3, g9 =2-1; & =4i+2. (3-24)

Table 3-3 lists the optimum p, ¢ and associated end-phase and midphase array ratios
vs overall array length £(2 < ¢ < 26). el

It can be readily deduced from the argument of the probability of ambiguity func- a
tion for independent arrays,

T

»
WS 2
UCH_PR ??'l2 +n

that the optimum p, g vs array length are just

m=p= L

} independent .
1

n=gq

Table 3-4 lists all possible p, g sets (including the optimum set defined above) for
three-element arrays of length £ = 2 to 26. [t is interesting to note that the ratio en'mes
for p fixed have their counterparts in a table of Farey sequences (arrays of rational frac-
tions between 0 and 1) in number theory as shown by Niven and Zuckerman [20]:

3.4 Tabulated Probability of Ambiguity for Three- and Four-Element
Two-Integer Set Arrays

Based on Eq (3 -21) from Sec. 3.2, p, for three-element arrays are listed in Table 3 5

for oy pp = 5°, 10°, 12°, 15° and 20°. Table 3-6 provides the same 1nformat10n‘f917 .
four-element (mdependent) arrays. :
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Table 5-3—Optimum Midphase and End-phase Ratios vs
Array Length £ (2< £< 26) for
Three-element Interferometers

Array Length, ? _ B R _p*taq ptaq
4 m " g E-"¢q * p
2 1:1 2:1 , 2:1
3 2:1 31, %2
4 31 4:1 , 4:3
B 3:2 5:2 , B3
& 51 61 , &5
7 4:3 73, T4
B 5:3 #8383 , 845
G 5:4 9:4 , b
10 7:3 16:3 , 167
11 6:5 1.5 , 116
12 75 12:5 , 12:7
i3 7:6 iz |, 13:7
14 9:5 14:5 , 14:9
15 8:7 15:7 , 15:8
16 27 16:7 , 16:9
17 9:8 17:8 , 179
18 11:7 18:7 , 1811
19 10:9 19:9 , 1910
20 11:9 20:6 |, 20011
21 11:10 21:10 , 21:11
22 13:¢ 22:9 , 22:13
23 12:11 23:11 , 23:12
24 13:11 24:11 , 24:18
25 ig:12 25:12 , 25:13
28 15:11 26:11 |, 268:15
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Table 3-5—Probability of Ambiguity vs Channel-pair Phase Error for
Three-element Interferometers

IﬁAﬁan gti g _ P a _ p+qg p*ta Probability of Ambiguity for Given gcy.pr
i M g E qg ° <l . mO _ o _ a _ o _ of
Y o= 5 lg=10°lc = 12°|o = 157 [g = 20
3 2:1* 31, 32 - - <1E-7 (| <6E-§ |6.T0E-4
4 3:1* 4:1, 4:8 - <gE-7T 13.18E-5|8.74E-410.0128
5 3:2* 5:2 , 5:3 — 3.63E-51579E-4 5.91E-31 0.03358
4.1 51, B4 - 8.57E-5! 1.06E-3 | 8.83E-3 0.0485
6 B:1* 6:1, 8:5 - 1.93E-317.08E-31 0.0311 1 0.108
4-3% 7:3, T4 <1E-8 |{3.09E-3{0.0137 |0.0485 [0.139
T 5:2 72, T:B <1F-8 |3.95E-3|0.0163 | 0.0547 [ 0.150
6:1 1, 6 <1E7 16.05E-3{0.0222 |0.0673 [Q.170
8 5:3* 8:3, 85 <3E-7 10.0101 }|0.0321 {0.0865 {0.199
7.1 81, 87 <9E6 |0.0171 [0.0489 [0.112 10.233
5:4* 94, %5 4E-6 [ 0.0212 {0.0548 [0.124 [0.249
9 7:2 9:2, %7 1.1E-5 {0.0279 {0.0669 {0.143 (0271
3:1 a1, %8 2 BE-5 |[0.0351 |[0.0791 (G160 (4.292
10 T:3% 10:3 , 10:7 5.1E-5 {0.0429 [0.0915 {6177 0.311
a1 10:1 , 139 LQIE-ZE 00592 10,116 (0,208 {0.345
6.5* ii:5, 11:6 1.61E-410.0592 |0.118 [0.208 [0.345 E
7:4 11:4 , 11:7 1.89E-4 { 0.0620 {0.120 [0.213 ([0.351
11 8:3 11:3, 11:8 2 57E-4 10,0676 [ 0.128 [0.223 (0361
g:2 11:2 , 11:9 3.89E-410.0761 10.139 10.237 (037
10:1 11:1 , 11:10 6.33E-4{0.0875 [0.154 (0.2566 (0393
13 T:5% 12:5 , 12:7 5.64E-4 | 0.0847 [ 0.151 [0.250 [0.389
1i:1 12:1 , 12:11 1.80E-2{0.110 10.183 [0.298 [0.43b6

*= aptimum ratio for given £
f-=p, < 1E-16,
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Table 3-6—Probability of Ambiguity vs Channel-pair Phase Error for
Two-integer Set Four-element Interferometers

Probability of Ambiguity for Given ocy.pr

Maximum R_P |-

Spacing, & | T a | e 1o 10° [6=12° |o-15° | 0= 20° |
3 3:1 —x <1E7 | 2E-6 1.48E-4 | 4.48E3 |
4 4:1 - 1.3E-5 | 2.75E-4 | 3.61E-3 | 0.0290 |
5 5:1 - 4.15E-4 | 3.26E-3 | 0.0186 | 0.0776 |
6 6:1 | <1E-8 | 3.08E-3 | 0.0137 | 0.0485 | 0.189 |
7 7:1 | <1E6 | 0.0109 | 0.0339 | 0.0897 | 0.208 |
8 81 | BE6 0.0256 | 0.0628 | 0.137 | 0.264 |
9 9:1 | 7.0E5 | 0.0468 | 0.0976 | 0185 | 0.320- |
10 10:1 3.41E-4 | 0.0733 | 0.136 0.232 0.371
11 11:1 | 1.12E3 | 0103 | 0.174 | 0277 | 0.415 |
12 12:1 | 2.79E-3 | 0.135 | 0.218 | 0.319 | 0.455 |

*—~ = p, < 1E-10.

As mentioned previously in Sec. 3.2, 0y _pg in the range 10° to 12° is typical of
present technology for wideband microwave systems—2 to 3 octaves of frequency coverage—
with lower and upper absolute limits of 500 MHz and 18 GHz. Ocu.pr On the order of
5° typifies the channel-pair errors in the same category of systems utilizing RF calibra: -
tion. The probability of ambiguity for ocy.pg = 15° and 20° has been included as an
admittedly crude estimate of the performance that might be experienced with an mter~
ferometer operating in a severe multipath situation.

A p, criterion of 0.01 to 1 percent maximum ambiguity is often set by designers-of
systems to be used for location by triangulation with multiple DF cuts. As Fig. 3-2

shows, with o¢y.pg in the range 10° to 12°, the maximum allowable array length is:be-
tween 8 to 6 half-wavelengths. B

The angular accuracies of systems with baselines this short may be unacceptable.
This is the basic reason for synthesizing and employing arrays with additional elemerits.
In Sec. 5 it will be shown that the optimum four-element array of length £ = 25 half-
wavelengths has p, = 0.115 percent for ocy.pg = 12°, and Py = 1.17 percent for
Ocu.pr = 15°. |
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PROBABILITY OF AMBIGUITY

1 1 i i H L i
3 4 5 & 7 B g ki) k3] 12

., ARRAY LENGTH IN HALF-WAVELENGTHS AT GPERATING FREQUENCY

Fig. 3-2—Probability of ambiguity vs Ocn.pr for optimum
three-efement interferometers
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4.0 FUNDAMENTALS OF FOUR-ELEMENT THREE-INTEGER ;
SET INTERFEROMETERS s

The theory of three-element interferometers in fairly well known (disregarding.some
minor inconsistencies in the work referenced in Sec. 3.0). There does not appear.to ‘be
any corresponding body of theory available for four-element arrays, especially with re-
gard to the question concerning the existence of an optimum four-element array co;t—
figuration. With an understanding of the material presented in this section, the ESM. .
designer will be prepared for the exposition of the array synthesis techniques of Sec 5.0,
and he will be able te apply them without difficulty.

A four-element interferometer can be characterized by 4 antenna/receiver channels,
4 — 1 = 3 available channel-pair phase differences (necessary and sufficient for ambiguity
resolution of the overall array), and 4 — 2 = 2 subarrays formed by channels considered
three at a time. Section 4.0 introduces several four-element array configurations (some
of which are not optimum) which have been widely used in the past. These configura:
tions are compared mainly on the basis of how efficiently the signal processing and: math-
ematical operations needed in ambiguity resolution can be mechanized.

A discussion of resolvable and unresolvable ambiguities in the two three-element. sub-
arrays that constitute a four-element array emphasizes that there is no need for elther of
the two subarrays to be nonredundant. That is, there is no requirement that either: of
the subarrays be capable of unambiguous operation as a distinct three-element array-—as
long as the three spacing integers defining the overall array are relatively prime.

Each subarray is characterized by a subarray ratio R; = m;/n;. One member of the
subarray ratio R; (either m,; or n;) contains a factor common to one member of sub-
array ratio Ry (either my or ny), dependent on the overall array configuration. This
highest common factor « is introduced, and the manner in which the ambiguity. tolerance
of subarray 2 is increased because of this factor « is fully explored. ‘

The section closes with a development on canonical array configurations in four-.
element arrays. It is shown that the cascaded end-phase configuration of four-element
interferometers is optimum from considerations of efficiency of hardware usage and-
probability of ambiguity. This is believed to be a new result, and it was obtained: w1th ‘
out recourse to the analytical artifice of a fictitious off-axis fifth channel used by
Hanson [21].

4.1 Three-Integer Set Interferometers

Interferometers whose performance could be specified as a function of the two
spacing integers p and ¢ were classified in Sec. 2.2 according to which channel was. des~
ignated the phase reference. For arrays formed with the number of channels n = 4 and
n = 3, classification can be done on the basis of the channel (or channels) used as- phase
reference. The number of possible array configurations increases rapidly with n. It w111 ‘
be shown later (in Sec. 4.4) that in four-element interferometers, the probability of
ambiguity is dependent on the array configuration as well as on array spacing 1ntegers
D, q, and r—in contrast to three-element interferometers.
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Figure 4-1 iliustrates several configurations possible in four-element arrays. Param-
eters for these arrays of interest to a system designer are given in Table 4-1.

One array comparison parameter is the number of phase comparisons utilized in
resolving the overall array ambiguities. The number of these ambiguitiesis R =p + g + 1,
for 0, within -90° to +90°; and p, g, and r represent the element spacings in half-wave-
lengths at the operating frequency. The minimum possible number of these comparisons
is obviously {rn — 1}, since the use of less than (n — 1) phase comparisons implies that the
phase information from one or more channels has been discarded. The cascaded mid-
phase array requires four comparisons in resolving p + g +r = ¥ ambiguities. All of the
other array configurations require (n — 1} = 3 comparisons.

03] CASCADED END-PHASE
4] + a p‘+ﬂ‘+ r
R o p G = 77
4 13 $‘1'4
P12 ¢1a
[1=13 CASCADED MIDPHASE
* 2+ q ptq
R=—— Ro=—
¢ i3 _ ﬁ HE
P4 Pia
iCi HYBRID NMIDPHASE
B g+Fr
Ro- 2 R
@2 ~ P,
¥2s $2a
ny ADDITIVE MIDPHASE
o g
Rm= 5 R am= 5
@2 _ ¢3,3
¢ 23 é 34
1] MULTIPLE END-PHASE
pt+aq pegt
2%% Y !@25“ Y
és.z ¢ 14
¢1.2 P
.2 P13 L
p
*This ratio used after p, q resoived by % 1= T

Fig. 4-1— Various configurations for four-element arrays

38




NRL REPORT 8005

"bid = M1y £q poajossi aie b ‘d 1335e posn s1 opex SIQLY,,

d 2 d
d —_—_— (4 _— a1 2)7- d-
s8x g T Tib . d ¥l 3 T d ¥ (®)1-% | 9seyd-pus sidnmp
ON g 4 b % = ey w = Ty (P)1-% | eseudprt sanIppY
ON g T b b_ . %y, b Why (1% aseydprur pugAy
A+ b d
b
b4 d . g - d
ON v 4 + b d L2 ¥« ()T-¥ | eseydpiw popedse)
b4+ d 2 d
byd | —2F—- =% = 2?1 - d-
sap g 1 + T+ b+ d 4 b+ d 4 (B)T-+ |°seyd-pue papeose)
G I
Lpaa[osey |suosuredwiory| seouaiajey Supedg % oned 6 oned JoquInpn
Aposna 9seld eseUd ch.HEoU (uonnjosex £ymMsiquie 303) smay w °dAL Aewry
(4 + b 4+ d) s]| 30 Ioquny | yo Iaquiny ; S parenysaq(]

soney Aevireqng

$ARLIY JUSUIR[e-INO,] SNOWEA JOJ sigjawiered uosumedwo)— - o[qe],

39




BORERT L, GOODWIN

Note: For the “infinite-resolution” phase-measurement systems considered heve, imple-
mentation of other comparisons in addition to some minimum set is easily accom-
plished. Thus, the phase difference ®, 3 is equal (formally} to ®; 5 + Py g, in-
cluding any errors. In quantized-phase systems, the direct representation of $y 5
may differ from ®4 3 obtained by summing quantized representations of ¥ o and
&y 3. Hence, depending on the degree of guantizing implemented, the system de-
signer might be advised to obtain @y 3 directly by use of the additional phase
comparator.

A second array-configuration comparison parameter is the number of phase refer-
ences needed to implement a particular array. The number of high-level input signals
that must be provided is equal to the number of phase references. Minimizing this
number is desirable, since the analog phase comparators in widespread use in present
wideband receiving systems usually require a drive level on one of the input ports to be
at least 10 dB stronger than the other to facititate accurate recovery of sin ¢ and cos y,

the quadrature components defining phase difference.

Another array-configuration comparison parameter is whether or notthe $=p+g+r
ambiguities associated with the overall array length are resolved directly as a consequence
of the ambiguity-resolution process. If not, additional operations and caleulations will be
needed. Table 4-1 shows, for n = 4, that only the cascaded end-phase and multiple end-

phase array configurations meet this criterion.

A final erray-configuration comparison parameter is the subarray spacing length com-
mon to each of the two ratios characterizing the arrays shown in Fig. 4-1. The subaray
spacing length common to the two ratios influences the order of the ratio. An example
is a comparison between the midphase configuration and the cascaded end-phase con-
figuration for p = 3, ¢g=L,andr=7 half-wavelengths.

Midphase
§, -2_3
Common spacing: ¢ = 1,
R, -2 _1
2m T ¢ 7

Cascaded End-phase

pta 4
ﬁ{hez =g

Common spacing: p + ¢ = 4.
R = ptegtr _ }_}___
2" prg 4
Previous analyses into the theory of muitiple-element ambiguity resolution have proceeded
on the assumption that composite arrays having low probability of ambiguity could only
be achieved by combining subaryays of low order. Thus, inordinate interest has been
placed on the hybrid midphase and additive midphase configurations. It will be shown
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later in this section that the cascaded end-phase and cascaded midphase configurations
exhibit the lowest probahility of ambiguity for given p, g, and r because they have the
largest common spacing p + g, as the arrays are configured in Fig. 4-1. It will also-be

shown that if the subarrays are redefined properly, all array configurations in Fig: 4:1

are equivalent except-the multiple end-phase configuration. This is a new result in- the
theory of four-element interferometers.

In summary, the four-element cascaded end-phase configuration
® Employs the minimum possible number of phase comparisons—3.
® Requires the smallest number of phase references—1

® Resolves the overall length p + ¢ + r = £ directly as a consequence of the
ambiguity resolution process .

® Exhibits the largest spacing common to the two subarrays const1tut1ng the
overall array—p + gq.
4.2 Resolvable and Unresolvable Ambiguities in Subarrays of Three Elements
In this section, the distinction between resolvable and unresolvable ambiguities: in
subarrays will be defined. The material will be useful in understanding the dlscussum on

ambiguity constraints in the section following.

For a four-element cascaded end-phase array, as shown in Table 4-1, the two. g\;b-
arrays are defined by : :

le= P nl
and
_p+q+rﬁm2 oo
Roe = TPt q  ng | “‘(491b}

Analogous to the requirements for an end-phase three-element interferometer, each.of the
numbers m; and n; (i = 1, 2} associated with the two subarrays must meet the cntenon
for a reahzable mterferometer That is, m; and n; must be relatively prime 1ntegers. ‘
There is a correspondmg restriction that the spacmg integers p, p + q,and p + g +r. be
relatively prime, as will be shown in the next section on ambiguity constraints.

As an example, consider the cascaded end-phase array defined by p=3,q=3, and
r = 10 half-wavelengths at the operating frequency. The subarray parameters are

Subarray 1

my

6 2
=§: 5{19= h'l—’

Ry
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Subarray 2

prtg+tr 3

+
p*ta 3

+ . _my _ 8

3 5> "2 Ty, " 3C

The individual three-element interferometers are respectively ‘‘three-times ambiguous”

[(p + g)/my = p/ny = 8], and “two-times ambiguous” [{(p + g +rlmg = (p+qlng = 21.
The overali array, as well as the individual subarrays, can be resolved, however, because
the four-element array was synthesized from two realizable ratios. An eguivalent way of
stating this is to say that a four-element array is resolvable provided at least two of the
three spacing integers are relatively prime. Thus, the array formed by p= 3, ¢ =3, 7= 9
is not resolvable, whereas the array formed by removing the common factor 3, p’ = 1,

g =1, ¢ = 8, resolvable.

In the above example involving subarray 1 with p= g =3 half-wavelengths, there are
p + g = 6 angles of arrival over a —90° to +90° field of view that wiil give rise to the
same phase code Py 3.ayailable = P1,3 (mod 27). This is, of course, a restatement of the
principle that a three-element array of length 8= p + ¢ {in half-wavelengths) cannot ex-
ceed m, A2 wavelengths; otherwise there will exist ambiguities beyond the capability of
the channel-pair spaced p half-wavelengths to resolve.

Subarrays which have no unresolvable ambiguities over the field of view are called
“unambiguous.” Subarrays which exhibit one or more unresolvable ambiguities over the
field of view are therefore called “ambiguous.”

Table 4-Z lists all possible four-element arrays of length Q=p+gq+r=16 hall-
wavelengths, with the associated subarray ratios R, and Ra, for the cascaded end-phase
configuration (subject to an example constraint of p = 3). The purpose of the listing is
to illustrate the conditions unambiguous and ambiguous.

The number of unresolvable ambiguities for each subarray are

subarray 1 A; = (p+q) - my {4-2a)
subarray 2 Ag = {ptq+rj - mg. {4-26}

Of the entries in Table 4-2, only 4 out of 12 have both subarrays 1 and 2 unambig-
uous. It is stressed, however, that the usual impetus for implementing arrays of four or
more elements is to achieve the higher angular resolution implied by larger overall spacings
{with an acceptably low probability of ambiguity). Thus, the array designer is normally
indifferent to employing angular estimates from any spacings exeept the overall array
spacing €. An exception to this statement occurs if all of the array spacings are used to
form an estimate of the angle of arvival, e.g., as in perhaps maximum-likelihood processing
of the electrical phases from the appropriate channel-pairs.

4.3 Ambiguity Constraints and Probability of Ambiguity for the Four-element
Cascaded End-phase Airvay

Explicit relations for the ambiguity constraints in the cascaded end-phase configura-
tion of a four-element array will be derived in this section. The derivations for the ather
array configurations given in Sec. 4.1 are similar.
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Table 4-2—Parameters of Four-element Arrays of LengthR=p + g +r=16
(subject to the constraint p = 3)

Number of Uni'e- :
Spacing Int solvable Ambiguities,
e [ B = 0+ | Ry = GHa+rip+a) Ain®;

4, Ay
3- 2-11 5:3 16: 5 U U
3- 4- 9 7:3 16: 7 U U .
3- 8- 5 11:3 16:11 U U
3-10- 3 13:3 16:13 U U.
3- 1-12 4:3 4: 1 U 12
3~ 5- 8 8:3 2: 1 U 14
3- 17~ 86 10:3 8: 5 U 8
3-11- 2 14:3 8: 7 U 8
3- 6- 1 3:1 16: 9 6 U
3-12- 1 5:1 16:15 10 U
3- 3-10 2:1 8: 3 4 8
3- 9- 4 4:1 4: 3 8 12

Notes:

1. U = unambiguous (no unresolvable ambiguities).
2. A, number of unresolvable ambiguities = (p + g} — mq, in ®;.
3. Ag, number of unresolvable ambiguities = (p + ¢ + r)— mq, in Ro.

It will be convenient to introduce expressions for the array spacings in terms. of the
subarray ratios ®;, and R,,.

Consider a four-element cascaded end-phase array (see Fig. 4-1a). The two subarray
ratios, with the subscript e dropped for brevity, are

!
_my _amy  p+g :
Mmoo ()
and
m Mg ptg+r
R, = —2 = - ,
2= T~ P (4-30)

with « an integer introduced for generality, to account for possible common factors m

my and ny (common factors in n, and mg are irrelevant). Another ratio Ro, the product
of R, and Ry, may be defined as :
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q _ Mmima amymg Mg
O mng nyany 70
_ptgptgtr ptg+tr
T T p*ta P (4-3c)
Identifying like terms in the denominators of the two forms for Ry provides
. Mg
p = nny =—g—- (4-4}
Substituting this vatue for p into Eq. {4-3a) gives
Rintg
B fiftg fiy
o
and solving for g,
g
g = 5 (my-ny). {4-5}
Adding Eq. (4-4) to Eq. (4-5) gives
mily
ptag=—g- {4-8)

Substituting this value for (p + g} into Eq. {4-3b) gives

M4y
ptgtr &
p + - HiiHg
and seolving for r,
s
r=— {mg —ns}.
Summarizing, we have
_ B4ing
P ="y
Ry
g = - (my—ny) L=

~
Il

my
o (m2 - H2)
where
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m ptaq
R, = —L = ;
nl P

1l

o = factor common to m; and ng.
With the aid of subarray ambiguity diagrams, the ambiguity constraints for a four
element cascaded end-phase array will now be derived. ‘ o

Figure 4-2 shows the subarray ambiguity diagrams for the array ratios R; = mqiny=4:3;
Rg = mgfng = 11:4. Since m; = n, = 4, the common factor & in Eq. (4-8) is 4, and p; g,
and r are given by ‘

_3x4 _
P = 4 = 3
4 - -
q=74-3)=1 > L=p+gqg+r
_4x11
r=fai-g-7, ~—g -1

The ambiguity diagram for subarray 2, unresolved by subarray 1, has ambiguity inter-
cepts of

m -

Ay gop1 = g - 1(450) ,
T m
Av13-A1 = 7> = 7 (16.36°).

Similarly, the ambiguity diagram for subarray 1 has ambiguity intercepts of

T il o
AvL3.a1 = 57 = 3 (60°),

T w o
Apy 9.1 = my ~ 4 (45°).

It will be noted that the trajectories for subarray 1 are labelled with unprimed numerals .
below the trajectories of slope 4:3, whereas the primed numerals above the trajectories”
show parametrically the equivalent trajectory for subarray 2. This dual labelling reflects
the fact that as 0, varies from ~90° to +90°, the channel pair spaced (p + q) half-
wavelengths manifests 4 X 27 rad phase change, whereas the channel-pair spaced (pg-!-‘gqﬂ;l‘- r)
half-wavelengths manifests 11 X 27 rad phase change. e

The spacing integers p = 3, g = 1, and r = 7 for this example have been chosen so’

that both subarray 1 and subarray 2 are unambiguous in the sense of the development of
Sec. 4.2. That is, the appropriate processing of each of the subarray phase-comparai_;‘or L
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SUBARRAY 2
=114
T 7
& A T — = —
¢1a-Al ng !
45°1
¥ w
A L
P 1,3-Al my M
{18.36°]
SUBARRBAY t
WR=4z
m 18
4 g = —
$1a-AL T m 7T
80
T
A = e —
1,2-A1 m 4
{45°
Loz pn g

Prg—"

dpya-p

Fig 4-2— Ambiguity diagrams for unresolved four-element interferometer
{le =mie = 4:3 @gz = myitig = 11:4}




NRI REPORT 8005

outputs can provide a single (though inexact) estimate of 0, for sufficiently small phase
errors.

The channel-pair errors for the two subarrays are

Subarray 1

Apg, = App — Apg = Ay,

Apr, = Ap; — Apy = Apqg. (4:92)
Subarray 2 ”
Apg, = Apy — Apg = Ay, 5
Aep, = Ap1 = Aoy = Ay, (4-9b)

where §;, L; = small and large spacings for subarray i. For zero-mean channel phase
errors, the associated standard deviations of channel-pair phase error are

Subarray 1
1/2
05, = [of +0317° = 0y
/2 g
or, = [0} +o}1"® = o, (4-108)
and
Subarray 2
1/2
OSZ = [0'% ""‘Gg] / = 0'1’3
1/2 e
op, = [of +of1Y% = 0y, (+-100)

Forall 0 ; = = OcH-pR» J = 2 to 4, the ambiguity variable in Eq. (3-18) for each of the
two subarrays is given by e

_ 9 1/2
Op, = Ocu.prlmf — 2p,m;n; + n?]

= ocrrlinf = min + a1, @

since p, = +0.5 for end-phase arrays. Consequently,
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U¢1 = UCH_PR \/42 - 4: * 3 + 32

= OcH.PR V 19 for subatray 1,

and

U¢2 = Ogu.pR \/112 - 114+ 42
= oppgpr V93 for subarcay 2 .

Suppose that the rms electrical phase error between chanme! paits og.pg = 12.5°.
Then,

12.5° /13 = 45.07°,

Ik

91

and

Il

04y = 12.5°,/93 = 120.55°.

The integration limits tn Eq. {3-19) are

Subamay 1:  £i0. = +3.994
#1

Subatray 2: £ 1683 = +1.493.
P

When Eg. (3-21) is used, the probability of ambiguity of the individual subarrays is

li

Subarray 1:  p, erfc( 180 ) = £.497% 1078,

\/§ Oy

Subarray 2: p, = erfc (V}gg ): 6.1354 .
P2

The p, for subarray 2 is over three orders of magnitude larger than for subarray 1. This
dramatically illustrates the desirability of utilizing the information from channeis 1-2-3
(subarray 1) to improve the ambiguity performance of subarray 2, composed of channels
1-3-4.

The ambiguity diagrams for the two subarrays illustrate how this may be accomplished.
Suppose that 6, = 0° and that Ap; 5 = 36.818%, Apy 3 = 49.091°, and Ayp; 4 = 45°. (Nate:
These error sets have been chosen to place the ervor sets (Ap; 5, Ayg, 3} as well 88 (3py 3,
Agy ;) directly on ambiguity-plane trajectories, but this assumption is not essential to the
following development.) Now, the error set (A1 9, Ay 3) lies on trajectory O for sub-
array 1 (lower diagram in Fig. 4-2), whereas the error set (Ay; g, Ay 4) lies on trajectory
3’ for subarray 2 (upper diagram in Fig. 4-2). '
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If the phase-comparator output from only the larger baseline in each of the twq sub~
arrays was used separately to form an estimate of the angle of arrival, the results‘wguldu
be as follows ‘

Subarray 1:
- ° 4+ 49,001°
6, - st | 2280 91| - 391°,
h =X 360°
2
Subarray 2:
[s] [+]
§ = sin-1 3 X 360" + 4571 _ 34.62°
ay 11 o
5 X 360

Thus, although the channel-pair phase errors are comparable in magnitude, since trajgcto

38’ for subarray 2 is not the true trajectory, using the phase information from su array2
alone provides a grossly incorrect angle-of-arrival estimate. e

Given that the error set {Apy o, Apy 3) for subarray 1 lies within the boundaries
around the trajectory associated with the true angle of arrival, the following items may
be noted ‘

® The true trajectory for subarray 1 is 0,
® The true trajectory for subarray 2 is 0', -

® The contiguous subarray 2 trajectories (plotted on the trajectories for subarrail 1)
are 1’ for §, (+) and 10’ for 8, (-),

® The adjacent ambiguous trajectories for subarray 2 in Fig. 4-2a are 8’ and 8/, ‘
which are ny - 1 = 8 greater or less than (mod 11) 0:(0+3=3;11-3= 8),

® Trajectories 6’ (3+ny~1=6)and 5' (8- ny + 1 = 5) lie midway between tra-
jectories 0 and 1', and 0’ and 10, respectively. ‘

The p, calculations made above show that it is almost a certainty that the true tra-
jectory for subarray 1 is O for the given example, subject to channel-pair errors of 12.5°.
rms, with Gaussian distribution. The only subarray 2 trajectories possible, given trajec-
tory 0 on subarray 1, are 0, 1, and 2a’. Trajectory 3' in Fig. 4-2a for subarray 2is
adjacent to trajectory 0', whereas trajectories 1’ and 2’ are four trajectories to the right -
and left, respectively, of trajectory ¢'. ‘Hence, the true trajectory for subarray 2 is: 0’ to
a very high probability. -

Subarray 1, in effect, increases the width of the ambiguity boundaries around the. .
phase trajectories for subarray 2 by the factor m; = 4. This is shown in Fig. 4-3, the
ambiguity diagram for Ry = mying = 11:4, resolved by my in Ry = mqiny = 4:3. Rather
than a square 27 on each side, the ambiguity-plane surface is now 27 long on the mg axis,
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d¢13-al Zm
a 1]

- Y s Y
RESULVED  TRAJECTORY O TRAJECTORY 1 TRAJECTORY 2 TRAJECTORY 3
T w
Aera-p = Mo dpra-a = moTo
{RESOLVED BY my1 = & — = m (180° (RESOLVED BY my) = 4= (65.45°)

4

Fig, 4-3— Ambiguity diagram for Rg = mging = 11:4 resolved by my inRy =mying =43

but is increased to 4 X 27 long on the ny axis. It is readily seen that as trajectory 2
pierces the first 27 ordinate to the right of Ay, 5 = 0, there is no need to translate this
intersection point back fo the ordinate at Ag,y 3’ = 0, The new ambiguity boundary be-
tween trajectory 0' and 1’ (in reality trajectory 6 in the previous illustration) is twa times
the distance hetween trajectories 0' and 3 in Fig. 4-2a.

In this modified ambiguity diagram for subarray 2, resolved by subarray 1, the am-
biguity intercepts are

Kid ki &
Appgar =M gy =4 gT 7 {1807},

" o
Agrs-al = M1 7 = 4 17 (65.45%).

The new integration limits in Eq. (3-19) for subarray 2 are

L 180 4 x 1807

G + Y - +5.973.
s 120.55

‘Taus, the p, for subarray Z, resolved by subarray 1, is

180°
m 6)< 2.3 % 1079 .

py = erfc (—-—-———
ﬁ(‘i‘tﬁg

H independence between ambiguities in subarray 2 and subarray 1 is assumed, the
overall array p, is given by
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=1~ (1-pg,) (1~ Pgy) - (#12)

Pg-overall
For the example above,

=1-(1-6497X1075)(1-2.3x 1079)

Py-overall

6.49723 X 1075,

This is a negligible increase from the p, for subarray 1 alone. However, the overall array
has a length £ = 11 half-wavelengths, whereas subarray 1 has a length p + ¢ = 4 half-‘- .
wavelengths. Thus, the accuracy of angle of arrival estimates using the whole array is
almost three times (11/4) better than for subarray 1 alone.

The geometric arguments above illustrate how the ambiguity boundaries for sub-
array 2 in a four-element cascaded end-phase interferometer are extended by a factor, re-
lated to the m; spacing integer in subarray 1. This ambiguity constraint relaxatlon on,
subarray 2 can also be developed analytically, as shown below.

The ambiguity constraints for the two subarrays (considered as isolated three—element
arrays) can be written in several forms

Array Ratio Form

Subarray 1 |nyAp; 3 - miAp; ol 27 (4-13a)
Subarray 2 |nglpy 4 — malg, 4l zZ o, (4-13b)
Spacing Integer Form
Subarray 1 ipA«,ol’a ~ (P *q)Ap; 5l 2 T : (4-148.)
Subarray 2 |(p +q)Ap; 4 — (P+q+1)Ap 3i 2 7, (4~14b)
Spacing Integer-Channel Error Form
Subarray 1 [-gAp; + (p+q)Ap, — pApg| 2 7 (4-15a)
Subarray 2 |-rAyp; + (p+gq +tr)Apg — (p +q)Ap,| 2 o (4-15b)
where i
p=n1;2 p+q:m:xn2
q=%2(m1—ﬂ1) p+q+rrm1am2=2
r= —nfi (mg —nyg)
« = factor common to m; and n,.
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If the subarray ratio-integer forms for the spacing integers p, g, r, ... are used, and if sub-
array 2 is resolved by subarrtay 1, the ambiguity constraint Eq. {4-15b) becomes

my m1m2 fit1fia
— & (mg-nallpy + —5— Aoy — ¢

Apy| 2 mym. (4-16)

Multiplying both sides of the inequality above by efmy yields
—(mq — ng)Apy + mglyy — oAyl 2 o7,
which simplifies fo

Ambiguity constraint for subarray 2

resolved hy subarray 1 (417}

IngApy 4 — mabey gt 2 a‘ﬂ’}’
using
Apy — Ay, = Ay g, Apy — Apg = Apyg.

The ambiguity constraint discussion in this section culminating in Eq. {4-17) can be sum-
marized for the four-clement cascaded end-phase interferometer as follows

Four-Element Cascaded End-phase Interferometer

® Array Congtants

. my pry
Ratios: gil = "ET = D ié-f{ﬁa}
g _M2_prair -
2= T, X {4-18b}
Spacing _ ity _ N2 - M -
IR%&g@!’S: P = o q= o (m}_ n}}& r= & (mg !22}
mq iy
p-i-q-i-r:;z: m (4-18¢)
o = factor common to my and ng
e Ambiguity Constraints {(each subarray considered separately)
Subarray 1: |nqAgy g — miApyel 2 7 (4-184)
Subarray 2: lnaly; 4 - mo Ay sl 2 {4-18e}
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® Ambiguity Variables
= 2 _ 9 + 2142 | (4-18¢)
0y, = Scu-prIM] Pe, MMy ¥ A}
3 2 _ + n27V/2 (4-18g)
0p, = Ocu-prIMS — 2pg,many + n3l (4-18¢

® Integration Limits

Subarray 1: = 180 (4-18h)
0¢1 ™

Subarray 2: = 180 | (4-18i)
O%,

® Probability of Ambiguity

180° .

Ba, = erfc (\/_2—%) | ‘(4'18])
5 a180°

Py, = erfe (“\/"ﬁ;;) (4*181[}

The relations above were derived analytically and hold for all four-element cascaded
end-phase arrays, regardless of whether the individual subarrays are unambiguous of am
biguous in the sense of Table 4-2 in Sec. 4-2. .

Table 4-3 shows examples of cascaded end-phase arrays falling into two classgs; ‘
Class A & = p + g + ris expressible directly as m,,
Class B € can only be expressed as mymg/a.
Note: The meaning of the ferms in parentheses will be explained below,

It should be apparent from Fig. 4-3 that « is the factor by which the width of the
ambiguity diagram for subarray 2 is increased. Even though for the Class B, R, = 4:1,

= 3:1 example, « is only unity, it should not be assumed that this is an array Wlth
poor tolerance to ambiguities.

The ambiguity diagram for this array (Fig. 4-4) shows why this is so. Since (p +q+r)f
{p +g) = 3, the trajectories 8, 4', and 5’ overlay respectively the trajectories ¢, 1’ and 2.
In the terminology of Sec. 4. 2 subarray 2 is ambiguous-resolvable. The factor o is unity
(the common factor between m; = 4 and ng = 1 is 1); consequently, even with.the.infor-
mation from subarray 1, the ambiguity diagram for subarray 2 cannot be extended, #s was
the case in the previous example. There is no need to do this, however, because subarray 2
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2
SUBARRAY 2
t = &1
¥1a o+t ity
} = T+ a Mg
2
!
=1
4P1,4-Al”'r
=3
=8
= p+g+r =12
QE}
255
SUBARRAY 1
} 2. = a1
pEq My
P13 = = i
b Bt

Aoz a7

_ ¥ 1.2
p dprz-a

Fig. 4-4— Ambiguity diagrams for four-element array,
cascaded end-phase: R = 4:1 @Ry =3:1
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Table 4-3—Examples of the Two Classes of Four-element
Cascaded End-phase Arrays

Array Subarray Ratios 3 Array Spacing Integers
Class ?\1 = ml:nl “RZ = mz:nz D g r Q
A 4:3 11:4 4 3 1 7 | 11
A 3:2 11:6 3 4 2 5 11 b
7:2 2 |
: 4
B 4:3 (14:4) (4) 3 1 10 1 |
3:1 1
B 4:1 (12:4) (4) 1 3 8 12
Notes:
1. @ = factor common to m; and na.
mym
2.p= nlc:z. q = n—;—(ml—m), ro= n;—l(mz—nz): R=p+qg+r= la 2,

is expressed in a form which already is “reduced” from an ambiguous higher-oxder form
This can be illustrated as follows.

Suppose that subarray 2 is expressed as Ry = mging = 12:4, such that my must.
equal £ (disregarding any common factors in my and n5). Then a = 4. Direct apphcatlon
of the spacing integer equations will provide the same spacing mtegers P, g, and r as.-long
as the factor o appropriate to the my, ny set under consideration is used. This is- indicated

in Table 4-3 by listing, where necessary, a second set of parameters within parentheses for
the Class B entries.

Now, from Eq. (4-18g),

0y, = Ocu.pr[12? — 12:4 + 4211/

= ocp.pr(4v/7), or 132.29°, for ooy pgr = 12.5°.
The integration limits for subarray 2 (with mg = 12, ny = 4, @ = 4), using Eq. (4- 181),

L0180° _ . 4% 180°
- Og, 125 X 4 X /T

= 15.443.

But, these are precisely the same integration limits that result with R, = 3:1, a = 1, as
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172

0g, = Ocu-prl3% — 31 + 12177 = 33.07°, for ooypg = 12.57;

Lo180° _ 1 X 180°

= * > = 5.443 .
92 33.07

It is apparent that one form of expressing R, for Class B arrays exhibits mg and ng
without common factors, and with o # n;. But the second form manifests my and ng
with £ = mg, and with a common factor & = my. Thus, if my and ny are expressed in &
form that preserves any common factors, and if the appropriate modification is made in
o, the distinciions between Class A and B disappear.

In Sec. 5.5, the tabulated results of an array synthesis procedure developed earlier
in that section will be presented. It will be seen that consistent expression of my and g
divectly as mo = p+ g + r= £, and ng = p + q, with « = my highlights the importance
of basing a four-element array synthesis procedure on the subarray 1 integer my. I is
also stressed that the subarray 2 ambiguity constraint development ending in Eq. {4-17)
holds no matter in what form m, and ngy are expressed, provided « is correctly defined.

4.4 Ambiguity Constraints and pg for Four-element Arrays of Various Configurations

The theory developed in Sec. 4.8 for the ambiguity constraints and p, associated
with the cascaded end-phase array will now be extended to other four-element array con-
figurations. Atfention will be concentrated initially on the other four configurations of
Fig. 4-1 (see Sec. 4.1). Latet, the development will be generalized to all possible aray
configurations using three phase differences—the minimum number required fo resolve
the ambiguities in a four-element array.

Subarray ratios R, and R, for the remaining four configurations of Fig. 4-1 can be
expressed in terms of the ratio numerators and denominators by carrying out analyses
similar o those appearing in Eq. (4-3) through Eq. (4-8) of Sec. 4.3. The results of such
analyses are given n Table 4-4, which, for convenience of reference, also lists the appro-
priate parameters for cascaded end-phase arrays.

Consider the hybrid midphase configuration, as shown in Fig. 4-1c as an example of
how the ambiguity constraints, coupled with the factor a—the greatest factor common fo
the two subarray integers associated with the common spacing—lead to the p, function.
The derivations of the ambiguity constraints are similar to those for the cascaded end-
phase configuration in Sec. 4.3, Eqgs. (4-13) through (4-17). Since the derivations are
simitar and are based on the same kind of geometric arguments, it will be convenient {o
express the parameters for the hybrid midphase configuration in the same format as the
summary for the cascaded end-phase configuration following Eq. {(4-17) in Sec. 4.3.
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Four-element Hybrid Midphase Interferometer

Array Constantis

. €y _ P
Ratios: R === =—
arios 1m fl q
€y g*tr
R, =— =
2e f2 g
Spacing _ 12 _ hife _ fileg — f2)
Integers: g o+ ¢ Ta o 7T o
e1fo * f e
peqer=p=22
o = factor common tofy and fp

Ambiguity Constraints (each subarray considered separately}
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Ambiguity Variables
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= 2 241/2
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Integration Limits
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With the information from Fig. 4-1 and Table 4-4, similar summaries can readily be
generated for the remaining array configurations— cascade midphase, additive m1dphase
and multiple midphase.

Calculated p, are given for all array configurations in Table 4-5, with either p = 8,
q=4,r=1lorp=4,q = 6, r = 11, subject to Gon-pr = 12.5°, thus lending insight into
the 1mportance of the factor o« on overall array performance. The overall array length SZ =
p + g + r = 21 half-wavelengths.

In the p, calculations, it has been assumed that ambiguities in subarray 2 (resolved
by subarray 1) are independent of ambiguities in subarray 1. [Note: Later, in Sec. 5,.an
exact expression involving integration of a bivariate Gaussian density function will be -
given for four-element arrays. It will be seen that for most cases of practical intex_‘est; the
assumption of subarray independence causes negligible error in overall array p,.]

Table 4-5 shows that all array configurations are characterized by identical subarray 1
Pg. This results, of course, from the fact that any configuration of three-element array,
end-phase left, midphase, or end-phase right, has the same p, for given p, ¢, and OCH-PR-

The factor o for the five configurations varies from a maximum of 5 to a minimum
of 1. In addition, although it is not shown explicitly in the table, the subarray 2 ambi-

guity variable also varies. Consequently, the p, of subarray 2 ranges widely. The tabula—
tion of overall p, shows that the multiple end-phase configuration is clearly inferior to the
others for p = 4, ¢ = 6, r = 11. For these spacings, multiple end-phase exhibits Pg two
orders of magnitude inferior to cascaded end-phase.

It might be conjectured that hybrid and additive midphase arrays cannot achieVe as
low an overall p, as cascaded end-phase and cascaded midphase arrays. This conjecture
is incorrect, as the following development will show.

Consider the hybrid midphase configuration, Suppose that

1. the array spacings are transformed according to the rules
r = p' (=11)
g > q (=4)
p > (=6),
but that

2. the location of the phase reference at channel 2 remains unchanged. s

Now, by redefining

and
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we can easily show that

2
i

factor common to u; and vy
= b,
Figure 4-5 shows the original, as well as the transformed, array.

It can be seen, by referring to Table 4-5, that the parameters for the transformed.
array are identical to those of the original ca.scadecl midphase array, which in turn has a
P, equivalent to the cascaded end-phase array. Thus, by redefining the spacing mtegers
and the directions in which the subarrays expand, it has been shown that hybrid- mldphase
arrays are equivalent to cascaded midphase, and ultimately, to cascaded end-phase arrays. L

1A} QRIGINAL CONFIGURATION

e
at,

&t = FACTOR COMMON TO
f, AND f,

q=SPACING COMMON TO
BOTH SUBARRAY RATIOS

(B} TRANSFORMED CONFIGURATION

q’ ot r+g u uy

;_JR ’ p’ Uy Uy
Zm r’+ qf vy Cl\-'z"

« =FACTOR COMMON TO

u; AND v,
! r
SPACING TRANSFORMATIONS: I +q =SPACING COMMON TO
BOTH SUBARRAY RATIOS
F=>P', q#q', p:%l" =p+q

Fig. 4-5—0riginal and transformed four-element hybrid midphase arrays
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4.5 Canonical Configurations for Four-element Arrays
Canonical array configurations may be defined as those for which
® The minimum number of phase comparisons are implemented.

® The overall p, is the lowest achievable for specific array spacing integers
Doty Fyennn

In Sec. 4.5, intuitive arguments showed that the cascaded end-phase configuration was
optimum. This optimality of the cascaded end-phase configuration will now be proved.
It will be convenient fo precede the specific development for n = 4 by some ocbservations
on arrays using an arbitrary number of elements.

Consider an n-element array where (as shown in Fig. 4-1 for some four-element con-
figurations} the antenna receiver channels are numbered from the leftasi=1,2,...,
j, ..., n. Adopt the convention that for any electrical phase angle ®; , provided by in-
strumentation associated with these channels, channel j is denoted the phase reference.
Thus,

(I,}',k = 2_;{' dj,k Sii’tga
27 tok >
= T (Ik —xj) s 6(& N &g (-i.)‘ ¥ ié'z(}}
- 7}‘3 <

where %, is the spacing of antenna k from antenna 1, x, = 0.

Obviously, by definition ®; ; = 0. Further, ®; =~ ;. Forn= 2, 3, or 4, matrix
representations for the channel-pair phase variables are

no= 2:
o 0 Py G g
B, = = @ {4-21a)
_(pl,,? 0 -r o
n = 3
0 Py, Prs 0 p {p+q}
;= -®, O Ppai=@®| -» 0O a (4-21b}
by P33 O L’"fﬁ*q} -q O
L _i _
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n = 4;
[0 By, D D] 0 P (p+a) prg+r)]
- P19 0 Dy3 Doy -p 0 q (g*r) |
(1)4 = ’ = (I) ) i ‘
P13 ~Py3 0 Pyy ~(@+q) ~q 0 UL
_(1)1,4 _(b2,4 _(I)3‘4 0 L__(p + q +r) _(q +r) -r 0 : -
- (4-21c)
, 2r A . , ‘
with & = Nk sin 6, = 7 sin 0, .

Extension of this channel-pair phase matrix to n > 5 should be obvious. It is em--
phasized that these matrices list all possible channel-pair differences, but that usually, a
particular set of (n — 1) phase differences are the only ones implemented in an array of a
given configuration. Lo

By inspection, it can be seen that the n2 elements in these matrices are apportioned
as o

® number of comparisons (I’i,j = n(n-1)/2

® number of comparisons ®;; = n(n-1)/2
® number of comparisons &®;; = n
total = n2

Eliminating the phase differences ®; ; which are not functions of the angle of arrival in
the systems under consideration in this report leaves only n(n ~ 1)/2 different comparisons

{excluding negatives) possible in an n-element interferometer. The number Ry of these
comparisons for 2 < n < 7 is

| =
=1

=IO O i 0N
—
o=}

It is obviously necessary to implement only (n — 1) phase comparisons in an n-element
interferometer, if these comparisons make use of the phase information from all'n channels.
The number N, of different sets of (n - 1) comparisons is given by the number of combi-
nations of ny, taken (n — 1) at a time, or ‘
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1

ﬂﬁg.
No = G D, —n

(4-22)

ForZ2<an<T, N‘p is given below.

n Ng

2 1 Note: Forn > 3, N, includes mirror-itage
3 configurations; for strict consistency then,
4 20 with n = 2, N, should be equal to 2.

5 210

8 3,003

7 54,264

For n = 3, the matrix form of Eq. (4-21h) provides an illustration of the physical counter-
part of N. The first tow of this matrix defines an end-phase left array, the middle row
defines a midphase array, and the hottom row defines an end-phase right array.

For n = 4, it is difficult to visualize all 20 possible arrays with just the matrix form
of Eg. {4-21c). Therefore, the phase differences ¢ :fined by the matrix form are used
(n— 1) = 3 at a time, and the 20 possible array configurations are sketched as in Fig. 4-6.

~ s N e NN
0 @ ® ® @

&w AL/ AA AL
® @ ®

@ @ &) &y

WA N o N o
@ @

—— PHASE ¥ m—e UNLISED
REFERENCE CHANNEL

Fig. 4-6— Simplified representations of the twenty possible four-element array
configurations using three phase differences
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Table 4-6 lists the spacings utilized, the array phase reference(s), and the spacing: common
to the two subarrays. The arrays numbered 2, 6, 183, and 20 can be immediately removed
from further consideration, since they do not employ information from channels 4, 3, 2,
or 1, respectively. o

Arrays 7 and 12 have spacings of p + ¢ + r common to the two subarrays. . Thus,
whichever subarray is denoted subarray 2 in each of these four-element arrays-has the
benefit of a large common factor « in increasing the value of the argument of the.ambi-
buity variable. Unfortunately, the array ratio for subarray 1 will be so large {this subarray
ratio also involves p + g + r) that the p, of subarray 1 will be much larger than that.ob-
tained with a cascaded end-phase configuration. e

Arrays using a single common spacing—p, q, or r—cannot, of course, achieve-
formance of those using a double common spacing such as p + g or ¢ + r. This
in the calculations for p, in the example arrays of Sec. 4.4. This fact removes fromyfi
ther consideration arrays 3 and 5 (with common spacing p), 9 and 14 (with ¢), and; 1
and 18 (with r). e

the per-

The remaining arrays share two attributes: (a) the common spacings are either
p +gqorg+r, and (b) four of the arrays are mirror images of the other four. Table 4-7
lists the comparison factors for these eight arrays. Arrays 4 and 11 can be shown with
no difficulty (by developments similar to those resulting in Eqgs. (4-18a) through (4-18k))
to be identical in p, performance to array 1. But arrays 4 and 11 do not resolve the
overall array length associated with the integers D+ q +r as does array 1. Henceg‘_iim'ay‘ 1
is superior to arrays 4 and 11. T

Now, it has already been shown in Sec. 4.4 that the transformed hybrid midphase
array is equivalent in p, performance to the cascaded end-phase array. Once again; how-
ever, array 1 is superior to its transformed counterpart, array 15, in the sense that overall
length p + g + r is resolved directly. ‘

Each of the four arrays discussed above has its mirror-image counterpart in the re-
mainder of the table. Thus, it should be obvious that with the aid of the transformations
t

p=>r,q~>q,and r — p', the performance of second group of arrays is identical to-the
first group, and that a cascaded end-phase configuration is indeed optimum.

In contrast to two-element and three-element arrays, the performance of arbitrary- -
configuration four-element arrays is dependent both on the configuration and on the
array expansion direction. o

The preceding development has shown that of the 20 possible (by definition) four-

element array configurations, there are four configurations that have particularly simple
realizations: L

® Array 1—Cascaded end-phase (Reference channel 1)

® Array 8—Transformed hybrid midphase (Reference channel 2)

® Array 15—Transformed hybrid midphase (Reference channel 3)

® Array 19—Cascaded end-phase (Reference channel 4).
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Table 4-7—Comparison Factors for Four-element Arrays with Spacings & + gorg + r

‘Mirror-image’
Array Configuration Comn?on Array Array Array
Spacing Reference(s} Number
Number

Cascaded end-phase ptag 1 i ig
Equivalent to CE-P ptyg 1,3 4 10
Equivalent to CE-P ptq 1,3 11 17
Transformed hyhrid midphase rtag 3 15 ]
——————————————— Axis of configuration symmetryy —————=—————~"77"77
Transformed hybrid midphase g +r 2 8 is
Cascaded end-phase gt 4 ig 1
Equivalent to CE-P g+tr 4,2 10 4
Equivalent {o CE-P gtr 4,2 17 11

Note: Array numbers are defined in Fig. 4-6.

These four array configurations are defined by rows one, two, three, and four in the
channel-phase error matrix of Eq. {4-Zl¢).

This development showing that the cascaded end-phase configuration s indeed opti-
mum for n = 4, is, as far as the writer can determine, a new result. Although some of
the material presented by Hanson [21] for the case of four apertures on a line appears
relevant, he neglects to consider the effects of correlation between channei-pair phase
errors in subarrays. Thus, he is, in effect, formulating judgements on array-configuration
suitability hased on “independent,” i.e., four-clement two-integer set subarrays. His
lmown from Sec. 2.0 that this leads to incorrect conclusions when one deals with three-
element subarrays.

This concludes the exposition of the fundamental analyses associated with four-
element arrays. Sec. 5.0 will address the synthesis of four-element arrays andd will provide
techniques by which the optimum array of any length € = p + ¢ + r half-wavelengths can
he readily synthesized,

5.0 SYNTHESIS OF OPTIMUM FOUR-ELEMENT ARRAYS

This section provides the theoretical basis for synthesizing the optimum-realizable
four-element cascaded end-phase array of arbitrary length £ > 4 half-wavelengths, (Note:
the case € = 3 is trivial; the array consists of four channels separated by spacings p = ¢ =
r = 1 half-wavelength.}
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It is shown first that the ideal numerators to employ in the subarray ratios 5{, =
m;/n; are just m; = \/KT Of course, this condition can be met only for those cases in:
which R is a perfect square. Next, an ideal-unrealizable array (achieving the minimym"
possible p,) is defined. The only four-element array for which this ideal condition can
be met is the one defined by p = 1,¢g=1,and r = 2; £ = 4. The performance of an array
of any other length can approach, but never equal, the performance of the ideal-unrealizable
array for that length. Interestingly, Moffet [22], citing a result due to Arsac, shows that
the longest zero-redundancy array in spatial-frequency terms, from the radio-astronomy
art, regardless of the number of elements, cannot exceed £ = 6, with n = 4 elements.

The concept of the ideal-unrealizable array is quite useful, nevertheless, because it
leads to a direct approximate synthesis procedure. This initial procedure assumes-giride-
pendence of subarray ambiguities but achieves the twin objectives of (a) readily vmuahzed
physical spacing interpretations, and (b) rapid convergence to a region of low Pg.s0-that
an exact-p, analysis on only a very small set of candidate arrays need be done.

The synthesis procedures given in this section lead to a specification of the channel
spacings for the optimum-realizable (minimum physically realizable probability of ‘ambi-
guity} array of arbitrary length under the assumption of channel-pair phase errors that
are Gaussian, zero-mean with equal standard deviations. This assumption simplifies the
analysis and subsequent synthesis, and in practice is not too restrictive. This is bécause
the phase errors in channels comprised of several components in cascade (see Sec. 3:1)
approach statistical regularity. Dt

For a procedure to be exact, it must of course, take account of possible depen@ence,
or correlation between the ambiguities in subarray 1 and those in subarray 2. - This de--
pendence is indicated by the absolute magnitude of an array-to-array correlation coeffi- -
cient. For equal channel-pair phase errors, the correlation coefficient is a function only
of the subarray ratio integers (or equivalently, the array spacing integers). A knowledge
of this correlation coefficient, in conjunction with the ambiguity variables previouslyfde-
fined in Sec. 4.0, enables one to define the complete bivariate ambiguity density function
(actually, the no-ambiguity density function). Integrating this function between the ap:.
propriate limits provides the probability of “no ambiguity,” and ultimately, the probability
of ambiguity.

For many cases of interest, the array P, is only a weak function of the may—m;#ray
correlation coefficient. The value of the exact formulation, including the array-to;mﬁy
correlation coefficient, is that a four-element array of any configuration, subject to various
channel-pair phase errors, can be precisely characterized. For example, arrays ;‘in:‘wgpiph‘
more than one antenna are switched sequentially into a common channel (to minimize
hardware) can be exactly analyzed upon derivation of the appropriate subarray-to-subarray
correlation coefficient. o

In the final portions of this section, the array length is characterized for synthesis
purposes as falling into one of three classes. These are Class T (2 = perfect square}; €l
(% = geometric mean between successive square arrays), and Class ITI (£ = any len
falling into Classes I and II). Examples of an optimum-realizable synthesis for each
these array classes are given.
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The section closes with tabulated exact p, {including the effect of arvay-to-array cor-
relation) for optimum-realizable, four-element cascaded end-phase arrays of various lengths
from ¢ = 4 to 100 half-wavelengths, with channel-pair phase error as a parameter. It may
be noted that very early multielement interferometer configurations based on a binary
progression of spacings: p=L p+g=2,ptg+tr= 4, p+qg+r+s=8 etc, {287,
inherently have a very high resistance to ambiguities for the usual range of channel-pair
phase errors {even when relatively coarse quantizing of electrical phase is done). Thus,
based on the phase-tracking performance associated with presently available microwave
components, such a multielement design approach represents extreme {and uneconomical}
overdesign.

5.1 Optimum Numerators m; for the Subarray Ratios %; in n-Element Arrays

In synthesizing n-element arrays of a given length &, it is desirable to have a proce-
dure for obtaining the particular set (or sets) of subarray ratios R;, i= 1,2, ..., 0~ 2
that will provide the lowest overall p,, subject to given Gcy.pRr- {The optimum R, for
n = 8 element arrays, has already been formulated in Seec. 3.0

Since the array length € = mymg/o in four-element arrays, it is natural to focus at-
tention on the numerators m; in the subarray ratios R; = my/n;. For fourclement cascaded
end-phase arrays, the optimum (in general, unrealizable) 9%1 and R, are readily derived.
The generalization to n > 5, i.e., three or more subarray ratios %;, follows easily.

Making use of Eg. (3-19) and the summary material in Egs. {4-18a) through {4-18i}
results in the overall probability of “no-ambiguity,” i.e., probability of “correct,” Pe.gveralts
in a four-element cascaded end-phase array, of

Pe-overall = (1- Py, Hi- 932)

2 a;w oy,
1 i
- I {__2; J’ exp (~t42) dti}, (5-1)

i=1 o [0y,

where

- 2 241/2
Gg, = ocuprlmf — mm + 01",

o, =1, i=1,
=@, i = 2, o= factor common to m; and ng.
Equation (5-1a) assumes, of course, that ambiguities in subarray 2 {resolved by sub-
array 1) are independent of ambiguities in subarray 1. In Sec. 5.4, an additional develop-

ment will include the effects of correlated subarray ambiguities. It will be seen that op-
timum subarray ratios are only weak functions of subarray correlation coefficients.
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It is convenient to normalize the n; in Eq. (5-1) to the associated m;, as

g 1/2
3! 1
M10CH-PR 1 T 77y + ;;{i

1/2
= myocppg [1 - a + a2]77,

i

U,

and

1/2
0p, = Ma0cu.pr [1 — b + b2] 2,

o
|
=

ba

~
3

3]

From Eq. (4-18c), the array length ¢ is

mqm
Q:p+q+r$ laz.

For ? constant, and with subarray ratio optimization carried out with respect to my (for
convenience}, my is given by : s

ol

m2=m1

(53)

Thus, with Eq. (5-3), the integration limits () in the integral forms of p,, in Bq.
(5-1a) become

N P
P s
Subarray 1 - = R *(5:4a)
%1 my(1-a+a?2) UL
and
o
g
Subarray 2 S° = CH-PR 7
%2 my(1-b+b2)
m
_ ! gcypn

= . - (5-4b)
P(1-b+b2)!? o
Functions of the form (1 - x +x2)1" 2, 0 < x < 1, have a single minimum df 075=
Q.866, at x = 0.5, compared to end-point values of 1.000 at x = 0, 1. Independerit.selec-
tion of @ = ny/m; and b = ng/my is, in general, not possible because m; and ny are both
related to the same array spacing p + g. But, to establish optimum realizable m,,weean
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assume that ¢ and & = 0 or 1, with negligible error. The integration limits of Eq. (5-4a, b}
are now approximated by

7
OCH-PR
Subarray 1 T o~
¥ 9@1 "y
kg
~ {5-5a)
and
Subarray 2 o ~ fﬁz—kg {5-5b)
$g
where
T
Ba = .
O~ ocu.er

it my = +/%, both integration Yimits in Eq. (5-5) are equal, and Pegueratt = p% = nZ,

As in numerous related problems in communications technology in which there is
freedom to vary parameters to minimize overall probability of error, a value of ﬁ iz
readily shown by assuming that m} = m_opp + Am, is actually the optimum value and
then proving the converse,

Assume that Amqfmy = 8 << 1. Then, in Eq. (5-8), the integration limits are

Sub: 1 -F————-'Ie—e—~—ki(1—«5) {5-6a}
uoarray 0y, my{l+8) h N3 ’
and
Subarray 2 &% ~ 2 (145 (5-6b)
s .
g2 VT
For small changes in integration limits, each p,, in Eq. {5-1a} can be expressed as
kn 5}2(} 2 k{)
= ¢ |— — —= - - 5-7
Pey (V@) .‘/Q‘ \/% eXp \/? {5-Tay
and
(I) k{} + 5k9 2 ka 5;?b}
O W) N N - W) ¢
where

T2




1 O W U Bt i

NRL REPORT 8005

o) = —— [ exp (ﬁ) dt .
NEZEW 2

The overall p, thus becomes

2 L ‘:‘
De-overall & (I)2<W> B W V—; exp "W . S (5'8)

The overall probability of correct ambiguity resolution, p,_ verals iS maximum when ‘
& = 0, proving that the optimum value for m, is .

my_.opr = \/.Q—, n = 4 elements. {59)
The generalization for arbitrary n = 3 is obviously

myopr = [ 1 > 3 elements, “ ‘(;5-‘1‘0)

taking into account that an n-element array defines (n — 1) element spacings, and a. mml-
mum set (for ambiguity resolution) of (n — 2) subarray ratios R; and associated m,. ‘

5.2 Integration Limits in Ideal-Unrealizable and Realizable Arrays

Determination of particular spacings for the lowest p, in a four-element array of a
given length £ can be accomplished by exhaustively iterating Eq. (5-1) through all possible
m; and n; defined by p, q, and r, and selecting the nonredundant array that exhibits the
lowest pa This determination is not necessary if the concept of the ideal- unreahzable

array is utilized.

Consider a four-element array in which the length &, for generality, is not a perfect
square. Equation (5-9) from the previous section defmes the ideal my_1p = mo.p as\/jQ_
which is not an integer if ¢ # i2, i > 2. If any considerations of multiple ambiguities
over the field of view are disregarded (because of common factors in the m; and n; sub~
array ratio integers), the ideal (ID) n; associated with m; are just v

miup VT

D T T g 5

Then, the integration limits (IL;) in Eq. (5-1) for P, for these subarrays are
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i 1

fcH-PR 2 z
{mfp — muphip ¥ Ao}

71 1
scrpr VR 4T 1
2 4

2_, (5-11)

kg
Vv

Iygp = Ihggp = /2

where

’Ir >
JeH-PR

ky =

An example of the use of this concept is an array whose length is 12. By definition,
Mmyp = Mo = V12 = 3.4641 .. inyp = Aggp = 17821 ... Nop, g, and r exist
such that p+g +r=1Z2and (p+q)ip=2:1,p + g * e +q) = 2:1. I such an array
existed, it would exhibit the lowest p, of all arrays of length 12. Hence, the term ideal-

unrealizable array seems appropriate.

Arrays which are realizable, and which approach, but do not necessarity equat, the
performance of the ideal array are called “optimum-realizable.”

Realizable (RE} arrar * have an integration-timit (IL} product given by
a‘

L]
: (5-12)
(mf = myny + nf)!

Iigg = ko

where
0(1 = 1,

oy = factor common to my and ny,

T R
k , as in Eq. {5-11).
8" ocu-er e (511
Each of the IL; g can be expressed as the sum of 1L, 1 and a deviation from this
ideal-unrealizable integration limit, as follows. For [Ly gy, we have

1
I = -
Lirg = ko 72 (5-13a)

(mf —myny +ni)

2k NET

= —= {5-13b}
3¢ Z(m% - Mgy + 11}2_)1’[2
2kq
= f1+8:1. (5-13¢)

/3t
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Equating the terms within the brackets in Eq. (5-13b) and (5-13c) defines

. oyl/2
5, - (3/4- %)

TR - (5-14)
(m% - m1n1 +n%) / . .

If the form d = 2k0/\/ + &4 is used in conjunction with Egs. (5-13) and (5-14); 11: is
easy to express ILi.gg in the form

Mg = % 4 p L -2
1-RE — 0
/3¢ (m? — myng +nB)2 V3T

= ILygp + dy. -(5-15)

By a similar development, it can be shown that

e =20 4 « _ 2
2-RE 0
YA (m3 - myny +n%)1/2 V3¢

= TLogp *+ dy. ‘J‘(5‘f‘16)

The only realizable four-element array for which IL; gg = IL; [p is the one in whlch
p=1g=1,r=2;¢=4, Here, my = mg =2, n; =ng =1, a=1. Thus,

j~B
il

1 2
=k _
I 0{(22—2-1+12m3)”2 \/3'4:'

:ko[l——\%]=o, i=12,

@

and hence,

2k0
ILy.gpg = ILg.gg = ILigp = ILgyp = =
V3L /B GCH PR

Other arrays approach, but do not satisfy, the relations IL; g = IL,p because the
ratio m;/n; can equal 2 only for R; = 2:1. The d; in Eqgs. (5-15) and (5-16) are a- measure
of how a reahzable array differs in performance frorn an ideal-unrealizable array. Syn‘bhesm
procedures based on the concept of deviation from the condition of 1deal-unreahzab1hty
will be given in the next subsection.
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5.3 Synthesis of Cascaded End-phase Four-element Arrays

The bhasis of the synthesis procedures to be discussed involves the subarray 1 numer-
ator my and manipulations of the two realizable integration limits, TLy gg and IL, pp.
The standard forms for these two limits are

1
iLiRE T 0 T (5-17a)

(mf —myn; + i)

and

34

ILE-RE = kg (5"11}))

12
(m3 — mgng +n3} /

In this form, the dependence of the integration limils on array length £ is implicitly,
rather than explicitly, expressed. An equivalent form for 1Lg gg is mmore suitable for
array synthesis.

Use of Eq, {4-18¢c) from Sec. 4 yields equivalent forms for m, and fig;

_ Rao d g
mz—;{—{ an ﬂz- _m-i .

When these substitutions are made in Eq. (5-17b), and some simplification is done, the
result is

opg = ko - L . (5-18)
¢ R\ fprta\ (PT 4
myf  imyf | my my

The channel 1 to channel 8 spacing integer, p + g, can be equal only to a multiple of the
subarray 1 numerator integer my as,

ptg=jm;g.

Furthermore, p + g cannot exceed £ = p + ¢ +r. Thus, the IL; gy (in a form suitabie
for synthesizing realizable arrays) become

1

1L1-RE = }{{} 2 5 (5—19&)
(m§ - myng +n)’
and
my
(€2 - Wimy) + (Jmy¥)
where
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T
ky = ,
¢ " och-pr
i=1,2,..., "ﬁ%] , where x] indicates the nearest integer less than x.

So far, nothing more has been accomplished than to express the IL; g in a slightly
different form to emphasize that subarray 2 is more logically thought of as a function of
the overall array length £ and the subarray 1 numerator integer m,. If one wanted to
establish that a particular set of m;, n; is the optimum-realizable for given &, integration -
of Gaussian error functions (as in Eq. (5-1)) seems necessary. These integrations can ‘be
avoided by the use of a simple test function which involves the expansion of the error
function about a specific value.

The first step in determining this test function is to express Eq. (5-19b) in the form
of Eq. (5-16); that is, as the sum of [Ly g and a term dy which represents the deviation
of ILypg from ILyyp. This is readily done. The result, with Eq. (5-15) for ILy.pp re--
peated below for ease of comparison, is L

1Lq.g /a0 kg 1/2 /30
- E -
3¢ (m% - miny +n%) /

= 1L, p + dy, (5-20a)

ILoRg = "\/“3—% + Ry ~ 7z :
(22 - &imy) + (imy)2]ME V30
= ILgyp + dy. (5-20b)

Equation (A-9) of Appendix A gives a three-term Taylor’s series expansion of the -
Gaussian error integral about a specific argument, as

f (T2l A L1 W) 38 (2] oa

x/ag

)

xfo

xy_ 1 el :
Z(?)‘ Ja e

For x/o = 2.000 (i.e., the argument of A(-) is set at the 20 value), A(x + Ajo) becorhés" ‘

= YT R B .
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Equation (5-22) is an approximation to the Gaussian error integral in the vicinity of an
argument set at the 20 value. Note that A{2} = 0.9544097. The corresponding compound
p, {assuming independence)} is 1 - A(23A(2) = 0.08893 or 8.893%.

~ Now, kg is defined as w/ogg pp- Thus, to force IL;p to assume the value of 2.000
(strictly for simplicity in generating a useful test function) regardless of array length £,
Eq. (5-11) can be set equat to 2.000 and solved for the appropriate value of Gop.pr» 88

Zn
IL;jp = e 2.000, _
or
T
ocu-erly = 3 {6-23}
Use of this value of oog.pr I Eq. (5-20a) and {5-20b} yields
ILI-RE = 2 + g 39— 5 - 2
l/ mi — ml”} + Ry
A
=9 + (ﬁ.) , {5-Z4a}
and
My /3%
Wogg = 2 + ! -2
VB = Wmy) + (Gmy)?
A
=9+ (%) (5-24b)

The approximate probabilities that subarray 1 and subarray 2 f{resolved by subarray 1) are

unambiguous are
A A ? A ]
1 - 1 i 1
= G)-20@) <G e

2
. {5-2bb}

2
A A A
g ~ 0.9544997 + \/12—1r 2 {2 (—f)— 2 (—f) ¥ (—93)

The procedure for obtaining an approximate array synthesis, one not taking into con-
sideration subarray-to-subarray correlation of ambiguities, can be summarized as follows.

Peq ~ 0.0544997 +

and
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® Choose a trial m; close to/%.
® Choose an appropriate value of n; from Table 3-4 of Sec. 3.0.
® IL, g of Eq. (5-24a) is thus defined.

® Compute a set of trial values of IL,.g by iterating through Eq. (5-24b) with
J=1,2, ..., %/mq] where -] indicates the nearest integer less than the ratio 2/m,. ‘

® Substitute the trial IL;. gy and the set of trial ILy g into Eq. (5-26a) and
Eq. (5-25b) and compute the overall probability-of-correct product p, Pey

® The trial array achieving the highest Pe Pe, product is the best array for the
particular frial m; that was chosen initially.

These steps can be repeated for other trial values of mq, and the best-performing
arrays obtained for each m; can then be compared to determine the optimum-realizable
array. This approximate procedure does not take into account a possible subarray-to-
subarray correlation of ambiguities. Thus, several arrays may be obtained, all of which
have the same independent probability of ambiguity. Also, since this approximate. proce-
dure is based on an expansion of the normal probability integral (evaluated in the vicinity
of argument 2.0000), a slightly different array may actually have a somewhat better by at
a lower value of 0¢y.pg (implying a larger value of the probability function integral argu-
ment) than the array found by this procedure. The designer may have to perform an é};act
analysis at the specific value of o¢y pp that will be used for a particular application. -

Both the procedure outlined above and an exact analytical form for B,, are easily
programmed. For the convenience of the designer, these programs are collected in ‘Appen-
dix B. The use of these programs will be described fully in Sec. 5.5. o

In Sec. 5.4, an exact relation—one which considers the effect of subarray-to-subarray
correlation of ambiguities—for the p, in any four-element array will be detrived. This ex- .
pression will become the basis for determining the optimum-realizable array (from p, - s
considerations) in the cascaded end-phase configuration (from the development of Sec. 4.5)
of any length. o

5.4 Exact p, for Four-element Arrays

element arrays of arbitrary length € > 3 (in half-wavelengths). The procedure was approxi-
mate, as the possibility that ambiguities in subarray 1 might be correlated with ambiguities
in subarray 2 was ignored. As will be shown in Sec. 5.5, certain arrays having the same
length £ apparently have the same probability of ambiguity, even though the element .
spacings p, ¢, and r are different if correlation is ignored. In actuality, there is a slight.
dependence of p, on array arrangement for fixed 0. S

In the previous section, a synthesis procedure was given for cascaded end-phas‘e%fo;‘,;lr-'

This dependence is most conveniently expressed in terms of an array-to-array correla-
tion coefficient. This correlation coefficient Oay a, Will be shown to be a function of the
array configuration (e.g., cascaded end-phase, hyi)rld midphase, etc.) as well as array
spacings (e.g., thc cotual p, ¢, and r employed). '
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The ambiguity constraints of a four-element cascaded end-phase array, using modi-
fied forms of Eq. (4-18d, e}, can be written as

Subarray 1 -7 < [¢; = n1dy; 3 — my Apy el < W, {5-26a}

and

Subarray 2 -7 < [¢g = ol 4 ~ Malyy 3]l < 7. (5-26b)
The above two random variables (r.v.) &, and &y are Gaussian, since they are linear com-
binations of various channel-pair phase errors Ag; ; = Apy Agili = 2, 8, 4) which are
assumed Gaussian, zero mean according to the development in Sec. 3.1. The variances of
these ambiguity variables, if Eq. (3-11) is used, are

2
Uél = mjof s ~ 2P, mn101 3013 * nfof (6-27a)
and
2 _ 2.2 2.2
G‘?SZ = mzﬁl,g - 2pe2m2n201,36174 + Hzﬁ'})é} 5 {5’*2?2}}

These define relations between
oy 4 = o} + a3 channel-pair error variances and
channel error variances,

of
= — =  {=0.5, all o; equal},
G1,2%1.3 ) j equal)

2
0
= ————— ({=0.5, all o; equal}.

Pes g1 3014

If we allow for possible correlation between the r.v. Py and ®,, their joint density
function is {18}

1

pfﬁl{bz(@}@z) =
2
241%1%2 V1 Pay,ag

2 2
1 ¥ w1 P2 Ha
Xexp 4- ——1 — H[FL) _ 2 .._.__+(_)
o ) e
{5-28)

The subarray 1-tosubarray 2 correlation coefficient pg 5, is defined by
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E[ddy] ‘
Pay,ag ~ 04,06, ) (6-29)

The probability that |¢| < 7 and lgs| = am, i.e., the probability that array ambl-
guities will be correctly resolved, is

am '
Pe-overall = f J‘ p([)lsz(‘Pla &Pg) dyq d(ﬂz . (5“30)
bl [ ¢ ¥/ B

Equation (5-30) becomes just
7 o
Pe.overall = J- p(I)I(‘P]_) dy, J‘ P(I)2(502) dp, , (5-31)
-7 -am
for p, L8 = 0.
In general, p, ., # 0, and to calculate the exact p,_,yera) requires (a) determmatmn
of p,,. ap and (b) integration of the bivariate density function of Eq. (5-28) between the

appropriate limits.

The array-to-array correlation coefficient is readily found, if Eq. (5-29) is used Wlth
Eq. (5-27a, b). The expected value of (P, $,)—is given by

E[®q, Pyl = El(ny &gy 3 = miApy 9)(ngldvy g — malp; g)]

it

ningE[(Apy — Aps}(Ap; — Apy)]

“myngE[(Ap; — Aps)(Apy — Apy)]

—nymaE[(Apy — Aps)?]

tmymoE{(Apy — Apo)(Apy ~ Apg)] . (5-82)

The taking of the expected values of the various cross-products of channel-pair-errorjj;ields
E[®,dy] = nyngo? - myngof - nlmz(o% +o§) + mqyngo? . (5:38)

Equation (5-33) expresses E{ &, Py] in channel-error form. An equivalent expressmn, in
channel-pair error form is

E[d,dy] = f11201,3;1,491,3014 — MiNR9Py 9.1,401 4

- 2 (R
n1MgP1,3:1,391,3 * M1MyPy 9,1301,201 3, (5-34)

where
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E[({Agy - Ay){Ap; - Agy)]
01 ;01 p '

P1ji1e T

By definition, p21}3;1}3 = 1. Now, if all channel phase errors g; are equal, this im-
plies that o7 = 0.5 067 ; = 0.5 0y pg and that p; ;.3 , = 0.5, ] # k. For this situation,
hath forms of E[®; $y] become

i 1
E[®1 &5} = 5 oguprlning ~ming + mymg) — Znymg},  all of =5 ofnrr -
(5-35)

Equation {5-35) can also be expressed as

Finally, the use of Bq. (5-36) with Eq. (5-29) yields

(m; —nqd{mg —ng) — Aymg

-1
2

Fay,ag 1427

1/2
(mf - mynyny + n%) {m% — mgng + ”%T

Equation (5-37) is solely a function of the subarray ratio integers for 0;-2 = 0.5 Q%H,PR,
Furthermore, as with any correlation coefficient, -1 < p, 1 32 < 1.

Array-to-array correlation coefficients for the other four-element array configurations
of Fig. 4-1 and Table 4-1 are readily derived. Table 5-1 lists the correlation coefficients
for all five array configurations.

1t is convenient io define two standardized variables with standard analytical tech-
nigues for integrating bivariate density functions, as
. D L)
Y= Y=g—
¢2

L]
Odny

Equation {5-30) is thus transformed into

h &
1 1 2 g
.. n=f dxf ———————exp[————-—(x —2pxy+y‘;]dy
c-nvera " p zﬂ.m 2(1_;]2}

h k
f dxf glx, v, p) dy | (5-38)
-h -k

where
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w

¥
Ty
o
k = —
Ty
A= Bay gn-

Equation (5-38) ig the standardized form for the integral of the bivariate Gaussian density
funetion {19,24,25].

An altemate form for P, e Which uses the well-known Lk, k, p) and A{x} fune-
tions [19a}

i = 2L(h, k, p) + 2L{h, k, —p) + Alh) + ARy - 1, {5-39}

Pe-overal

where

Lth, &, p) = f dx f glx, y, prdx,
h -3

Il

Probability of being correct, subarray 1,

o

h
A{h}=] 1 -e2/2 gy
i

]

k
Afk) = f L e~t2/2 4t = Probability of being correct, subarray 2 {resolved
-k

\/ﬂ by 11,

Many expressions for calculating Lk, k, p) are available; one which is suitable for
h, k> 1and [pl < 0.95 as is the case for arrays of interest in this report, is based on the

series expansion [19bi
AT VAL
L(h, k. p) = QEIQKR) + ) %—1)‘—” Pt (5-40)
n=0

where

Q(x) =f \—/-12—; e~ t%/2 dt,

X

Z{x) = 1 e~x2f2 ,

NG

ztw) =~ z¢),
X

Zn+2)(xy = —xZ(n* 1z} — (0 + 1Y Z(a)x}.
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A special value of L{h, &, p) is

L(h, k, 0)

1l

Qh)Q(k)

L - amnn - ). 4y
This indicates statistical independence between ambiguities in subarrays 1 and .2, for

p = 0. Thus,

= [I1-AMM][1-AR)] + A(h) + A(k) - 1

Pe-overall

AMAR). - (542)

Obviously, the overall probability of ambiguity, p . gveran IS 1 — Pe.overan from Eq.
(5-39), and is given by

pa-overall =2 - [2L(h, kv p) + 2L(h, ka _p) + A(h) + A(k)] (5'43)
where

i
h=

O

X
R o= 2T

Uy

E[(I)l([)zj
p =

U9,9¢,

and the functions L(h, k, p), A(h), A(k) are as defined by Eq. (5-39).
The following points may be noted about Eq. (5-43).

® p,. overall is independent of the arithmetic sign of p, since the sum L(h, k p) +
L(h, k, —p) is independent of the sipn of p.

® P, overall 18 greatest (other parameters being equal) when p is zero, since L(h k p) +
L(h, k, —p) = 2L(h, k, 0).

® The formula for p, is general and can be used to calculate the performance of
any four-element array, where h, k, and p are properly defined. -

5.5 Tabulated p, and Array Spacings for Optimum-Realizable Four-Element Cascaded
End-Phase Arrays

In this section, the probability of ambiguity, p,, the array spacings corresponding to
the optimum realizable arrays for 4 < £ < 42, and selected lengths from 42 to 100, half.
wavelengths will be given for the cascaded end-phase configuration. It was shown m
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Sec. 4.5 that the performance of the cascaded end-phase configuration exceeds that of all
other four-element array configurations.

¥ will he convenient to use as the point of departure in obfaining these opiimum
spacings the fact that if the overall array length € is a perfect square, then the individual
subarray numerators are \/57 (Sec. 5.1). An example is £ = 16; here my = my = 4. {It
will be seen that expression of my as £ without removing a common factor «, will in
general lead to a consistent procedure for classifying arrays in which £ is not a perfect
square. )

After considering the so-called sguare arrays as those in which £ is equal to i2,
i=2 3 4,...,it is natural to examine arrays in which ¥ is equal to the product i{f + I}
An example is ¢ = 20. Herei = 4,i + 1 = 5. It may aiso be noted that 20 is the geo-
metric mean of 18 and 25. That is, “mid-square” arrays are those whose overall array
lengths are “midway,” in a geometric sense, between adjacent “sguare” arrays.

A final part of this array classification methodology will group into one remaining
category those arrays whose overall lengths do not fall into the other two categories.

This array classification may be summarized as follows:
Class I: ¢ =1i2,i=2,3,4,...

Class 1II: ¢ =i(i+1),i=2,34,...

Class III: 2 = gny length not falling into Classes I or II.

The synthesis procedure is based on the development in Sec. 5.3, and 15 mechanized
as computer program CLSIII (see Appendix B for collected programs). In the remainder
of this section, an example of the use of CLSHI for each of the array classes will be
given. Then p, for various array lengths vs ogy.pg Wwill be tabulated.

Class [

The first example synthesizes the optimum realizable array for ¢ = 25. The proce-
dure is best described by an examination of a sample printout from CLSIIL Tabie b-2a
shows the CLSIHI printout for £ = 25, when an my value of B {known by inspection, bhe-
cause 25 is a perfect square) and a trial value of ny = 1 is used. Candidate values of iy
can be obtained from Table 3-4, which provides the allowable p:g¢ values for uge in syn-
thesizing three-element arrays. It will be remembered from Sec. 4.0 that a cascaded end-
phase four-element array can be thought of as two three-clement arrays.

CLSIT yields for each trial value of ny = jm; (see Eq. 5-19) the parameters
® Ratio mq:ing
& Spacings: p, g, and r in half-wavelengths

® Subarray 1 to subarray 2 correlation coefficient
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Table 5-2a—Program CLSIII Printout for € = 25, my = 5; Trial ny = 1

550 DATA 25,5

CLEIII

SITMA-CHANNTIL-PAIR = Z20.7%44 ELECTRICAL DIGRERS
@ TEPALL ARRAY LENITH =z 25 HALF-TATELENGTHS
Ml =5

THT TRIAL YJALUZ OF Nl IS 71

M1aM ] kxaM2:M2

ALPHA, LENGTH PraalexsD Ce2.CZFF. P-AME RPEDIUN?
(PCT)
5 ¢ 1 *xx 25 : 5
5 » 25 1 4 =20 0.251905 11.4106A 79939
5 1+ 1 %% 25 : 10
5 » 25 2 2 15 0.175219 10,2966 3999% -
5 11 x%x* 2% : 15
5 4, 25 3 12 10 T.5033%9=Z=-2 10.2566 99399
E : 1 =k% 25 3 20
5 » 25 4 le 5 -2, 38095E~2 il.4106 99969

® Overall compound probability of ambiguity (assuming subanay/a:nb;gm&es
are independent) in percent pen

® Test of whether the resultant synthesized array is redundant, i.e., whetixer
P, g, and r have common factors. e

It is stressed that CLSIII provides a synthesis under the assumption that subarray. ambigu-
ities are independent. The correlation coefficient is displayed as an aid to the uséfto :
show that among arrays with the same independent compound Py, the array with the-
largest absolute-value correlation coefficient will have the lowest overall p,. The effect -
of subarray-to-subarray p is secondary, as pointed out in Sec. 5.4. To establish optimality
of a particular array configuration, an exact calculation requires consideration of the-array
correlation coefficient. Table 5-2a shows, that of all arrays of length 25 based on;'an
my:nq = 5:1 ratio, the array my:ny ® my:ng, a; p = 5:1 ® 25:10, 5; +0.175219 is the
best. That is, although both the arrays with p, ¢, and r spacings of 2, 3,156 or 8,112,110
have the same independent p,, consideration of the correlation coefficient in a exact
analysis will show the 2, 8, 15 array to be better. o

Of course, the choice of my:n; = 5:1 is unwise, because Table 3-4 shows that thé‘op-

timum n; for a three-element array when m, = 5 is either n; = 2, or 3. Tables 5-2b and ¢
result when CLSIII is rerun for n, = 2 and 3 respectively. There are four candidate arrays

87




ROBERT L. GOODWIN

5:2®25:10
5:2@® 25:15
5:3@® 25:10
5:3@ 25:15,

all exhibiting the same p, of 9.17% {(due to ocy.pr ~ 20.78 electrical degrees, as forced
by the criterion of Eq. (5-23)). Of these four arrays however, the array defined by

5:3® 25:15 has the largest absolute value of correlation coefficient, p = -0.289373.
Consequently, this array has the lowest overall p, for given o¢gy.pg of arrays of length Z5.
(Exact calculations of p, will be deferred until approximate synthesis procedures for the
other array classes have been described.)

It is easy to show that in Class I arrays the optimum n; must be equal to or greater
than mq /2. If Eq. (5-37) is taken as a starting point, then expression of n; asm {1+ 8;)/2,
where §; is a deviation of »; from m;{2, the array-to-array correlation coefficient can bhe
put into the form

Poa = 779 g\1/2 o 1/2 (5-44)
(3+87) 7(8+83)
Table 5-2b—Program CLSII Printout for £ = 25, my = 5; Trial ny = 2
550 DATA 25,5
cLSILI
S I0MA-CHANNEL-PAIR = 20.7845 ELEUTRICAL DEBREES
FUERALL ATRAY LENGTH = 25 HALF-4&AVELENGTHS
Mt =5
THE TRIAL VALUE §F M! IS 72
M1tNlxkxeM2: N2
ALPHALLENGTH  Pxxxfs¥%R C@.CBEFF. P-AMEB HEDUNT
{PCT1
E 1 2 =% Z3 ¢ §
S . 25 2 3 20 5.00626E~2 10.2966 99999
S : 2 #%% 25 3 10
5 ., 25 4 6 13 -2.63158E-2 9.16857 99939
5 : 2 %%%x 25 @ 15
5 , 25 & 9 10 -1.105263 9.16857 999GT e

: 2 xx%x 25 : 20
25 g 12 s -0, 175219 13.2966 39999

Wi
W

%41
~
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Table 5-2c—Program CLSIII Printout for £ = 25, my = 5; Trial ny = 3

550 DATA 25,5

CLsIXI

SIGMA-CHANNEL-PAIR = 20.7846 ELECTRICAL DEGREES
@UERALL ARRAY LENGTH = 25 HALF-WAVELENGTHS
Ml = 5

THE TRIAL YALUE @F N! IS ?3

Ml sM1keeM2:N2
ALPHA,LENGTH Boaokok Qkk kR CA.CRETFF. P-AMB REDUN?
{(PCT>

5 ¢ 3 Hxx 25 : 5

5 , 25 3 2 20 «0.175219 10.2968 $999¢%
5 1 3 x*%%x 25 : 10
5 » 85 6 4 13 -0.2363842 2.16857 99999

5 1 3 *%% 25 ;1 15
5 » 25 9 & 10 -0,289474 92.16857 99999 e——v—mr

5 ¢ 3 x*x%x 25 : 20
5 , 25 12 8 5 ~0.32%407 10.2966 99999

The §; do not now depend on the size of m; and n;, but only on their ratio. Hence, even
though mq, and ny might be expressed in CLSIII as 25 and 15 respectively, if the common
factor @ = 5 is suppressed, my and ng are functionally equivalent to 5 and 3 respectively.
It is obvious that subarrays in which m; = 5 must utilize n; = 2 or 3 in order to minimize
their respective subarray ambiguities. But, the values of §; that maximize the correlation
coefficient of Eq. {(5-44) must have the same algebraic s1gn Hence, the §; must be posn-
tive, which means that the n; must be equal, and greater than m;/2.

As a second example of a Class 1 synthesis, consider £ = 16. Table 5-3 shows»the re-
sult of running program CLSIII for € = 16. Tt is seen that for m,:n; ®my:me=4 :
the array is redundant, as indicated by the figure 2 in the REDUN? column. This-is:tk
factor by which p = 6, ¢ = 2, and r = 8 are redundant. Thus, the optimum array. for-
R =16 is 4:3®16:12, with array-to-array correlation coefficient = —0.428077 = -11/26.

One further observation in respect to Class I arrays is that the optimum subarray
ratios automatically ensure that the spacings p—¢—r will be maximized. The array
4:3®16:12 has minimum spacing ¢ = 3, whereas the array 4:3 ®16:4 has minimum, |
spacing p = 1. Thus, for ¢ = 16, the optimum array can be operated over a 3:1 bandwidth
before the shortest spacing approaches one half-wavelength, whereas in the other two'
arrays, the shortest spacing is already at one half-wavelength. For separations less than
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Table 5-3—Program CLSII Printout for £ = 16, m; = 4; Trial ny = 3, 1
550 DATA 16.4

CLBILI

S13MA-CHANNEL-PAIR = £25.9808 ELECTRICAL DEGREES
FUERALL APRAY LEMGTH = 16 HALF-WAUELENGTHS
Mp = 4

THE TRIAL VALUE @F N1 IS5 ?3

MErNIRRxMEINE
ALPHALLENGTH Dok Dk k R C@E-CAEFF p=-AMEB REDUN?
{PCT)

4 » 16 b I S §°1 ~0.346154 {0,.6339 gIIgF
4 , 16 6 2 8 -G.40032 2. 76767 2

4 5 16 2 3 4 =0.423077 105339 99998  A——

550 DATA 6.4

CLSIII

SIGMA-CHANNEL-PALR = 25.%808 ELECTRICAL DEGREES
PVERALL ARRAY LENGTH = 16 HALF-WAVELENGTHS
MI = 4

THE TRIAL JALUE @gF M1 IS 71

MlziiknxM2INE
ALPHA,LENGTH Pk Qe kR CA.CEEFFa P-AMB REDUNT
{PCT

4 5 16 1 3 12 0, 192308 1G.6339 99999

-3
v

-
*
*
¥*

—
o
a

m

4 , 16 2 & 8 B.00641E-2 I,.78767 4

4 . 18 3 % 4 -3.84615E-2 10,6329 33999

a0
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one half-wavelength, mutual impedance effects between antenna elements may affect the
phase tracking, thus increasing ambiguities.

Class IT

The example for a Class II synthesis is for £ = 20. The integer factors of 20 are 4
and 5 (=4 +1). In the absence of array-to-array correlation it might be speculat
there are eight “optimum” arrays formed by combinations of my:n; ® mg:n, usingnu:-.
merators 4 or 5 and denominators 3 or 1 (with m; = 4) and 3 or 2 (with m; = 5). As in
the case of ¢ = 186, there may be factors common ‘to mq and ny (even after the common
factor has been suppressed) in which case the program CLSIII will indicate the redundant
arrays, as before.

Table 5-4a through d show the results of CLSIIT for € = 20. For each listing, the
arrow “«—” indicates a candidate array. Examination of all four listings shows. that the
array 4:3 ® 20:12 has the largest array-to-array correlation coefficient, and hence, will:
exhibit the lowest p,. The arrays 5:2® 20:15 and 5:3 ® 20:15 have p, g, r spacings of
6, 9, 5 and 9, 6, 5, respectively, in contrast to the optimum 4:3 ® 20:12 array whlch has
spacings 9, 3, 8.

Table 5-4a—Program CLSIII Printout for & = 20, m; = 4; Trial ny = 3

530 DATA 20,4

CLSIIL

S1GMA-CHANNEL-PAIR = 23.2379 ELECTRICAL DEGREES
GYERALL ARRAY LENGTH = 20 HALF-WAVELENGTHS
Ml = &4

THE TRIAL VALUE @F NIl IS 73

MLl :NIlxxxM2:N2
ALPHA,LLENGTH PakokkQkxR CO.COEFF . P-AMB REDUN?
({PCT)

403 3 xxk 20 ¢ 4
4 , 20 3 1 t5 -0,332875 11.9703 99999

4 3 3 %% 20 : 8
4 , 20 6 2 12 ~0.381771 10.483 : 2

4 3 3 4k 20 3 12
4 , 20 9 3 8 ~0.413585 10.483 99999

4 1 3 wkxk 20 : 16
4 5, 20 12 a4 4 -0.423659 11.9703 4
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Table 5-4b—Program CLSII Printout for £ = 20, m; = 4; Tralny = 1

550 DATA 20,4

CLSIII

£ 1aMA-CHANNEL~PAIR = 23.2379% ELECTRICAL DEGREES
BYERALL ARRAY LENGTH = Z0 HALF-WAVELENGTHS
ML = 4

THE TRIAL VALUE @F Wi IS5 7?1

MizNIxxkM2INS
ALPHA,L,LENGTH Phkkk kxR CA.CEEFF, P=-AMB
{PCT?

4 o3 1 %%xx 20 ¢ 4

4 , 20 I 3 ié 0.21183 11.9703
4 z 1 %%% 20 : 8

4 , 20 2 6 12 0.127257 10.483

4 3 1 k% 20 1 12

& » 20 3 92 8 2. 181428-2 10,483

4 08 1 %kkx 20 : 16
4 ., 20 4 12 4 ~5.05228E-2 11,9702

Table 5-4c—Program CLSII Printout for ¢ = 20, m;

550 DATA 20,5

CLSIIT

S16MA-CHANNEL-PAIR = 23.2379 ELECTRICAL DEGREES
PUVERALL ARRAY LENGTH = 20 HALF-WAVELENGTHS
Mi = 35

THE TRIAL YALUE 8F Nl 15 72
Ml :NekxM2IN2

ALPHALLENGTH Pk kR C3.CBEFF. P=4MB
(PLTY

5 2 2 %xx% 20 2 5
5 . 26 2 3 15 3.181425 -2 10,483

5 1 2 skk 20 s 13
5 , 20 § B 10 -5+ 62266E~2 S.32453

5 & 2 x%%x 20 : iS5
5 5 20 & 9 5 ={.159071 10483

92
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= 5; Trial ny = 2
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Table 5-4d—Program CLSIII Printout for £ = 20, m; = 5; Trial n; = 3 |

550 DATA 20,5

CLSIII

SIGMA-CHANNEL-PAIR = 23.2379 ELECTRICAL DEGREES
PVERALL ARRAY LENGTH = 20 HALF-WAVELENGTHS
Mi =&

THE TRIAL VALUE @F Nl IS 73

M1 :NLkksM2:N2
ALPHA,LENGTH Pk Qokskok R C@.COEFF» P-AMB REDUN?
(PCT)

5 3 3 ®%% 20 : 5
5 , 20 3 2 15 ~0.190885% 10.483 99999

5 ¢ 3 *%x 20 : 10
5 . 20 5 4 10 -0.264906 9.89453 2

5 3 3 x%xx 20 : 15
5 » 20 9 & 5 ~0.318t42 10.483 99999 e

Class HIT

Over any span of array length, there are many more overall lengths in Class IIIthan
in Class I and Class II. To avoid unnecessary iteration through CLSIII, it is desirable to~
know which m; are good starting choices for particular lengths ¢. Consideration of the .
optimum m, for Class I and the candidate my for Class II arrays should lead one to'the
belief that s

® If € lies between i? and (i + 1), choose m; =

|
-

|
—
:

® If £ lies between i(i — 1) and i2, choose m; =
The following are examples of this procedure.

® For=17,i2=16,i(i+1) = 20, choose m; = 4

® For €=21;i(i-1)=20,i2 = 25, choose m; = 5.

Figure 5-1 gives a geometric interpretation to this procedure. The trial m, for Class
Il are given with question marks following the trial integer, anticipating a later discussion
of lengths where this intuitive trial m, fails (these cases are “pathological” in the sense =
that they are associated with m, n, pairs that are not as near the ny = mq/2 criterion
as their neighbors (see Table 3-4)). In any event, as will be seen, this geometric-selection
criterion for my in Class III arrays is natural, and stems directly from the fact that the
cascaded end-phase configuration is based on a common-factor concept that most simply
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Fig. 5-1-—m; for Class { and II; candidate my for Class HE: 3 < <42

expresses the subarray parameters in terms of the overall length. This is in contrast to
array representations that have been used by others.

Tables 5-5a and b shows the result of the application of CLSIH to the example
¢ = 21. The optimum array is 5:3 ® 21:10, 5; -0,258501,

Exact p,, Including Correlation

Two additional computer programs are given in Appendix B, named AMBIG1 and
AMBIG2. AMBIGL is configured to solve the relations beginning in Sec. 5.4 at Eq. {5-39}
for arbitrary my, ny, My, Ng, &, and arbitrary channel-pair phase errors 0y 3, 01 3, and
01 4- AMBIG2 is configured to provide p, for arrays under the assumption that all
charmel-pair phase etror variances are identical. Thus, AMBIG1 has the nature of an ex-
perimenter’s tool, giving the designer, for example, the ability to examine the effect of
putting higher-quatity components in one channel-pair. AMBIG2 is more useful for tab-
ulating p, of various arrays over a range of channel-pair phase error distribution one-sigma
values.

Table 5-6 provides p, vs channel-pair phase error for several arrays of £ = 18, 20,
and 25. AMBIG2 was used to calculate the p,. Figure 5-2is a plot of p, vs channel-pair
phase error for £ = 16, and Fig. 5-3 15 the corresponding plot for ¢ = 25, In both cases,
because of the proximity of p, vs channel-pair phase ervor for certain arrays, only two curves
are shown. Table 5-6 makes these relationships clear.
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Comparison of Approximate and Exact Synthesis Procedures

It was emphasized in fhe beginning of this subsection that an approximate synthesis
procedure was sought, in part to eliminate the necessity of calculating a bivariate density
function for every array configuration analyzed. An additional reason was to keep the-
theory behind the basic synthesis of an array from being obscured. Table 5-7 show
approximate performance of the procedure.

This table is a list, over the range 3 < ¢ < 42, of the optimum m;, as selected by
three different criteria. e

® (eometric-mean criteria—Fig. 5-1
® CLSIII program
® AMBIG2 program.

A check appearing in the “comments” column means that all three methods 1nd1cated the
same (and correct} m;. In the case of Class II arrays, the inability of the two mmpler
criteria to indicate the proper m, cannot be faulted, as they do indicate the proper ml

i or i + 1—within the constraint of not considering array-to-array correlation,

Table 5-5a—Program CLSIII Printout for £ = 21, my = 5; Trial n; = 3

550 DATA 21,5

CLSIIL

SIGMA-CHANNEL-PAIR = 22.577% ELECTRICAL DEGREES
@VERALL ARRAY LENGTH = 2! HALF-WAVELENGTHS
Ml =5

THE TRIAL VALUE @F Nl IS 73

M1:N1kxkM2:N2

ALPHA,LENGTH PakxQakxR COB.CEEFF. P-AMB REDUN?
(PCT)

5 $ 3 %xx*x 21 : 5

5 » 21 3 2 1sé -0.187155 10.2819 99999

S ¢ 3 %%x 2] : 10

5 , 21 6 4 11 -0.258501 9.57561 9999¢% *--———
5 1 3 %xx 21 & IS5
5, 21 9 & & -0.312255 10.0414 3

5 ¢ 3 *x%%x 21 t 20
5 , 2l 12 8 1 ~0.341022 11.830586 99999
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Table 5-5b—Program CLSIII Printout for £ = 21, my = 5; Triat ny = 2

550 DATA 21.5

CLSIIL

SIGHMA-CHANNEL-PAIR = 22,8779 ELECTRICAL DEGHEES
AYERALL ARRAY LENGTH = 21 HALF-WAVELENGTHS
¥t = 5

THE TRIAL VALUE 8F NI IS 72

MLt kkxMZIN2
ALPHA,LENGTH Pk Q¥ kxR CO.COEFF. P-AMB REDUNMT
(PCTY

5 » 21 2 3 16 3.62235E-2 140.2819 Ciaaas

S 3 2 sk 21 1 1O
3 » B 4 & i ~5  &TLH2E~2 2,57561 99393 -—

S : 2 #x%x 21 3 IS5
5 » EI 68 9 & =0 146344 10.0414 3

S t 2 wxx 21 2 20
5 5 21 g 12 1 =3.21803 11.8056 99390

The situation is different for array lengths between 31 and 42. The reason can be
deduced from Table 3-4. For my = 6, the only allowable ny are either 1 or 5. Now, the
ideal-unrealizable quadratic form for m; = 6 is (66— 6-3 + 3-3)}/2 = 5.1962. By con-
trast, the two realizable quadratic forms are {(6-6-6-1 + 1-1)H2 = (-6 - 6:5+ 5+ 5)1/% =
5.5678. For my = 5, the ideal-unrealizable quadratic form is (5-5— 5-2.5 + 2.5-2.51 2 =
4.3301. The realizable quadratic forms for m, = Bare {55~ 5:3+3-3)1/2=(5-5-5-2
+2.2)1/2 = 4.3589. For my = 7, the ideal-unreafizable quadratic form is (7-7 - 7-3.5
+3.5-8.5)1/2 = 6.0622. The realizable quadratic forms are {(7-7 - 7-4 + 4-4Y12 = (727
-7-3+3-3)1/2 = 6.0828.

The calculations above show that the subarray 1 ambiguity variable—(see Eq. (5-1}}—
for m; = 8 (realizable) is proportionally farther from its ideal-unrealizable varisble than
are the realizable variables for m; = 5 or my = 7 from their ideal-unrealizable eounter-
parts. The practical impaet of this deficiency for arrays using my = 6 is that as the array
Jength migrates farther in either direction from ¢ = 38, eventually an array utilizing
my = B or my = 7 will perform better than one using my = 8, even though the “geometric-
mean criteria of Fig. 5-1 are met.

The foregoing discussion illustrated one way in which the approximate analysis leads
to incorrect conclusions on the optimum-realizable array for a given length. Another way
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in which the approximate procedure leads to the wrong conclusions is as follows. The
approximate procedure is based on the attempt to force the overall p, toward a value of
8.9%—by forcing the channel-pair phase error to assume a value based on overall atray
length—without regard to correlation of ambiguities between the subarrays. As an ex-
ample of the effect of correlated ambiguities on array design, consider £ = 37. On the
basis of the overall array length-square root criterion, one would probably evaluate candi-
date arrays based on m; = 6 and mq = 7 by program CLSIII. This approximate pt‘oce-
dure indicates the following two arrays.

6:5®37:18,6 Dy
7:4®37:21,7 jo

11

10.4165% Program CLSIII,
10.3100% Ocy.pr = 17.0848°

1

(assuming independence of subarray ambiguities)

When program AMBIGI is applied to the same array parameters, and to the same channel-
pair phase error distributions, the results are

6:5®37:18,6,-0.46517 Py
7:4® 37:21,7;-0.255752  p,

9.7912% Program AMBIG1,
10.1879% UCH_PR = 17.08480

{including effects of subarray correlation)

For selected values of channel-pair phase error that are more likely to be used in a system
design, Program AMBIGZ2 yields

6:5® 37:18,6,-0.46517 P,
7:4 ®37:21,7,-0.255752 p,

0.1945%, 1.1632%1 Program AMBIGZ,

- 10°,1
0.3171%, 1.4693% | ffsgeiﬁvelyo z

I

(including effects of subarray correlation)

The above tabulations show that on the basis of the approximate procedure employ-
ing program CLSIII one might be tempted to choose the array based on m; = 7 as the
best performer. However, more precise evaluation of the arrays with the aid of AMBIG1
and AMBIGZ2 (once the sunpler procedure exemplified by CLSIII is used to 1dent1t‘y can-
didate arrays), shows the optimum array to be based on m; = 6.

Tabulated p, vs 0oy pp

Table 5-8 gives p, vs 0¢y.pg for the optimum-realizable four-element cascaded end-
phase array over an £ range from 4 to 42 half-wavelengths. The arrays have optlmum ¥R
g, and r spacings such that p, of 0.1 to 15% for the Ooy.pr Specified results.

It can be seen from the table that the optimum-realizable array for array lengths
24, 30, and 36 actually have a p, greater than the arrays one half-wavelength longer, or
25, 31, and 37 half-wavelengths, respectively. This fact has apparently not been reported
prev1ously in the literature on multielement interferometers. The reason for this beha.vmr
is that lengths 24, 30, and 36 are highly composite numbers, i.e.,
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24 = 2-2+2-3,
36 = 2-53-5,
36 = 2-2-3-3.

There are fewer degrees of freedom in synthesizing these arrays, than, for example,
in $= 26 = 2-13. In each of the lengths 24, 30, or 36, my:n, is either much greater, or
much less than 2:1. This is in marked contrast to the example { = 26, where the mg:iny
ratio is 26:15, which is extremely close to the ideal-unrealizable ratio of 2:1.

As an aid to the system designer in making tradeoffs, the information in Table 5-8
is graphed in Figs. b-4a and 5-4b.

A figure of merit for optimum-realizable arrays may be defined as the ratio of p,
ideal-unrealizable, given ooy pg 2s per Eq. (5-23), to the p, optimuim-realizable, given the
same Ocyy.pR, evaluated in Program AMBIG1. That is,

Pg1p ocu-pr, Ea (5-23)
Po-RE ! OcH-PR» B4 (5-23)

It

Figure of Merit = T

0.088281
r= . 5-45
Pure | Scupr, B (5-23) (‘ !

Figure 5-5 shows the figure of merit, T’ vs array length for 4 < £ < 42, Several relation-
ships may be deduced from the graph.

® With the exception of the ideal-unrealizable array for £ = 4, Class 1 {& = i%) arrays
whose m are even do not have as great a I' as arrays whose m are odd

® Class II (¢ =i{i + 1)} do not have as great a " as the adjacent Class I arrays—
exceptions are £ = 16, 36

® Arrays whose lengths are prime have I' greater than the mean I' of 0.898—the
only exceptions are £ = 7,13

Table 5-9 gives p, vs opy.pp for the optimum-realizable four-element cascaded end-
phase arrays, Classes I and II over an ¢ range from 4 to 100. The tabulated p, are graphed
in Fig, 5-6. Figure 5-7 shows the figure of merit for these arrays. It should be noted that
as the array length exceeds 23 haif-wavelengths, the p, exceeds 0.1%, for ogp.pg = 12°.
If gy py is reduced to 10°, arrays up to length 31 are realized before a p, of 0.1% is
exceeded. Arrays longer than this require some form of calibration (see Sec. 3.1} if the
larger p, associated with uncalibrated arrays longer than this are unsuitable for a particulax
application.

5.6 Concluding Remarks on Four-element Array Synthesis

The synthesis concepts presented in this section for four-element arrays enable the
ESM system designer to rapidly synthesize arrays of any length. These techniques are
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Fig. 5-5— Figure of merit, I" vs array length for four-element arrays

based on the concept of the ideal-unrealizable array. The two-step procedures given; in-
conjunction with the computer-aided techniques exemplified in the programs CLSIIL,
AMBIG1 and AMBIGZ2, provide the designer with (a) an approximate synthesis leading to
several candidate arrays, and (b) exact analyses to fix the parameters of the optlmum-
realizable array once the approximate synthesis has been performed.

Although there is a small amount of trial and error in the procedures, this should
be viewed in the context that a brute-force analysis for arrays of length € = 16 leads to
well over 75 arrays, all of whose p, have to be evaluated before the optimum-realizable
array spacings can be specified.

By means of the concepts presented in this report, it has been possible to a:riswer in
the affirmative the speculation of Hanson [21] on the existence of optimum four-element
arrays.

A final observation (not stressed in the development) is that one need not be. ye- .
stricted to implementing the optimum-realizable array for a given length if one or more
of the spacings are too small with respect to the overall frequency range of operation .
desired. The computer programs in Appendix B allow the designer latitude to choose be-
tween array spacings that will minimize the overall p, vs those which are close to the
optimum-realizable, but which will maximize the minimum interelement spacing in: the
array.
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6.0 SUMMARY AND CONCLUSIONS

This report presented a theory of three- and four-element phase-only interferometers
for application to high resolution, low probability of ambiguity direction finding.

Although three-element interferometers have been widely used, the theoretical funda-
mentals of these arrays apparently have not been widely published in a form accessible to
the system designer. With respect to four-element arvays, it was possible to establish with
use of some geometric aids, in conjunction with the concepts of the ideal-unrealizable
array and the subarray-to-subarray correlation coefficient, (a) the cascaded end-phase array
as the optimum configuration for four-element three-integer set arrays, and (b) the optimum
(i.e., the lowest probability of ambiguity subject to zero-mean channel-pair errors with equal
standard deviation in all channel-pairs) four-element array spacings for arbitrary overall artay
length.

Work is in progress to extend the results reported here to arrays of more than four
elements, and to define the improvement in accuracy of estimated angle when phase infor-
mation from all the apertuves, rather than from only the farthest-spaced pair of aperfures,
is used.
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It is hoped that the theory and computer-aided design procedures given here will
stimulate both further research into, as well as wider usage of, phase-only interfemmeter
arrays in those applications requiring good angular resolution over wide fields of view.
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Appendix A

EXPANSION OF THE NORMAL PROBABILITY INTEGRAL (BETWEEN SYMMETRIC
LIMITS) AROUND THE NORMALIZED ARGUMENT 2.000

This Appendix provides an expansion of the normal probability integral (between
symmetric limits) around a normalized argument of 2.000. The expansion is the basis of
the approximate four-element array synthesis computer-aided procedure (see Appendlx B—
Program CLSIII) used in Sec. 5.5 of the main body of this report.

Three functions from Ref. Al related to normal error functions appropnate to the
expansion desired are

NBS No. 26.2.2

__1 (7 —t? s
Pe) = —= [ ew o ar, @
NBS No. 26.2.4
Ay = L * —t2 B o,
(x) = = J:x exp —- dit = 2P(x) -~ 1, ““,(AZ‘)
NBS No. 26.2.9
o 2
_B_P(x~m*_. 1 (x —m)
dx o ) 0 Jar P T g2
1 x — m o
- ;z( . ) - (a3)
where
_ 1 —x2
Z(x) _\/Er_ exp 5
A Taylor’s series expansion for Eq. (A2) in the vicinity of argument x is
Alx+A) ~ A £ AA" Az, - A3 § ‘
(x£4) ~ Ax) £ AL'(x) + Gr A'(x) £ 5 A"(). A

Now we have
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Al(xy = 70% Px) - % P(-x)
= 2Z(x}, {AD)
A'(x) = 2Z'(x) = -2xZ{x), (A6}
and
AMx) = 2Z(x)[xZ- 17. (AT

The use of Egs. (A5, 6, and 7} in Eq. (A4) yields

Z 3
At A) ~ AW)  282(x) - BT x2tx) = B (2 - 12 (A8)
The transformation x + A — x t A results in

e BRI OR[N

For x/o = 2,000, Eq. {A9} simplifies to

4 (2 ¥ %} ~ A(2) + j,% [2 (—ﬁ‘—) -9 (%)2 ¥ (%—)3] (A10}

From Ref. Al, exact values of A(2) and Z(2) =

e~ 2 are

1
/27
A(2) = 0.95449 97361
Z(2) = 0.05399 09665.

Over a range of —0.4 to +0.4 relative to a mean value of x = 2.000, the approximate value
of A{x + A} compared to the exact value from Ref. A2 is given in the table below.

(x + A)jo A{Arg.) A(Arg)
= Arg. Eq. (A10) Ref. AZ Error

1.6 0.890574 0.890401 1.73E-04
1.7 0.910929 (1L910869 5 99E-05
1.8 0.928152 0.928139 1.27E-05
1.9 0.942568 0.942567 T9TE-07
2.0 0.9545 0.9545 .

2.1 0,964272 0.584271 B.64E-07
2.2 0.972208 0.972193 1.56E-0b
2.3 0.978634 0.978552 8.19E-05
2.4 0.983871 0.9838056 2.60E-04

114




NRL REPORT 8005

REFERENCES

Al. M. Abramowitz and 1. Stegun, eds., Handbook of Mathematical Functions with“‘m
Formulas, Graphs, and Mathematical Tables, U.S. Nat. Bur. Stds., AMS No. .55, June
1964. R

A2, Tables of Normal Probability Functions, U.S. Nat. Bur. Stds., AMS No. 23,‘”‘J1‘;‘1ﬁe\::5,
1953, .

115




Appendix B
COMPUTER PROGRAM LISTINGS AND COMMENTS ON THEIR USE

This Appendix provides listings of three computer programs for analyzing and syn.
thesizing four-element cascaded end-phase arrays, along with examples of their use. The
programs are written in BASIC language, and have run satisfactorily on a time-shared
system utilizing a Digital Equipment Corporation System 10 at the Naval Research
Laboratory.

The three programs ave called CLSIII, AMBIG1, and AMBIG2. Descriptions of the
programs are given below.

CLSH

Figure B1 is a listing of program CLSIII. The user specifies the desired overall array
length, € and a trial subarray ratio 1 numerator, m; as data input via line 550. The pro-
gram automatically selects a channel-pair phase error, Gcy_pg based on overall array length
2 (according to Eg. (5-23) of Sec. 5.3 of the body of this report} that would result in a
probability of ambiguity of approximately 8.89% for the ideal-unrealizable array of the
given length. The program will then query the user for his trial subarray ratio I denom-
inator, n14.

The program then prints out the parameters of all possible array configurations for
the particular set of €, m; and n; chosen, listing

® my:n; @mying ratios

® Factor «, and length ¢

® Array spacings p, q, and r

® Array-to-array correlation coefficient, g, o

® Approximate p,, in percent, assuming independence of subarray-to-subarray
ambiguities

e Indication of redundancy in array spacings: “99999” indicates “no redun-
dancy”; a small integer indicates that the spacings p, g, and r have this factor in common,

An example of a CLSIII printout is given in Fig. B2 for £=21,m; = 5,and ny = 3.
The printout shows that the array whose spacings are p = 6, g = 4, and r = 11 is the best-
performing array of length 21, given m; = 5 and ny = 3. Actually, as pointed in the main
body of the report, this is the optimum array for length 21. The user has the freedom to
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CLSIIIL

10 DIM X(103,YC10),3010)

210
220
230
240
2590
260
270
280
290
300
310
320
330
3490
350
360
370
380
3%0
400
410
a20
430
440
450
460
470
430
499
500
510
520
530
540
550
560

DIM DCIODLECLOILFCI0),P(I0),BC10),2C10D

READ L.M1

LET K9 = SORT(3xL>

LET S9 = [80/KS

DRINT"SISMA-CHANNEL-PAIR =";S9;" ELECTRICAL DEGREES"Y
LET Cl = EX©(-2)/S5QRT(2%3.1415926)

BRINT"BVERALL ARRAY LENGTH =" ;L HALF-JTAVILENGTHS"
BRINT"M1 =":MI

LET J9 = INT(L/MI1)

IF J9#«M1-L=0 THEN 130

5@ T@ 140

LET J9 = J9-1

PRINT

PRINT"THE TRIAL "ALUE @F N1 IS '

INPIT N1

PRINT

PRINT

PRINT'™ MI1:Nls4xM2:N2" -
PRINTUALPHA™ ", "I "LENGTH", " PxxkQ***R","CA.CBEFF."," P-ANB","“"REDUN2"
PRINT " 0,0 vy w0 (BoTY e

BRINT

DRINT

Fer J = | TG J9

LET A = MI&xMI-MI*MNI+N]%xN]

LET B = LxkL-LkJ*M]+J*kM1lxJIkMI]
LET C = (Ml=N1)d@({L—JxM]I)=~N]*x]L

LET 2(J) = ,5*%C/SARNT(A*3)

LET Dl = K¢/SAnT(A) - 2

LET D2 = MI*K9/SART(B> - 2

LET 31 = .9544997 + Clx(2*D1 - 2%DI*Dl + DIxDI1*D]>
LET 92 = .9544997 + Cl*(2%D2 - 2%D2%xD2 + D2xD2%xD2)
LET 533 = G31%G2

LET @¢Jy = 100%¢1-33)

LET D(J) = Nl*J

LET S(¢(dJ> = (M1=-N1)%J

LET F(J) = L - JxMl| :
FAR K = J9 + 2 TP 2 STEP =1

LET T = D{(JI/K - INT(D{(JI/K)

LET 17 = E(JI/K ~= INT(E(J)I/K)

LET ¥ = F(JI/K = INT(F(IYZ7KD

LET ¥ =7 + U + 7

IF 't = 0 THEN 470

NEXT K

LET 3¢(Jy = 990939

T@ TR 480

LET [5¢JdY = K

NEXT J

FOR J = 1 T@ J9

PRINT MLIZ"e"INLI k™7 L5 "2 xMI

PRINT M1, "3L,D(JIIRCIISFCIILPLIYI,ACIY,G¢d)
PRINT

DRINT

NEXT J

DATA 25.5

END

Fig. Bl —Listing of program CLSIII
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550 DATA 21.5

CLSIII

S1GMA-CHANNEL-PAIR = 22,6779 ELECTRICAL DEGREES
AUERALL ARRAY LENGTH = 21 HALF-WAVELENGTHS
Mi = 3

THE TRIAL VALUE @F Ni IS5 T3

MIzNIskkxkM2tN2
ALPHASLENGTH  PhskQisxR C8.CQEFF. P-AMB REDUN?
’ (PCT

5 5§ 3 x%x%x 2t 1 35

5 5 21 3 2 & ~0.187155 10,289 29999
5 ¢ 3 ¥x% 21 @ 0
8 » 21 & 4 Il =J.258501 F.37561 99999

5 3 3 #%% 21 3 15
5 5 21 g &6 5 -0. 312855 10.0414 3

5 3§ 3 %%x%x 21 3 20
5 » 2% 12 8 1 -0.341022 11,8056 3999¢

Fig. B2— Exampte of program CLSII printout

explore the performance of other arrays of length 21 by modifying his my and nq inputs,
should he wish to search, for example, for arrays whose minimum spacings exceed those
obtained for the optiraum-realizable arrays ({rom p, considerations) discussed in the main
text of this report.

If a radically unsuitable trial m, is chosen, say m, = 2, for £ = 21, the program will
indicate an overall p, that is grossly in error, compared to the exact-independent p,, be-
cause the range of validity of the expansion for the probability integral for subarray 2
will have been exceeded. Normally, trial m; will be chosen by reference o Fig. 5-1 in
See, 5.5 of the body of this report. Figure B3 shows the exact probability of ambiguity
{independence assumed) for a four-element array in terms of the normalized arguments
for the individual subarrays, centered on a normalized argument of 2.000 for each sub-
array. That is, if each subarray has a normalized probability function argument of 2,000,
then, the p, for this array is 8.89%. Suppose an array is characterized by a normalized
argument of 1.9 for subarray 1 and 2.3 for subarray 2. The exact p, for the oversll
array would be 7.765%; the approximate p, retumed by program CLSI would be 7.7587%,
or 0.008 percentage points low. If can be seen that the exiremes of error in program
CLSIH occur when both arguments are nearly the same value. That is, if both srguments.
are 1.6 (normalized), the exact p, is 20.719%, and the approximate p_ is 0.031 percentage
points low. It can be appreciated, however, that in most array svntheses, when the nor-
malized argument of one subarray is less than 2.000, the normalized argument of the
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ARGUMENT OF Ayly} OR A;lx}

NRL REPORT 8005

24T 326
-016 _-.034
237 4.24 37,
224 TABULAR VALUES IN THIS REGION - 003 -.010 - 027
: ARE SYMMETRICAL AROUND THE DIAGONAL 5.48 4.87 4,37
LINE — EQUAL ARGUMENTS IN
Aqlx), Agly)
-.0002 - 002 ~.008 -
21+ 7.02 6.25 5.64 5.15
- 002 -.008 ~ 025
20T 8.89 7.96 7.20 6.60 601
- 0002 - 0002 - 002 -.008 -.026
191 11.16 10.03 91 8.36 7.76 729
'8 - .002 - 001 — 001 - .001 - .003 - 009 - 026 .
: 13.86 12.52 11.41 10.50 9.77 9,18 gm
. —.on - .007 - 006 - ,006 — 006 — 007 -.013 -.030
7 17.03 15.45 1a.14 13.06 1217 .45 10.87 1041
1l -.03 ~ 0N - 017 - 016 - 017 - .017 -.018 - .024 — 041
20.72 18.90 17.36 16.07 15.01 14.14 13.44 12.87 12,42, .
L 1 1 1 1 L L L i o
) T T ¥ L) 1 1 T 1
1.6 1.7 18 1.9 2.0 21 2.2 2.3 24

ARGUMENT OF Aqix) OR Agly)
NOTES: 1) pa=1- AqlxlAaly) 1.65 xS 2.4, 1.6<Sy<2.4,

2) -.002/8.36 INDICATES EXACT p, = 8.36%, APPROXIMATE p,

1S 0.002 PERCENTAGE POINTS LESS.

Fig. B3—Comparison of approximate and exact p, for normalized arguments A1(x), Ay(y)
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other subarray is generally lerger than 2.000; Fig. B3 shows that the errors in the approxi-
mation tend to cancel when this condition exists.

in summary, program CLSIH is suited to the purposes for which it is intended: to
eliminate the need fo calculate the exact p, for each array candidaie, and to provide the

user with a readily applied overview of the performance of various arrays on a relative
bagis.

AMBIGL

Figure B4 is a listing of program AMBIG1. This program provides an exaet caleula-
tion of p, for a four-element cascaded end-phase array upon the user’s specifying the fal-
lowing data inputs:

® Subarray 1—(line 1110}
my, ny, and 2y 09 5"
® Subarray 2—(line 1120}
myg =4, nyg=Jje, Pigia
® Miscellaneous parameters—{line 1130}
O1,2: 91,35 P14 Pi2;1,40 &

An example of an AMBIG1 printout for 91 = 5:3, &, = 21:18, ¢ = 5, Fy 0 U137
5114 = 12_50, and p112;1,3 = £ ,3:1.4 = 91,2;1,4 = +(,5000 is given in Flg RS,

Program AMBIG1 can also be used to calculate the p, of arrays in which the oy 4,
j= 2,38, 4 are not equal. For example, suppose that

{}1‘2 = }.90,
0'1,3 = 149,
01!4 = 123.

Suppose further that the channel-pair phase error correlation coefficients are known {by
measurement of the joint chanuel-pair phase errors) to be

-‘91,2;1,3 = {.457143 .

0.380952

il

£1,3.1.4

,91'2;1’4 = ﬁ‘533333 .

*py 2.3 is the correlation coefficient between channel-pair evrors in the t, 2 channet-pair to the 1, 3 channeh
pair. The value of this coefficient {and the two below in lines 1120 and 1130) is usually set at +0.5000 for

design purposes.
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NRL REPORT 8005
AMBIG ]

10 READ MI,NI1,PI

20 READ M2,MZ2,P2

30 READ S51,52,53,73,0
40 DIM H(31,2),L¢23),U¢2),7%(2)

50 PRINTUFEUR-SLEMENT PHASE INTESRFERIMETER:"

50 PRINT"CEMPEIIND PRER,-FF-AMBIGUITY F2R ARRAY SYNTHESIZED™
70 PRINTY"BY CASCADING TUZ THREE-ELEMENT INTERFERAMETERS == ==t
80 PRINT

90 PRINT "§15MA,CH~PR=-=1,2 ="35
100 PRINT "“SIGSMA,CH-PR--1,3
110 PRINT "SIGMA,CH=PR==1,4

1;"ELECTRICAL DEGREEST
3S23YELECTRICAL DEGREES'
“";S3;YELECTRICAL DEGREES"

120 PRINT

130 PRINT

140 PRINT" ARRAY N@.l PARAMETERS:"

150 PRINT" "LARGE' =";iMl,'" 'SMALL' ="3MIl

160 PRINT

170 PRINT™ ARRAY N@.2 PARAMETERS:"

180 PRINT" "LARGE® ="3M2," 'SMALL' =";N2

190 PRINT

200 PRINT" AFPRAY NP.2-ARRAY N@.1 RESELUTIAN FACT@R:™3R

210 PRINT o
220 LET Al = SQRCCMI%S1I£2)-2.4«P1#(MI*SII*(NI*S2)+((NI%52)12))
230 LET A9 = SORCC(M2%x52)12) =2, *P2x(M2*52)*% (N2x53)+((N2%53)12)) .
240 LET P3 = MI«M2#P1*S1%52 + NI*N2¥P2xS2%53 s
250 LET P9 = -MI*N2kP3#S1xS3 - NI*M2%52%52 + P8

260 LET P4 = P9/(Al*A9)

270 LET Cl = 1/¢2%3.1415926)

280 LET €2 = 1./SQRC1.-PA*P4)

290 LET A2 = A9/Q

300 PRINT"SIG-Z(ARIAY NB.1) =";Al,"DEGREES"

310 PRINT

320 PRINTYSIG-V(ARRAY N@.2) =" ;A9,"DEGREES"

330 PRINT"SIS-W(ARRAY N@.2) =";A2,"DEGREES(RESZLYVED BY N@.1)"
340 PRINT"-====cca=- "

350 PRINTYE(Z*T) =";P9,"DEGREES"

360 PRINTV=reeceana=- "

370 PRINT"ARRAY-T@-ARRAY CORR. COAEFF*'T. =":P4

380 PRINT"~=r==----- '

390 PRINT

400 PRINTY-—w-e—ccw—a- "

410 LET Ul = 180/Al

420 LET 12 = 180/A2

430 PRINTYPR@BABILITY FUNCTIZN PARAMETERS:"

440 PRINT

450 PRINTUARGUMENT F(l1) ='3U
460 PRINT"ARGIIMENT F(2) =';!
470 LET ucl)y = '

480 LET (2> = y2

490 FPR J = | TG 2

500 IF U¢J)>5.4513 THEN 630
510 LET 23 = (.,

S20 LET T = 1M{J)/(21.5)
530 LET S = T

540 LET Y2 = 1I¢Jy*NC¢S)y /P
550 LET D = |

560 LET D = D + 2

Fig. B4—Listing of program AMBIG1
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570
580
590
600
&10
620
630
&40
650
560
570
680
690
TG0
716
120
730
T4C
750
760
770
780
790
860
810
g2¢
g30
B40
850
B&Q
870
880
890
go0
210
920
230
940
950
960
970
980
$30

ROBERT L. GOODWIN

LET T = T*x{(2%Y2/D)

LET S = 5 + T
IF{T/5-1E~10>0 THEN 560
LET 73 = {(2/5QRT{(3.1415926) r*54EXP(~¥2)
LET Zedy = (1.=-Z23:/2

G@ T@ 840

LET Z(J} = 2.5E-08

NEXT J

LET Al = 1 = 2Z%Z(13

LET Bl = 1 - Z%Z(2)>

FAR &4 = 1 Tg 2

IF ¢J¥ »5.4513 THEN %50
LET H{Q.JY = 1

LET H{ltsJd3 =002

LET & =-{JdJ}

LET B = 1

FOR 1 = 2 T¢ 20

LET € = &

LET A ==A%U(Jy ~(I-13%B
LET B = C

LET H{I,d} = A

NEXT I

NEXT J

Fgn J = | T@ 2

LET E = 1|

1IET F =0

FER K = 0 T@ 20

LET X = PaA%x(3-2%d7

LET D = HCK,> 1 1xH(Ka 2 (Xt {(H+13)
LET E = Ex({K+l)

LET F = F + D/E

NEXT ¥

LET 13 = TICi)=fi{l)y + U{23*U2)
LET Ft = FxUi*EXP{-113/2)

LET L¢JY = Z(1y#2(2) + Fl

NEXT J

PRINT“L{l) ="iLel¥," L{2) =";L(2)
3¢ TO 960

LET Lety = Li2y = O

PRINTVPREB.-CHRR(1)Y =";Al," PRSB.-CERA(Z) =";BI
PRINTVPROB. ~AMB(1)> ="324Z(1)," PREB,-AMB(2) ="32%7(2}
PRINT! == c—mmem = r

PRINT

1800 LET Et = 2, -~ (AI+Bl+2,#L{13+2.%L(2))

1610 PRINT

1020 PRINTY=-m=r=mmem=

{030 LET E2 = I100%El

1040 LET EJ = INT(EZ%I0t4 + .53/10t4

1050 PRINT “PREB. #F AMBIGUITY ="3iE33"PERCENT(INCL. CERRELATIGMY®
I060 PRINT

1070 LET D2 = [00%({1-Alx%xB1}

1080 LET D3 = INT(D2%I0*4 + ,5)/1014

1090 PRINT "ORER, @F AMBIGUITY =*iDIi"PERCENT(ASSHMING INDEPEMDTNOE
1100 PRINT -e—emene=— v

[110 DATA 5,3,.3

1120 DATA 21,10,.5

1130 DATA 12.5,12.3,12.5,.5,5

1140 END

Fig, B4 —Listing of progeam AMBIGL {countinued}
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NRL REPORT 8005

1110 DATA 5,3,55
1120 DATA 21,10,.5
1130 DATA 12.5,12.5212.5,.5.5

AMBIGI

FAUR-ELEMENT PHASE INTERFERGMETER:
C@MP@UND DROB.-@F-AMBIGUITY FOR ARRAY SYNTHESIZED
BY CASCADING TW@ THREE-ELEMENT INTERFEROMETERS ==~~~

12.5 ELECTRICAL DEGREES
12.5 ELECTRICAL DEGREES
12.5 ELECTRICAL DEGREES

SIGMA,CH-PR--1,2
513MA,CH-PR--1,3
SIGMA,CH-PR-=-1,4

ARRAY N@.! PAPAMETERS:

'LARGE® = 5 +SsMaLL' = 3
ARRAY N@.2 PARAMETERS:
'LARGE' = 21 rsMALLY = 10

ARPAY N@.2-ARRAY N3.1 RESQLNUTIGN FACT@AR: 5

SIG-Z(ARPRAY N@.L1) S4.4862 DEGREES

S I3-Y(ARRAY NB.2)
S15-4 CARRAY N@.2)

- .-

E(Z*i) ==3203.13 DEGREES

ARRAY-T@-ARPAY C@RR. COEFF'T. ==0.258501

- - .

227.418 DEGREES
45 .4835 DEGREES(RESHLVED BY N2.1)

[T |

- . -

PREBABILITY FUNCTIZN PARAMETERS:

ARGUMENT F(i) = 3.30359

ARGUMENT F¢2) = 3.95748

Lel) = 1.070358-10 L(2Y = 4.10727E~7 S
PREB.-CARR(1Y = 0,999045 PRAB.-CBRR(2) = 0.999924:
PROB.-AMB(1) = 9.54531E-4 PRGB.-AMB(2) = T7.57352E

- A

- -

PROB. OF AMBIGUITY

0.1029 PERCENT(INCL. C@RRELATIONY

PR@EB. GF AMBIGUITY

- -

0.103 PSRCENT(ASSUMING INDEPENDENCE)

Fig. B5—Example of program AMBIG1 printout—equal channel-pair phase errors“
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These two sets of values define zero-mean channel errors, according to Eq. {3-7) of Sec. 3.2
of the main text (for £1,9:1,3, and with suitable subseript changes—the other correlation
coeflicients)

oy = 8.0000°,

03 = (035 -0%)'"? = (100-64)1"2 = 6.0000°,

/2

it

03 = (6} 3~ o}) (196 - 64)"% = 11.4892°

1i2

I

04 = (0} 4~ 0F) (144 - 64)"'% = go443°,

Figure B6 shows the AMBIGT printout for the data inputs
my = 5, ng = 3, P21,z = 0457143  (line 1110}
mg = 21, ng = 10, Py 314 = 0.380952 (line 1120}
01,2 = 107, oy3 = 14°, 014 = 12°, (ine 1130)

91,2;1,4 = 0.533333, & =5,

AMBIG2

Figure B7 is a listing of program AMBIGZ. This program is similar to program
AMBIG1, providing exact calculations of Py for a four-element cascaded end-phase array.
The details of the probability functions are omitted in the printout, and atl channel-pair
phase error distributions are presumed equal to Ocy.-pr 0 the input. Henee, in AMBIG2,
all the channel-pair phase errar correlation coefficients are foreed to equal +0.56006.

Figure B8 shows a printout for the same example that was used in the printout
given as Fig. B5. The data input on line 860 of AMBIG?2 has the form:

m1=5,n1=3,m2=21,n2=19,a:5‘
The exact p, (ineluding the effect of subarray-to-subarray correlation) is calculated over
the range on don-pr from 10 to 25 electrical degrees in 1-degree steps in this example.

The range and step size on GoH.pr Ca8n be varied readily by altering lines 290 and 300
in the program as required.
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NRL REPORT 8005

1110 DATA 5,3,.457143
1120 DATA 21,10,.380952
1130 DATA 10.,14.,12.,.533333,5

AMBIG!]

F@UR-ELEMENT PHASE INTERFERSMETER:
COMPAUND PROB.-BF-AMBIGUITY F@R ARRAY SYNTHESIZED
BY CASCADING T!@ THREE-ELEMENT INTERFER@METERS-----

SIGMA,CH=-PR=-1,2
SITMA,CH~PR~=1,3
SIGMA,CH=PR=-=1,4

10 ELECTRICAL DEGREES
14 ELECTRICAL DEGREES
12 ELECTRICAL DEGREES

ARRAY N@.l PARAMETERS:

*LARGE' = § *SMALLY = 3
ARRAY N@.2 PARAMETERS:
'LARGE' = 21 'SMALL® = 10

ARRAY N@.2-~ARRAY N@.l1 RESQLUTIGN FACTB@R: S

SIG-ZC(ARRAY N@.1)

48.4149 DEGREES

SI19-Y(ARRAY N@.2)>
SIG-7T(ARRAY N@.2)

E(ZxY) =-6%08. DEGREES

- - -

ARRAY-T@-ARRAY CBRR. CREFF*'T. =~0.524671

R ]

271.949 DEGREES
54.3897 DEGREES(RESQ@LVED BY N@.1)}

- - -

PREZBABILITY FUMCTION PARAMETERS:

ARGUMENT F(l) = 3.71787
ARGUMENT F(2) = 3.30945

L¢l) =-1.5942BE~13 L(2) = 7.61799E-6
PRAB. -COARR(1) = 0.999799 PREB.«LC@ARR(2) = 0.999065
PR2B.-AMB(l) =

2,00920E-4 PRIB.-AMB(2) = Q.347428=4. .

PRZB. @F AMBIGUITY = 0.112 PERCENT(INCL. CORRELATIGON)

PROB. OF AMBIGUITY

0.1135 PERCENT(ASSUMING INDEPENDENGE)

Fig. B6-—Example of program AMBIG1 printout —unequal channel-pair phase errors
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AMBIZZ2

10
20
30
%0
50
60
Y
30
S0
160
110
1240
136
140
150
150
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
360G

READ MI, NI, MZ2,N2,0

DIM S¢503)

DIM H{31,23,L(E83,U(E),2(2)

PRINTVFAIUR-ELEMENT PHASE INTERFERGMETER:I™

PRINTVCEMPOUND PREB.-ZF-AMBIGUITY FOR ARRAY SYNTHESIZED™
PRINT"BY GCASCADING TWZ® THREE~ELEMENT INTERFEROMETERSw~=-~--%
PRINT

PRINT" ARRAY NZ.! PARAMETERS:™
PRINT" fLARGE® ="iMI,' fSMALL' =";Ni
PRINT

PRINTY ARRAY N@.2 PARAMETERS:™

PRINT™ *LARGE® ="jiM2," *SMALL' ="JN2
PRINT

PRINT® ARRAY N@.2~ARRAY M@.l1 RESELUTIAN FACTER:™:Q
PRINT

LET Al = SORT(MI*MI~-MIkNi+Nixtl)

LET A9 = SQART(M2%M2-MIZxNZ+NZ2*kNZ)

LET P9 = (MI-=M13%(M2-N2)}-N1sM2

LET P4 = 5%xPI/(AI*AT)

LET €1 = 1/(2%3.14159286%

LET €2 = /SR ..-P4*P4)

LET AR = AS/8

PRINT

PRINTYARRAY-T@-ARRAY CEBRR. CHBEFF*'T. =2"3P4
PRINT

PRINTV"CP.PR.5IG.","#1 P-CRRR.","#2 P-C@RR.","COMP'D.AME."
PRINT™ COEGRIM, ™ i “at (BCTHYV
PRINT

FER M = 6 T2 26

LET S(M> = 5 +({M«l)

LET Ul = [80./7(S(M)*Al>

LET U2 = 180./(S{M>*xAQ)}

LET (1Y = 14}

LET U2y = 12

FBR 4 = 1 TG 2

IF U¢Jd¥>5.4513 THEN 490

LET 23 = (.

LET T = HeJ¥/(2t.52

LET 5 = T

Fig, B7—Listing of program AMBIGZ




4909
410
420
430
440
450
460
470
480
490
500
510
520
530
540
S50
560
570
580
5%0
600
610
620
630
640
650
660
670
680
690
700
710
720
730
T40C
750
760
T70
780
790
800
810
820
830
840
850
860
870

NRL REPORT 8005

LET Y2 = UWJI*xUJ)/2

LET D = 1

LET D =D + 2

LET T = T*(2%Y2/D)

LET § = S + 7T
IF(T/5-1E-10)>0 THEN 420

LET 23 = (2/SQRT(3.1415925))*SkEXP(=Y2)
LET Z(JY = (l.-73)/2

59 T 500

LET Z(J) = 2.5E-08
NEXT J

LET A7 = | - 2%Z(1)
LET B7 = 1 = 2%2(¢(2)
FAR J = 1 T@ 2

IF UJ(J>»>»5.4513 THEN 800
LET H(O0,Jy = 1
LET H(1,J) =-U(Jd)

LET A ==1(J)}

LET B = 1

FOR I = 2 T@ 20

LET C = A

LET A =-A%U(J) -(I-13}*B
L%T B = C

LET H(I,J) = A

NEXT 1

NEXT J

FZr J = 1 Tp 2

LET E = 1.

LET F = 0.

FBR K = 0 T® 20

LET X = P4*(3-2%J)

LET D = H(Ks1IY*H(K,2)% (X1 (K+1))
LET E = Ex(K+1)

LET F = F + D/E

NEXT K

LET U3 = UCLX)*T(1) + 1I¢2Hr*U2)

LET F1 FxC1l*EXP{-1U3/2)
LET L{J)Y = Z(1Y%Z(2) + FI
NEXT J

38 T¢ 810

LET L(1) = L(2) = Q

LET El = 24 = (AT+B7+2.%LC1)+2.%xL(2))
LET E2 = 100%E1l

LET E3 = INT(E2x10t4 + .5)/10t4

PRINT S(M},AT7.,B7,E3

NEXT M

DATA 5.,3,21,10,5

END

Fig. B7—Listing of program AMBIG?2 {continued)
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260 FBR M = 6 T@ 21
B&0 DATA 5.3,21,10,5

amMBIGE

FRUR-ELEMENT PHASE INTERFERMETER:
CEMPOUND PREB.-0F-aAMBIGUITY FPR ARRAY SYNTHESIZED
BY CASCADING TW@ THREE-ELEMENT INTERFERGMETERS---=-=

ARAAY Nd.i PARAMETERS:?

'LARGEY = § FSMALL® = 3
ARNAY N@.Z2 PARAMETERS:
*LARGEY = 21 *aMatLt = 1o

ARRAY NZ.2-ARRAY Ng.1 RESBLUTION FACTER: 5

ARRAY-TH-AFRAY C@RR. CEEFF'T. =-0.258502

CP.PR.SIG. #t P=-C@RR. #2 P-CERR. CAMP'D.AMB.
(DEGR> {PCT>
10 0.9995964 0.599999 8.0037
I 0.999826 0.999993 0.0181
2 0.999421 0.999963 0.0816
13 0.,99851 3.999858 G.163
14 0.996818 0.9995% 0.3583
15 5.994095 0.9%89024 0.6851
16 0.99C0146 0.,99801 1.1788
i7 0.984864 0.936385 1.8573
18 C.978219%9 0.994009 2.7409
3] 0.970251 0.990775 3.B5303
20 0.961053 0.986617 5.11%9
21 0.55075 8.981509 £.5329
22 G.939487 2.97546 8.2329
23 0.92741t4 0.968508 10.0165
24 J.91468 0.9607T15 . t1.92801
25 0.901423 3. 952155 13.9199

Fig. BA—Example of program AMBIG2 printout




