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ABSTRACT

The neutron production rate of a fusion reaction in a plasma of

deuterium is calculated by a non-Maxwellian average, assuming the differ-

ential cross section is known. For the average it is assumed the ion

velocity distribution of one plasma component is that of a beam and

that of the other component is a Maxwell distribution. It is found that

cross section anisotropy has no effect on neutron production rate or on

the excitation function. An expression is obtained which contains the

detailed effects of anisotropy on neutron speed and angle distributions.

Prominent behavior of this expression is discussed. For purposes of

numerical calculation, a Gamow form is assumed for the total cross section.

Neutron production rate results are presented in a contour plot as a function

of beam energy and plasma temperature over ranges of the parameters of

most interest in thermonuclear research. Prominent behavior here is

understood in the light of two well known subcases of this calculation:

1) neutron production by bombarding a cold target and 2) neutron produc-

tion from a Maxwellian plasma. A qualitative analysis with order of

magnitude estimates is made to consider the practical implications of the

use of the assumed nonequilibrium distribution. It is shown that the

assumed distribution may exist for small observation volumes and for

short observation times in plasma regimes of thermonuclear interest.

It is a general result of this analysis that an arbitrary plasma cannot

be shown isotropic except by fine time resolution technique.
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NEUTRON PRODUCTION BY FUSION IN A
CLASS OF ANISOTROPIC PLASMAS

1. INTRODUCTION

This report is concerned with the neutron production rate for a

deuterium-deuterium fusion reaction. The calculation is based on a non-

Maxwellian average of the reaction differential cross section. Specifically

the average is performed over a prototype plasma ion distribution, the

distribution due to a beam of deuterons undergoing nuclear reactions

with a thermalized plasma of deuterons, called the beam-plasma configura-

tion henceforth. This configuration might arise in a thermonuclear research

plasma through turbulence or through some mechanism causing a local

collective ion acceleration. It is called "prototype" because it is

easily generalized to include all reactions between two components, one

of which is thermalized (Maxwellian) and the other of which has an arbi-

trary ion velocity distribution. Thus general conclusions derived apply

to a broad class of anisotropy problems in fusion plasmas. This calculation

includes as a special case the more familiar one in which both components

have the same Maxwell distribution. This case is developed below and

agreement is obtained with previous results.' However, the applicability

of these results is extended to include reactions with anistropic center

of mass cross sections, the chief example of interest being the deuterium-

deuterium cross section. It has been known at least since 19362 that

1W. R. Faust and E. G. Harris, The Energy Distribution of Neutrons Produced
by a Thermonuclear Reaction, (U. S. Naval Research Laboratory Report 5131,
1958). Also a statement of results appears in Nuclear Fusion 1, 62 (1960).
2A. E. Kempton, B. C. Browne, and R. Maasdorp, Angular Distributions of
the Protons and Neutrons Emitted in Some Transmutations of Deuterium,
Proc. Roy. Soc. A157, 386 (1936).
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the deuterium-deuterium reaction products do not have a random or flat

angular distribution in the center of mass (c.m.) system. However, in

calculating the production rates it has been customary3 to ignore the

cross section's angular dependence in order to facilitate the averaging

process. Thus the present calculations are of interest because they

avoid this restriction to isotropic cross sections and because they

present the effects of cross section anisotropy in detail.

The deuterium-deuterium reaction has two branches for initial

relative kinetic energies of thermonuclear range.

d d~j n + He3 + -1-QnP + -t + Op

The choice of the neutron branch for this investigation was arbitrary;

both branches have been used diagnostically. The neutron branch ratio

is often taken to be -1; i.e., one neutron from every two reactions.

However, recent measurements 4 show this ratio varies from about 0.5

at a deuteron relative kinetic energy of 20 keV to 0.6 at 350 keV.

Since this variation is smooth, not too large and known, the neutron

production rate serves as an indicator of the total thermonuclear reaction

rate.

3 Some examples of calculations assuming cross section isotropy either
implicitly or explicitly are G. Gamow and E. Teller, Phys. Rev. 53,
608 (1938); W. B. Thompson, Proc. Phys. Soc. B70., 1 (1957);.and
Footnote 1.4 For a partial list of these results see R. B. Theus, W. I. McGarry,
and L. A. Beach, Phys. Rev. Letters 14., 232 (1965). A more complete
presentation has been accepted for publication in Nuclear Physics.
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The neutron production rate is derived by an elementary statistical-

mechanical development of the kinetics of a single deuterium-deuterium

reaction. Laboratory (lab) ion velocity distributions are stated for the

two interacting components, the beam and plasma, and the neutron production

differential cross section in the center of mass system of a pair of ions

is assumed known. The distributions and cross section lead, by certain

rules of probability theory and by conservation of energy and momentum,

to a statement of the neutron production rate in terms of a large set of

independent variables. Averaging over uninteresting variables gives

various neutron production rate distributions of interest and finally

gives the total neutron rate as a function of beam speed and plasma

temperature. As a result the effect of cross section anisotropy on neutron

angular distribution is found to be very small. Furthermore these calcu-

lations show exactly that anisotropy has no effect on total neutron

production rate.

From a practical standpoint, it is not neutron production rate

(henceforth just "neutron rate") which is detected, but rather neutrons

are counted over a finite observation time. Moreover, observed neutrons

have a finite interaction volume as source. Theoretically one is free

to impose arbitrary ion velocity distributions instantaneously at a

point, but a calculation based on distributions greatly different from

an equilibrium distribution would be sterile of practical import. To

avoid this, some qualitative considerations of the effect of extending

the assumption to finite observation times and volumes will be made.

For example, magnetohydrodynamic development using the distributions of
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the prototype reaction as initial conditions would, in many regimes of

interest, result in shock fronts and turbulence after some time. Thus

for practical application of these calculations one must either assume

uniform and stationary conditions or else perform volume and time averages.

If the former, the experiment is restricted to observation times much

shorter than the relaxation time for the initial distributions. In the

following, uniform and stationary conditions are assumed except in the

analysis of the assumptions in section 3.

This investigation is motivated by a desire to elucidate parameters

affecting thermonuclear reactions in plasmas. It is a parameter study

and the effects described and parameters used need not be the ones most

directly applicable to interpretation of experiments in order to be

interesting. At first glance it may not seem that this study is at all

interesting experimentally because many aspects of the ideal beam-plasma

configuration are not subject to the control of the experimenter. However,

the assumptions are carefully stated in section 3 and some of their

practical implications are obtained qualitatively. It is shown that

plasma anisotropy may exist over a range of many orders of magnitude of

the observation time even when no anisotropy appears at longer observa-

tion times. In general the high temperatures and high rates of change

in thermonuclear research plasmas imply that anisotropy must be assumed

unless isotropy can be proved. In this light an assumption of isotropy

without proof is seen as a possible aid to computation. As an approxima-

tion this assumption may lead to quick results but finding the degree

of approximation of such a method probably requires" completing more
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detailed calculations under the more general assumption. On the other hand,

under some circumstances this assumption yields exact results. It would

be useful to be able to recognize such cases in advance, particularly

when a formal criterion could be recognized to give the process a stamp

of exactness. At one point a somewhat typical short cut is exhibited

without finding a formal criterion.

In the following sections, after a brief statement of theoretical

background and of conventions used, the main derivation proceeds as mentioned

above. Construction of the neutron rate and the assumptions incident

to the construction are the subjects of section 3. Section 4 treats the

averaging process and digressions are made to develop the subcase of

neutron production from a low temperature target and the subcase wherein

both components have the same Maxwell distribution. All integrations

performed are done exactly except in section 5 where numerical methods

are used to obtain results on the total neutron rate. In the last

section the more interesting neutron rate distributions are discussed

and principal results are summarized.

2. BACKGROUND

Through probability considerations one knows that the joint proba-

bility of the occurrence of two or more independent events is the product

of their separate probabilities. This product rule also applies when

the probabilities are known through their probability densities provided

the argument variables of these densities are independent. Furthermore

one finds that the convolution of two or more probability densities gives
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the combined probability density described as a function of a variable

which is the sum of the arguments of the separate probability densities.

This rule applies as well when the arguments are vectors. 5 For example,

suppose one is given the velocity distributions of two populations of

ions j(C-I) 6 and f (•z (specifically, probability density distri-

butions in velocity, i.e., I means the probability of finding

a type 1 ion having a velocity in a neighborhood of C bounded by an

elemental volume of velocity space dC ). Then if the populations are

independent, the ion pair velocity distribution is I (CI) (C)

Also., the convolution rule gives the ion pair velocity distribution in

relative velocity g = Cs-C2 as Al()}(-g) dc = F(5) . The connec-

tion between these two joint distributions is easily seen. One merely

restricts the joint distribution in the six dimensional (C' Cz) space

to the surfaces .=-ýz This may be accomplished by the transfor-

mation of variables C- - --- - (with Jacobian -• / ) and the

integration over C . Or it may be accomplished by the integral transform

J'"' P'('3--C + C2 i.) 3(C, $:c thus

f : (2.) d(-1c (0( .t-,-d'd.= /c = ( j. ()

The rule for the combination of probability densities by convolution

will be used as illustrated by (1) in the construction of the neutron

rate to follow. The necessity of assuming the independence of the separate

5 H. Cramer, Mathematical Methods of Statistics (Princeton 1946),
pp. 285 and 140.6Vector quantities are indicated by placing a tilde beneath the symbol.
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probability densities entails physical consequences which will be obtained

by qualitative considerations.

Though distribution valued functions are used for convenience in

the following, it is only necessary to deal with probability distributions

which are continuous and which have continuous first derivatives. In

this case, if P(a) is the probability that some event occurs when the

independent variable X, having a range of the whole real line, is less

than a , and if D(X) is the associated probability density, then they

are related by the Riemann integral

P(a) = 1f aD(x)clx. (2)

Usually P(a) is normalized by requiring P(O)-.-I . However other

normalizations are often convenient. Consider the probability distribu-

tion over more than one linearly independent variable

P(a~b~c) L f D (xj, Y )dxdy dh (3)

and let a be constant. Then the probability distribution over Y and :

say
6 c

P(" c Z: Z D. (5,i) dydi = P(q,b, C)) (4)

is normalized by P(GOoeO) = and need not be one.

Having a normalized probability density, then for the average value of

some physical quantity V, one obtains

V =I I11V(xY,z,)D(x,Yq,-z)dxdydz. (-5)
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Furthermore if one is interested in the probability density distribution

•(x) of V over X , which is such that

it is simply the integrand of WX in (5) when X is integrated last.

This will be a means of discussing properties of the neutron rate below.

A physical quantity is so designated because it has known transforma-

tion properties, in particular, under translations and rotations. Since

V remains unchanged upon transforming the independent variables, the

transformation properties of any quantity I/ , which is intermediate in

the averaging process (5), may be deduced by transforming the integral

(6). Assume a vector variable with transform -X f--(X'). If the integrals

are over the full range of X , then

or
14f_¶)] 0b" (9)

Thus V transforms by direct substitution and multiplication by the

Jacobian, i.e., it transforms as a density. If the transformation is

a translation or rotation, the Jacobian is one and the change of variables

is especially simple. In the following, spherical polar coordinates are
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convenient and the shift between these and Cartesian coordinates will

be made wi.thout comment.

Use of the delta function will be made. It is useful to extend the

usual rule to the following:

J Cf(x),S(x-b)dx £(b)[H(c-b)-H(a-b)j/, (10)

where H is the unit function, having the value 1 for positive argument

and 0 for negative argument. This extension is particularly useful when

a,1 • or C are functions of a parameter which is to be regarded as a

variable in subsequent calculations. One also needs the decomposition

of the unit function of a function in terms of the independent variable,

H f() H H~(-,3o)] Zi H (X- xt) j Pf"xi), (11)

f: (W,.) = 0,f'(x, •o

where Z (X) -Z H(x) -- (12)

Formally this is seen to be compatible with the delta function decomposi-

tion rule by functional differentiation.

.S[ F ( ,) = Z ,. 5 (X-X,) I f -(i'( 3
Neither (11) or (13) apply when F(X) has zeroes of higher multiplicity

than double but this is sufficient for the application below. The break-

down of the vector delta function for spherical polar coordinates is

9



j•(r-£o) (r,.d o) =. S(li-r,)1()-0o)V(-?)drd f

where t 0 = ro ( r.)0., q0) and angles are referred to an arbitrary

common base.

3. CONSTRUCTION OF THlE NEUTRON RATE

If is the relative velocity of a pair of deuterium ions, atq)

is the neutron production cross section, and 'f(q) is the ion pair

distribution, then the neutron production rate is the average over the

ion pair distribution of the neutron production rate for a single pair 9 O(Jo

R = (9  )a q, (15)

This average can obviously be extended to include angular variables.

= ff (9)9  T (•, d . (16)

Here it will be extended to include all variables of interest as arguments

of neutron rate distributions and enough more to simplify transformations

between reference frames. In this extension it is necessary to observe:

1) that the ion pair distribution is formulated in accordance with the

above probability rules and 2) that in taking the average, the form (16)

is maintained.

10



Consider two populations of deuterium ions, distinguished by the fact

that they may be described by independent velocity distributions at a

common space and time point. Assume the lab velocity distribution of the

first population is that of a beam with velocity Co) i.e.)

Y, S ( 21 -- so (17)

and that of the second is thermalized at temperature T , i.e.

Se-;Z,-
V2 ( ) (18)

where Z/ and are ion densities, k is Boltzmann' s constant, and M

is the deuteron mass. Both of these distributions are normalized.

• / e ,- Co d -1 .(•
(z r T f~ C L Ci3 (19)

Based on the assumption of independence, the product of (17) and (18)

gives the ion pair velocity distribution. 7

The assumption of independence of the two coexisting ion populations

can only be true as an approximation since there is a Coulomb interaction

between ions (and electrons) of the two parts. The following qualitative

discussion is offered to support the presumption that there is wide

latitude for the application of such an approximation in plasma regimes

of thermonuclear interest. Due to Coulomb scattering, there will be a

7 Pairs consisting of two ions of the same population are excluded in this
product. Their reactions may be calculated by simpler means as will be
shown in a special case in the next section.
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relaxation constant, the deuteron deflection time, definable as the time

required to deflect half the deuterons in a zero-net-charge test stream

through a right angle. For example, Montgomery and Tidman 8 calculate the

deflection time for protons in a hydrogen plasma of density 1016 cm- 3

and ion temperature 108 OK, as 4 x 10-5 sec. This time represents an

upper limit on observation times for which the assumption is approximately

valid. A possible lower limit is a nuclear reaction time,, say (assuming

compound nucleus) 10-15 sec. Thus there are many orders of magnitude of

observation times for which the assumption applies. Similarly one may

calculate limits on observation volume for generally the same result.

Thus there appears to be a wide latitude for approximate application of

the assumption of independence of two ion populations at a common space-

time point. Furthermore, when coupled with the initial conditions for

the present problem, which may be described as a severely anisotropic

departure from the equilibrium velocity distribution, the assumption of

independence may be rendered in practical effect as an assumption that

the plasma is uniform and stationary over small regions of space and time.

Thus for practical application to interpretation of an experiment the

present analysis would require considerations like those above in complete

detail. Yet in contrast to the tenuous nature of the above remarks, a

firm converse of practical significance follows. If one wished to demon-

strate experimentally the nonexistence of anisotropic mechanisms as

8D. Montgomery and D. Tidman, Plasma Kinetic Theory (McGraw-Hill 19664),
pp. 29-31.
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neutron sources (as in the "real" thermonuclear neutron argument 9 ), then

it would be necessary to show neutron isotropy in a very fine time

resolution.

The product of (17) and (18) gives the ion pair velocity. distribu-

tion in lab velocities. This will now be transformed to the c.m. system

of each pair, using

c9. -(2

1'.)
From the inverse transformation, = C Z. q =Cl -C

one sees that &" is the pair c.m. velocity and 4 , the pair relative

velocity. This gives the deuteron pair distribution

P.A) 53(c.+±Lg-c) (2 -k

In forming the single pair neutron rate, one requires the differ-

ential cross section for neutron production

CIA q (2

0)

1)

2)

where 0 is the neutron c.m. deflection angle relative to L and L3-=j/,

This cross section is not a function of azimuth because it is assumed

that neutron and deuteron spins have been averaged. The cross section

9L. A. Artsimovich, Controlled Thermonuclear Reactions, (Gordon and
Breach 1964), pp. 153, 161, 203.

10S. Chapman and T. Cowling, The Mathematical Theory of Non-Uniform Gases
(Cambridge 1952), 2nd ed., sections 5.2 and 1.411.
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energy dependence is easily found from conservation of energy and momen-

tum. The initial relative kinetic energy of the two deuterons is 1±mqZ)

and if Q is the reaction energy, then the neutron emerges with a c.m.

kinetic energy

ED ( L (23)

where ,U is the neutron mass and-Ly is the reduced mass of a deuteron

pair. The energy dependence then may be expressed by a delta function

factor E(U- Fe). Since it is a vector variable, it is convenient to

use the neutron c.m. velocity U (uO,'e) rather than E and 1 . Since

Z --• , one has dUdt = du and the cross section becomes 1 1

,1, I9 L4 ,(24)

Multiplication by Y gives the pair neutron rate. It should be noted

that the direction of U is defined by reference to _ rather than to

an arbitrary common base.

The resulting total neutron rate is in the form (16).

R v, ?It (Trr)ik e - Y 3c•••s(G + c _ o
do- 5iL.g' _p d~3 d_3 Ij

X (rji CA~/~. ~ A. (25)

This is equivalent to

F? T, ( 7T)~f ~ 1%1 2toW (26)_L 'Z~ 3C U, )

where the integral is over the 12 dimensional velocity space. The latter

11The caret denotes unit vectors.
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has the advantage of containing the transform to neutron lab velocity

V -• Ut. It may be observed that this transform and (20) as well, are

expressions of conservation of momentum.

4. THE AVERAGING PROCESS

Mathematically the order of performing the integrals forming the

average, or total, neutron rate is arbitrary. The order used here is

influenced by the desire to identify distributions over variables of

interest, namely, deuteron relative speed 9 , neutron lab speed V

and neutron lab deflection angle 0v . Thus the integrals over these

variables are held to the last. Convenience also plays a role in deter-

mining this order. Thus, the integration over neutron velocity is most

naturally performed in the system in which the beam particles are at

rest (beam system - see Fig. 1).

To proceed with the averaging, one first integrates (26) over .

obtaining

Next L4 is integrated. Since •j is a function of the polar angle of

IA

(Athat is e.= ez =9-••uL , the delta function breakdown (14) is

used. Define the neutron velocity in the beam system (beam neutron

velocity) by

W V-a C (28)

do-

15
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Fig. 1 - Neutron Velocity Reference Systems
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and let Q4.o V-Co+.L 9  =-W 4-i..g. (29)

Then AA4M -- -I0 •-WZ) 0

- (3)

and one obtains

It is interesting now to digress to consider the zero temperature

limit. As the thermal motion of plasma ions becomes negligible, it is

evident that the beam-plasma production of neutrons degenerates to neutron

production from a solid target. It should be noted that this limit can

be taken at any point in the averaging process.

Using the familiar representation of the delta function 12

one sees that

Thus from (31)

x SL±F g-co gj i YJ. (34)

12E. Merzbacher, Quantum Mechanics (Wiley 1961), p. 82.
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Preparatory to the integration over C3 , it is useful to fix the reference

for polar angles since this simplifies the integration. It is evident

that this may be done with no loss in generality since it is equivalent

to a rotation of the coordinate system. Taking the direction of CO

as the Z axis, one notes (see Fig. 2)

@'.__.=C°O ( u'-+ •o

-)Y.-#LCOV'VtOI 40()5

V- J- VDO44 1 ro

The notation here is somewhat loose. This 0 and that of (22) are both

neutron deflection angles, but they have different reference systems.

Integrating q , one obtains

V, V Co d' (ceo) 5[4fV -
T-*.oR I 2 -, 2.Co '

X I V - Z' 1-1 J VO(36)

Since there is no dependence on the V azimuth 4v , integrating this

gives a factor of ZT[

The remaining two integrations will be done in both orders to show

the flexibility allowed by the use of the delta function. In order to

integrate V first. the delta function must be written in the form , (V-Vd

using (13). For V' 0 one has

V2 _ v O, ( - (v2 or• + 0 (37)

18



whr M - (38)

Roots of (37) are

V±_ - C•i: OY + ' co% -. 4- uCd(c° 4
--- t C " (Ao - z

(39)

The second term does not become imaginary since, using (38) and (23),

LZ( )~ C Z.0 2& ZINQ + A_ M•-
-M z.zIA )

L'(Q + C .7 -1(-' L

07 >4A . Furthermore even with 0--0 , the second term in

(39) is always greater than the first term.

(tZ~co)4

' (z±COC•Y-,

Since V is a positive quantity,

1-f" (w)l factor is

the root V_ is rejected. Then, the

2I V oC0 =

and the delta function becomes

Vf~~(-c)-L 7c)

Integration of V

I

gives

a((C,,)-2-~4,~ -z ~ 4 4 Ve

- ZI VY 7Z CO

2 21r 7, /2Co

"do- (c., Ly , C -im0  O + :( O,- ( U to,;.. oy,) A•¢'
r(41 .. iv-

(+4)

19
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(40)

ml ).i4'(hl)

, ,IA(L o
- � CoUtv'i �) Z- (4-2)

2ITZ' ~ 7CD OQJ.O(eo))

(43)

zU, (C") = (38)where

T-... 0

/dpc"



The last step occurs because the fraction in the second line is recognized

as the reciprocal of the factor which transforms a cross section from

the lab to the c.m. system13 . The L integration gives the total cross

section and

T-, o R c 0-4 Co Co) (45)

This is the required result when it is not necessary to perform an

average. It should be remarked that this particular case does not exhibit

the full utility of the delta function. If one were dealing with the case

in which a reaction product has a velocity smaller than the c.m. velocity

(either L •0 or Ot L or both), then the lab deflection angle is

restricted to a forward cone. This maximum angle would arise naturally

here as the point which separated the two branches of V in (39). Two

terms would be obtained for the delta function in V and the restrictions

in the limits of succeeding integrals would be carried by unit functions

using (10).

Integration of Ov first is simpler. After the integration of ýV

following (36), the delta function may be written in the form

(C" 9VCA Op thus

I4 (. V C) C i ~ )(6

13 See for example, E. Amaldi, Handbuch der Physik (Springer-Verlag 1959),
Vol. XXXVIII/2, p. 95. Note the misprint in Eq. 33.20. The third term
in the denominator should not be under the radical.
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where ;aIVo = T ( v+ Co - (CO)) (47)

Substitution in the differential cross section may be accomplished by

defining = I

-- [,o x -1 C. x L•'•O) - •CO
,C) C .0U (48)=

= 4 u(Cq) L~ (4.+c- 0C))4

using (35), (47), and (38). Now (10) must be used for the integration

ofc MaO from -I to 1

~P~o P ~ (co~) I(-cai~D)-(- )JY.dv, (49)

In performing the V integration, it is convenient to change variables

since from (48)

4dv = Cod(C 00). (•50)

Now the unit functions in (49) are functions of V and provide limits

for the V integration and hence for the C/O 'o integration. These

limits are easily obtained from (48) or Fig. 2. When c4AVo has the

values t/ ) 04 has the same value. Hence (49) becomes

and (45) is obtained.
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This digression also gives an example of a type of anisotropy which

will be mostly ignored in the following. This is that introduced by the

use of an anistropic probe, a beam. The results of such anisotropy are

conceptually simple, being attributable to the c.m. to lab transformation.

Formally such results are contained in the transformation factor in (44),

which is rather complex even for this simple example. Further formal

development of this effect is therefore avoided.

To return to the averaging process, after (31) one may integrate

over the angles of • , that is over 03 and Y9. Generally as in the

digression, it is convenient to take Co as the Z axis. However, for these
A1

two integrations let W be the Z axis. Aside from 94K4 , which it will

be convenient to ignore at first 1 4 , the only 5 and y dependence in

(31) is in the exponential and delta functions. This choice of Z axis

restricts the 9g dependence to the delta function and the ýg dependence

to the exponential. Using the law of cosines of spherical trigonometry

A A a+.dc.o (52)

Figure 3 is a polar diagram showing the relationship of these angles.

The points labeled c3, kI and Co represent the penetrations of these

vectors of a unit sphere centered at their common origin. The arcs

represent great circles subtending the indicated angles. In this labeling

of the angle between Co and W , one anticipates the shift back to

1 4See the remarks following Eq. (60).
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as Z axis after the two integrations. For the 43 integral 1 5

co (4Mdwm 53)

where I* is a Bessel function of purely imaginary argument. This gives

from (31)

A

FR 2 Ir,* (2Tf kT)z e Xk

M COx~a OW (Coc34OL4coA 6) :EN1-C

X 'Z +L4 0

To simplify the A dependence, one applies the identity 16

vMXf ( fkT CA 9 C04 &W c4Z C. 19Wg)m (3)

where is a spherical Bessel function of purely imaginary argument.

The delta function may be written

4- =U qcd 0 (56)II - Z9 Z_-- I-

where CAOZ 0  wq (UiJ V 4 99' (57)

using (38). Now using (10) for the integration of aCuO , one obtains

from (54)

15M. Abramowitz and I. Stegun (Eds.), Handbook of Mathematical Functions
National Bureau of Standards 1964), Eq. 9.6.16.
6A. Erdelyi (Ed.), Higher Transcendental Functions (McGraw-Hill 1953),

Vol. 2., Eq. 7.15(43).

23



Herecl~vhas een eplaed b to complete the transformation to

the beam system. This transform is given by (28) and has a Jacobian

of unity. Also the use qf Co as the Z axis may now be resumed with no

essential relabeling.

The integration over and may now be done. Since there is

no function of • , this integration yields a factor of Zi . The only

functions of Ow are the Legendre polynomials which have the useful

orthogonality property

Then since --- 5 one has from (58)

X ~~ ~ ~ ~ w [HIcb60)(I-zho] 9dw

Though the neglect of the angular dependence of the differential cross

section does not make it entirely credible, this result is exact. This

point was arrived at by a short cut for which it was necessary to forego

neutron angular information. This process acceptable from a phenom-

enological position. One feels that when precise angular information

o7M. Abramowitz and I. Stegun, op.cit., Eq. 10.2.13.
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is obtained, allowing the construction of a differential cross section,

it must be compatible with total cross sections already known. Thus

one is not surprised at a process which simply by passes the more precise

portion of the available information. It seems a formal justification

of this process should be possible but for the present the justification

to follow must suffice.

The result (60) will now be derived in more detail, obtaining the

neutron angular distribution in the process. It is convenient to develop

the differential cross section in a series of Legendre polynomials. This

may be done with complete generality for functions of interest here using

the completeness property of the Legendre polynomials. Moreover, it is

also practical to do so inasmuch as experimental results for restricted

energy ranges are often presented using only the first few terms of this

development.

- 4 -o i (61)

One notes the coefficient fo (q) is the total cross section

cT(S) - -- o(9), (62)

In order to shift the Legendre polynomials of (61) tos more convenient

origin, consider the identity' 8

P. 3ainml ) = Ppei) k (6t) ().

18E. Rainville, Special Functions (MacMillan 1960)., Eq. 95(5).
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This will be applied to the triangle Io = W + -L3 in Fig. 1. Let

e A ACo.&- 9-0 U. and =9 "=W (using W as the Z axis).

Wo 4_, A AThen Ij = CO~ 14'Ua and the law of sines is

W' , _ _ _ _ - _
w Ut0

or

ý - U0
(64)

2w
This gives for (63)

(65)

which gives for (61)

U=(2 Bn(en (66)

The L.
5 

integration proceeds exactly as before and this expression may be

substituted directly in (54). For the cO36 integration however the

delta function (56) is developed in Legendre polynomials

(67)

Thus using (55), (66) and (67) one has instead of (54)

1/ '- FikT
.f !1 (C 

o 2, .q 
) 

- .

LA V~JIA a.Ž . ,-IL (-ýýj PL, (c6dn=0 2- 2wUO k=o
00

J=,O W t46
(68)

Each term in this multiple sum is a product of three Legendre polynomials

in C," 11 and this is the only 9 dependence. For this integration, one

may apply the identity
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_ P, ' Ik00)QD'(9

'.9
which is a special case of a formula derived algebraically by Gaunt

The quantity (jk 0010) is a Clebsch-Gordan coefficient which vanishes

unless the indices are integers satisfying the triangle relations

1-• k÷+ k!!- )+• j I- pk (70)

and having an even sum. As to non-zero values 2O, those of use here are

Applying (69) to (68), one obtains

'2, kT) k1_ k'' zw, r ,-

X I-c-O- /o)-H(--604.Po),]J cq d3w, (72)

where UQ , + ry.( )Z)

and Wq L4 (iW 4.9 L)

19J. A. Gaunt, Phil. Trans. Roy. Soc. London, A 228, 195 (1929),
Eq. (14). A more recent, brief derivation is given by M. A. Preston,
Physics of the Nucleus (Addison-Wesley 1962), p. 614, Eq. (A-69).
2 °For an explicit formula see L. C. Biedenharn, J. M. Blatt and M. E.
Rose, Rev. Mod. Phys. 24, 250 (1952), Eqs. (2)-(5).
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This expression contains the details of the neutron angular distribution.

It is cylindrically symmetric about the beam direction since there is no

qw dependence. However, no analytical way was found of obtaining this

angular information in the absence of other variables. Instead some

qualitative remarks will be made in the last section. Of course, given

the By,() . numerical integration of W and 3 will give the neutron

angular distribution in the beam system. Also, there is no difficulty

numerically in shifting to the lab system.

The ýw integration yields a factor of 21r and the C.odOw integra-

tion is done using (59). Then using (71), the sum over ý may be performed.

The resulting series in PkVc"o03) is then reduced to one in

using (65). This again gives (60), thus confirming the briefer develop-

ment.

As preparation for the W integration, the unit functions must be

written as functions of W . Since for a positive H (ax)= Hx)

one has

H (1-c44910o) -~ H&30M~ )

H h(w2+wq+-c--u,-)- H (73)

Applying (11) to the first unit function, since W 2!0, one has

H [ '(w).] H [()]+ Yz H (w -w,.).. "w)

f (w;) = o) 0'w) (74)

S+'(w) 2- +Wq +l ZLt-.
where f ) to (75)

Hence W2 -- z I. 1 or (76)
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since W ?ýO. Now

"- 2.

using (38), (23) and * >,tt Thus

f"(w,)= 2w++

since ) > 0 .

H[f(O8 -=O

Thus 41 f'(w-)--+I and

IH(w2+ wq t I92-u,') = Hý

Similarly

H(wlW- iqJ,,sz-u,-) z H(

This gives for (60)

S--- 2, (-2T)L -C
(81)

where

The unit functions give the limits L4,- i to LA, + for the W integration.

Now note from (82)

Wdw -
(83)

29

,4Q <• (77)

. Next

Z1 >O (78)

('79)

(80)

= #,, (t 2 . )4q w
(82)

gill -'Z-2,P( L#tý = I4 'ki 4

•).

A A13M, 13) P4

(83)

-ML c0q) H (W -a' -+ -1kT H (w -u lowa, d 9 (J w.



and when W has the above limits, A has the limits 1 and -1, respective-

A A
ly. Instead of W then, one integrates 9,L4, and uses (62) to obtain

F?= V2.j(Zr)~ kT COd (84)

The integrand is the distribution of neutrons with respect to pair

relative speed. If it were written in terms of pair relative energy,

it would be the excitation function. Evaluation of the location of the

maximum of this function shows what deuteron relative energy contributes

the most thermonuclear reactions (provided one disregards the departure

of the branch ratio from one-half). It is noteworthy that the cross section

coefficients which describe the anisotropy, 61,n*6,have dropped out

due to the orthogonality property of the Legendre polynomials. The

excitation function is therefore unaffected by cross section anisotropy.

Before taking up the last integration, it is interesting to develop

the special case of neutron production from a Maxwellian plasma. The

process to be used is illustrative of the use of any distribution for

the first ion population, say - . If one were applying such a process

at a sufficiently early stage of the beam-plasma development that the

beam distribution still appeared as .(c l-C£) , then the process obvious-

ly is

Jr(o) low (85)

This assumes is properly normalized and that the delta function is

the only function of £i present. Now since 4> has been held constant,
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this same process may be applied at any point in the development. It

amounts to a convolution of the beam-plasma neutron rate with the desired

distribution written in terms of Co.

The point of this digression is to take to be the same Maxwell

distribution as for the second ion population. The process will be applied

at the stage of (84). It is multiplied by

zly k 7' e(86)

and integrated over Co. The result is the neutron production rate of a

Maxwellian plasma Rm . In (84) the only functions of Co are the

exponential, the hyperbolic sine, and a factor Cl• so the relevant

integral is

Yn 2.Cz. og I ca

zkr f k, k T Co

and integrating by parts

z 52frkTf .±(CkT T%)ý Cg

V 2L

_,,(8) +k
(87)
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Also, in (84) the pair density 1II4, must be replaced by I V2- where Z/z
is the total ion density. This gives an increased neutron rate because

now that the two populations are not distinguished, neutron production

within each component must be counted. The factor VLis the pair

density counted without regard to order, except for a slight inaccuracy

in that this also includes "self-pairs". This inaccuracy is insignificant

for densities and volumes of interest here. One then obtains

7VZ

PM' =. (43 & ~ o() 3 J9 (88)

in agreement with Eq. (13) of Faust and Harris2l. However, the present

approach shows their assumption of cross section isotropy is not required.

5. THE TOTAL NEUTRON RATE

Upon integrating the relative ion velocity, (84) yields the total

neutron rate. At this point, the total cross section is still in general

form. To proceed further one must at least specify the functional form

of the cross section. The most accurate procedure at this point would

simply be to use experimental data for the cross section. However,

the nature of the calculation to follow allows considerable latitude

here. Hence, to simplify the numerical work and continue in the spirit

of a parameter study, the Gamow form for the total cross section has

been adopted2 2 .

21See Footnote 1, the first reference.
2 2G. Gamow and C. L. Critchfield, Theory of Atomic Nucleus and Nuclear

Energy-Sources (Oxford 1949), p. 266.

32



crs - ai ~(~. (89)

Here a and b are constants obtained by fitting experimental data.

This gives for the total neutron rate.

1 00, . k

R2a~val,' rT C 0eZk 6 "c9 q (90)

To obtain the integral in dimensionless form, substitute

b kT(91)

Then

R C -f X (92)

In the last section, it was noted that anisotropy of cross section

contributes nothing to the total neutron rate. Furthermore the total

neutron rate of a Maxwellian plasma is well known2 3. Thus, the major

effect in (92) which remains to be elucidated is that peculiar to the

class of reactions typified by the prototype reaction, the effect of a

beam-like anisotropy. To exhibit this a comparison will now be made

between the total neutron rate from a beam-plasma configuration and the

total neutron rate from a Maxwellian plasma of the same total density

and temperature.

From (88) one finds for a Maxwellian plasma of ion density V

2It is calculated in each of the references of Footnote 3.
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and temperature T the total neutron rate
7,,z /"X2
V L1

FM~~- =t'ix xdx,Me t ~J (93)
o06

Now in the beam-plasma configuration, neutrons arise not only from the

interaction of the beam with the plasma, but also from the plasmat-s

interaction with itself. The latter may be calculated from (93) by

replacing V by 2/1;this neutron rate will be designated Rp . Since

the total ion densities are to be the same for this comparison, we have

- ,Z (94)

One may define the beam-plasma density ratio 1/,/?/- Thus the desired

comparison is

2( r),,-) 11 (95)

(i+RZ Jiýý ( C~f'j~ Cx+z ,4(cdx0+ P.) Jo + A 0

MY (lt)" 8 _46 -Kdx

The comparison is independent of the total ion density and the Gamow

cross section constants. It is of particular interest to ask for what

beam velocities can the total neutron rate of the beam-plasma configura-

tion exceed that of the Maxwellian plasma of equal density and temperature.

To best answer this the beam plasma ratio f may be adjusted to achieve

maximum p . The form of p in P is

p = +A)-2 +(96)

For an extremum or /O A (97)

34



SinceO0f- , an extremum exists only for A Z and since •ze ) <

it is a maximum when it exists. Also 46I . The maximum is

A1ct = )z AŽ-z, (98)

The answer to the question then is presented in Fig. 4, a contour plot

of A(cji) . When for some (ct) , A >Z , then the beam-plasma config-

uration will produce more neutrons than a Maxwellian plasma of equal

density and temperature, provided the optimum beam-plasma ratio is used.

This presentation, Fig. 4, is based on numerical evaluation of A

on a mesh of 143 points of (C t) in the ranges plotted. In the numerical

integration, Simpson' s rule was used with binary partition until the new

sum differed from the previous one by less than a fixed relative tolerance.

The first partition was chosen near the maximum point of the integrand

to avoid premature tolerance satisfaction. End points were chosen where

the integrand fell below a finer relative tolerance than the previous

one. This tolerance was so chosen that varying it changed the integral

by less than the previous tolerance for the case of slowest convergence,

(C) = (Iyi) . End points and first partition point were recomputed for

each point (C41) . These procedures were arrived at through a knowledge

of the form of the integrand in the numerator of A gained by use of the

Laplace integral estimate technique. It has a single maximum somewhat

to the right of )=C , determined by solution of the transcendental equa-

tion,
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The width of this peak is controlled largely by * and the maximum is

quite broad for t Z I . These calculations were performed on the

NAREC computer using NELIAC compiler.

Along side the dimensionless scales are scales in practical units.

The latter are dependent on the values of the Gamow cross section constants.

The constants used here were obtained from the Theus, McGarry and Beach 4

data applied to the neutron branch of the deuterium-deuterium reaction

by curve fitting. This data was given in deuteron lab energy in 11

points from 20 to 350 keV. The root-mean-square relative error for this

fit is

[ -. 144 8 (100)

This rather large ratio is indicative of the fact that a fit of the

Gamow form to neutron data is a force fit which neglects or at least

smooths over the energy variations of the neutron branch ratio. This

number would indicate rather poor justification for the severe extrapola-

tion of the fit which is required in the evaluation of the integrals in

A , were it not for two circumstances. The first is the lack of

dependence of A on a and h . Moreover, since A is a ratio in which

both numerator and denominator depend on the form of the cross section,

there is an implication that A would be nearly independent of small

departures from the assumed form. The second is that the region of

greatest contribution to these integrals is in the region of greatest

confidence except when CJt > I . The values obtained by this fit are
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bII
A' " 82.1 bar?)s-keV; V 45.85 (keV)'!. (101)

Using relations between c.m. and lab systems and (91), the relationships

of the scales are given by

•rc = 6'-. ZlO2c 1 ke (102)
kT = • t =2 b'2 t -4ZOZ t keV, (103)

and 1 23 6 x " I c. (104)b~ Pe- (lo4)

From the practical scales one sees, for example, that a beam-plasma

configuration with a 10 keV temperature requires a beam energy of more

than 15.4 keV and a favorable beam-plasma density ratio to produce more

neutrons than a Maxwellian plasma of equal density and temperature.
Since the average energy of a plasma ion is -kT or 15 keV, this beam-

plasma configuration makes a slightly less efficient use of ion energy

in the production of neutrons than a pure Maxwellian plasma. To extend

the observation of efficiency to other temperatures, one may draw the line,

C- = 3t or '- 0  (105)

Below this line, beam ions have less energy than plasma ions. Thus, at

temperatures where A 2 falls below C2 x3t , above 15 keV, it is

possible to increase neutron production efficiency with a beam-plasma

configuration. The increase allowed, however. is rather small due to

the small variation in A in this region. In fact the major feature of
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Fig. 4 is that at low temperatures raising the beam energy can increase

neutron producti6n very significantly.

The denominator of A , Fig. 5, is presented to allow the calcula-

tion of other quantities from Fig. 4. Because of the lack of confidence

previously expressed in the value in (104), it is not intended for

comparison with experiment. However, it does remain within a factor

of 2 in ranges for which experimental values are available24 . Using

Fig. 5, it is possible to compare the neutron rate of an optimum beam-

plasma configuration with that of a Maxwellian plasma of equal density

and average ion energy. Such a comparison is not applicable for A-z-.

From this comparison, one finds the most efficient beam-plasma configura-

tion in the ranges plotted, excluding those near A-- where 4•O_0 ,

is near ()- ý.5) 10") . Because of the low temperature, the cold target

limit of the beam-plasma configuration is a good approximation. The

Maxwellian plasma having equal density and average energy has t = 4x /0-

and produces 1.5 times as many neutrons per second. Thus, even the

optimum beam-plasma configuration makes a less efficient use of particles

and their kinetic energy than a Maxwellian plasma.

6. DISCUSSION AND SUMMARY

Knowing the behavior of the total neutron rate as a function of

beam speed and plasma temperature, one may regress and discuss the quali-

tative behavior of the neutron rate distributions as functions of S ,

24 j. L. Tuck, Nuclear Fusion 1, 201 (1961).
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W and 0w , using equations (84), (81), and (72). In principle, the

desired behavior for each of these variables individually may be obtained

by appropriate averages of the equations listed. However, because these

averages do not yield to general analytical methods, except those used,

the approach of this discussion will be to abstract known behavior from

these equations in order to isolate prominent behavior in the desired

variables. In retrospect, the main effects of relevant averages can be

casually approximated using the sizes of parameters describing the

reaction.

The behavior of the integrand of (84), the neutron rate distribution

in ' , was mentioned in the last section. It has a maximum determined

by (99) to be near Co but larger, and the width of this maximum is con-

trolled by kT . Now consider (81) and let 6 be such as to give this

maximum. The effect of the unit functions is to restrict the range of

W to U,- - W• U,+q or, using (38 ), to

NowQ 5 3.26 MeV, C ( 3/4 so that one may take kT<< Q without

disregarding any temperatures of interest. Then, as 9 varies within a

half width (controlled by kT ) of the maximum, the allowed variation of

W is relatively small. Within this variation one can infer a two peaked

structure for the neutron rate as a function of W , knowing the behavior

of the • . Because the reacting particles are identical, the angular

distribution of the products must be symmetrical about the 1T deflection
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cone. This requires all odd ordered coefficients to vanish. The behavior

of S. has been accounted for. Experimentally, it has been found suffi-

cient to obtain only 8 . and 134. in the lab energy range 20 to 350 keV4 .

In general 84 is small throughout this range. 82 however is signif-

icant at the low end and very substantial at the high end, giving a nearly

C026 distribution. Thus, the Legendre polynomial expansion in (81)

has maxima when COA-.6"K is near 0 or V . Hence, in general the

neutron rate distribution in W has two peaks very near IQ- , the

smaller being associated with small deflection angles. Actually, this

applies strictly only when 1 wmcg- kT . Suppose -L Yn c T ,

then the maximum of the neutron rate in 9 will be near q=O but the

width of the maximum will be relatively large. In this case, the two

peaks of the neutron rate in W may fuse and become indistinguishable.

Knowing the conspicuous behavior of neutron rate in 9 and W ,

one may now turn to (72) in the hope of extracting angular behavior.

Consider the n=O term

Icd~ UTZ 9  (107)

The have rising exponential behavior (eventually overcome by the

Gaussian factor) with &o(O)=1 but 4  0•o)-O) j'-- . VThen Cd

is small (fVZiCJ kT) , the co term is the most important and the

neutron distribution is spherical. As -n becomes largerkT 9o

(iv cF > kT) , the higher order terms contribute. Then the two

Legendre polynomials contribute most when their arguments behave similarly.
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Thus, the distribution in O becomes more and more like that of
The latter is related to Ca-IAby (65) with A-- and

C A

-'" . Because high beam energies are of little interest,

one may require mc• 4 .Then in (65), the ratio W is2(- 8

near unity but (3 is small and the k=M term dominates. Thus for small2W

shifts of origin, (65) has the effect of passing on nearly the same

distribution. Hence the neutron distribution in OW closely resembles
IAA

that in cad (Af, i.e., it is a CO.4O distribution with maxima

at 0 and iT . This result is not changed in character by consideration

of terms of higher order in A . It may be seen that of these two cases,

the spherical behavior is that expected in the pure Maxwellian plasma

subcase, whereas cm&O behavior is expected in the cold target subcase.

This report has considered neutron production by fusion in a plasma

having an extremely anisotropic ion distribution, called the beam-plasma

configuration. Any plasma may be analyzed in terms of this one whenever

it is possible to separate the plasma into an isotropic and an anisotropic

component. The beam-plasma configuration is thus a prototype for a large

class of anisotropic plasmas. This configuration was described by

statistical-mechanical distributions, and analysis of necessary assump-

tions showed that the configuration could be applied for small volumes

and short times in many plasma regimes of thermonuclear interest. Then

using the fusion reaction neutron cross section, the total neutron rate

was obtained as an average. A numerical evaluation was made particularly

to bring out neutron rate behavior as a function of beam energy and the
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results were exhibited in a contour plot. Certain neutron rate distri-

butions of thermonuclear interest were interpreted in terms of two

subcases, neutron production from a cold target and from a Maxwellian

plasma. Cross section anisotropy was found to have no effect on total

neutron rate or on the excitation function. Expressions were obtained

giving the detailed effects of anisotropy on neutron ratespeed and

angular distributions. The expectation from symmetry argument., that the

neutron distribution is cylindrical, was confirmed in detail. Introduc-

tion of experimental data showed anisotropic effects are small since the

large reaction energy dominates in cases of interest. In practice then

the use of neutron measurements to determine plasma anisotropy requires

both energy and time resolution.
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A
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Bn
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c4
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Comparison ratio, ý independent part (see p ), 34.

Gamow cross section parameter, c.m. system (prime
denotes lab system), 33, 38.

Neutron's share of the reaction energy,, 14.

Coefficients in the Legendre polynomial expansion of dCi
25.

Gamow cross section parameter, c.m. system (prime denotes

lab system), 3355, 38.

Ratio of beam and plasma ion densities25, 34.

Beam speed, unitless, 33.

Ion velocity, lab system (subscript 0 denotes beam, 2 6 ),
11.

Differential cross section for D(cJ i) He3 ý, e.m.

system, 13.

Delta function, vector delta function, 9, 10.

Neutron energy, c.m. system27, 14.

Velocity of the c.m. of an ion pair, 13.

Relative velocity of an ion pair ', 13.

Unit function, 9.

A cylindrical Bessel function of purely imaginary argument,
23.

2 5 Subscript denotes optimum value.
2 6Subscripts 1 and 2 refer to plasma components.
ý'Subscript 0 denotes use as a zero of a delta function argument.
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A spherical Bessel function of purely imaginary argument,
23.

Boltzmann' s constant, 11.

Deuteron mass, 11.

Neutron mass, 14.

Ion density (no subscript denotes total ion density, 2 6 )
34, 11.

A Legendre polynomial, 23.

Reaction energy for D(din) 3  , l4.

Neutron production rate (no subscript denotes non-Maxwellian
beam-plasma contribution, M denotes pure Maxwell distribu-
tion, P denotes the Maxwellian contribution within the
total beam-plasma production), 10, 14, 1, 3134.

Ratio of the total beam-plasma neutron rate to that of
a Maxwellian plasma of the same total density and
temperature, 34.

Sign function, 9.

Total cross section for D n)4) He3 , 10, 25.

Temperature of Maxwellian component, 11.

Temperature, dimensionless, 33.

Neutron c.m. deflection angle2, 13, 17, 18.

Neutron c.m. velocity (subscripts number uses as a zero of
the argument of various delta functions), 14, 17, 19.

Neutron lab velocity, 15.

Neutron beam system velocity, 15.

Dimensionless form of 9 , 33, 35.
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distribution. It is found that cross section anisotropy has no effect on neutron
production rate or on the excitation function. An expression is obtained which
contains the detailed effects of anisotropy on neutron speed and angle distribu-
tions. Prominent behavior of this expression is discussed. For purposes of
numerical calculation, a Gamow form is assumed for the total cross section.
Neutron production rate results are presented in a contour plot as a function of
beam energy and plasma temperature over ranges of the parameters of most in-
terest in thermonuclear research. Prominent behavior here is understood in the
light of two well known subcases of this calculation: (1) neutron production by
bombarding a cold target and (2) neutron production from a Maxwellian plasma.
A qualitative analysis with order of magnitude estimates is made to consider the
practical implications of the use of the assumed nonequilibrium distribution. It is
shown that the assumed distribution may exist for small observation volumes and
for short observation times in plasma regimes of thermonuclear interest. It is a
general result of this analysis that an arbitrary plasma cannot be shown isotropic
except by fine time resolution technique.
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