NRL Report 4732

ELEVATION-AZIMUTH SERVO SYSTEM SPECIFICATIONS
FOR STAR TRACKING

Charles F. White and James W. Titus

Equipment Research Branch
Radar Division

April 12, 1956

APPROVED FOR PUELIS
RELEASE - DISTRIBUTIGN
UNLIMITED

NAVAL RESEARCH LABORATORY
Washington. D.C.



CONTENTS

Abstract 1i
Problem Status ii
Authorization ii
TNTRODUCTICN 1

]

(FEIESTIAL AND TERRESTRIAL COORDINATES

AZIMUTH ANGULAR POSITION 3
AZIMUTH ANGUIAR VELOCITY L
AZIMUTH ANGULAR ACCELERATION 8
EIEVATION ANGULAR POSITION 9
ELEVATION ANGULAR VELOCITY AND ACCELERAT ION il

FREQUENCY DOMAIN EQUIVALENT OF AZIMUTH TIME FUNCTION 15

AZTMJITH SERVO SYSTEM TRANSFER FUNCTION 15
AUTOMATIC TRACKING REQUIREMENTS STARTING FROM REST 18
PROPOSED SERVO SYSTEM 20
CONCLUSINNS 28

APYENDTX A - TIME DOMATN T FREQUENCY DOMAIN
TRANSFORMAT TON ok,



ABSTRACT

Radio astronomy star tracking requirements are
resolved into elevation and azimuth coordinates and
related to servo system transfer function specifica-
tions. Time functions for angular position, velocity,
and acceleration are derived and maximum values found.

A numerical example based upon the latitude of Washing-
ton, D. C., and a star declinatlon such that at transit
the angular distance from the zenith is 10 degrees or
greater, is used in the calculation of the azimuth servo
bandwidth needed to insure dynamic errors appropriate for
automatic tracking with a 60-foot parabolic reflector
(tracking error less than 1/4 degree). A bandwidth of a
0.1 radian per second is shown to be adequate. A block
diagram is given for a servo system suitasble for the
azimuth coordinate.

PROBLEM STATUS

This report completes one phase of the problem;
work on other phases continues.

AUTHORIZAT ION

NRL Problem RO5-19

Manuscript submitted April 3, 1956
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EIEVATION—AZIMUTH SERVO SYSTEM SPECIFICATIONS
FOR STAR TRACKING

INTRODUCT ION

The advent of radio astronomy has seen employed a wide variety of
antennas and means for beam steering. Among these is the parabolic re-
flector mounted on a pedestal with elevation and azimuth coordinates
of motion. Servo system requirements for such "EL-AZ" mounts become
automatically defined upon specification of the tracking problem. In
the study reported here, the tracking problem, a time-domain phenonemon,
is transformed into the equivalent frequency domain function so that the
servo systems may be designed using the frequency response method. In
choosing the open-loop transfer functions for the servo systems several
factors are considered, namely: (1) close fitting of the excitation
function to achieve the maximum exclusion of noise simultaneocus with
adequate bandwdith for transmission of frequency components in the input
signal, (2) suitable gain and phase margins to insure closed-loop servo
system stability, and (3) the proper gain to insure that the maximum
dynamic tracking errors almost equal but do not exceed the specified
limits. : :

The derivation of time functions for elevation and azimuth angular
position, velocity, and acceleration for star tracking is presented in
the initial part of the body of the report. Guillemin's (1) method of
approximating the frequency domsin transform of a time function is then
applied to the above-horizon portion of the azimuath time function. A
transfer characteristic is then chosen following Grasham's (2) procedure,
in which the steady-state error series (3) plays & central role. The
block diagram for a possible mechanization is given. The trajectory
equations for the elevation axis are provided so that a similar study
for the elevation coordinate servo may be made following the same pro-
cedure.

CEIESTTAL AND TERRESTRIAL CCORDINATES

Star tracking angulsr position, velocity, and acceleration quan-
tities resolved into elevation and azimuth coordinates are desired as
a function of time. The location of maximm values of velocity and
acceleration in both axes is also needed, In the derivations and in
Fig. 1 a modification of the notation used by Hosmer (&) is employed.



Fig. 1 - Celestial and terrestrial coordinates



Let
7z = interior angle of astronomical triangle at zenith, degrees
T = hour angle (=wt)
w = apparent angular velocity of the stars about earth's axis,

in radians per second = 2 = 7.272'10'5, in
2&‘3600

degrees per minute = 1/4
t = time, seconds or degrees of rotation

azimuth, degrees (6 = -z)

D
]

i

h = altitude (elevation angle), degrees
$- declination, degrees

¢

[}

latitude, degrees
AZTMUTH ANGULAR POSTTION

To find the azimuthal quantities, start with BEq. (31), page 36
of reference &,

sinz = S T cos § (1)
cos h
Substitute from Eq. (11), page 32 of reference b,
cos h = S\ § cos $ — cos 8 sind cosT 2)
Cos Z
and obtain
sin Z simn T cos$ )
= 3

cosz Sm§ cosd-cos8 sm cosT



tan z = sm T, (4)
cos ¢ tand -Sin cosT

Numerical evaluation of Eq. (4) gives an angle z which is 180° from the
correct angle. This occurred through the use of the sine formula with
its inherent ambiguity. Making this correction and the changes of

variable T = wt and z = -0, we have
-— A *
tan 6 = 2n e (5)
A - B cos wt
where
A= cos $ tan
B= Sin ¢

AZIMUTH ANGULAR VELOCITY

Azimuth angle 6 as given by Eq. (5) may be differentiated to obtain
the corresponding angular velocity. Thus,

sec2g 48 .(A-Beoswt)(-w coswt)+Bw sin 2ot (6)
dt (A-B cos wt)2 '

-A w cos wt +Bw
(A-B cos wt)?

de _ cos*@ tan*e tl ©
dt = sindwt [3 Ac“w]

smze

8 = i e [sin § ~cosptandcoswt] (o)

(7)

Azimuthal angular velocity is given by Eq. (8) except at points where
sin et = 0. For these points, return to Eq. (7) and write



() = ©
dt |420 sin ¢ ~cos ¢ tand

(9)

Figure 2 shows the azimuth angular velocity as calculated for t = O
using Eq. (9) and a latitude ¢ = 39° (approximately the latitude of
Waghington, D. C.). The extreme values shown, § = ¢ ¥ 109 = 39°F 10° =
h9° and 297, are hereafter referred to as Case 1 and Case 2 respectively.
Since Case 2 exhibits a higher absolute value of azimuth velocity for a
given approach to the zenith, detailed calculations are made for Case 2.
Returning to Eq. (5), the constants become

Case 2
¢ = 39°
§ = 29°
A = cos 39° tan 29° = 0.77715°0.55431 = 0.43078
B = sin 39° = 0.62932

Figure 3 shows Eg. (5) calculated for Case 2 over a 2L4-hour period.
The indicated points corresponding to the star rising and setting are
from calculations shown later in the report. Using Eq. (9), the maxi-
mum azimuthal angular velocity becomes

Case 2

de . 7272 "16°

dt |t=0 0.62932 -0.43078

_ 1.27216°
" 0.1985%4

Thus, for Case 2, at t = O the azimuth angle is © = 180° and the angular
velocity is © = 0.3663 radian per second = 1.259 degrees per minute.

For § € ¢ (as in Case 2) , the azimuth angle increases continuously from
star rise to set. For & > ¢ (as in Case 1), the azimuth angular rate
is initially positive but reverses twice before the star sets.

-= 0.3663 radian per second




NOTE: ¢ =39°

4 — CLOCKWISE COUNTER=-
CLOCKWISE

MAXIMUM AZIMUTH ANGULAR VELOCITY (DEGREES PER MINUTE)

0 | |
$—10° $-5° ¢ ¢+5° ¢ +10°

S -DECLINATION (DEGREES)

Fig. 2 - Maximum azimuth angular velocity as a function
of star declination for a latitude of 39° North
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Fig. 3 - Azimuth angle versus time for 0 = 29° and ¢ = 39
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Of interest in servo system design is the relative period during
which the input angular velocity is less than the minimum velocity of
the servo motor, as installed in the mount. Good design may yield a
dynamic range, or ratio of maximum to minimum motor speed, as high as
100 to 1; thus the region of inputs where the rate is less than 1%
of the maximum may be called the "near-zero rate region.”" This region
is related to star tracking in the azimuth coordinate from a station
in the northern hemisphere as follows:

a. Stars with south declination and stars with north declina-
tion less than the latitude of the tracking station exhibit
continuous azimuth rates from east through south to west,
with minimum values at star rise and star set.

b. Stars with north declinations greater than the latitude
will exhibit two regions of near-zero rate.

c. A single continuous region of near-zero azimuth rate occurs
for stars of declinaticon approximately equal to 900 North.

d. The relative duration of the regions of near-zero rate
increases with declination from zero, for stars with de-
clination equal to latitude, to 100% for stars with de-
clinations approximately equal to 90° North.

AZIMUTH ANGULAR ACCELERATION

To find angular acceleration in the azimuth coordinate, differen-
tiate BEq. (8) with respect to time and cbtain, after simplification,

d*e _ wsin26
dt? = sin2wt
w'sin%e
sinBwt

[s'm ¢ ~tan § cos¢ cos wt -%:—

+

[tanﬁcosé(w cos?wt) -2 sin § cos w'h_] (10)

Equation (10) set equal to zero may be solved for the time corres-
ponding to the maximum valvue for angular velocity in azimuth. The values
t =0, 6 = 0° or 180° are found to be mathemstircally and intuitively cor-
rect. Accordingly, the azimuthal anonlar velocities previously calculated
for t = o are the maximum rates (as indicated on Fig. 2) for stars passing
tangent to a 10° radius circle about the zenith.



Maximum azimuthal acceleration 1s found in the vieinity of wt =
7.5? either side of star transit. By finding the slope between values
of 6 caleulated for at = 5° and wt = 10° , & value 6 = 4.28-1070
degrees per second per second was computed for the maximum accelera-
tion. The velocity at this time is 6 = ]..55-10‘2 degrees per second.

ELEVATION ANGULAR POSITION

Using Eq. (30) (reference 4, page 35), we write for the elevation
angle

sinh = cos($-8)-2cos dcess s%n"%‘?— (11)
= C¢C - D sin® wt (12)
2
Case 1
¢ = 399
§ = 190

C=-cos (¢ -8§) = cos (39° -49°)
= cos (-10°) = 0.98481
D=2cos ¢ cos 8§ = 2 cos 39° cos 490

= 2:0.77715 -0.65606 = 1.01971

Case 2
¢ = 39°
§ = 29
C = cos 10° = 0.98481
D = 2-0.77715-0.87h62 = 1.35942



Star rise and star set occur at zerc elevation. From Eq. (12),
this occurs at

C =D sin? -‘%t- (13)

2 gt _ cos (- 8) _ cosdcosS+sindsind

sin 2 2cos¢eos$ 2 cos¢ cosé (1%)
LT 1 +tan é tan 8112
wt= 2 sin [L2EETS tanc] 15)
Case 1
— 39°tan49°72
wt = 2 sin [wtan ® %tan 49°
‘_:Z Sﬂ -lrl*'O'QC?:7£3 'lso‘P_.o'96£57sEY&
= 2 sin 098273 = 2(£79%0) = + 158%C
Case 2 ) )
.= | + tan 39%tan29°1%
wt =2 sin [ 2 ]
- . {
= 2 sin [L £ 0:80978 0.5543 _  72443]%
2
=2 sin 0.35114 = 2 (£58°20) = * 116°40
The meximum elevation angle was originelily chosen as 80° for both

cases,

10



ELEVATION ANGULAR VELOCITY AND ACCELERATION

Take the derivative of Bg. (12) to cbtain the elevation angular
veloeity as follows:

cos h %:-Dwsin-“z’.icos-“%—t (16)
[ t
_4)_‘_‘_ +_Dw sSm w (17)

dt = T 2|i-(c-Dsin? gEF

D w sinwt

+ :
~ T4-(2c-D+Deos wt)* 1% =)

For purposes of numerical evaluation of h, ﬁ, and h as a function
of time, the alternative form may be used for elevation angular rate
as given by

dh o _ D w sinwt (19)
at Z cosh

Figure 4 shows elevation angle and angular rate as a function of
time for both Case 1 and Case 2.

Elevation angular acceleration is found by taking the derivative
of Eq. (19). Thus,

i_fg - L. —-;:.‘%’ﬁ(weoshcos wt +sin wt sinh %%L) (20)

11
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The points of maximum and minimum velocity are found by setting
acceleration equal to zero. Accordingly,

w cos h cos wt + sinwt sin h % =0 (21)

D w sinwt sinh

w cosh cos wt = R RY (22)

coswt _ D sin h

= (23)
sin2 wt 2 cos®h
: ! |
- = cos 3(cos wt -
sinh -——= cos¢ e ( =t (2k)
Trial of values in the heighborhood of wt = 45° were made using
Eq. (24) as the measure, with the result for Case 2 that
Y +
wt = * 4718 degrees (25)
max h
and, substituting into Eq. (12), Egq. (19), and Eg. (20),
h . g i 50.23 degrees (26)
max h
. N
h ¢ = 4 0.1943 acgrees per minute (27)
max h
o0
h . =0
max h

13



The minimum value for angular velocity in the elevation coordinate
is zero at transit (wt = 0, h = 80°).

A region of near-zero elevation rate occurs near maximum elevation.
Meximm acceleration (positive rate of change of velocity) in the

elevation coordinate occurs at the horizon (h = O) where wt = ¥ 158°40
for Case 1 and wt = * 116°40' for Case 2. Using Eq. (20), we obtain

2 o0
dl\ = h o Y— uf' COS‘) coss cos a)'t' (28)
d-fz max
accel accel
Case 1
¢ = 39°
§ = u9°
hnax ==1/16 cos 39° cos 49° cos 158°40!
aecel
= 0.77715-0.65606-0,9314%4
= 0.0297 degree per minute per minute
Case 2
¢ = 39°
§=29°
v — 20 nye O NG Q !
A oax = -1/16 cos 39° cos 29° cos 116940
acece

0.77715-0.87462.0. 44870
16

i

i

0.01906 degree per minute per minute

1k



FREQUENCY DOMAIN EQUIVALENT OF AZIMUTH TIME FUNCTION

Figure 3 may be interpreted as a time-domain specification of the
problem of azimuth tracking imposed by the motion of the hypothetical
star represented by Case 2. For the purposes of servo system design,
the frequency domain transformation of this time function is desired,
This transformation is obtained by Guillemin's impulse method (1,5),
in which the integrand of the laplace integral is converted to a set
of impulses in order that the integral may be evaluated without numeri-
cal methods. Steps in the application of the method are indicated on
Fig. 5. The position of the time function that lies between star rise
and star set is replotted in Fig. 5a, taking the new origin of coor-
dinates at the time and azimuth angle @f star rise.

To obtain the set of impulses, the derivative of the time function
is Pirst plotted, Fig. 5b, and approximated by a broken line (this
approximation is equivalent to fitting the time function with a series
of parabolic segments). The broken line approximation is then differ-
entiated twice, Fig. 5c and 5d, to obtain a set of impulses. The -
change in units from rad:.ans/second2 to rad1ans/second3 associated with
the taking of the third derivative is offset by the fact that the in-
dicated strengths are related to areas with time as the abscissa. The
impulses shown in Fig. 5d are an approximation representing the infor-
mation within the interval between star rise and star set with the
assumption that a continuous function is involved. That is, O, e 5,
ete., have the same value immediately prior to the star rise point
(t =0) as immediately after. In like manner, the function is also
continucus at the end, i.e., at star set.

Appendix A contains the details of the mathematical processing
from the impulses of Fig. 5d to the continuous frequency domain equiva-
lent shown in Fig. 6.

AZIMUTH SERVO SYSTEM TRANSFER FUNCTION

In the Grzham design procedure (2), use is made of a steady-
state error series having the general form

oL : cH + R

+ —k. +

*Kp T Ky Ka TR T

where

Kp = position error constant

15
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RADIAN SECONDS (DB RELATIVE TO 1 RADIAN SECOND)
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Fig. 6 - Azimuth excitation function transformed
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K, = velocity error constant
Ka = gcceleration error constant
K, = rate of change of acceleration error constant

Anticipating need for information regarding the input motion and its
derivatives, expressions for 64 , 61 , and ei were derived and appear
earlier in the report. Variations in design predicated upon higher
derivatives than the second (acceleration) should be avoided (6).

Study of Fig. 6 leads to the choice of the servo system transfer
characteristic shown in Fig. 7. The low-frequency asymptotic slope
of -1 is followed by a high-frequency asymptotic slope of -2 with
unity gain at the break frequency (7). For such a system, the steady-
state error expression is

~ O
Ess = —= (30)
u%

The maximum required bandwidth, i.e., maximum value for ay , is found
by using the maximum value of input velocity in Bg. (30). For an
assumed specification of 1/4° maximum allowable error, wi = 0.08k.
Thus,..a bandwidth of 0.1 radian per second is adequate for the train
axis. If the tracking accuracy requirements had been lower, less of an
"overcoat fit' of the excitation funchtion shown in Fig. 6 would have
resulted.

AUTOMATIC TRACKING REQUIREMENTS STARTING FROM REST

Consider a radio star tracking system in which the antenna feed
point is nutated to permit development of an error sigunal. For such
a system it would be possible to demand of the servo system an ability
to start from initial conditions in which an error in 6, 9 é ete.,
exists.

The function shown in Fig. 6 is based upen zero initial errors.
To illustrate the effect of an error, consider the initial conditions
(where the minus and plus subscripts refer to the instant before and
the instant after the transient)

18



LOG GAIN

Fig. 7 - Type I servo system open-loop
asymptotic characteristics
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6. =06, , as in Fig. b5a

_ 5, 6_ , ete. =0

De

©

(61

, etc., same as in Fig. Sa

+ 7 Y4

The effect of initial conditions is to introduce an impulse at
t = 0 in Fig. Sc which becomes a doublet (8) in Fig. 5d. The strength
is established by the step at t = O in Fig. 5b, i.e., +0.473. The
approximation of the transform of the time function is

6" = R side Equ(al) + L41B0% . pe side € (an. 041318
jw) = Rt. sude q Al) + ) = Rt. s q: =

<4 n28F], .[ G cos 2.8F
___.w:,{[o_Fgé,, és_:ns&!.]+ i [_o_F,___]} (52)

The magnitude of Eq. (31) is given by

r 3 .
. *UJe 208 F 2 yz
CADIE 1o“{° 413 (20413GSsm28T L G }

7 +
2 " F® Fe (32)
The zero frequency asymptobic furction is
2 -
lo%Ga|. = o.473-ao"= 6878 =[e.s7a ~|o312
e o F2 F w (33)

as compared with the 2.84.10% F funciion given in Eq. (All) where no
starting transient servo reguirements are involved. If such a servo
system is desired, the excitation function represented by Eq. (32) may
be studied in the same manrer as Bg. (A8). The transfer characteristic
should be a Type II, that is, one in which the initisl asymptotic slope
is -2, followed by a mid-frequency asymptotlc slope of -1, and ending
with a high-frequency -2 slope (9).

PROPOSED SERVQO SYSTEM

Figure 8 shows, in block diagram form, a possible servo system
arrangement for the automatic star tracking problem in azimuth in which
eliminaticn of errore Aue to initial trausients is not required -- the

20
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Fig. 8 - Block diagram for azimuth servo system
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problem and system of Figs. 5, 6, and 7. The error expression for
the system shown is substantially identical to Eq. (30).

The switch shown in Fig. 8 provides a means whereby the antenna
may be held in a fixed position until tracking is desired. The intro-
duction of a fixed voltage corresponding to a selectable constant an-
gular velocity reduces the servo tracking problem to tracking the
difference instead of the total. The ap of the equalizer should be
approximately 10 a; or 1 radiasn per second.

CONCLUSIONS

Star tracking with an elevation-azimuth coordinate system has
been studied. Time functions have been given for position, veloeity,
and acceleration components in both axes. Detalls of the transforma-
tion to the frequency domain equivalent and the design of a suitable
servo system for the azimuth axis are included. A bandwidth of 0.1
radian per second is shown to be adequate for the azimuth servo system.
A proposed system is shown in block diagram form.

22
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APPENDIX A

TIME DOMAIN TO FREQUENCY DOMAIN TRANSFORMATION

The approximation of the transform of the time function shown in
Fig. 5 is

4
-8 -jwo0.6 10
8" (jw) = i%g,[—o.zss +0633 e
) ..J'Go 2.05-(04' -ju)2.5'lo+ -ju) 2.65‘!04'
+1.85¢ + 908 e —;".33 e 4
-jw295-10% ~jw 3,110 _jw8.5510
-1l33 e +9.08 e +l.385e
~jwS 10 "‘ ~jw5.6° 104'
+0.633 e —-0.2%3 ¢ (A1)

Writing the exponentials in the form of in-phase and quadrature
components » we have

e (Jw) = T[ ~0.233 + 0.633 (cos 0.6 (o“w - 1 Sin 0,610 uJ)
=J

+ 1.85(¢os 2.05-10%w-j sin205- low)+908(cosz.5 160 - sin2.5-16')
- 11.33 (cos 265 lo4w-J sin 2,65:16 w)-l! 33(%5295'101.0 5 $m2.95:(0 a)

+9.08(cos 3.1-16"0 <} SMB,(-10 w)-é-l.%s(cos 3.5540‘20—,5 S 35510 w)

+0.433(cos 5 6o -jsins lod'w)—o.233@os 5.6 ~lo4 - Sm S,k 15,' co) ]

(A2)

Introducing a reference angular frequency w, = 107 -k radian per
second and letting F = w/w, , we have

2k



6*(- !04' ) .
jw) = = = ~0.233 S OF +0.633 Sin 0.6F

+1.85 sm 2.05 F +9.08 sim 2.5 F=(1.33 sin 2.65F -I1.33 sin 295F
+908 s 3,1F +1.855m 3.55F +0,633 sin 5F -0,233 sin s,cpj

+J' [-0.7.33 Cos O-F +0.633Cos06F +[,85 cos 205 F

+9.08¢cos 2.5F —|[.33 cos 2.5 F ~Il.33 ¢cos 295 F
+9.08cos3.IF + (.85 ces 3.55F +0.633¢cos5F

—0,233 cos 5.6 F _]} (A3)
4 [ ]
= - -}-,_.-3-{[~0.253 (Sl'n OF +sm S.GF)

+0.633 (sin 0.6F +5im 5 F) +1.35(sin 2.05 F +sm3.55F)

+ 908 (sin2.5F + 5™ 34 F) = 11.33 (Sin 2.65F +5in 2.95 F)]
+J [-0.233 (cos O0-F +cos 5.6F)
+0.633 (o5 0.6F+cosSF) + 1.85(Cos 2,65 F + cos3.55F

+9.0€ (co52.5F+Cos 31F) ~11.33(cos 2L5F + cos 2.95F) }

(Ak)
* 0t
O (jw= ~ —-—{sin 28F + j eos 2.8 r-'} (-a)

(A5)
where F3

G =0.466 cos 23F —-).266 cos 2.2F

-~ 3.7 cos0.T5F —18.16 cos 0.3 F
4+ 22.66 cos 0.15 F (46)

'al-".



4
6™ (jw) = _|9_F_3§_ (sin 2.8 F +j cos 2.8 F) )

The magnitude becomes

|6 = ug;e \ "

Before numerdical evaluation is made of Eq. (A7) as a function of
frequency, consider its nature as frequenzy approaches zero. The expansion

x?..

Bay weoused in evaluating G for F<» 0. Thus,

Lm |G| = fml+o4cc(| i’_'ﬁm)

F>0 F->0
~1.266 (1~ 22F) 37(1- o?sF)

~18. lc.(t °3F Y2266 (1 - °o15F‘ )\
= £= (o4se TH- 120077

-3,7: 6—‘5"—-!8!6 5-51.2266.0.,5) (A10)
Substitution of Eq. (A1) into Ey. {A7) wislds N
. 2 .
l o'l w)l l° 466°2.8%-1.266 - 2.2* ~ 3.10.752-18.16-0.3 +22.66°01B

F>0 2104 F
| 23410 2.34
F w
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Equation (All) shows that the excitation function frequency domain
equivalent, when plotted on log-log scales, has a minus one slope as
the frequency approaches zerc. This minus one slope eﬁtended has &

value of unity at a frequenecy F = o = w = 2.84.10" or o = 2.84.
Wo 1077

The series expansion of the cosine functions fails to facilitate
similar determination of the high-frequency asymptote. Instead, the
cyclic nature of Bq. (A7) must be considered and a determination of
the peak value made. The asymptotes are tangent near the peak values.
The function itself makes cyeclic excursion to zero or minus infinity
on the log plot. Hence, the asymptotes must be regarded as defining
the upper limit of the function.

Repeating Eq. (A6),
-G =[-0.466 cos 2.8F + L266 cos 2.2 F +3.7 cos 0.I5F

+18.16 €05 0.3 F —=22.66¢050.15 F] (a12)

may be revitten as

-G = - E E £
G = - 0466 CoS()2W +1.266 c°s(‘r,,)m +3.7eos| "'s) 2T

+18.l6 cos(%} 21 — 22,66 cos(%)m (a13)

where
2.3 22 37075’ 4 030 0.5
Considering the factor 21 separately, express the fractions
using the least common denominator as follows:

i, 1, 1 5, 1 4, 1
2.8 2.2 0.75 0.30 0.15 (A1)

become

165 , 210 , 616 , 1540 , 3080
Lgs Léz Le2 g2 L2 (A15)
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The number of cycles of each frequency in the composite period is
found by determination of the least common multiple of the numerators
of the ratios (A15). Thus, the numbers

165, 210, 616, 1540, 3080 (A16)
lead to
56-165, 4h4.210, 15-616, 6-1540, 3-3080 (A17)

The products (Al7) show that the number of cycles of each cosine term
of Eq. (A7) in the period of the combination is 56, 44, 15, 6, and 3
respectively. The relative importance of the terms progresses down-
ward as frequency increases. Since the sign of the two low-frequency
terms are opposite, the value of F for which they are out of phase
appears to be a region where a maximum occurs.

In the general case great difficulty may be experienced in locating
the region of the peak value. Setting the derivative of G equal to zero
results in a sum of sine terms with the desired value of F implicit. A
series expansion of the cosine terms in G prior to taking the derivative
changes the problem to a solution of a high order polynomial which, since
it is based upon -a limited number of terms of the series, gives only
approximate arnswers.

A simple, easily applied, procedure consists of setting up as
many rows as terms (five in the present example) and providing columns
in which the location of the maximum positive and the maximum negative
value may be indicated for all cycles of each cosine term. The point
of favorable coincidence can be established through scanning by eye.
This was done for the example using the following:

Columns per cycle Term
220 cos 0.15 F
110 cos 0,30 F
Ly cos 0.75 F
15 cos 2.2 F
165/1% ¥ 11.78 cos 2.8 F
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As it developed, the composite function showed symmetry about the half-
cycle point and the process was completed using 330 columns. The non-
integral columns per cycle for the highest frequency term caused no
particular difficulty. At columns 110 and 550 a value 36.487 was found.
The peak occurs at columm 330 with the value 37.92.

Equation (A8) may be regarded as having two parts. The denominator
gives rise to a -3 slope on a log-log plot., The remsining problem is to
locate this -3 slope so that tengency with the cyeclic numerator is ob-
tained. The numerator will have a -3 slope (on a log-log plot) at the
points of tangency. Proceed by setting

d (1o*6)
d leg, F

-3 (a18)
I 4 (¢ |
Wl%noe "dF (c'a) dF = -3

-
——
-

f'-logwe - dF

4
F aF (lo a)
(o*a) > (#19)

Substitution of Eq. (A6) for G leads to
-3 = F 10 [-0.466 28 sin 23F +1.266-2.2 sin 22 F

+3.7:0.75 sin0.15F +18.16-0.3sn 0.3 F
-22.66:0,15 sino.18 F]

< 104[0.4—66 cos 2.8F —~(.266¢cos 2.2 F
~3.7 cos 0.T5F -[8.16 cos 0.3 F

+22.6b cos 0.15 F:[ (420)

2- = (1.3048 sin 23F ~27352 5in 2.2F ~2.775 Sin0TF
-5443 sin 0.3F +2.399 sin 0.15F )+ (0,446 cos 2.8F

1266 6522 F 3705075 F 4516605 0.3F+22.66 C630.15F) (221)
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The equality of interest is, as already established, in the region

F = LS% = 20 = 62.83185 (A22)
Trial and error yields the approximation
F = 63.5748 (423)

For F = 63.5748, Eq. (A8) gives

*,. = =
|e (jw) lF:b3.574-8 =449 = +3.22 db (a2k)

The next point of tangency occurs one cycle later or for

F = 63.5748 + 125.6637 = 189.2385 (A25)

at which
: -2
8" (jw l = 5495:10 = -25.20db

| &6 e 159,238 (426)
The high-frequency asymptote crosses unity gain at

F3 = 37.2371»5.104 = .37237&5-106

F = T71.9%

® = 7.194.10"3 (A27)

Therefore, the equation of the high-frequency asymptote is

4 -
o - 37.237-10° _ 37.237-49_8
F >00 E> w> (428)
The low-frequency asymptote intersects the high-frequency asymptote at

&% (jw)
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4e-3\3 1 -4
(7194 (10%) ] = 3.62°(0 (A29)

F= 2.84
The function, as given by Eq. (A8), and the asymptotes, as given by
Eq. (A1l) and Eq. (A28), are plotted in Fig. 6.

The high-frequency asymptotic slope of -3 results from the three
derivatives in the approximation process. If, instead of one deriva-
tive before the broken-line approximation, two derivatives had been
taken, then the high-frequency asymptotic slope would have been -lk.
Clearly, since the final high-frequency slope is a function of the
total number of derivatives taken, the actual slope has no significance.
In looking at the entire curve of Fig. 6 then, one must keep in mind
that the relative accuracy is highest at the low-frequency end and
drops to zero as the final slope is reached. Since servo systems with
greater than -2 slope (through unity gain) become unstable, sufficient
accuracy for the present purposes is provided in Fig. 6.
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