NELIAC-N

A TUTORIAL REPORT

J. W. Kallander
Applied Mathematics Staff
Office of Director of Research
U.S. Naval Research Laboratory
and

R. M. Thatcher

U.S. Naval Post Graduate School
Monterey, California

June 17, 1963

U. S. NAVAL RESEARCH LABORATORY
Washington, D.C.

NRL Report 5976

NAREC Reference 29 E;‘ji

Ir 1

rFUTTALN

NAREC REFERENCE #29

PREFACE

The purpose of this document is to describe in detail
the syntex of the U, S, Naval Research Laboratory NAREC
version of the NELJIAC language; namely, NELIAC-N, This
version of the KELIAC compiler was written by Charles A,
Tapella of the U, S, Havy Electronics Laboratory, San Diego,
California, and John W, Kallander of NRL, was obtained
through the courtesy of Dr, Maurice H, Halstead, Head,
Computing Center, NEL, and was implemented on the NAREC by
John W, Kazllander. NELIAC-N is based on and is very similar
to NELIAC-T-1604,

This document is tutorisl in nature and is not intended
to be definitive of NELIAC-N, The report 'The KELIAC Com-
piler Language, U, S. Naval Postgraduate School CDC-1604
Vewrsion', was written by Richard M, Thatcher, Department of
Jperations Research, USHNPGS, Monterey, California, and
published by the USNPGS in January 198563, This CDC-1604
Version Report has beer rewritten to pertain to NELIAC-N and
expanded by John W, Kallander of the Research Computation
Center, NRL, and the result is this document, An additional

report defining NELIAC-N will be issued at a later date,

SAFTITLLAUTALUN

(
S

5

NAREC REFEREKCE #29, p.2™

-

I
“
L]
C

v

»
P
&

However, this tutorial report should be studied in detail by
any person considering programming in NELIAC-N, and should be
thoroughly understood before using the definitive report which
will follow,

Dr, Halstead's published book Machine-Independent Computer

Programming (Spartan Books, Washington, D.C., 1962) describes

the basic NELIAC language, provides guidance in developing
compiler programs and contains much interesting background re-
garding HELIAC that could not be included in this description
of the NELIAC language as implemented on a particular computer,
It is desirable; although not necessary, that the user of this
document rcad through the first three chapters of Dr, Halstead's
book before, or concurrently with, studying this more detailed
work.

Credit is due Sidney W, and Catherine B, FPorter, Comput-
ing Center, NEL, for writing NELIAC 1604-N, the intermediate
compiler used to debug NELIAC-N to the peoint of self-compila-
tion; to Maurice Brinkman, RCC, NRL, for his considerable and
prolonged zid while debugging the compiler and tyaining NRL's
programmers and scientists in the use of NELIAC-K; and to
Mrs, Elizabeth Wald, also of the RCC, for writing the NELIAC-N

Library of Functiions.

ii

NAREC REFERENCE #29

Much credit also must be extended to Mrs, Rose Skinner,
Branch Secretary, RCC, for typing and correcting the compiler
flowcharts through all of its numerous recompilations, for
typing the extensive group of test programs necessary to
raising the NELIAC-N compiler to its present level of develop-

ment, and for typing this entire manuscript,

Richard M, Thatcher
Dept, of Operations Research

U, S, Naval Postgraduate School

John W, Kallander
Research Computation Center
U, S, Naval Research Laboratory

April 1963

iii

AT ITLAAUIALA

TABLE OF CONTENTS
CHAPTER

I, INTRODUCTION
Characters of the NELIAC Language
General Programming Rules
NELIAC Program Structure (Genersl)
NELIAC Flowchart
Comments

ALGOL V¥Yords

II. THE STORAGE PART
Definition of Names
Constants and Variables
Dimensioning Fixed Point Variables
Dimensioning Flozting Point Variables

Hexadecimal Hotation

11T, ARITHHETIC OPERATIONS
Bagsic Jperations
Hierarchy of Arithmetic Operstions

Examples of Arithmetic Statements

Fixed and Floating Point Packages

PAGE

ATITITroUTALN

TABLE OF CONTENTS (continued)

CHAPTER

Iv,

VI,

. VII,

TRANSFER OF CONTROL
Normal Jumps

Subroutines and Return Jumps .

DECISIONS
Comparison Statements
Nested Decisions

Boolean Jperators

SUBSCRIPTED VARIABLES
Subscripted Straight Jumps

Subscript Package

LOOP CONTROL .

VIII, FUNCTIONS

e

IX,

PROGRAM STRUCTURE

Computer Space Limitations

PARTIAL LOCATION OPERANDS (Bit Handling)
Part Variable Jdperands

Part Location Variables

vi

o
o
[}
&

31
37
33

36
3€
2
ql

L6
49
50

81

I oUTALn

T

3

1

TABLE OF CONTENTS (continued)

CHAPTER

XI, OUTPUT STATEMENTS
Print Variables
Literals
Complete Output Statements

I0 Package

XII, ADDRESSES OF NAMES

Absolute Addresses

XIII, LIBRARY OF FUNCTIONS

Library Package
XIV, MACHINE LANGUAGE CbDING
XV, PARALLEL NAMES
XVI, DIAGNOSTICS AND DUMPS

AFPENDIX A Summary of the NELIAC OJOperastor Symbols

8

APPENDIX B - NELIAC-N Dimensioning Statement

APPENDIX C -~ NELIAC-N Forbidden Names

APPENDIX D - NELIAC-N Coding Sheet
E

APPENDIX - NELIAC-N Operator Instruction Sheet

vii

PAGE

10k
105

108
113

114

119

121

130
136
137
139
140

ST T ITLoUTAMN

ABSTRACT

This report contains a tutorial descrip-
tion of NELIAC-N, the version of the NELIAC
language implemented on the NAREC by means of
the NELIAC-N compiler, NELIAC is a problem-
oriented, machine-independent programming lang-
uage which enables programmers, scientists, and
engineers to write their programs in a2 mathemat-
ical language rather than requiring an actual
machine language or an assembly language, NELIAC
thus minimizes the knowledge of the actual com-
puter required by the programmer, maximizes the
readability of the programs themselves, and pro-
vides carry-over value of programs from one com-
puter to another,

PROBLEM STATUS

This is an interim report; work on this
problem is continuing,

AUTHORIZATION

NRL Problem B0OZ-03B
Project RR 003-09-471-5101

Manuscript submitted May 31, 1963,

viii

ATTITAoUTIAMA

NAREC REFEEENCE 2@

NELJAC-N, A TUTORIAL REFORT

I, INTRODUCTION

A NELIAC program is a means of expressing 2
computer problem in terms much closer to zn algebraic
language then the detaziled step-by-step instructions
of zctuzl mschinz language. A program written in the
NELIAC language is comprised of statements and proper
punctuation. This langusge is interpreted gnd trans-
lated by the NELIAC compiler which gensrstes the actual
machine instructions or object program understood by 2
computer, Jne must, therefore, adhere gtrictly to the
rules of the lsnguage =3 each statement, setyoff by
proper punctustion, has definite significance to the

compiler,

W29, ma

AT 3T A oUTAMA

NAREC REFERENCE #29, p.2

CHARACTERS OF THE NELIAC LANGUAGE

The NELIAC vocabulary is constructed from the following

symbols:.

THE NELIAC CHARACTER SET
1234567890
abcdefghijklmnopgrstuvwzxysz
ABCDEFGHIJKLMNOPQRSTUVWIXYZ
3 5 ° e
(YD 1114

+ - %/ 1> |

Although the uses of the characters are described in detail
later in this document, it might be well to note here the
names of the last 26 of them:

s Comma

Semicolon

Xl

Colon
o Period
() Left and right parentheses

[] Left and right brackets

NR#29, p.2

AT 3T A rAUTALA

NAREC REFERENCE #29, p.3

if’ Left and right braces
+ Plus

- Minus

* Multiply

/ Divide

3 Exponent sign, or Up arrow
> Arrow, or Right arrow
| Absolute sign

= Egual

Not equal

< Less than

> Greater than

Less than or equal to

AN\

Greater than or egqual to

s

U Or
N And
lexi sign

Statements, each denoting a specific action, are built from

this character set into a NELIAC program,

GENERAL FROGRAMMING RULES

All computer programs require part of the computer

memory for storage of numerical values pertinent to the

NR#29, p.3

AT YIS rUTALA

NAREC REFERENCE #25, p.k4

problem, These memory locations are used by the program in
the sense that the program obtains values from them in order
to perform indicated operations on them, These memory loca-
tions are set by the program in the sense that the program
stores intermediate and final results of computation into
them, Thus, any program can be broken intoc two parts: the

storage part and the operating, or program logic, part,

When a programmer writes a program in compiler language
he must tell the compiler what the storage requirements will
be. The compiler autometically handles the problem of de-
ciding which locations of memory will actually be used for
storage., In the NELIAC language, storage requirements are
specified by the programmer by making up identifiers or
names to which the compiler program will automatically
assign memory locations. Throughout a given program;, any
name, once assigned, will refer to the same memory location
or group of memory locations, An exception to this rule
(namely, temporary or loczl nzmes) will be explained later,
The numerical values contained by these memory locations are
then referenced by name in the program logic part where
dynamic operations are indicated, Consider the following

example:

NR#:

9]
(e}

Pl

%

AT AT AUIAUN

S

NAREC REFERENCE #28, p.5

Alpgebraic Eguation HELIAC Statement

A+B=2C s &5+ B = C |

4
The slgebraic equation states that the value of A is added

to the velue of B, This sum isg equivalent to the vsliue of
C. The RELIAC statement is more dynemic in that 2 certain
zction is implied by the right arrow, This right srrow is

a store operator; thus, the value in the memory location

ST ITALAUTTIALA

referenced by the nzme A is added to the value referenced by

the name B and the sum iz stored into the memory location

named C. That the store operator is not eguivsient to the

eguzl sign can be seen from the following exsmple:

, A2 + 1 = A2,

The NELIAC statement says to add one to the value in the
location referenced by the name A2, This sum is {0 be Come
puted and stored back intc the location referenced by AZ

thereby replacing the old value by the new,

NR#29, p.5

NAREC REFERENCE #29, p.6

NELIAC PROGRAM STRUCTURE (General)

AIZTITLLUTIALMA

The two parts of a computer program, the storage part

and the operating part, are handled in NELIAC by the dimen=-

sioning statement (or noun list) and the program logic (or

body of the program), respectively,

In the dimensioning statement, the programmer specifies
storage requirements by making up names to which the compiler
will assign storage locations, Each location so named is
called a variable since it is possible for the program to
change its value, A group of memory locations to which the
programmer assigns only one name is defined as a tzble (of
variables), also called an array (a one-dimensional array
usually being refe:red to 2s a list), Later in this docu-
ment it will be seen how the programmer may assign a name
to part (i.e., certain bits) of a memory location or in the
case of a table (array or list), how he may assign a2 nzme
to the same part of each location of the table., Each pert-
memory location so named then becomes & variable, In the
dimensioning statement the programmer also zssigns initial
values and specifies the mode and number formazt of cach
variable and indicates output formats for variables whosze

values are to be printéd°

NR#29, p.6

NAREC REFERENCE #29, p.7

The program logic is the operating part of the program
which indicates the sequence of dynamic operations to be per-
formed. Basic to the structure of the program logic are the
statements of which it is comprised. Comparable to ordinary
English, statements of program logic are set off by punctua-
tion symbols of which there are 5:

» Comma

Semi-colon

Colon

e

. Period

.« Double Period
the double period being used only to indicate the end of the
program logic part and, hence, the end of the flowchart (or
subprogram), Following is an example of two statements which

might be used to compute the expression

and store the result into location G:
s A¥B->H, (H+C)/ (H-2*%CC) - @G,

This is not a complete program, however. Only part of the

program logic is illustrated above, Every name used by

NR#‘LQQJ pa7

AT ITroUTIALAN

NAREC REFERENCE #29, p.8

these statements must be defined beforehand or later in a

dimensioning statement (or in a function definition). A

complete flowchart to perform this simple task for specified

values of A, B, and C might be as follows:

e e e e s ettt e S e

o
LAY
L 3

COMPUTE :

A * B > H,
(H+C)/ (H-2%C)~G,

Load Number signifying the beginning of
the flowchart to the compiler,

Dimensioning Statement: Initial values
are specified and names assigned to each
memory location, Note that locations are
allocated and given an initial value of
zero when initial values are not speci-
field, A final comma in the dimensioning
statement is normally omitted since the
semicolon also functions as this comma.,

The first semicolon indicates the begin-
ning of the operational portion of the
flowchart,

COMPUTE is the name of this flowchart,
This type of statement is called a defin-
ition or label.

ogram logic: A strict left to right
flow is followed., Spacings, indentations,
blank lines do not alter the flowchart in
any way (except in the case of the ALGOL
words which will be explained later), A
final comma in the program logic is norm-
ally omitted since the double period also
functions as this comma (except for sub-
routine and function calls).

P TOg s

The double period indicates the end of
the flowchart,

NR’#292 P98

AT ITOLUTAMNA

NAREC REFERENCE #29, 1,9

NELIAC FLOWCHART

Although a NELIAC program may consist of a single
dimensioning statement followed by a single block of pro-
gram logic and, indeed, short NELIAC programs are written
in this form, it is very convenient and, at times, abso-
lutely necessary, to be able to write programs &s a series
of subprograms called flowcharts, each of these flowcharts
having the form of a NELIAC program; i.e., a dimensioning
statement followed by the program logic, All of the sub-
programs or flowcharts comprising a single NELIAC program
are compiled together in a single compiler sweep in an

order determined by the programmer just as if the entire

program were written as a single unit, Hence, a programmer

may write and check out a long program as several independ-

ent units; in fact, the flowchart concept makes feasible

the compilation. of long and difficult programs whose various

subprograms have been written and checked out by different
programmers, In addition, the flowchart concept makes the
correction of program units, the substitution of new units
for old units, and even the addition and removal of units,
a trivial procedure, Finally, the finite memory space of

any computer requires that very long NELIAC programs (more

NR#29, p.9

AT ITcouTALA

NAREC REFERENCE #29, p.10

than ten to fifteen double-spaced typed pages in the case of
the NAREC) b» written as two or more separate flowcharts;
although, even here, the number, size, and arrangement of the
flowcharts is still entirely up to the programmer's discre-
tion subject solely to the limitation that no flowchart

exceeds the maximum length dictated by a computer memory size.

Inasmuch as the structure of and the language used in
each of these subprograms are identical to the structure and
language of a program written as a single NELIAC unit (or
flowchart), the programmer need only consider a program as
consisting of a single unit throughout most of this document,
Toward the end of the document, he will see how the exten-
sion of everything he has learned about the NELIAC language
and the NELIAC program naturally applies to multiple-unit

programs,

COMMENTS

It is often helpful to insert comments in English to
the NELIAC language in order to clarify the meaning of the
program to the reader, This capability is provided by
NELIAC-N according to the following rules:

1. Enclose the comment in parentheses,

NR#292 pa‘BO

AT T L oUTIAMA

2.

EXAMPLE:

NAREC REFERENCE #29, p.11

A colon must be placed as the next operator after
the left parenthesis, The colon may be placed
immediately after the parenthesis, or any word or
phrase which meets the NELIAC definition of a
name may be inserted between them. The word

*

COMMENT is customarily inserted here,

Any words, numbers, or symbols may be included in

the comment with the exception of the right paren-
thesis which signals the end of the comment and the
double period (..,) which signals the end of the
flowchart to the compiler,

Comments may be inserted between any two statemonts
of the dimensioning statement or the program logic,
Normal punctuation should either precede or follow

the parentheses.

» A > B, (COMMENT: A - B means to store the
current value of location A into

location B,)

Of course, comments are meant to be an aid only to the

reader of the program and have no meaning whatsoever to the

compiler,

NR#299 poTT

NAREC REFERENCE #29, p.72

AT IToAUTAUA

ALGOL WORDS

In addition to the ALGOL word COMMENT, whose use has
been described in the preceding section, NELIAC also pro-
vides, in a slightly different sense, for the use of the
ALGOL words

GO TO

DO

IF

IF NOT,
and, FOR

to descrigg (but not define or specify as in ALGOL) certain

procedures in the flowchart. These five words (or word
phrases) when written as above: i.e,, when set off by spac-
ing except IF NOT, which must be immediately followed by
a comma (which may or may not be preceded by spacing). and
with internal spacing in GO TO and 1IF NOT, are known,

in NELIAC, as ALGOL words and have special significance in
the flowchart, They are parenthetical to the compiler;
i,e,, they are completely ignored by the compiler {(except
when inserted within a double period). As such, they may be
used to describe certain procedures in the printed copy of
the flowchart, However, just as it is certain operator com-
binations which determine (or define) a comment, the word
CCOMMENT having no meaning (if used at all), it is certain

NR#29, p.12

NAREC REFERENCE #2¢, p.13

operator combinations, and only these operator combinations,
which determine these procedures, the descriptive ALGOL
words having no meaning (if used at all) to the compiler,

The sole function of these words is to improve the reada-
bility of the printed copy of the flowchart, In fact, the
compiler will completely ignore these words no matter where
they are used in the‘pfogram (except within a double period).
The use.ofvthe individual parenthetical words will be descri-~

bed as the procedures to which they apply are defined,

HqWevers if any of these character combinations are
used without the spacing (multiple spaces being equivalent
to a siﬂgle space) described above in their definitions,
the character sequence will be considered;, not as an ALGJL
word to be ignored, but as a bona fide part of the program.
Hence, these character combinations may be used as portions
of names defined by the programmer, It should be borne in
mind that spacings; indentations, and blank lines may alter
a NELIAC program only in the possible determination of these

ALGOL words,

NR#299 po??’

v ALa

L5 B A B A

11, THE STORAGE PART

DEFINITION OF NAMES

NAREC REFERENCE #2929, p.li

Names are the means by which the programmer refers to

and manipulates the quantities in which he is interested in

NELIAC brograms0 In particularg
programmer is assigned a cell or
memory (or part cell in the case
names are divided into two ma jor
Nouns are those names defined in
ment of the flowchart and of the

Verbs are those names defined in

each name defined by the
location in the computer
of partial words)., NELIAC
classes: nouns and verbs,
the dimensioning state-
function definitions,

the program logic (exclud-

ing the dimensioning statements of function definitions)

and, as will be seen later, are actually labels or names

of procédureso The rules of formation of all names whether

nouns or verbs are the same and will be given here although

only the definition and usage of

nouns will be discussed.

At the time the definition and usage of the various verbs

are discussed, it should be borne in mind that the genersl

rules of formation of NELIAC names given here apply to verbs

also,

NR#EQ:) ponﬂ‘a‘

by

NABREC REFERENCE /29,p.0%

ﬁogna are the mzans by which a programmer writing in
NELIAC qontrols the use of computer memory locztions for
ztorage, He assigns a name (specificzlly, 2 noun) to ezch
single memory location, each group of memory locations., to
each pa;twmemory location or to each groupr of psrt-memory
locatio;s used for storage. The name itself is left to the
imaginaﬁion of the programmer limited only in that it must
begin with a letfer of the alphabet, must contzin only
letters, spaces, and numbers, and must be uniguely deter-
mined within its first 16 characters excluding spaces and
ALGOL wqrdso Capital and lower-case letters are inter-
changesble and may therefore be used at the discretion of
the writsr, Single letters, with the exception of I, J,
I, i, end N, are permissible names, "lhese letters - I,
J, ¥, I, i, and N - when standing slone refer to the six
index registers which are always automaticzlly availzble ss
fixed-point, full=word integers hzving four hexadecimn}
digit JO formzt and which, consecuently, must never be
dimensioned (except as temporary names or as dummy pareme-
ters in function definitions, both of which will be explsin-
2d later}., Other names used by the compiler will be dis-
cunged in the approoriste chapters and zre listed in

Appendix C,

NR#29, p.'5

NAREC REFERENCE #29,p.16

Examples of legal NELIAC names:

Q
MA 10

INTEGRAL

L2350 HL 543

BEGINNING OF FLOWCHARTS
FORMULA

COMMENT

CONSTANTS AND VARIABLES

A constant is a value not defined by name in the
dimensioning statement but written explicitly in the

program logic, Note the example:
A2 + 7 > A2

where 1 is the stated constant, A constant is thus dis-
tinguished from a variable, the latter being defined in the
dimensioning statement and referenced by name throughout

the program logic, A variable may or may not actually change

its value during the operation of the program,

All numbers in NELIAC may be written in either one of
two modes, fixed pocint integer or floating point format.
Floating point numbers differ from fixed point in allowing
for decimal fractions as well as integers, and, therefore,
much greater accuracy in computation without requiring

scaling. These numbers are commonly and easily used in

NR#2S, p.i6

AITITeLUTIALA

NAREC REFLALKCS #29, p.o7

computer problems zs the zlignment of decim:l ioints during

computation is handled zutomatically,

Following are examples of fixed peint conztants written

within the program logic,

- 10 > A,

25 - D~ C ,

A - W76 > X,
B/(“'B)'}Y‘g

w v w W

in expressing = floating point constant within the progrem

logic, 2 decimgl point must distinguish it from a fixed

soint value., As mechine orerstions on the two modes, fixed
point and floating point, are guite dissimilier, cars must
be taken to aveid mixing modes in arithmetic or store opers-
tions, The exsmples following illustrate the use of legsl
floating point constants, (Note: The last exsmple s an

illegal stutement using nixed modes,)

s

5 A .

5 2

P -y -

s -» TOLERANCE,

, 5 « 10,0 =+ G, (COMMENT: JL1LECGAL STATIIENT)

| Tho last exsmnle, legalized, might read

3 500 }Oeo -* c" 3

NE#29, p.17

1Y

AT TT A UTIALA

e
o
By
b3

3
O
et
:*)
*r
’f“:

R e
PIERCE F29, poib

¥Yor numbers less than one in absolute value, a zero must

be written before the decimel point,

The constant zero; whether fixed or flozting point,

must always be written as 0 in logic.

DIMENS IONING FIXED POINT VARIABLES

Thé initial Values of variables to be used in s pro-
gram are set in the d1mens1on1ng statement, and names are
defined by which they may be referenced, Throughout the
nrogram logic, variables are treated either as fixed point
or flozting point numbers according toc the method by which
they are defined in the dimensioning statemont, Once a
variable has been dimensioned there is no way whatsocever
of changing its mode or format, In particular storing a
number 6r variable into another varisble of the opposite
mode will place the current representstion of this number

or veriable into the varizble but will not chsnge the mods

ci the latrer variable, Hence, it is strictly forbidden,
Enxsmple 4 illustretes legul definditiouns of verizblez having
cacimet fixvdepoint numbers 2o initield valuss,
Example a:
R OF SAMFLTS = 25 ,
ALPHA = - 11

BiTa = 843
GAMMA ,

;ni ,
37,

NR#29, p,.i8

NAREC REFERENCE #29, p.19

Any unigue name followed by an equals sign and the value of a
decimal fixed point number is sufficient for defining a
variable of that name with initial value equal to the given
number, IEach definition must be separated by a2 comma, If

a fixed point variable is to be given an initial value of
zero, the name followed by a2 comma is sufficient, Numbers
are treated as positive unless preceded by a minus sign., In
fact, in the dimensioning statement, a positive number may

not be preceded by the plus sign, but must be unsigned,

When defining a table of variables, the size or length
of this table also must be indicated, The number in paren-
theses immediately following a name indicates the number of
entries in the table, Irrespective of the mode associated
with the name, this list length must always be in unsigned
fixed point integer - either decimal or hexadecimal, After
the eguals sign the values of the initial entries, separated
by commas, are written, Suppose a table is to contain five
variables, Then five memory locations of the computer must
be allocated, The following example defines such a table of

fixed point numbers called TAB X,

TAB X (5) = 5, 2459 85: =35 83

NR#29, p.19

AZTITLLOUTALLA

NAREC REFERENCE #29, p.20

As shall be studied in detail later, individual values of
the table may be called upon in the program logic through
subscripting of a single name, in this case, TAB X, Inv
mathematical notation, a subscript usually is written as a
small character below the line; e.g., TAB XD tn indicate
the first entry of the table, in this instahce, to reference
the location containing the value 5, TAB X? would refer to
the second entry, (the value 45), etc, In the NELIAC
language subscripting is indicated by the use of brackets
around the subscript in the following manner: TAB X [0,
TAB X [1], TAB X [2], etc, As subscripting in NELIAC begins
with zero, not one, TAB X [3] refers to the fourth entry of
the table which (above) contains a value of -3, Since the
name TAB X without subscript references the first entry of
the table, the use of the notation TAB X [0] is redundant,
but it is nonetheless legal,

Note, in the following example, that twenty-five
locations are allocated for a table named XCOORD, but only

five fixed-point initial values of the table are specified.
XCOORD (25) = 10, 5, -8, 3, 2,

The remaining locations of table XCOORD;, since initial

values are not explicitly specified, will contain zero

NR#29, p.20

LUTALTA

NAREC REFERENCE #29, p.21

quantities, The definition of an entire table with

initial values of zero is written; e.g., as
PMATRIX (100),

One hundréd memOryblocations are thus reserved for one
hundred fixed point’integer values which may be computed
and stored into these locations during operation of the

program,

vZeroes maj be dimensioned implicitly in any cell of a
table;by the'pfqpervuse.of punctuation, In the example
beiow;‘pért of fhé'fable.inifially contains zero quanti-
ties, Of course, the zeroes may also be stated

éXplicitly; .

| XMATRIX (9) = 5, 6, T,
’ "3: 14;9
s s 2,

In NELIAC5N; the range of fixed point integers which
may‘be,expliéitly represented is from -(10]3-1) through
(10]?-1) inc1usive although NELIAC-N will handle integers
which arisé in éélculations up to the range‘-(244-1)

through (2 -1) inclusive,

NR’#299 p021

LoUTIALA

3T 17

NAREC REFERENCE #29,p.22

DIMENS IONING FLOATING POINT VARIABLES

Initial floating point values are assigned in the
dimensioning statement in much the same manner as fixed
point values, The essential difference is that floating
point numbers are characterized either by a non-leading
decimal point in the number and/or by multiplying the
number by a power of ten, the ten being only implicitly

stated, (See section headed Constants and Variables for

examples of the proper floating point notation of constants

in the program logic, All forms of floating point'ﬁumbers
given bélow for dimensioning are valid forms for use in
the pfogram logic with the single exception of the form

(number without a decimal point) * (exponent),)

For‘example, the number 500 is written in scientific
notation as 5 ¢ 10°, In the NELIAC dimensioning state-
ment, this number might be written as 5 ¥ 2, This number
may also be written as 50,0 *¥ 1 (implying 50,0 - 701),
or as 5000.0 * -1, 5, * 2, 500,, 500,0, etc,, Numbers
of very small or large maghitudes are thus conveniently

written; e.g., the number 0,00005 is written in scientific

notation as 5 - 10’5, in the NELIAC dimensioning statement

- Nﬂ#egagpa%?

AT ITLLAUTIALNG

NAREC REFERENCE #09,p.23

as 5 ¥ -5, as an alternate form, The following example
illustrates proper dimensioning of floating point numbers:

HUNDRED = 100 * 0,

PI = 0,31416 * 1,

OMEGA = 4,25 % .3,

ZERO = 0 * O,

E = 2,7182818,

FIFTEEN = 15,,
A table of floating point values is defined in a manner
similar to a table of fixed point values: the defining
name followed by the number (in fixed point notation) of
entries in the table enclosed within parentheses., However,
the entries themselves must be written in floating point
notation,

. FLTING TABLE (5) = 5 * 3, 1,23,

: 0.34, 4,2 *¥ 0,
10.8 * ".',
In the matfer of sign, the exponent of a floating

point number differs from all numbers in that the suppres;
sion'of the plus sign is not required; e.g.

FLL NUMBER

5 % 6,
or FL NUMBER = 5 * 406,

([

NR#29, p.23

AT AT L LUTALN

NAREC REFERENCE #29,p.24

A table, initially zero, later to be filled by the
program with computed floating point values may be defined
in the following manner:

T TAB (25) = Q0 # 0,
or

T TAB (25) = 0,0,
Because of this definition any variable referenced in the
program logic by the name T TAB and a subscript (which may
be implied for T TAB [0]}, will be treated as a floating

point variable,

Likewise, a pericd after a2 name or an array will
define the name or array as floating point with initially
Zero value or vslues:

ZERG,

T TAB (25),
In the case where such a definition is the last definition
in a dimensioning statement, both the period and semi-

ceolon are reguired,

The range of floating point numbers in NELIAC-N is

-231 +307

from 10 through 10 with characteristics of 35 bit

significance (10 decimal places}),

NI IS L LUTAMSG

NAREC REFERENCE #29,p.25

HEXADEC IMAL NOTATION

A number formzt conveniently used by & programmer in
any p irt of the progr*m is that of hexadecimzl notation,
Hexadec1me1 numbergvln the computer are handled zs fixed
poiﬁfgiﬁfegérS andfiheKEQIEC;Nkare disfinguished from
decimai'fixed'pOint’infegeis bY‘" preceding hexi sign.
Henee, one defines hexade01ma1 nﬁmber¢ in the dimensioning

statement as 111ustrated;1n'the xamples below:

HEYADECIMAL NR = #2ab7,

HASK 1= #7f feff £f,
HEXI TABLE (a) - #0628,
#EFEE,

NEG HEXI NRvm‘-#BAT,

',Hexede01mel 1nteger constantw_kre entered dlrectly in the
program 1og1c end used 1n arlthmetlc expressions in exactly

the eame mgnner ao de01ma1 1nteger constants:
é,'#7e3.+ B »'A s

The hexadeC1mel notatlon may be used for flxed point
1ntegere only, never for floetlng p01nt numbers, The hexa-
.'dec1ma1 1ntegere are slgned just as other numbers, i.e.:
.a DIUa elgn must be suppre"ﬁed, the minus 51gn immedistely

precedea the hexi sxgnb

NBE29, B, 25

NAREC REFERENCE #29, p,26
‘he range of hexadecimal integers when used as

4
numbers is from ”(2@4 -1}, through (E@ﬂ

=1}, inclusive,
However, NELIAC-N does accept 45 to 48 bit (12 hexs-

decimal digit} hexadecimsl numbers in the machine-langusge
sense of a NAREC word,

Appendix B is a flowchart illustrating the various

forms of dimensioning nouns availszble in NELIAC-N,

The
forms illustrsted zre typiczl dimensioning entries but

are, by no means, exhaustive of the various forms and
combinations available,

NAREC REFERENCE #29,p.27

115, ARITHMETYC OPERATIONS

BASIC OPERATIONS

“he basic arithmetic operations in NELIAC are denoted

by th

]

following symbols:

- Addition

't

- Subtraction

¥ Multiplication
/ Divisioun

¢ Exponentiation

L mathematical expression may be built up with any combina-
tion of these operators, and algebraic grouping may be as
compiex as desired, Every series of arithmetic operztions
ahewuld terminate with the storage of the result in either
s named variable or an index register by the use of a right
avraw or most terminate in a comparison, A NELIAC state-
ment is completed in this manner, and svery such statement
is terwinated by a comwma {or its eguivalent in special

2y, It must be remembered that the mode of the values

wned in say one expression must be consistent; i.e,, fixed
and fioating point variables and constants may not be mixed,
For exawmple, i1f a variable LOAD has been defined in the
dimerns ioning statement as a floating point varizble, then

the following statement would be illegal:

NB#29,p.27

AT ITLAUTIAMN

NAREC REFERENCE #29,p,z8
sLOAD + 5 - LOAD,

Nor should the result of a fixed point computation be
stored intc a floating point variable, For example, if
the name RESULT is dimensioned as a floating point vari-
able; and the name INTEGER references a fixed pcint

variable, then the following statement would be illegal:
s INTEGER / 5 = RESBULT,

The sole exception is the zercing of a floating point
location, If the name RESULT is dimensioned as a float-

ing point variable:
, 0 » RESULT,
i,e,; the representation of a fixed point zero is used.

In NELJAC-N, 2 statewent may terminate in a seguence
of store instructions, In faect, a2 store instruction need
not in itself terminate the series of aritbmetic opera-

tions since the store instructiconm and 211 five of the

arithmetie operations listed at the beginning of the chapter

are legal immediately after a stors instruction, An

example is:
A¥B-C>D>E+Fr2H-1I=»>J%K=>1L/M->N

&

N, p, 2R

AT XTI ALUTIAMDN
SETETELNY NG

HIVRAGRCHY OF ARITHMETIC OPLEATIGNS -

The hierarchy of opsretions conaists,

exronentistion, second, of multiplicstions in

zeruence from left to right, and, third, zdditions znd
subtrzoetions also in seguence from left to right., PYaren-

theses may be wsed to alter the scovewee of operstions as

roeeded, The only use for the crnonenviaztion sywbol iz to

multiciy or divide z fixed point weriabla by & posivive

2¢ In fgur, B ¥ 2 t 2 = B

A\

erithweticslly the contents ¢f B te
pluoas,

6f 2 oarid

4C<N, the notation E ¥ 1 5 - & rosults dn T

2

imeer (A8 bit) shift of ithe conteansts of B to the

'y places, The corrvaspondiog divigion potastion

ftor the foll register right shift,

s

Iollowing examples illustrate hiernre

Dl
et
[

ooergtions (2ll statements below zre iogsal

zrithme

HAREC REFERENCE #29,p.30

EFAMPLES OF ARITHMETIC STATEMENTS

NELIAC STATEMENT EGUIVALENT NI IAC STATEMEN!

IYA+B/C=>5, a+{B/C) >

v
‘o

A
-~
g

sk
=
r
¥

&

v

+ B/ C+ D %E->F, A+ (B/C)

o
o
;;«

-/ B=>Y, (4a%215)/,B-=>¥%,
| (L / B) /C =%,

e
g
e e g
\\
o]
~ .
Y O e
&
£

- . o (4 / B) ¥ C - &,

- P A - (B *®Cy+ &P,

" .

(2
My’
.
L]
w
#
a
o=

7YA/EB%¥D/C P, ((& / BY #1817/ C > P,

FIXED QNQ‘FLQATING POINT PACKAGES

In NELIAC- N, fixed point multiplication azn: division

je ~ecomplished through return jumps to the trroutines
MULTIPLY and ui1VIDD respectively, these subroutinoes belng
the fixed point packsge which is automstically comnited inTe

any progran revuil

ing it.

Likewise, floating point zdditien, subtrsetion, multi-
plication, and divizion are asccomplished through roturn
Jumps to F14DD, FI9UR, FIHUL; and FIDIV respectively in
the fiosting point package which is sutomatically compiled

into any program reguiring it,

Hence, use of thesze names must be svoided by the pro-

grommer since he Csan never be sure when either or both ol

e hils

these vacksgae will be celled 1nto a program conia

fiowchart, ‘ ‘
NE#22,0.30

ATIT IT L AUTAUN
[R R AT

NAREC REFERENCE #29,p.37 =

1V, TRANSFER OF CONTROL <

NORMAL JUMPS

In programming, certain conditions which necessitste

skipping over portions of the program to some other point

.of ‘entiy may_begmet within the program logic, 'This would

néqéséifaté transfer of control of the program tb g set of
-statements other than those continuing in naturalisequence@
It is necessary, therefore, to label or define that set of

’statements‘to which a Jjump is to be msde, This is accom-

ﬂfjpllshed by a<51gn1ng a name (Wthh is thus classed as a

‘ ;verb) preceded by pun@tuation and followcd by a colon to‘

any portion ef the program logic,

U, ADD: A% B+ ete....

-A;jump;to this segment of the program is specified by the
use of a period following the definitive name, A state-
?ment'such as
- ,ADD,
ﬂ_would 1mmed1ate1y tran&fer econtrol, or jump, to that portion
of the program so defined, in this case, A + B + .,,. The

HALGOL word GO TO described in Chapter I may'be'uséd for

‘descrlptlve clarlty in thc fiowchart, in which case the

NR#29,p .37

NAREC REFERENCE #29,p.32 re
abové-example becomes
, GO TO ADD,

As is the general case with ALGOL words used in NELIAC,
the GO TO is completely parenthetic, The jump is establish-

ed by the operator combination (punctuati@n)'NAMEo R

In the following example, a jump made to MULTIFLY
would execute every statement following, including those
, labelled COMPUTEo The natural sequence of the program is
"followedxunléss’otherwise specified by a jump statement,

, ON: NR PASSES -» CT PASSES,
MULTIPLY: A * (B + C) # D = &,
P#Qg->1,
' COMPUTE: (G * H) / (Y * Z) - 200,

The assignment of meaningful names to such NELIAC para-
graphs often gives greater coherence to a program even
though a jump to that name is not specified; this device
then becomes merely a labelling device which in itself does

not cause generation of machine instructions,

| NR#299p032‘

::::

NAREC REFERENCE #29,p.33 o

SUBROUTINES AND RETURN JUMPS .

In some cases a return jump is desirable; i.e., a
‘Jump is made fo a special segment of the program called
a subroutine.‘ After the subroutine has been executed,
control is to be feturned to the point of the program
logic immediately iollowing that from which the jump was

made,

- The namihg of a subroutine is familigr -=- any unique
name (which is thus classed as a verb) preceded by'
punctuation and followed by a colon «- ho@ever, the
limits of the subroutine must be defined by brgces. The
subroutine may be as long and complex as desired as long
as the limiting braces surround it; Héndé;}é éub}outihé
is easil& reébgnized by the sequences -pﬁﬂctuatiéﬁ,

name, colon, left brace, etc,
Example Qf a subroutine:
, GENERATE: | RAND, X ¥ Y > Z | .

To execute the statements within the braces, the sub- . -
routine must be called in the following manher (elsewhere

in the program logic):

» GENERATE,

NAREC REFERENCE #29,p.3%4

where the definitive name is followed by a comma (except
for a subroutine or function call ending an alternative
of a comparison, in which case the semicolon ending the
comparison customarily replaces the comma), indicating a

return Jjump fo the subroutine, The ALGOL word DO may be

used here for additional clarity in the printed copy, the
word DO, of course, being parenthetic, In this case the

preceding example becomes:
, DO GENERATE,

Notice, within the subroutine GENERATE, a call for
vanother subroutine, RAND, is made, After execution of the
statements which must be defined by RAND elsewhere in the
program, the value of X ¥ Y is stored into the variable Z,
and control is transferred back to any statements follow-

ing the call for GENERATE,

To avoid having the sequence of the main program logic
inadvertently flow into a subroutine, all subroutines are
customarily written at the end of flowcharts, It is

necessary to program jumps around such defined subroutines

NR#299 pe 31"’

NAREC REFERENCE #29,p.35

if they are placed in the way, An example will serve to

clarify this point,

, A+ B - C, CLEAR, NEXT,
CLEAR: | 0 » I > J>K-=>L->M=>N |
NEXT: C + D » E, etc,
In this example, A + B is stored into C, then the 6 index

registers I thru N are cleared to zero by calling'on the

CLEAR subroutine, Then in order to keep the program from
illegally trying to‘operate'the CLEAR subroutine as the
next sequence of instructions, it is necessary to jump.
around it to location NEXT, where C + D is stored into E,

ete,

It musf be noted that while any number of subroutines
may be called within another subroﬁtine (except the sub-
routine itself, of course), no subroutine may be defined

within another subroutine,

NR#299 p035

-z

AT ITLLUTAUNN
SIS D G

NAREC REFERENCE #29,p.36 @
V. DECISIONS ' . L

COMPARISON STATEMENTS

Comparispn statements are the means by‘which questions
may be asked regarding relative values of two or more
variables or bonstants° Almost‘any‘meaningful question may
be asked in the comparison statement by uSing tﬁe'following

comparison operators:
<>=# <2

Basic comparison statements are illustrated belqw. Note

the colon must end the comparison statement,

B i
VAN A
DWW ww

v e % 0 v

These operators may be joined in the general form
s, A<BC(C#Dete, : o -
where the comparison Statement has its usual mathematical
meaning, This usage will be deécribed'iﬁ mdré‘détai1 :

later in this' chapter, Immediately following the question

NAREC REFERENCE #29,p.37 o

(comparison statement) two alternatives are written., The e
first alternative will be operated if the answer to the

question is true; the second, if the answer is false,

. COMPARISON STATEMENT FIRST ALTERNATIVE SECOND ALTERNATIVE

A=B: TRUE ; | FALSE ;

An alternative.may consist of one or more statements, the
last of which is terminated by a semicolon (or.a period)
rather than a comma to indicate the énd of the alternative
as well as the end of a statement, Unless an alternative
itself breaks up the normal\sequence of the program logiqll
by specifyingia normal jump to some other.part of the
program logic, the statement following=thé‘false ($ecopd)
alternative will be operated neﬁto Cohsidef the féllowihg»

examples:

C>E, I1+1>1;

Here, a comparison is made: if the value in C is
greater than or equal to that of D, then éxecute the true
alternative which stores the value in A times the value

in C into location E and adds 1 to index I, If the value

| [\

NR#29,p.37

NAREC REFERENCE #29,p.38

of C is less than that of D, execute the false alternative
which stores the value in B times the wvalue in C into
location E, In either case, continue by executing the
statement following the false alternative which adds 7 to

COUNT, etc,

In order to make the NELIAC program easier to read,
the ALGOL words IF and IF NOT, , parenthetic as always,
may be added to the comparison statement complex (See

Chapter I), For instance, the last example may be written:

D: A®C=+E, I+171=>1;

s IF C 3
IF NOT, B ¥ C > E
COUNT + 7 - COUNT ,

These words do not add any meaning to the program, however,

and are ignored by the compiler during compilation,

Constants and the index registers of the compiler also
may be used on either side of a comparison statement,
Again, however, care must be takep to‘avoid comparing fixed
point values with floating point ones, Algebraic grouping
may be as complex as desired omn the left hand side of a
comparison statement, but the right hand side must consist
of a single unsigned variable (which may be subscripted

and/or bit-handled as explained later) or an unsigned

NR#28,p.38

NAREC REFERENCE #29,p.39 o
constant, Thus, the following statement is legal: T
(A + B) / C> D: TRUE; FALSE;
while a case such as

(COMMENT: ILLEGAL STATEMENT)

D¢ (A+ B) / C: TRUE; FALSE;
is illegal. Note, in the case of comparison statements,
the result of an algebraic expression islnbt necessarily

stored into a variable although it may be:
(A + B) / C~> X > D: TRUE; FALSE;

Return jumps and unconditional jumps are legal commands
within either alternative, _In the case where unconditional
jumps are made, the period instead of a semi-colon will end

either the true or the false statement, Examples:

AS>B START. END,

e

A#¥ B

o0

c-»>D, 5,0+ E- F, BEGIN,
RAND, 1 + J » J, FINISH;

Notice how the return jump made to the subroutine FINISH
is indicated as FINISH; Though FINISH,: is not in error,

-the comma would be redundant in this case.

NR#29,p.39

NAREC REFERENCE #29,p,40

Another illustration of the comparison statement:
Suppose it is desired to set Y to one of 3 values accord-
ing to the following criteria:

8.72 if 0.0 ¢ X < 10,9
Y=16.19 if 10.9 ¢ X < 21,6
24.07 ~for any other value of X
Then, the prbgram is to continue by'transferring control
‘to MORE. A NELIAC solution might be:

9 : ONE, MORE, ;
21,6 : TWO; THREE; MORE,
Y

" The above solution is by way of illustrat1on. Péfhaps a

better solut&on would be:

as described in the-next‘section; NESTED DECISIONS¢
v : ,
: e T) = , VR T :

. ‘ / ‘ '
NR#29 ,p.40

NAREC REFERENCE #29,p.41

TITAAUTAMA

Note that it is always mandatory to indicate the end
of each alternative. with either a p‘eriod or a semicolon

once a comparison statement is written,

If nothing is to be done within a single alternative,
a semicolon suffices to indicate continuation of the

sequence of the program, Example:
AC; ; X=>2; Y- H,

In the case that the relationship in the above
example is true, no statements are executed and the
sequence of the program continues with the value of Y
being stored into H, ‘If any part of the relationship is
false, X is stored into Z and the sequence continued with Y
being stored into H, The situstion may be reversed ahd

nothing done if the relationship is false,
Example:
AC: X»Z;; Y ->H,

In all cases, the termination of eachalternative must be
indicated by either the use of a semi-colon or a period,
The number of statements used in either alternative is un-

restricted,

NR#29, p. 41

NAREC REFERENCE #29,p,42 -

NESTED DECISIONS

Decisions may be nesteu w.thin other decisions. Note

the following example:
S, LOLIMIT < XCOORD:
RAND, X » MSW PROB:
5 = MINETABLE°
-1 ¢'MINETABLE;;
NULL - MINETABLE;

Begin with the compariscon LOLIMIT < XCOGRP. lIf the
relationship is true the statements of lines 2, 3, and 4
will be executed; if false, the statement of line 5 will
be executed, Within the first true alternati#e is a
return jump to the subroutine RAND and another dec¢ision,
The true and'false alternatives for this SeCOnd cbmparison
are merely dlstﬁnguished by semi-colons, With nested
decisions, care must be taken to 1nsure that a second

ccmparison is cmmpleﬁed within a single alternative of the

first comparisono

In order to improve readability in Writihg comparisons,
the convention that successive ccmparisons‘will_be indented
by multiples af three épaces tias been adopfedé"Fufthefa
more true and false alternatives are never placed on the

same line (unless one is nonexistent), . Although immatérial

L

NR#29,p. 42

NAREC REFERENCE #29,p.43

to the compiler, it is recommended that this convention be
rigidly adhered to in all nested comparisons and in all but

the simplest single comparisons., Examples are

E ¢ 4:
- F
+ F

- 0o

7 > F; ’
L > 1, SUBROUTINE;
B

¥

“«B

By

NELJAC-N permits the use of up to 15 active nested

comparisons at any one time,

NR#QQE pou3

NAREC REFERENCE #29,p.44

BOOLEAN OPERATORS

The Boolean operators of AND N and OR y may be used
to string a number of these comparisons in a statement,
as long as only one type of operator is used in such a
statement, Note the following examples:

DIMENSION FLAG = O:

NEXT OPERATOR # COLON N

LEFT BRACKET < CURRENT OPERATOR < RIGHT ARROW:
SET OPERAND,
TEST FOR PASS COMMAND;;;

A<ByC<DyF§#K: TRUE; FALSE;
Note that a statement of the form:

A < B¢ C# D: TRUE; FALSE;
is really a series of and statements;’namely:

A<BNBKCNC#D: TRUE; FALSE;

Hence, compound statements of this type may only be linked

with a series of Boolean and comparisons and not with a

series of Boolean or comparisons,

In a group of nested comparisons though, the form of"

each individual comparison statement is independent of the

forms of all the other comparison statements,

NR#29, p. b4

NAKEC REFERENCE #29,v.45

A string of and comparisons may contain up to 16
individual comparisons; a string of or comparisons may
contain up to 75 individual comparisons, &8ince there are
different restrictions on the permissible forms of the
left and right sides of a comparison statement, they must
be defined for Boolean strings., The exact definition is
that a right side bégins immedistely after one of the six
relational operators and is terminated by the next)colong
Boolesn and, or Boolean or, In the case of a Boolean and

or Boolean or, a new left side then begins, In the case

of a statement like A < B ¢ C < D: the right side restrict-

ions apply to all quantities except A,

NEH#28,p 45

=

AT 1T LALUTIALA

NAREC REFERENCE #°9,p.46

¥I, SUBSCRIPTED VARIABLES

Suppose, as an example, we wish to compute the sum of

the syuares of fifty numbers, X and store the

0 g9’
result in SUMSC., Each element in this table of fifty

1O Xq

variables may be called upon by subscripting the name of
the tsble X, Subscripting is accomplished by the use of
brackets [] surrounding the number indexing the individual
element of the table, 'Remember,vin NELIAC, subscripting
begins at zero and not one; thus X [0] would refer to the
first value of the table while X [49] would refer to the

last; i,e,, the fiftieth,

Indexing also may be done via one of the 6 index
registéfs of the compiler, refereﬁced by thé namés I,iJ,
K, L, M, and N or by any fixed point variable dimensioned
by the programmer, These registers may be treated in a

manner similar to any fixed point varisble., %Within the

program logic, therefore, an element in a tzble may be
referenced by X [I] and the index register I azugmented as

necessary.

NR#29,p. U6

NAREC REFERENCE #29,p.47
The most general form of subscripting in NELIAC.N is
OPERAND [SUBSCRIPT ¥ number]

The exact address or location represented by this expression
is obtzined zs follows: take the address of the name
OPERAND as the base address, add td it the address currently
contzined in the iocation identified by the hame SUBSCRIPT,
and add or subtraét (as the case may be) the explicit value
of number, The résulting éddress_isthe address of the
vazriazble being refefenced by the given expression., In the
expression, OPERAND may be ahy name dimensioned in the
program, SUBSCRIFT may be any fixéd—pcint entire-word‘ncun
dimensioned in thé’program‘(incluQing iheyiﬁd?# rggistgrs"

I, J, K, L, M, and N‘automaticaily dimensibﬁedﬁféf.thé prb;"
grammer), znd number may be any unsign.d fiiedfp¢int o
integer = decimel o7 hexadecimal, In this geﬁeral eXpres-
sion, all degenerate cases formed from the suppression of
any one or any twe of the three quantitieé involﬁed are valid
forms having the mesnings immediately derivable from the
general form, 7The case where the variazble OPERAND is supe

pressed is covered in the chapter on AUDRESSES QF NAHES .

NRE29, p. 47

NAREC REFERENCE #29,p,48

B4

-2

<
r

v
L]
Lo
-
-
-
r
54

“ith this dinformetion, we mey illustrate one method of

accomplishing the sum sounre problem,

BECIN:

. SUMSO,
“‘z:;gscf.

XTI} + SUMsG - SUMSQ,

1 = G0 },_ﬁ.n. COMPUTE SUMSC,

A1l subscrirting is necomplished by verisbles, includ-
ing the index registers, and/or fixed point constants,
though, of course, the vzlues in the table being subscripted

mey be 21l fixed point or gll flosting point,

Legzl subscrigted varisbles:

In generzl, subscripted variables are treated just like
ordinazry veriables, For exsmple, thev meyv be used in

srithmetic exXpressions:

Al + 2] «Bi{d-3]/CILi0)]~>Dp [H]

N

NAREC REFERENCE #:9,p.49

¥

AT ITLoUTAUA
[E30 A CLUIN ST

end on either side of a comparison ststemcnt:
& I} + B [Ls3] ¢ € [10] : TRUE; FALSE;
etcze@

SUBSCEIPTED STERAIGHT JUNPS

One useful feature of the NELIAC language is that

of the Jump Tzble, asnother method of branching within the

program logic, Jump tables are defined, within the pfogram
logic, by punctuation, a uniqgue name (which is thus a verb),

2 colon, and z series of jump commands.
, JTABLE: JUMPA, JUMPB, JUMPC,

A jump command to an element of this jump table may be

written as
,JTABLE 1],

which indicates an ungonditichal jump to the Ith element of
the jump table which is, in turn, a command to jump to a
portion of the program defined elsewhere, For example, if
the value of index I = 0, the above command will cause &

jump to JUMPA, etC...c»

NR#29, p.49

NAREC REFERENCE #29,p.50

Subscripting may be applied only to straight jumps;
i.e,, jumps to entry points, and may not be applied to

return jumps; i.e., subroutine calls and function calls.

SUBSCRIPT PACKAGE

in NELIAC-N, subscripting by name is accomplished
through a return jump to the subroutine SUBSCR'¥? contained
in the subscript package which is automatically compiled
into any program requiring it. Hence, this name must not

be used by the programmer,

NR#29, p.50

AITITecUIAUN

NAREC REFERENCE #29,p.51

Vii, LOOP CONTROL

Perhaps one of the most useful features of today's
high speed computers is the capability of repeating certain
opefations; i.e., the procedure remains the same, but the
variables used are different, This objective may be accom-

plished in NELIAC by the use of LOOP CONTROL, a method of

indicating the procedure to be'followed and the specific
number of times it is to be executed, The use of loop con-
trol along with that of subscripted variables pfovides a
powerful tool in computation, Consides the.following

example,
", 3 =0 () 24§ P[J] +Q[J]~ TABQ[J] E

The procedure to be repéatéd'is enclosed Wifhin bracés, with
the loop control preéeding. Conventionally,ldne‘df the
index registers (I, J, K, L, M,van& N} is'use& fo} loop
control and subscripting although any other full-word
integer variable may be used just as efficiently, The
statement above reads that the indek register J ié‘set\to
zere and the protedure exectted for the first time; thus,

the first value of the table P; i.e., P [0], is added to the

NR#29, p.51

ATY ITrcuIALn

1TLLUTAMA

NAREC REFERENCE #29,p.52

first value df the table ¢; i.e., Q {0], and the sum is o
stored into the first ceil of the table, TAB [0]., The

index register J is incremented by 1 and the loop repeated

this time using veriables P[?], ¢[1], and TAB [1], etC..c.,s

until 25 values (corresponding to the subséripts 0 to

2Lt are added and stored into the 25 loéations of table

TAB, Optionally, the parenthetic ALGOL word FOR ‘may be

uzed for clarity in the printed copy. In thatvevent, the

zbove example becomes
, FORJ = 0 (1) 24 i» [J] + Q [J] > TAB [J] |

Let us look closer at the basic‘format?ofbthe loop

control,
FOR ALPHA = BETA . (GAMMA) DELTA {PROCEDURE|
ALGOL The Lower Incre- Upper
Yord Control« Limit menting © Limit

ling - of or - of

Word Loop Decre- Loop

or ‘ menting ’

Loop Steps

Parameter : ‘

i, The ALGOL word FOR in the loop control is optional and
is used only for added readability, It is actually ignored

by the ccmpiler.

‘ NRT‘%ZQ’ p052

NAREC REFERENCE #29,p.53

2. ALPHA is the controlliﬁg wvord of the loop control, It
is conventionally an index register though a fixedvpoint

full word variable may be used just as efficiently. Note
that the value of ALPHA may be used as a subscript within

the procedure,

3. BETA contains, or indicates, the first value of the con-
trolling word, It may be a fixed boint integer, a fixed
point variable name,‘énother index register; or any one of
these ¥ another, ad infinitum; i,e;, BETA consists of a
theoretically unlimited string df sums and differehces of
unsigned, unsubscripted, and unbithandled fixed point

variables and qnsigned.integer constants.

L, GAMMA the 1ncrementing‘or decrementlng steps to be
taken, may be a fixed point integer or a fixed po1nt unsub»ﬁ
scripted, unblthandled variable contalnlng 'a positive inte-
ger; the latter may be accompanled by a negatlve sign (see
Note below), |
Note: The full meaning of item 4 above should be clarified.
It is legal to decrement in the following manner, :

FOR I = A(-1) O

using the explicit value of -1, However, it is illegal for

NR#QQD p L4 53

NAREC REFERENCE #29,p.54 o

GAHMMA to be a variable that contzins an integer equal to
or less than zero, Hence, if the value in DEC is -1,
then:

FOR I = A(DEC)O

is illegal. On the other hand, if DEC were to contain +1,
then the following is legal:

FOR I = A(-DEC) O,
5. DELTA, the last limit of the loop, may take any of the

forms of BETA,

6. The procedure itself may be any legal set of statements
ordinarily used within the program logic, including return
jumps to subroutines, comparisons, additional loops with

different loop parameters, etc,

" From these rules, We can see that a11 of the following

formats of loop control are 1ega1

A+B (-1) 0 iv 25

yd =

,K = I (5) COUNT { i

,M = NUMBER + 10 (-2) K + 1 { }
,NOUN = 5 (NN) FINISH -1 | -

, I'=I (1) END | F

The number of loops executed will neve1 continue beyond the

limit of DELTA, A simple example will ,erve to- 111ustrate

this point,

, FOR I =0 (2) 5 | }
' NR#29, p. 54

NAREC REFERENCE #29,p.55

Obviously, the'counf will never hit 5; one might expect the
loop to continue indefinitely. However, this is not the
case, The loop will be erecuted, and whenever incrementa-
tion by 2 will cause the count to be greater than 5, the
loop control will be terminated. Thus, the preceding loop
will be executed three times; i.e., for I = 0, 2, and 4,
After the completion of any loop, a normal exit will occur
and the next'sequence of instrucfions'will be executed;
Similarly, if the loop control is being decremented; the

program will never be operated for a count less than DELTA,

In NELIAC, considering the geueral loop control state-

ment given in this chapter, the loop 1ncrement GAMMA and the

upper limit DELTA are variable, i e., if elther or both are

altered by the procedure within the loop braces,bthe new ;!
value(s) of the 1oop increment and/or upper limit will be ;
used until altered agalno The same condltlon ex1sts with
respect to the loop parameter ALPHA; i. e., it is this
altered value ‘of ALPHA wh1ch will be used throughout the
rema1nder of this repet1t1on of the loop and which,further-
more, will be incremented or decrementeq at the end of the’
repetition. Finally, although alteration of the lower limit

BETA by the procedure within the lcdop braces will not affect

NB#29, p.55

NAREC REFERENCE #29,p.56

the further repetitions of the proceduré during this execu-
tion of the loop control statement, if, at a later time;
control is again transferred to the loop coutrol state-~
ment, the new value of BETA will be the value then con-
sidered as the lower limit of the»loop parameter (assuming

BETA has not been changed again elsewhere iu the program),

The value of the loop parameter ALPHA upon ekiting
from the loop is its value during the last execution of the
procedure withln the 1oop braces (assuming the procedure

does not alter it).

Let us rewrite the program logic of the prev1ous

example to compute the sum of the squares of flfty values fffvf\

i ! I

0
table X has been deflned in the dimensionlng statement

of X to X49, assvm1ng that the number of Variables in v

NR VALUES = 50, as»
Thus, that portion of the program to compute sum ‘squares

might read'

COMPUTE SUM SQUARES' '
0o~ SUMSQ ‘FOR K = 0 (1) NR VALUES Y 1
ix [_x] X [K] + SUMSQ > Smese |

NR#29, p 56

NAREC REFERENCE #29,p.57

ViiI, FUNCTIONS

In loépAcontrol, fhe method of indexing tables of
values for computation in similar operations was illustrated.
Other instances, however, may call for an operation fo be
performed severﬁlltimes‘with different parameters but at
individual pointé in‘the program; €.8.» é common routine
to compute squarebroots may be necessary. In cases such as
this, the NELJAC function notation may be used, This
functional notation enables the programmer to executé a
particulaf procedure with any desired input parameters
necessary to determine the value(s) of the function with
the result(s) being placed iqto any desired output para-
meter(s), Though the functibn is-defined but once, it may
be eiecuted at any point of the program log;c (except with-
in itself, of course). With thé exception of_its parameters,
a function is written and executed in a manner similar

to a subroutine.

An example of the format of the functional definition

is:

'PROCEDURE X (W, Y., Z.)3
(W*W->Y*W>2|

2

NAREC REFERENCE #29,p.58

I S A

The function name is any unigue name follcowed by its

AT IT A AT AMA
FLi3T85Y 1081

associated dummy parameters enclosed within parentheses,
As with a subroutine, a colon precedes the computational
logic which must be enclosed within braces, This compu-
tational logic may contain all computational procedures
which are valid in the main program except (1) subroutine
and function definitions and (2) calls for itself though

calls for any other subroutine or function are valid,

A function, written in proper notation, must indicate
the mode of both input and output parameters although the
distinction between input and output parameters need not be
indicated here, In fact, in the function definition this
distinction can be indicated to the reader only, not the
_ compiler, since the distinction is actually made only in
| function calls, The arguments within’the parentheses
serve the same purpose as the dimensioning statement.of a
program (or flowchart); thus, anything legal within a
dimensioning statement (except absolute addressing, see
the chapter ADDRESSES OF NAMES) is legal within the |
parentheses, As usual, n comma after fixed point variables
suffices, and here too it is also legal to define floating
point variables with a period only. The variables (with-

in the parentheses) in a function definition are merely

NR#299 p058

NAREC REFERENCE #29,p.59

QEEQX names and, therefore, names local to the function sub-
program; thus, the samé names may be used elsewhere in the
program without harm, although this is usually inadvisable
since it complicates debugging, understanding, and alter-
ing the program, The instructions within the braces are
equivalent to the program logic, In fact, the function may
be considered as a miniature flowchart accessible only

through its name,

Again, as with a subroutine definition, the function
definition does not cause computation to take place, Exe-
cution occurs when the function is called within the pro-
gram logic by writing the function name and specifying the
ggiggl arguments (parameters) to be used, It is here, and
here alone, that the compiler is told which parameters are
to be treated as input and which as output. Note the
following example which executes (i.e., calls) the function,

PROCEDURE X, previously illustrated,
, PROCEDURE X (ARG; ANSWER, ANSWER [1]),

The parameters supplied must agree exactly in mode, order,
and number as anticipated by the function definition,
Commas separate the parameters since indication as to mode

is unnecessary (in fact, meaningless) in the calling of a

NR#EQ:/ p 059

NAREC REFERENCE #29,p.60 o

function; the manner in which these variables are treated
is completely determined in the function definition, A
semicolon separates the input arguments from the Variables
specified for the output of the function., In this case, |
the comma normally used after a parameter must be replaced
by the semicolon since its usage here in addition to the

semicolon would not be redundant but would have special

meaning as will be seen later,

The arguments thus supplied as input parameters are
substituted for the correSponding dummy variables in the
definition, the values of the function are computed, and
the values of the dummy variables in the definition'are
inserted into the correspondihg arguments supplied as out-
put parameters, As a result of the above call for
PROCEDURE X, ANSWER will be expected to contain the value
of ARG squared, ANSWER [1] the value of ARG cubed,

As an illustration of legal parameters which may be

used in a function call, note the following example:

FUNCTION Y (A, B[1], c[4]; D[K+2], E[F-#300] (16-19)),

NR#29, p.60

NAREC REFERENCE #29,p.61

The bit notation used in the last parameter will be described
in a later chapter, An example of the definition of dummy

variables which may be used when writing a function follows:

i

0%0, Y(25), D. A = {B}. C: D: {E(2431), F(2U-47)],
17.578):

{Program Logic}

XFNCT (X
G

i

' The unfamiliar forms of dimensioning will be described in

later chapters,

As has been stated, functions are merely sub-programs
in which the variables within the parentheses are equiva-
lent to the dimensioning statement and the program logic is
contained within the braces, There is no 11m1t to the
number of input parameters which may be entered in a function
definition nor is there a limit to the number of output
values which may be computed, However, e?ery function'hust
have at least one input parameter though it need have no
output parameters, Functions, qut as subroutines, should
be defined at the end of a program or its flOwcharts; or
necessary jumps should be made over the function segments
of the program, In the following section, we shall 1eern

a2 method whereby functions and subroutines may be written

NR#29,p.61

NAREC REFERENCE #29,p.62 o
§ : [

! re

as separate flowcharts, virtually independent of the main

program,

In a function call, the most general forms of thé
input parameter are (1) the unsigned general subscripted,
bit-handled noun and (2) any unsigned legal form of a
constant in program logic. The most general form of the

output parameter is form (1) of the input parameter,

The one basic concept which must be grasped in
functional notation is that the correspondence between the
arguments used as parameters in a function call and the
formal parameters dimensioned in the function definition
is splelyyénvthe basis of their‘respective‘ordering starting
with the first>parameter in each case, 1If a pafameter is
. defined in a function definition and it is desired not to
utilize this parameter in a particular function call, this"
fact must be indicated to the compiler by leaving a blank
space between the commas (one of which may be a semicolon
instead of a comma) where the argument correspondihg td this
formal parameter would normally be placed (uniess no further
parameters in the ordering are to be utilized), Suppose a

function is defined as follows
, FUNCTION (U, V, W, X, Y, Z): | Program Logic },

NR#29,p.62

1 ALMA
[

NAREC REFERENCE #29,p.63 o
Then, the function call ' -
, FUNCTION (7, 6,341, A {d-4]; B, C[D], E[2]),

will result in the input parameters T, 6.34), and A[J-4]
being placed into the formal parameters U, V, and W,
respectively, before execution of the procedure defined
as FUNCTION, and the formal parameters X, Y, and Z being
placed into B, C[D], and E[2], respectively, after execu-
tion of the function, However, if it is desired to call
the function leaving the formal parameters U and W un-
changed and only securing, as output, the value of the

formal parameter Y, the function call may be written as
, FUNCTION (, 1,0%6, ; , F),

COmbaring this function call to the function definition,
the reader will easily see, solely on a basis of ordering,
that the parameter U will be unchanged, a floating point
one million (1,0%6) will be piaced in parameter V, param-
éfer'W*&i11 be unchanged; the procedure defined as |
FﬁNCTION will be executed for these values of U, V, and

W, then the value calculated and placed in X will be ig-
nored, the vaiue calculated and placed in Y will be placed
in F for use in the main program, and the values calculated
and placed in the remaining parameters; namely, Z,‘will be

ignored.

NR#29,p.63

NAREC REFERENCE #29,p.64 =

IX, PROGRAM STRUCTURE r

So far, NELIAC programs have been described in terms
of a single load number, dimensioning statement, semi-
colon, program logic, and double period. Actually,
complex programs often consist of several such sub-pro-

grams, called flowcharts., Each separate flowchart must

follow this format headed by leader and followed by leader:

{Leader)

gIMENSIONING STATEMENT
éROGRAM LOGIC

zieader)

One or several flowcharts (with a maximum of 63)

preceded by a preface and followed by an ending comprise a

program, The preface consists of;

(Leader)

(Optional comments)

Program or Programmer's Name,

Object Program First Address, Bias ..

(Leader)

Either or both the Object Program First Address and the
Bias may be left blank in which case standard addresses will
be used for the blanks, The ending consists of:

(Leader) |

5..
(Leader)

NR#29, p.64

NAREC REFERENCE #29,p.65

A NELIAC program tape consisting of 4 flowcharts may
be represented schematically as (without any attempt at

relative scaling):

PREFACE
;
{

FLOWCHART 1

[
{
]

FLOWCHART 2

]
]

FLOWCHART 3

FLOWCHART %

END ING

T
|
i
{

NR#29,p,.65

NAREC REFERENCE #29,p.66

Obviously, the ability to write programs as separate

flowcharts allows one to eliminate the necessity of having

to bypzss subroutines and functions within the main program -

logic, Kowever, an even more important reason for this
structure is to permit the giég;ﬁgggg feature which is
described in the next paragraph, As shall be seen, this
feature provides a solution to many of the problems en-
countered when several programmers are engaged in writing

different parts.of the same lengthy program:

Suppose, e.g.s a programmer wishes to use a subroutine
which already has been written by someonevelse at some other
time, Obviously, a problem may arise in duplication of
names, as the programmer must avoid using any names already
defined in the subroutine, In NELIAC, this problem is
greatly diminished,‘sincé the writer of the subroutine can
Purge names that have no significance outside the flowchart
containing the subroutine, Names thus purged may be used
fdf other purposes in the remaining flowcharts, For
example, a square root subroutine would have virtually ail
names purged, The only names not purged would be the ones
necessary to communicate with the main program in a separate

flowchart. In fact, the use of functional notation, rather

NR#29,p.66

c
w2

o
b
L]
Qo

oy
W
r
L]

NAREC REFERENCE #29,p.67 -

than subroutine notation, completely eliminates the need

for even these names,

Purging is accomplished by inserting an absolute sign
| anywhere within the name as it is being defined (but not
inserted when the name is used) although, conventionally,

it is placed after the first character of the name,

Purged names within the Dimensioning Statement:

I|NDEX = 6,
T|1,
X| = 0 #* 0,

Purged names within the program logic:

, ClONT : A » B,

5 CILEAR : {0 » I » J » K}

To reiterate, these names, known as temporary or local
names, will have meaning only in the flowchart where the

above definitions occur,

qu that it is pcssible'for a program to consist of
more than one flowchart, it also becomes possible for a
dimensioning statement to follow pért of the program logic -
of the program, This possibility necessitates the follow-

ing programming rule:

NR#29,p.67

NAREC REFERENCE #29,p.68

Each floating-point, partial-word, and IO format

and 10 subscript variable must be defined in a

dimensioning statement (or function definition)

before it is used in any program logic.
Partial words and IO are discussed in later chapters,
This rule is necessary because the NELIAC compiler must
distinguish between the two number formats, floating point'
and fixed point, when making up instructions pertaining to
a variable in the program logic, Corresponding necessities
arises in the case of dimensioned partial words and in the

case of format and subscript words referred to in IO

statements,

For example, suppose a programmer wishes to write his
main program as the first flowchart, and include a random
number generator subroutine (called RAND)'as the second

flowchart. The pattern is illustrated below:

NR#29,p.68

a2
o
e
Ste
L2}
L 2]

e

('

NAREC REFERENCE #29,p.69

(Leader)

D,S, 1 gIMENSIONING STATEMENT FOR MAiN PROGRAM
MAIN PROGRAM LOGIC
(Leader)

5
D,S, 2 DIMENS IONING STATEMENT FOR THE -RANDOM
NUMBER GENERATOR SUBROUTINE

ﬁAND: jPROGRAM LOGIC FOR RNG SUBROUTINE]

iieader)

Suppose thé random number generator stores its random
number in floating point in locationkx just'before exiting,
Since the main program is going to use X; X itself must be
defined as a floating point variable in D,S, 1, It would
be illegal to define X as floating point in D.S, 2 because
in that case‘the‘main program wOuld‘be compiled before the

compiler was able to sense that X was to be floating point,

Of course;, the way to get Arbund this problem is to write
RAND aé a function, defining the output with a dummy out-

put floating point name as follows:

(Leader)

5 . .

DIMENS IONING STATEMENT FOR RNG SUBROUTINE

’ ' N ,
RAND (Y; DUMY,):{(generate a random number) -> DUMY |

zﬂeader)

NR#29, p.69

NAREC REFERENCE #29,p,70

Then with the above RAND function as the second flow-

chart the following call in the main program logic will
generate a random number in location X (where X must be

defined as floating point in D,S, 1,):
RAND (;X),

The dummy input parameter Y is used simply because every

function must have at least one input parameter,

Appendix D is the current version of the NELIAC-N
Coding Sheet used by the programmer for writing NELIAC
programs for the NAREC, |

Appendix E is the current‘version of the NELIAC-N

Operator Instruction Sheet filled out by the programmer and

transmitted to the NAREC operating staff for compilation

(and possible run) of his NELIAC program on the NAREC,

NR#29,p.70

NAREC REFERENCE #29,p,.7]

COMPUTER SPACE LIMITATIONS

Although the NELIAC language itself places no limita-
tions on such features as number and size of flowcharts,
number of ;ames, number of undefined calls, length of |
object program, etc., the version of the language imple-
mented for a particular computer must, of course, be
limited by the space limitations of that computer's memory.
Most of the limitations such as names being uniquely
defined in their first 16 character, the limitations on
nested comparisons and strings of Boolean or and Boolean
énd statements;, etc,, which have already been described are
due to hardware limitations rather than NELIAC language
limitations, In addition; the NAREC imposes limitations on
the overall characteristics of NELIAC-N just as every com-

puter does to the version of NELIAC implemented on it.

NELIAC-N allows the compilation of up to 63 flowcharts
in a single sweep, However, there is an IO Paékage and a
Library Package which are compiled individually as
separate flowcharts at the end of the programs requiring
them, Since either or both of these flowcharts may be
added to a program, the programmer's flowcharts may actually

be limited to 61 or 62. Thgse two package flowcharts will

NR#29,p.7)

1YsLUIAMD
ERES B A A)

=

NAREC REFERENCE #28,p.72

be discussed in greater detail in the chapters devoted to
them, The fixed point, floating point, and subscript
packagesvare each compiled individually at the end of the
first flowchart requiring the particular package but as
parts of those flowcharts, Thus, they impose no such

ﬁlimifatiOh'on'the source program,

' Immediately upon readin, the NELIAC-N flowchart is
converted to a‘symbol string containing, in order, the
NELIAC characters of the flowchart converted to an internal
COde‘in Which there is a one-to-one correspondence between
the NELIAC characters of the flowcharf and the symbols of
the symbol string. In this symbol string, a11 spaces
externzl to names and numbers have been:rémoved,.suécessive
spaces within names and numbers have been'reduced to single
spaces, and all ALGOL words have been elihinated, but
comments have been retained., The storage érea allocated
to this symbol string limits the length of the flowchart
when reduced to its symbol string to 5600 chazracters at the
present time, This normally z2llows from 5 - 15 flowchart

pages depending upon the character density of the pages.

NR#29, po 72

-~ =
=

W
[
o
Lo
o
e
Lo

NAREC REFERENCE #28,p.73 o

In the évent that this;limitation is exceeded, the com-
"puter will stop with a:Flowchaft Area Overflow fault
printout, However from many other Standpoints - under-
standing,'debugging, cbrrecting, changing, combining,
etc,, of flowcharts, it is advisable to write flowcharts

of indi?idual length far below this overazll limitation,

Thé NELIAC-N compiler éontains a list of 512 entries
in which all names, constants and masks used in logic and
IO statement entries are recorded, Tempprary names are
recorded in the list but are purged from the list at the
end of their flowchart thus making their space available
for reuse, Since, to date, no program including the com-
piler itself, has ever'OVerflowed this list, it is con-

. sidered more than adequate for any foreseeable program,
If the list is overflowed, a Name List Overflow fzult

printout will result,

The NELJIAC-N compiler contains a list of 300 locations
for recordingbthe names, constants, and masks as yet unde-
fined., Since each location can record two entries for the

same name, number, or mask, 300-600 undefinéd calls zre

NR#QQ, P.73

NAREC REFERENCE #29,p.74

permitted at any one time, Whenever a‘nameg number; or
mask ié,defined, all undefined calls for it are filled
in thevqugct program and purged from this list thus
making available this épace for reuse, Since constants
and masks are defined at the énd of the flowcharts where
they are first used, they will be undefined thrdughout

the first flowchart where used but definéd throughout

- the remaindefvdf the‘program,f Since subscripting by name,

fixed point multiplication and division, and floating
point addition, subtraction, multiplication, and division
are performed through return jumps to subroutines in
packages_cdmpiled at the end of the flowcharts where
first reguired, these operations will set up undefined
calls in the first flowéharts‘where these operations are
used, Hence, this procedure provides another reason for
writing NELIAC programs‘in relatively short flowcharts,
In the event that this list is overflowed; an Undefined

Name Overflow fault printout will occur,

Finally, since the compiler itself, at the present
time, occupies memory locztions #0000 to #26FF in the

NAREC, this leaves the{érea #2700 to #3FFF available for

NR#22, p, T4

~MI AL D
I

s

AYY 17T~

NAREC REFERENCE #29,p.75

storage of the resulting object program as the NELIAC K
program is being compiled, Hence;, normal comp11at1on allows
for object programs up to #1900 or 6400 locations, How-
ever,”reset,the bias" and "low standard bias' features

allow tﬁe compilation of larger programs (such as the

compiler itself which occupies 9984 1ocat10ns) in a single
sweep, In addltion, by suitable use of absolute addressing,

a program may be compiled in two or more sweepsd If the
resulting object program ever exceeds the area ava11able

for its storage, the NAREC will stop with a #4000 42 in the

control reg1ster.

NR#29,p.75

NAREC REFERENCE #29,p.76 b

X. DARTIAL LOCATION OPERANDS (BIT HANDLING)

Up to this section all storage variables have been
discuséed in terms of a full 48 bit word or‘memdry location
per variable, In this section we shall see that any con-
tinuous portion of a mémory locafion.(i.e,,‘onlj selected
bits) can be defined as a fixed point integer variable,
and that in the prdgram logic,'any continuous portion of a
variable can be manipulated quite easily without disturbing
the rest of the bits* of the memory location to which the

variable is defined,

#NOTE: Conventionally, the term bit is the name given to

each of the 48 flip-flops which, together comprise a NAREC

memory location., This name is derived from Binary Digit

becaﬁse it can contain:either of the values 0 or 1,

NR’#ZQ’ p.76

NAREC REFERENCE #29,p.77

it,will bevconvenient to use the following'bit number

assignments:

any 48 bit by 46 L, . . wee 1 0 bit number
memory C :
location
‘most ‘ ‘ least
&— significant _ , : significant =2

bits ’ ‘ ‘ 3 v o .bits

PART VARIABLE OPERANDS

The reader is airéady familiar with the procedure for
defining a full 48 bit fixed point integer variable
(Chapte: I11). If the programmer wishes to manipulate only
selected bits of such a variable he specifies the name of
the variable, and indicates which group of bits of that
variable he wishes to treat as a positive fixed point
integer* by writing the first (lowest bit number) and last
(highest) bit number uSing parentheses and the right arrow

as illustrated:

A (0~ 14)

¥The infeger is necessdrily positive only when referring to

4] bits or less,

NR#29,p.T7

NAREC REFERENCE #29,p,.78

In this example only bits O through 14 of the variable
A are referenced To call for a single bit, say the least

significant, or bit zero, one would write:
A (0 »>0)

‘If the variable is part of a table of variables and
requires a subscript for its. reference, the subscript

notation (the brackets) is written first; i, e,,'

’

A [1] (6 » 32)

It should be noted that the vaiues of part variable
operands.of less than HS bits are treated as positive fixed
point iniegers whereas full 48 bit variables may contain
either pcsitive or negative integers, 1In the case of part
words of445 to 48 bits, whether the part word is con=
sidered ﬁositive or negative depends on the setting of the
sign bit - bit 44 in the NAREC - after the part word is
downshified so it begins at bit 0, For example, suppcsed

variable A contains the'following array of bits:

W7 7 6 5 4 3 2 1 0
A 0 O [/ [(3 [L] 9 Zo L4 O 1 ‘! 0 1 O " ,}1»:-&»4

NR#29,p.78

' NAREC REFERENCE #29,p.79 =«

One immediately recogniZes this as the integer +6b (hexa- r
decimal) or +107 (decimal). However, the U4 bit operand
-A(2+5) which contains the binary array 1010 is considered

to contain the number a (hexadec1ma1) or 10 (decimal)

In other words, if one were to write the foilowing

program (assuming A is defined as above):

sA (225) = #a: I + 1 > I;; STOP,
the result would be thaf thevprogram would add 1 to I. Of
course, an equivalent statemenf would be:

A (2»5) =10 ¢: I +1 » I;; STOP,

2

from which the compiler would generate the same progranm,
It is worth reiteratinglthat even though the uppermost bit
of A(2»5) (bit 5 of variable A) is a 1 the partial operand
is not considered to be:é negative integer0 The only
possibility of the partial operand being considered a
negative. integer in NELIACfN is if if contains more than

L4 bits, .

All arithmetic opeiations previously described for
fixed point operands>ar§ legal with part variable operands.

However,,the responsibiiity of arranging adequate storage

. NR#299 po79

' NAREC REFERENCE #29,p.80

cépability is left to the programmer, For example:
Legally, the programmef may write:

,TABLE[1](19+25) * A(326) - Z(15),

However, the programmer should realize that a 7 bit operand
times a 4 bit operand ng require as many as 11 bits to
store the answer, In the above case, only the lower 5 bits
of the gnswer'would beistored”intb Z(1+5), and the upper 6

bits WOqld be lost., .

The index régisters, I, J, K, L, M and N, automatically
dimensioned by the compiler may be bit-handled exactly the
same as ‘any noun dimensioned in a dimeﬂsioning statement,

Thus:

,I>T (13 > 18),
,Z (11 > 146) > K,
M (5 > 10)/2 > L (24 » 31),

NR#29,p.80

NAREC REFERENCE #29,p.81 P

Further operations with part variable operands are e

illustrated below:

»A(25-34) - B,

A(39»47) + B(O»?A) -+ C,

A(12»24) < B(2»14) : TRUE ; FALSE ;
A[I](3o+36) -+ B[J](31235) = C[K](0>14),
A(AM»AA) 0: TRUE ; FALSE ;

PART LOCATION VARIABLES

The above discussion shows how any portion of a
variable may be manipulated without disturbing the rest of
' the bits of the variable. It is possible, and often much
more convenient, to défine a variable as certain bits of

another variable, Since they reference only part of a 48

bit memory location, they are called PART LOCATION VARIABLES,

and are considered to be variables, themselves, Part loca-
tion variables are always defined as certain bits of a
variable which itself is defined as an ordinary full loca-
tion variable (although this variable need hot be explicitly
named and dimensioned). For example, if X is to be bits 39
to 47 of variable A, one would define this in the dimension-

ing statement, along with the definition of A; as follows:

A: | X(39 > 47) },

NR#29,p.81

NAREC REFERENCE #29,p.82 -

In the program logic which follows, the operands A(39-47) -
and X would be iandistinguishable, and all the rules for

part variable operands described in the previousvsection

would apply to thebpart location variable X, Obviously,

the main advantage in using part location variables is to
ﬁggkia number of variables whose ranges2f values are small

into the same memory location,. An illustration of 2

typicsal ﬁse of a2 table of packed part iocation varizsbles

follows:

Suppose we wish to store datz on 100 aircraft, Items
we wish to store are:

X coordinate (15 bits)

Y coordinzte (15 bits)

height in 1000 ft, units (6 bits)

status (3 bits)

identity (3 bits)

“track number (6 bits)

This data can be packed into 100 48-bit words of NAREC
memory as follows: In the dimenﬂigning statement one would
write:

AIRCRAFT: [X(0->T4), Y(15»29),

HT(30->35), STAT(36-38), ID(39-41),
TN(a2-47) 1 (100},

NR#29,p.82

NAREC REFERENCE #29,p.83

Note that the initial value of all of these variables
is zero, So fﬁr, there is no convenient way to set all part
location variables to desired initial values since only
entire words may be assigned non-zero initial values.
Hence, in order to dimension initial values for this table,
X, Y, HT, STAT, ID, and TN would have to be combined into
the full word AIRCRAFT for each entfy in the table, Then,
of course, the initial values will be assigned in the normal
manner for tables, An alternate solution would be to use
constants ;nlthe first part of the program logic; i.e.,

3052-»X[0], 20 425-Y[0], etc...

Note also that each of the part location entries in
the table AIRCRAFT: X, Y, HT, STAT, ID, and TN, are tables
of 100 variables., Thus to reference the X coordinate of
the 10th aircraft one would write X[9)] (or equivalently

AIRCRAFT [9](0+14)).

Before leaving this examples it is Well to illustrate
a technique that often makés thé program logic easier to
read, Suppose the programmer wishes to distinguish bé-
tween 4 identities, FRIENDLY, HOSTILE, FAKER, UNKNOWN.

The programmer might arbitrarily assign values 0, 1, 2,

NR#29,p.83

YA LAVITTI AL
RN -t
EERIN I BV B

NAREC REFERENCE #29,p.84 Ee.

and 3, for these 4 identities'respectively, and then in the [
program logic, if the program wishes to find out if a
certain track has identity of FRIENDLY, the program might

read:
sID[I] = 0: YES, NO,

However, a preferred method is to define variables
FRIENDLY = 0, HOSTILE =], etc., in the dimensioning

statement and then the same program could read:
,ID[I] = FRIENDLY : YES, NO,

Of course, not all bits of a full 48 bit variable need be
dimensioned; and several names may be given to the same
bits of a full variable, Part location variables of the

same full variable may overlap each other:

B: | C(0»12), D(0-12), E(12229),
F(l2-47) 1},

Furthermore, the entire word need not be named and defined:

{C(0+12), D(0+12), E(12-29), F(12-47)1,

NR#29,p, &l

NAREC REFERENCE #29,p.85
XI, OUTPUT STATEMENTS ‘

The NELIAC;N compiler converts NELIAC output statements
into print programs that are compatible‘with the on-1line
printer system or with the off-line NELIAC-N Flexowriter

(through the output punch),

7 In general, each NELIAC output statement éontrols the
printing of a single lipg of print of up to 72 characters
for the line printer or_§6, 1i6, or- 160 for the f£lexo-
writers, Output statements are also used to specify line

spacing, paging, and termination of output,

Two types of printed output cgntrol are’required by
thg‘programmer: fiist, pg must have the ability to specify
the fgymg; of the data he desires to have printed;, and
second, he must have a method of printing literals; i.e.,
any words or symbols verbatim to serve as headings, labéls,

or lines of text.

The information a programmer must supply pertaining
to his printed data consists; first, of specificatians sbout

the data itself:

NR#29, pa 85

NAREC REFERENCE #29,p.86 o

1. Which variables are involved and in what order are they &
to be printed? |

2. Are the numbers to be printed fixed point or floating
point variables;, and, if fixed point, should they be
printed in hexadecimal or decimal notation?

3. How mahf digits to the right of the decimal point are

required for floating point variables?

\Sgcondly, indicatiqn as to the arrangement of such
data ubon the printed page must be made:
1. How many spaces are needed hetween each piece of data
on a single line? .
2. Are blank lines needed?
3. Are new pages needed?

4, When is the output terminatedi

NR#29,p.86

NAREC REFERENCE #29,p.87

PRINT VARIABLES

variable whose value is to be printed through the use of
an output statement, Only full 48 bit variables can be
used as print variables, The basic format of an output

statement as it is written within the program logic will

N
now be examined, In this section, only the control of print

variables; i.e,, data printout, will be considered.

The essential elements of a print statement are a

comma and a left brace, the names of the print variables

enclosed by the less than, greater than signs, and the

right brace indicating the completion of the statement,

Such an output statement will print one line only, Con-
sider the example below in which the two variables, refer-
enced by name as DATA? and DATA2, are printed on a single

line,
s |PRINT < DATA) | DATAZ > | ,

The word PRINT is merely a mnemonic device which may be

omitted, In fact;, any words may be inserted here without

NR#29,p.87

NAREC REFERENCE #29,p.88

" hzrm although it is not customarj to insert anything.
Spaces‘betﬁeen data wofds‘are indicated by the aﬁééiﬁfé
sign },‘the Boolean or?sign s and the Boolean and sign O,
The absolute sign indicates one space; the OR sign indi-
cztes five spaces; theiﬂNﬁ sign indicates no spécese
Thus, three spzaces arevindicated by {Qi and eleven spaces
mzy be indicated by a §ombination of the two symbols

it s Iud, or IIU,"A Boolean.gﬁg‘sign M is necessary if

no spacing is reguired between print varigzbles,

We ‘see that the oﬁtpﬁt statement serves only to
indicaté the print variables, the spaCing betweén printed
values, ‘and, by its position in the program logic, when
the line is to be printed, All other control oVer the
printed message is‘indicated by the programmer in the

dimensidning statement, Thus, for each print variszble,

the progrzmmer must indicate in the dimensioning atatement
the desired printed number format}(scientific or fixed
point), the number system to be used (hexadecimal or
decimal), and the number of digits to be printed, (vhich
21s0 cornitrols the totzl number of print spaces used every

kY
time the verizble is printed),

NP#29,p.88

L

<«
P
Sta
L
L

Py

v
e

NAREC REFERENCE #29,p.89

The number of digits to be printed is the same as the
number of digits in the initial value (with the exception

of certain conventions); i.e,,
AZSO,

would specify two printed digits, The number of spaces
required would be three, i1owever, as a space is always
reserved for the sign of all print variables except for a

full 12 digit hexadecimal word.

B=#00:

specifies a printing of the sign, the hexi sign, and the
least two significant hexadecimal digits (after comple-‘
mentation if the word is negative) thus requiring four
print spaces, The sign of abvalue is actually printed only

if the value is negative.

Floating point print variables require an additional
space for a decimal point, and, in scientific (true float-

ing point) format, five additional spaces for an exponent,

NR#29,p.89

Lt
=
o
e
RS
L]
L

e
-
L]

NAREC REFERENCE #29,p,90

Floating point print variables can be priﬁted in either
scientific or true decimal point format. Scientific format
is always printed with a fraction part, X, where 1/10 ¢ X < 1,
and a signed power of 10'expressed as a plus or minus
integer in three digits, To indicate scientific format in
the dimensioning statement, an initial value is written

without a decimal point, For example, if A is defined as:
A = 0000 ¥ O,

then if the floating point number 23,74 were stored in A

and printed, the resulting output would read as:
23714 002

and thus w0u1d$us¢ a total of 11 spaces on the printed

output page.

True decimal point format for floating point variables
is always printed with an appropriately placed decimal

point, Thus if B is defined as:
B = 0000, ¥ O,

then if B contains a floating point Valué of 269,733, the

NR#29,p.90

NAREC REFERENCE #29,p.91

““““

printed result would read as: e

270.

#

In all cases the decimal point is printed,

All values printed from a table of variables will be
printed with the same format control, This control will be
determined by the last specified initial value of the table;
e.,g., & table may be defined in the dimensioning statement

as:
A(3) = 2959 239 489

Since ‘the last value in this table is ﬂ8 only two digits
have been specif1ed for any pr1nt variable in the ent1re
tableo Any output statement calling for the printing of
variable A (the first value of the table in this example,
295) will print only asterisks since the value of A is too
large for the dimensioned format of A, Hence3 if the
program logic were to read:

9?<A>§s o o ; :v‘ ‘ li‘“““‘

/

the printed result would be: o ,

% %

NR#29, p.9?

NAREC REFERENCE #29,p.92

It is gpod practice to format a variable larger than
the greatest expected value to allow for any miscalcula-
tion. Neither fixed point print variables nor floatihg
point print variables, when larger than the specified
format, will be printed., A row of asterisks is$ printed

instead of the number.

|

‘As another example, if a table is already defined in

the dimensioning statement as:

P MATRIX (9) = 13,21 # 0, 2,32 * 0, 1.00 * O,
) 9"0 98 * 0, 975 * 0,
2 ,00_934 * 0,

and if it is desired to print this table as it stands;‘
two zeroes should precede the decimal point of the last

ty '

value (OO 34 *’0) to enable the’ printout of the first

values (13,21 * O)Ov The table may then be'printed in the

following manner:

FOR J = 0(3)6 {, | < PMATRIX [J] |
o PMATRIX [J+1] | PMATRIX [J+2] >g i
As an example, let us suppose a table has been for-

matted in the following manner: . -

TABLE (4) = 0000.00 *0,

[T
i I

‘,.’,", T ," S ’ . / '.’ i \“‘" ";’”’ . g S
GEELL ot NR#e9,p.92

NAREC REFERENCE #29,p., 93

and floating ppint‘variables are computed gnd stored into w
this formatted table, Output statements may be enclosed

in lbop contrdi statements so‘that an instruction in the

program logic may read: ”

, FOR I = 0(1)3 {,» < TABLE [I] >} }|
The table, printeﬂ out, may apbear as:

2.01

-14,32

=375
HRRKRHW

The value of the last variable was too large for the=“

allotted format° i.e.; over the value 9999 99 after round-

off, therefore, the asterisksog
More than one line of print may be specified The\
following example illustrates ‘an. output statement -

indicating three"lines of print, two variables per line,

s ’< AIB">‘.<. CID > < E|F> bs

. NR#29, 0,93
RS " ;‘e‘;;" e AP

NAREC REFERENCE #29,p.94

On the next page, the foregoing discussion is
illustrated by indicating sample dimensioning statements,
the number contained in each print variable when the
output statements were operated, and the resulting NELIAC

printouts.

NR#29,p. 94

NAREC REFERENCE #29,p.95

L2Lle’-
€00+ L2LiE°
LO0+ 0000L°"~
LOO+ 0000L°

€00+

‘0 # 00000 = rr

COFFIFFIFIEE
PF3.0000000
998100000000

% =g

€00+ 00000icLle’~
€00+ 00000 L2LLE"°
LOO+ 000000000 ° ~
L0O+ 000000000L°

‘O% 0 =1II

12 ule-
12° Lle
00° L=
00° L

‘O # 00°000 = 20

© LOOO#™ *%
PIFl P
09 L0 L
‘00000# = & ‘O = 1

€00+ 2ule°~
€00+ 2il€°
100+ 000L°~
L0O+ 000L*®

200+ #Leec’

‘2= # ©L€2 = HH

€00+
€00+
Loo+
Loo+

700+
nojutad

Le°-
le*

oL* =
oL*

Ge*
o®TION

‘2% G2 =9
tjuswel vy Juruorsuawyrqg

NOILVION OJIJILNIIOS

‘O« 0°0 = g4

HN 42
b A"
0°L- L=

0° L ‘L
inojutad OBTION

‘0% °0 = VvV
‘juewelBvlg JUTUOTSULWE(Q
INICd TYRIDIA dNYL

LNICd DNILVCTId

oc- oe- *#
colze #N% e
g6t "% ik
INoJUuTId OBIION
‘00000 =0 ‘00=8g ‘0=vY

tjuowel 81y BUTUOTSUIWE(Q
INICd QIXId

12° uLe-
12° LLe
._.l

xeoqumy

t2° Lle~
12° tle
o_.l

Jequmy

oe-

golze

cér
Jequny

HR#29, P.95

NAREC REFERENCE #29,p.96

T IT L AITTTALAN
FEINSE PN

LITERALS =
It is often necessary to print headings, labels, and

lines of text along with program resultsﬁ“ The printing of

such literals is much.the same as the printing of édmputed

variables except that any information enclosed within

double less than, greater than signs is printed verbatim,

Example of literals:
,{<< THIS | IS | A | LINE | OF | TEXT >> |,

A1l NELIAC-N characters except the absolute sign, the
~ Boolean or, the Boolean and, and the greater than sign can
be printed literally. Notice that the abgolufg sign | and
or sign y are again the necessary symbols used to indicate
any spacing between words, Of course, text and variables
may be intermingled within a line of priht‘as long as care
is taken to enclose the text material within the necessary
double signs, Consider the following example:

o1 << MAXIMUM | VALUE | IS |
EQUAL | TO > | MAXG > |,

NR#29,p.96

NAREC REFERENCE #29,p.97

The variable is MAXG and is, therefore, not enclosed
by the double print symbols while the literals MAXIMUM
VALUE IS EQUAL TO are surrounded by the double signs,

§9w suppose the variable must appear somewhere in the
middle of a line of text. The following format is

necessary:
, [<<USING| >Z< |MINES|AND|> X < |MINESWEEPERS)){,

Z and X ére the variablés and are distinguished from the

literalswby breaking the sense of the double print symbols,

Provisions are made to indicate the beginning of new
pages, blank lines, and Completion of output. These are
indicated by the use of the following punctuation within a
print statement but external to either single (< >) or
double quotes (<< >>),

; Start new page,

s, Insert blank line,

« End of file,

A statement simply to Carriage Return and Top of Form

(at the present time, 8 additional CR's) would be:

s 1<>51s

NR#29,p.97

‘‘‘‘‘

NAREC REFERENCE #29,p.98

Commas indicate blank lines, A statement of four

blank lines is written as:

9-f<>99,is

In the following statement:
s |<<PROBLEM | NR >|X >,,1{;

the literals PROBLEM NR and the variable X are printed
‘followed by twé blank lines, After all results are print-
ed (actually aﬁ any time outside quotes), an end of file
(ignored in line printer code, a stop code iﬁ}punch or

flexowriter code) may be indicated,

A single line of'printifor line printer output should

never exceed 72 characters,

It must be remembered that the double period (,.) is
reserved to iﬁdicéte the end of the flowchart; and may
only be used for that purpose. Hence, if is impossible to
place successive periods within literals since they will
signify the end of the flowchaft‘to'the compiler, How-
ever, successive'périods may be printed literally by

inserting ALGOL words between them, The ALGOL words will

NR#29,p.98 |

NAREC REFERENCE #29,p.99

prevent the canpiler from detecting a double period signi-
fying the end of the flowchart, but they will be removed
from the IO statement leaving only the successive periods

before the IO statement is compiled,

COMPLETE OUTPUT STATEMENTS

Although the three distinct modes of outputting -
page formatting, data printout; and literals - have been
discussed separately, the ability to mix them freely in
output statements is necessary before the programmer can
print out exactly what he wants to print out. For this
purpose, it is necessary not only to understand the details
of each individual type of output but to'have_aﬁ overall

picture of their usage.

In general, an output statement§ in the program logic
is enclosed by braces with the left orace being preceded by

a comma; namely,
s | 10 STATEMENT 1}

It is necessary to think of the existence of three levels
within the output statement, these three levels corresponding

to the three modes of outputting discussed above.' For

NR#299 Po99

o
-
L’
[
42
L]
L]

oy

v
L]

NAREC REFERENCE #29,p.100

convenience, these three modes are called levels O, 1,

and 2, corresponding to page formatting, data printout, and
literals, respectively, Entraﬁce'to an output statement
through the ,{ is always at level O, Within the output
statement each < raises the level by 7 while each >

lowers the level by i, subject to fhe proviso that the
level can never fall below 0 nor rise above 2, Exit from
the output statement must be at level O, Henée, in a

typical output statement, the levels would vary as shown:

b} ’ LXK N J <<¢°°G > LN XN < o000 >v.‘°.O > < ceeco < ® 200 >>D.0.}

0 o 7 2 1 0 1 2 0

It is immediately apparent that page formatting occurs at
level O, data printout at level 1, and literals at level 2,
with the appropriate rules as given on the preceding pages

applying at each level,

In order to properly arrange his output lines on the

page, the programmer need only keep in mind one simple rule:

Within the output statement, each time the level is
increased from O, a new line of printout is started, all
oscillations between levels 1 and 2 merely change the type

of printout on this line, and when the level is decreased

NR#29,p,100

o
i
<
o
T
B
(o]

o

e

NAREC REFERENCE #29,p,107

again to level 0, this line, followed by a carriage return,
will be printed., Hence, the above example calls for two

lines of printout,

vThe programmer who has a thorough knowledge of the
language used-within the three modes of output, should be
able to output whatever he desires by simple application

of the above rule,

IO PACKAGE |

NELIAC-N output is printed through return jumps to the
subroutines FRINTOUT, TOP OF FORM, DOWNL'NE, and END OF
'FiLE contained in the LIBRARY PACKAGE which is automatic-
ally compiled as 2 separate flowchart at the end of any
program which has one or more output statements., Hence,

these five names shouid not be used by the programmer,

This chapter is ended with a sample progrzm and re-
sulting printed output in order to illustrazte the rules
covering output statements discussed in this_gggﬁter. The
reader will observe that the result of this program was
used to génerate the full-page output statement illustra-

tion ending the section on Print Variables,

NR#29,p.101

‘‘‘‘‘

NAREC REFERENCE #29,p.102 e

5 ' -
OUTPUT EXAMPLE,,..

5

A =0, B=00, C= 00000, E=#0, F=#00000, G = #,

AA = 0.%0, BB = 0,0%0, CC = 000,00%0, GG = 25%2,

HH

2314%.2, II = 0%0, JJ = 00000*0;
START: ,|<>; << FIXED | POINT »>,} FIVE BLANK LINES,
492 > A, PRINT 1, 32765 > A, PRINT 1, -30 - A, PRINT 1,
BLANK LINE, BLANK LINE,,V
f<< FLOATING | POINT »», << y TRUE | DECIMAL | POINT >>,}
FIVE BLANK LINES, 1,0 + AA, PRINT 2,
(COMMENTS: WHAT IS WRONG WITH THE STATEMENT:

7 > AA, PRINT 2,)
-1.0 - AA, PRINT 2, 371.21 - AA, PRINT 2,
-371.21 > AA, PRINT 2, BLANK LINE, BLANK LINE,
f<< U SCIENTIFIC | NOTATION >>,} FIVE BLANK LINES,
{< || 66 y|| BH >,} 1.0 + GG, PRINT 3, -1,0 > GG, PRINT 3,
371.21 - GG, PRINT 3, -371.21 > GG, PRINT 3, STOP,
PRINT V: |A>B->C~->E~>F~>G,

RINSER SRCYRIR SRR SRR T
PRINT 2: {AA > BB > CC, | <y A1y || BBuy || €€ > },}
BLANK LINE: |, {<>}} '
FIVE BLANK LINES: | FOR I = 1 (1) 5 {BLANK LINE}|
PRINT 3: {GG » HH -» II - JJ,

f<liceullmyll ITy || 3751
STOP: ,{ <>; ofee

5‘. n
NR#29,p.102

s

pite

Ea
A
L]

¢
[y
H
LA
Ll
[«
i
K

€00+ t2LlE°"~
€00+ L2LLE°
LOO+ 0000L" =
LOO+ 0000L°

NAREC REFERENCE #29,p.103

COFIFFFFIFFS
P23.0000000
08 100000000

'£00+ 00000LCLLE" -

€00+ 00000L2LLE"*
L00+ 000000000L* =
LOO+ 0000000001L°

L2* LLe-

L12° LLe

00°L~-

00°L
© L000#= *
PIFL e
09 L0 *N%

£00+ 2LlE°~ €00+ Le°-
€00+ 2LLe° €00+ Le°
LOO+ 000L° = L00+ OL°~
L0O+ 000L° LoO+ OL*
200+ fL€2° ©00+ G2°

NCILVICN JIJIINAIOS

%% L2 1]
$HN* *n%
o°’tL- ‘L=
0°L °q

NR#29,p.103

INICA TVRIDIA INAL
INICd ONILVCTII

oe- oe- *i
GolLze P e
26t ey »H

INICd QiXIJd

NAREC REFERENCE #29,p.704 byl

¥1i, ADDEESSES OF NAMES r

it times, it is convenient for a varizble toc have zs
its initizl volue the szddress (ilocction) of another
verizble {(or, in generzl, the .ddress of any name), This
iz handled in the dimensioning staztement by following the
nzm> of the varizble being defined with zn enuzls sign and
2 set of braces enclosing the nzme cf the vzrizbie whose
zddress is toc be the stasrting vziuve, Of course, the
varizble {or name) whose nzme is enclosed by the braces must
be defined elsewhere ip the dimensioning stztement or

progranm,

Exzmple: To define the vzrizble ADEC zngd give to it
28 its initizl vzlue the zddress of the name €, the dimen-

sioning stztement must contsin:

T
e
bl
©
h

)
-
E 3

A tzble of vddresses may 21s0 be defined in the

dimensioning statement, for exzmple:

JTABLE = § P, €, B, S } ,

NR#29,p, 0k

NAREC REFERENCE #29,p.i105

J TABLE [0] contzins the address of the routine P,
and successive locations contain the zddresses of the

routines ¢ through Se

ABSOLUTE ADDRESSES

As discussed in Chapter II, the choice of address
assignment for sz variable is normally left to the compiler,
However, one may choose the location of z variable in the

following manner:
A = {#3ac5s} ,

As a result of this sssignment, the address of variable A&
becomes #3ac5. Jbviously, A may be trezted as a table con-
sisting of consecutive locations #3ac5, #3ac6, etc, The
number assigned as the address must be either a decimal or

hexadecimal integer,

The mode of a variable defined in this manner is deter-

mined by placing either a comma or a period zfter the right

brace, a comma assigning a fixed point mode to the variable

and a period assigning a floating point mode to the variable,

The variable A may be defined in the floating point mode

2s follows:
A = {#3ac5i.

NR#29,p.105

NAFEC REFERENCE Fr8 5,108

Yince the compiler does not tike this assigpment of
2bsclute zddresses 1Rto zecount in the compilation of the.
r2st of the Brograf. 1t should be used oni v for assigning
addresses outside of the range of the comriled object pro-
Kram., In addition it should never be used for the 8S8ignN-

ment of zbsoiute address zero,

Another NELJIAC feature similar to the one just dis.

cuszed, but spplicable to the program logic rather thzn the

difa nsioning Statement, refers to the contents of a var-
Ticulaer address rether than éhe address itsslf., This is
cecomelizhed by using 2 subscrigst zione without reference
to z nomed varizble, 7Tnis use of the @ubscrxnt in the rrou
gram logic will then refer directiy to the corresponding

abzolute address in the memory of the e suter itseif, Th

)

folloving ez ples should Ciarify this point,

BHEZ9. o, 06

NAREC REFERENCE #29,p.107

NELIAC STATEMENT ' NOTES rr

[2] » A, The contents of memory location 2 is
stored into the variable A,

s [I] - A, The contents of the memory location
whose address is in I is stored into
the variable A,
[B+ 10] » A, The contents of the memory location
. whose address is 10 greater than the
address that is in B is stored into the
variable A,

s A = [#7b5], " The walue contained by the variable A
is stored into memory location #7b5,

s[Bl]+[2] » [B+10]. The contents of the memory location
whose address is in B plus the contents
of memory location 2 is stored into the
cell whose address is 70 greater than
the address that is in B,

This form of absolute addressing is merely a degenera-
tive form of subscripting following logically from the
general form OPERAND [SUBSCRIPT ¥ number] where OPERAND is

suppressed,

It must be remembered that absolute addresses are
denoted by braces in the dimensioning statement and by

brackets in the program logic,

NR#299 p.107

NAREC REFERENCE #29,p.108 .

T : s

XIII, LIBRARY OF FUNCTIONS o

In scientific computation, any but the simplest
problems usually require the ready availability of mathe-
matical functions such as the trigonometric, inverse
trigonometric, logarithmic, exponential, etc, functions,
NELIAC-N provides these functions through its Library of
Functions which, in April 1963, contains the following 14
functions: | L

'ARCCOS
ARCSIN
ARCTAN
COS
- FL TO FX
- FX TO FL
. EXP
LN
- LOG
- SIN
- SPLIT
SQRT

TAN
COMSTN

The function iibrary, whenever one or more functions
are calied in a program, will automatically be compiled as a
separate flowchart labelled L?BRARY PACKAGE at the end 6f
compilation just as the 10 PACKAGE has been compiled, If
both packages are needed in a program, the two additional
flowcharts, LiBRARY PACKAGE and 10 PACKAGE, will be compiled

in that order at the end of compilation,

'NR#29,p.108

NAREC REFERENCE #29,p.109

The L1BRARY PACKAGE sill contain only those functions
which are called in the program (and any additional functions
which may be called by these functions) and not the entire
function library (unless all of the library functions are
called on). Hence, the length of the L1BRARY PACKAGE in
any program will be'the same length as if only the functions

needed had been read ig directlv from tape.

The library function names are not forbidden names,
These names may be defined and used in any program, Any
library function name which is defined in a program will be
used as that definition, However, if a library function
name is used but not defined prior to end of compilation,
this function will be compiled from the library at the end
of compilatioxi° The usual concept of temporary or local
names is applicable here; namely, if a library function name
is defined locally within a flowchart, that definition will
be used within that flowchart but calls for that name out-

side that flowchart will be filled from the function 1ibrary.

A1l functions (except FX TO FL and FL TO FX) are
floating point functions, The entry in all cases is
,FUNCTION (A;B), except for SPLIT which is ,SPLIT (A;B,C),.

NR#29,p.109

NAREC REFERENCE #29,p.110

All arguments are floating point except the input argument
to FX TO FL and the output argument to FL TO FX, FX TO FL
converts a fixed point argument to its cogreSponding float-
ing point value while FL TO FX converts a floating point
argument to its corresponding rounded fixed poinf value,
SPLIT converts a floating point argument into its integral
and fractional parts (the output arguments appearing in
that order), COMSIN is a function used by SIN, COS, and
TAN for their actual computations althoqgh it may be used
directly by the programmer, The input parameters of the
trigonometric functions and the output parameters of the
inverse trigonometric functions are in radians, and the
1atter are the prinéipal values of the particular functions,
The uses of all other functions should be evident from

their names,

Other functions will be added to the NELIAC-N library

as the demand for them arises,

As an example (much more complicated than the usual
case) of the use of the library, suppose that it is re-

quired to calculate the value Y where

5 A
Y = \/sin2 (e x= cos x) + 1n (22 + 3) + 16,74

NR#29,p.110

s
L)
pes
St
G
o

L

P

NAREC REFERENCE #29,p.111 e

Dimensioning TS and TS 1 as temporary floating point work- e

ing locations, a solution using the Library of Functions; is

,2.0 * X > TS, EXP (TS; TS),

COS (X; TS 1), TS - TS 1 > TS,

SIN (TS; TS), TS * TS > TS,
Z*Z4+3.0->TS1, LN (TS 1; TS 1),
TS + TS 1 > TS, SQRT (TS; TS),

TS + 16,74 > ¥,

The general exponential X = AB, where A and B are any
- A
calculable expressions, can be solved since AB = eB ? 1n H

and, therefore,
,LN (A; TS), B ¥ LN A > TS, EXP (TS; X),
would yield the NELIAC-N solution,

LIBRARY PACKAGE

Although 1library function names are not forbidden names,
calls since their use for other purposes may complicate
understanding of the program and may interfere with its
integration with other flowcharts or programs. The usage of
these names is further complicated by the fact that some

library functions themselves call other library functioms,

NR#299 po‘i ci .'

NAREC HEEFEERENTE £29,0,v: 2

Hence, when the programmer uses 2 library functlion nspe for

T even thouvh he dooss

sy

some other purnose. trouble meav rosu
not ¢2ll that particulzar iibrary Tunciion since some library
function he does c¢all mav 4o g3, Furthoraors, the nawe of

the function library LTBZALRY PATKAGYE should not be defined

®

globally. At the present tise, the library nages with the

other 1ibrzry functions they c¢z2li indicste benszth them are:

LYBRARY PACKAGE
ARCCOS

ARCTAN

SQRT
ARCSIN

ABCTAN

R
ARCTAN
Cos

CIMSTN

SPLIT
Fi. TO ¥FZ
FZ TO Fi.
EX¥

SPLIT

LN
313G

LN
SIN

CHIS: N

SPLIT
SPFLIT
SQRT
TAN

Ca3

S AN
CIM53+N

A%

NR#29, 0, 12

- NAREC REFERENCE #29,p.113

Note that several of the functipns‘pall on other

functions which in turn themselves call on still other

functions thus further complicating the difficulties

which may arise from the 1ndiscriminate use of library

names,

~ NR#29,p.113

«,f
o

'RAREC REFERENCE #agﬁy.k

XIV, ﬁACHEVE zavGﬁAez CODING

The NEL éf camrzi#* provzﬁqu for the insprtiaa ﬁf

sctubl machlne lgnaugge instru ﬁtchs between ﬁﬁanﬂtigﬂa}

NELIAC sfatements by meang nf mathne language c@ding ai&ﬁ

known as"brutch coding® ., ‘Esch iﬁﬁtructign‘ccasistﬁ;Qf an

address -- either an unsignéd dacimal or hexszdescima:

@

integer or s name {whicb'xay'bé:édﬁécripted iﬂciuéiﬁg"fhé'

zbsolute address notation, but which msy not be bite

handlgd?% followsd by the hexi sign and:a twb digi% hoXs-
decim=1 order (aétuaii?;‘;Jy ﬁnsigneﬁ one or two digit
héézdecimal number!?, Eécﬁ such iﬁét?ustipn is considered
3'Statemént.and must be sepairsied 5y'c0mmzﬁ (or their

equivalent),

 IN5yROCTION BoTH®

,#?f?a#ﬁﬁ, Lozd accvmulator with centgntﬁ of

locztion #: 175,

-~

LU #54, Add contents of location O,

éI + #/000.#12 . Store result in address #“000 wlw»
contents of index register - 1%?

hR "'9.9@»"-’:

a2z
3
e
Tia
4
L2
[
L
L1
M=
[3w

NAREC REFERENCE #29,p.115

Names of locations_containing variables may be

referenced as well as actual addresses.

 INSTRUCTION NOTES

,NUMBER #50, Load accumulator with contents of
: location referenced by the ‘name
| NUMBER,
,ALPHA #54, Add contents of location referenced
: by ALPHA, :

,BRESULT [1] #42, Store accumulator in location
referenced by RESULT augmented by
index register 1(1I),
-Constants may appear as address portions of many
instructions, If a constant is to be treated as a hexa-

decimal integer, a hexi sign qnst precede the number,

| Any’statement may be labeled by the familiar nethod of
punctuation, uniqne name, coldn. This causes the next
;n;truction to be cdnpiled into a left (upper) half-word
positf%n with an appropriate right (lower) half-word pass
1nstruction-being compiled into the pneceding progran stepl

1f necessary. ‘Note in the example, the conditional jump in

the statement to the instruction tagged as ROUTINE,

,ALPHA [mnnx.-#soo]#so, [K+7]#55,
MASK #26, OF40,
[LOCATION =2] #42, ROUTINE #12,
ROUTINE [4] #1

ROUTINE: LOCATION #83, #‘1 000720,

NR#29,p.115

A

NAREC REFEREKRCE #29,p.116

‘There is a oneatbuohe}correSpondence‘between NELIAC
machine-language instructions and the actual naéhinealang-
uage instructions in the resﬁltihg object progfam’(allow-'
ing for "passe§' caused by verbal definitions) exéept in
the case of aﬁj ihstruétibnvwhose address portion'contiins

subscripting by name.,

In the puré NELIAC language, the programmer need hot

concern himself with the contents of the computer registers

since he has no direct access to them, The compiler itself

keeps'track of the registers it uses thereby preventing

-difficulties from arising in the compiled object program'due‘

to erroneous use of the registers, However, in machine |
language coding, the programmer now has direct access to the
NARECIregistefs; aﬁd, therefore, he must be‘caréful to keep
track of their contents himself., In order to be able to

successfully keep track of the A and U registefs of the

NAREC during machine language coding, he must realize which
'NELIAC-N statements may destroy the register contents and

avoid using any of these NELIAC statements at a time when he
is interested in the contents of a NAREC register. These

NELIAC-N statements include:

NR#29,p.116

[

o

1

G
L]

e

-

)

- (2)
(3)

)

(5)

(6)

N

NAREC REFERENCE #29,p.117

subroutine and function calls;

subscripting by name (destroys U register only),
the entry or recycle test in loop control
(destroys A register only);

cqnpar:lson statements (but not the altérnatives
thélselvés);

output statements; |)

partial word or bit handling (whother explicitly
:i.n the program logic or through dimensioned
partial words); |

NELIAC arithmetic statements,

' Examples of illegal machine language coding are:

(COMMENT: ILLEGAL USE OF REGISTERS
IN MACHINE LANGUAGE CODING.)
NOUN #50, SUBROUTINE, HOLD #42, :
NAME [J] #eu, 0 #90,
LIST #zu, STORE [E-T] #i3,

NO #50, I

= 0(71)6 §6#30 0#90§

CONST #50, A = B: C#i2; Dfiz; E-F,

AB #24,

< C >}, DE #43,

PW (5>10) #24, 0#90,
A #50, B~ C > D, E#42,

NR#29,p.017

NAREC REFERENCE #29,p.118

The programmer must be particularly careful tb precede
the order by = hexi sign in all cases. #3000f10, not
#300010, compiles as an unconditional transfer to thé'
left instruction of location #3000, #300910;‘wi11 give

a compiler fault,

e
E

' NR#29,p.118

,wr‘u:‘:w';:: T

NAREC REFERENCE #29,p.119

XV, PARALLEL NAMES

NELIAC-N provides for the parallel‘definition of a11<
forms of names which iay“be defined either in the dimen-
sioningvstatemeqt or in the program logic. This means thaf
whenever a name is definéd, any number of additionéi names |

may be defined to have the same’meaning;‘all of the names

_being completely interchangeable in their use. In all

cases, except in the definition of partial words which in-

herently contains its own means of parallel definitions,
names aré defined in parallel to the initial name by simplj'
inserting immediately after it,é colon and the second name;
This‘process of ''colon name' may be repeﬁted indefinitely,
thereby defining any number of names in parallel., What-
ever would have followed the single name now follows the
last 'colon name' in the parallel definition, Examples‘in

the dimensioning statement

A:B:C, (
D:E:F: G,
Al : A2 = 57,185,
Bl : B2 : B3:(20).
NR#QQ,p.TTQ

NAREC REFERENCE #29,p.120 &

‘‘‘‘‘‘

Ekamples of parallel definitions in the program logic o
) - [t

are: ‘

,CALCULATION : REENTRY : A + B > C, ...
;SUBR : SUBR} : |0 > D > E > Fj

Since any number and arrangeﬁeht of bartial words may

~ be defined in parallél, the definition of identical partial

‘words in parallel is merely the special case where both bit

designations of two or more partial words are identical;‘

e.g.v,
,A : B [C (5°7), D(5>7), E(6>18)},

In this case, the names‘c and D are interchangeable through-

out the program,

In any parallel definition, any name or names may be
temporized independently of the other names in the-parallei

definition,

NR#29,p.120

.+ the follow1ng (nonsense) NELIAC program was compiléd Th

. NAREC REFERENCE #29,p.121

VI, DIAGNOSTICS AND DUMPS

An effective aid for program checkout is provided b

tsthe NELIAC—N diagnostics and dumps.. As an illustration,

?R]RUN INFORMATION which is automatically furnished at the

f:end of compilation, the alphabetlcally sorted NAME LIST

| NR#29,p.121

' bTAPT‘ A+ B=C, 0>T=>N, - . S o .
FOE I = 0(1) NUMBER OF thRIL* =0 fE[E} * X[1) 4+ T » T}

. NAREC REFERENCE‘#ZQ,p‘ﬁaz

5 -
’NEL]AC PROGR&M,,.o

| X(SO) 5*0, -29, 7*0, 48 9:7*1 2,0%-1,
NUMBER OF ENTRIES = 4, T = 0%0, A, B_ c,
TAB: {#X(1-7), YY(»O»M6)} (100), VA

98,7 T ¢ X {3]*
| &TOP AR
_ N4l o N; o
XK O*® 2% (5*10) d YY,
CSTOP: . a

5”0 .

NTLIAL?ROGRAM .

'-NR 'ROUTINE NAWE FIRST UAST
01 <, START ',4; L 2700 28b7

NLLIACPROGRAM “
 NAME L1 &T»BUME&‘

‘A . 27kt

B . . 2750

- C 2781

- DIVIDE L 2Bab
FiADD - o 276
FiDiv - o a8l

CFIMUL . 280€
FiSUB L 27fe

S ET702 .
2703 '

‘ E704.

o 205

MULT;PLY ' ‘;,; - 2898

- o S

. NUMBEROFENTRIES 27hd
 START ©. .- 27b
SToP . e7d8

SUBSCRIP .~ 1 .27e0

T o 27he

- TAB 0 2752 -
PR Bl
XX L 2752 0107
YW . 2752 20-h6

2z - . 2The |
e LR e T NR#29,p.122

2700

271D

271¢

- 27id
271e

"27Md
2767

27b8
27b9

o 27ba .

27bb
27bce
27bd

27be
27bf

27¢c0

27ct

27c2
27¢3
27ch

27e5
- 27c6
'27cg
27co

27¢9

- 27ca

27chb
27cce

27cd

27ce
27ct
27d0

C27dl
- 27dz
- 27d3

27dk
27d5

2746

2747
a7d8

£7a
0891

"07ec
_oooo
‘1?750

2751

27he
27de

2701

2707

27df
o7bf 1
27bf

2707
0000

2701

- 0000
" 27he
" 27The
‘27da

27¢7

27cd

2707
2707

- 27ce
27¢cce

27df

- 2706
- 27b6

27de
2708

0007
- 2708
2749
2709

27db
2709 5

2700

NEL A CPROGRAM '

10

00

26
La

CC

00

50
Ip

L2

50 .

50
L2
5)

WT

00

50

00

24

24

4o

50
IR
12
42
24
12

RN

50
42
50
26
42

39
20

26
43
26

82

'OBJECT PPOGRAM DUMP

-27b7“
0839

2707

‘0000
6666

2815

ccce
0000
o7hf

27dc
2706

27bc

27df

274d

2707
27¢6H

27e0
271b -
27e0

271b

2806 -
2716
27bb -1
- 274e

27fe

2The
271d

27fe

27cd
. 2748
2706
27ct 1
0005
0000

2752

27dd
2898

0074
2752

0000

2752
2749

NAREC REFERENCE #29,p.123

NR#29,p.123

Lot
-z

pom

-
.

L]

Ao

L e

P

L]

57d9

»7da

27db

©27dd
27de
27d4f
27e0
27el

27e2

27e3
27el

27e5

- 27eb
27eg

27e

. 27e9

"27ea‘
27ec"

27%5

2716
o7

27%
27£9

27fa

27fb
27fc

27fd

27fe
Bgff
2300
2807

2802

2803
2804
2805
2806
2807
2808
- 2809
2802
280b
280c¢
28604

280e

0000
087¢

- 8000
0000

0000
0000
0000

- 0000
- 27e5

27e9
0000

0000

0000
0000
0020
0000
0000

27e0
offf

- 27ef

0000
2718

o7

27fc
27£3

- 27d4f

271d
27ef

0000

2800

;»ngT_
2804
P7£3

260t

27ef
0000

2808
p27ef

27ef

0007

2715

o7ef 5
280f 3

ffff

6666

. Offf
0000

0000
0000
27eb

27el

27e9
27ea
27e7
0015
001d

0000
0000

27eb
0000

2Ted

CPEPE

ggfo
2888
2842 1

07£2
27dc
27£d
2713
2859
2710
2888
2842

27£2

274t
2805

27£3
2859

2710
2888

2842
- 0008 :
27£0

27ef
27ef
Z7de

2668

2h

KaREC KEFERENCE #29,p.7124

10

 RRf28,p.1zh

280f
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819

‘-“ 281a

281b
281c
28id

28le

281%
2820
2821

2822

2823
2824

2825 -

2826
2827
2828
2829
282a
282b
- 282¢
2824d
z82e
282f
2830
2831
2832
2833

2834

- 2835
- 2836
283
283

2839

283a

283b
283

283d
283e
- 283f

- 27ef

2ol

- 27ef

27ef
27ed
27ed

2Tee

288e

288d
2819
2819

27ed
28

. 27ef
27ed
- 27ef
- 27EY

Id

2821

27dc
27ef
2823
- 27ef
0000
2826 .
2710
2710

0007

2715

ohed

27ef

- 27ef
,Eged
2833

- 2T7ef

- 27ef
27ed

27ee

2884 5

2837
2837

3k

27ef
27ed
27ef

27
283

27dc

'288c}

2813

0007
2815

27df

2815

27ed
2T7ed
2818

28ta

2889
27de
27dce

2888
0024
- 2Tef
27f2 .
2823
27et
2823

2888
2710
2888

2842
10008

27ef
2710

27ef

288b
2831

- 0002

27df
Eged
2837

0007

2833

- 288e

A

2838 1
2889
27de

27de
2888

0024

27ef
2712

2847
- 2Tef

NR#29,p.125

NAREC REFERENCE #29,p.125

28&0

c8h1
2842
2843

284

2845
284L¢
2847
2848

2849

2842

284b -

28lc
284d
28le

- 284f

2850

2851

2852
2853
2854

2855

2856
2857
2858
2859
285a
285b
285¢

085d

28%e

| 285f

2860
2861
2862

- 2863

2864
2865
2866
286
286
2869

286a

286b
286¢

2864

286e
286 f

.....

{léf"'* 2y

o000 i
GO00

TG

ety
2HER
,—B;:)Eﬁ
L;dc

“870 1
0007
27d4f
z?7ed
»86e

2870
2889

-
L0
:

10.

51

55

N 50
¢)}(}
) ﬂ?

Ly

5%

50
50
u/

10

WRAT = T R
N @ Fo Qi TR D

NAREC REFERENCE #29,p,125a

NRE2O, p, | T

2870

2871

2872

=873
2874

2875

2876
2877

- 2878

2879
287a
287b

- 287¢c

287d
=87e
287f
2880
288y
2882
2883
2884
2885
2886
2887
2888

- 2889

288a
288b
288c
288d
288e
~88f
2890
289’
289z
2893

2898
~H99
>89z
289b
280¢
2594
289e
289 f

2882

27ef

2873 1

27ef

‘ 2gef

"

2876

2878 1

2710
clef
27f1
Z7ef
=871
27dt
27et
Z7ef
27ed
»HEz
2Tef
Z7ed
2fef
D7 £
2886
27de
27ef
z7ef
ffff
ZTed
0020
0070
0000
0000
000~
0008
0000
000

0fff
o8ok

006060
2894
289e
2893
»895
0000
0000

10

50
50
ho
P8
B

Yz

55

50

5%

ho
50

Y

5~
e

50

54

50

2871
270
2877
2710

z7de

888

2877

27ef
27df
277
2890
2Ted
27ed
G001
287

27de

27de
2888
0024
27ef
o7de

2888

zTef !

2888
0000

ffEE

>88b
0000

0000

0007
0000
fiff
GGo0
0000
0000

FEEE
2895

280%
2895
0000
0000
289f
2893

0000 1

10

30

NABEC K¥FERENCE #29,1,125b

NR#29, 5.1 25h

2820 :

- 28a1

28a2
28a3
28ali

~28a5
28a6 -

28a7
28a8

2829

28aa
- 28ab
28ac
28ad
28ae
28af

- 28b0
28b1

- 28b2
' 28b3
28bl

28b5

28b6
28b7

>80l

42

002¢c 44

2895

2894
- 28ab
28b6

2895

- 2893
- 2893

2894
2895
0000

- 2896
- 0007
2894

28ac

. 2896

2894

0000
2897
2897

28bb6

- 0000
T 28ez

53
52
13

10

24
50
51
52
52
80
22
30

50

12
55
50
37
50
43
10
10

g2

2895 43‘-

28b6 20
28b6 13
2895 57
0000 80
2894 50
28a8 16
28a8 11
2897 42
2894 42
2895 47
2896 42

2895 50
2895 42 -

2895 55
28a1 50

28b2 20
2895 70

2893 26
28b5 13
2897 51
0000 10

dddd 82 ©
28b8 10

NAREC;REFERENCE #29,§.125é

- NR#eS,p.125¢

NAREC REFERENCE #29,p.126

The object program dump illustrated is a non-reloadable
dump for information only, NELIAC-N furnishes two reload-
able dumps -~ a bioctal dump and a standard NAREC dump,
Inasmuch as the bioctal dump is approximately 40 percent as
long as the NAREC dump, is comparison-loaded for correctness
28 soon as it is punchedﬁout, and, on readin, automatically
sets its own first and last addresses and check sums itself,
it is the preferred relosdable dump, In addition NELIAC-N
provides for the non-reloadable dumping, in the hexadecimal
format of the object program dump, of any sections of memory

specified by the programmer.

In the‘illustration'just furnished, there were no
compiler-detected faults, In the event there are any com-
piler faults, these will be printed out as detected during
‘compilation, The next example gives the printout of the

compilation of a program containing a number of errors,

NR#29,p.126

~
3

MIYTTEALLNA
5 PoiN i

Ty

H

I

n

NAREC REFERENCE #29,p.127

NELIACPROGRAMIOW
01 INPUT/OUTPUT FAULT >
| SQUARED | = | C, | ARE: 5>, <<| | | Al | |BUCD >» | I=0(1)9{A[1]>BUFFER 3,B[1]-BUFFE

02 DIMENSIONING ERROR) TS (
0)=-16,,,5Ts=118,,16,4,-7,C(10)TS(2) ;NELIAC CLASS PROGRAM:SUM 100 INTEGE

02 SUBSCRIPT FAULT s INTEGERSQUARED
D SUM,K=1(1)100{ INTEGER SQUARED[K-1)+INTEGER SQUARED SUM~INTEGER SQUARED

02 CO/OPERAND/NO FAULT [QUARED +
D SUM,K=1(1)100] INTEGER SQUARED[K-1)+INTEGER SQUARED SUM-INTEGER SQUARED

02 FUNCTION FAULT , SUBSCRIP (
OF TABLE:L=9(-1)0{SQUARE FUNCTION(A[L]:TS),SQUARE FUNCTION(B[L];TS{1]),

02 CO/OPERAND/NO FAULT TS
E:L=9(-1)0|SQUARE FUNCTION(A[L]:TS),SQUARE FUNCTION(B[L] TS[1]),TS+TS(]

02 CO/OPERAND/NO FAULT)
E:L=9(-1)0{SQUARE FUNCTION(A[L]:TS),SQUARE FUNCTION(B[L] TS[1]),TS+TS(1]

02 FUNCTION FAULT A]

TS),SQUARE FUNCTION(B[L];TS[11]), TS+TS(1]+C[L](EXIT SQUARE FUNCT ION(INTEG
02 UNCLOSED SUBROUTINE . 100 ‘A9

INTEGER* INTEGER->INTEGER SQ E|XT:,, ,..YZT;Ul .9DA[P},#.[1*2<3D4
NR ROUTINE NAME FIRST LAST

07 IOSTATEMENT 2700 Egea

02 NELIACCLASSPROGR 2geb
e

C
03 IOPACKAGE 2c19

UNDEFINED NAME LIST DUMP

BUFER6 2cla
EXIT 2c}b
o 2clce
BUFFER3BUFFER3 2cld
LOoo 2cle

NR#29, p.127

NAREC REFERENCE #29,p,728

ATTITLAUTIALND

Following the Program Name, there oécur, in order,
three different types of diagnostics, First occurs the
faults in the order of detection with detailed information
about each fault detected being printed out in a two-line
entry. Tﬁe first line gives, in order, the flowchart
number, the type of fault, the current operator, the
operand, and the next operator, all at the time of detec-
tion of the fault, The second line gives the 72 successive
characters in the symbol string in memory, centered on the
point where the compiler is compiling at the detection of
the fault., This enables the programmer to quickly locate
the pertinent point in his program and tells him exactly
what is actually in the computér memory at this point,

Next occurs the Run Information which gives the same infor-
mation as for an error-free compilation, Finally, there
may be an Undefined Name List., This Dump lists all names
which remain undefined at the 2nd of compilation and the
locations which the compiler has assigned them at th% end

of the program,

The NELIAC-N compiler has a provision for loading a

single flowchart without its compilation.

NR#29,p.128

NAREC REFERENCE #29,p.129

The NELIAC-N compiler also contains a SYMBOL STRING
DUMP which will print out the actual symbol string formed
in the NAREC memory from an& flchhart. This is frequently
of use in isolating the causejof an apparent contradiction
between a flowchart and the compilation resulting from it,
This symbol string dump may be used in dumping the NELIAC
program during its regular compilation or it'may be used

with the single flowchart load without compilation provision.

NR#29, p.129

AITITrAUTIALA

NAREC REFERENCE #29,p.130

APPENDIX A

Summary of the NELIAC operator symbols

A, Punctuation

3 Commz: In general, a comma is used to
separate names and numbers in the dimen-
sioning statement and to separate state-
ments that are to be performed consecu-
tively in the program logic, In a one
name statement, a comms indicates az re-
turn jump to a subroutine, The comma 1is
also used to separate the parameters is

g function ¢=z11,

.o

Colon: The colon has five bzsic meanings.
In the dimensioning ststement .. 18 Usen
when defining z partisl word, with the
name of that entire word preceding the
colon and a left brace following the name.
Using the colon after a name preceded by
punctuation defines that which follows as
the subroutine or the routine associated

with that name, except for parallel names.

NR#29,p.130

AT ITLLUTAUN

-e

NAREC REFERENCE #29,p,!3"

Using a colon with any comparison symbol

separates the statement of the comparison

from the true alternative, The colon is
also used in the definition of a function
and is also used to define parallel names
in both the dimensioning»statement and

the program iogic.

Semicolon: the semiqolon is used to separ-
ate the dimensioning statement from the
flowchart logic. The semicolon can also be
used to end the true or false alternative
of a comparison, In a function call, a
semicolon separates fhe input parameters
from the output parameters,

Period: A period is used at the end of a
sequence, when control is transferred to
another part of the program as specified
by the word immediately preceding the
period., This same symbol.is used as.a
decimal point in numbers aﬁd to define

floating-point working 1ocationsm

NR#29,p.13}

AT ITAAUTIAUN

NAREC REFERENCE #29,p.132

Double period: A double period indicates
the end of the flowchart logic, and, con-

sequently, the end of the flowchart,

B, Arithmetic Operators

B

Pius'Sigg_

Minus sign

Multiplication sign

Division sign

Exponent sign or Up arrow: Indicates an

exponential operation, The number to the
right of the symbol expresses the power
to which the base is to be raised. At
present only the base 2 (arithmetic shift)

or no base (logical shift) may be used,

C. CgmpariSOn Symbols

P

N\

A4

Equal: Also used in the dimensioning
statement and in loop control.

Not equal

Less than

gregtgr than

Less than or equal to.

Greater than or equal to

NR#29,p.132

AT 1T A LAUAALLA
T TEYNY PPN Y

D,

Miscellaneous

()

[]

NAREC REFERENCE #29,p.733

Parentheses: - In the dimensioning state-

ment, parentﬁeses indicate the number of
variables in a table, In both dimension-
ing statement and program logic, paren-
theses enclose bit specifications for
operating with partial location operands.
In the definition or call of a function,
parentheses enclose the parameters to be
used, Parentheses zlso enclosc comments
when used with the colon, They also
enclose loop increments and decrements and
furnish algebraic grouping in the program

logic,

Brackets: Brackets are used for sub-

scripting., The numeral or index enclosed
by brackets augments the name preceding.

If no name precedes the brackets, the three
guantities together are treated as an

operand.

NR#29, p.133

TT AN ITTTALTN
= AR H

AT
LI

v
wmay

L

NAREC REFERENCE #29,p,.134

Braces: In the dimensioning stastement,
braces enclose the name whose address is
to be the initisl value of the name pre-
ceding the braces, or enclose the number
which is to be the absclute address of the
name preceding the braces, They also
enclose definitions of part location
variables, In the program logic, braces
indicate loops, and enclose subroutines,
functions, and cutput statements,

Right Arrow: Indicates that the result of

the preceding operation is to be stored
into the name following the arrow, Also
used to help specify bit operands.

Absolute Sign: Used to purge names, used

in output statements to indicate one space,
and used to indicate sbsolute values in
the program logic,

Boolean OR Sign: Used to separpte parts

of a compound decision, Used in ocutput

statements to indicate five spaces.,

NE#29,p, 134

AT ITAUTAUN

<>

<< 3>

NAREC REFERENCE #29,p.135

Boolean AND Sign: Used to separate parts

of a compound decision, Used in output
statements to indicate no space,

Less Than, Greater Than Signs: Used in

output statements for printout of
variables.

Double iess Than, Greater Than Signs: Used

in output statements for printout of
literals, Also used in the dimensioning

statement for literal definitionms,

NR#293 p.135

ITsrUIALAN

1Y

NAREC REFERENCE #29,p.136
5
(COMMENTS: THIS FLOWCHART DATED 4 MARCH 1963
IS A DIMENSIONING STATEMENT ILLUSTRATING
THE VARIOUS FORMS OF NOUNS IN NELIAC-N,)

A, B(6), C(#20), D=5, E = -5, F = #300, G = -#f3c,

H(3) = 1, 2, 3, P(#0) =7, 6, 5, 4,

Q7)) =, , 6, =8, #a17, , 57, -#6,

R: S: T, U: V: W: X = =58, Y: Z: AA (50) = 16, -#27, , -8, #0,

AB: [AC (0+23), AD (24-47)} (26) = #1234 56 789a be, , 5,

AE (0~0), AF (0-7), AG (8+23), AH (0-23), AI (24-31), AJ (32-47),
AK (24-47), AL (24~>47), AM (24>47), AN (6~6), AP (15235)},

AQ: AR: AS: [AT (5»10), AU (5»10), AV (711},

AW = {#2000}, ADDR A = [A}, ADDR SWITCH = {A, B, é, D, E, F{,

T|EMP, T|EMP 1: AX: [AY (5>10), T|EMP 2 (23-23)} (#0) = 57, -18,

FA. FB (6). FC (#20). FD = 5%0, FE = -5%0, FF = 278,,

FG = -768.,00%0, FH (3) = 1.0, 2,0, 3.0,

FP (#20) = -12%0, -12,0, =12,, -1.2%1, -12000* -3, -12,0%0, -1,2%1,

FQ (27) = , , 6%0, -8.%0, 25,0, 5700%-2, , , -6.,

FR: FS: FT, FU: FV: FW: FX = -58.0, ,

FY: FZ: FAA (50) = 16.0, -39%, , -8., 16.0,

FAW = {#3000}, ADDR FA = {FA},

FADDR SWITCH = |FA, FB, FC, FD, FE, FFi{,

F|TEMP, F|TEMP 1: FAX (#10) = 57.0, -18.0;

NO LOGIC: ..
NR#ZQ, pc-l 36

By

AITITLHLAUTALA
FE I I | iy sk

NAREC REFERENCE #29,p.137

APPENDIX C

NELIAC~-N Forbidden Names

NELIAC-N places the following restrictions on the pro-
grammer's otherwise unlimited choice of names which he may

define and use:

(1) The 5 ALGOL words

GO TO

DO

IF

IF NOT,

FOR
must never be used as names or parts of names, However, if
any of the spacing requ;rements are violated, the same
sequence of NELIAC charécters is no longer considered as zan

ALGOL word and may be freely used.

(2) Each name must be uniquely determined within its first

16 characters (excluding‘spac;ng and ALGOL words).

(3) The single letters I, J, K, L, M, and N must never be
defined globally. |

NR#29,p.137

AT ITsrUTIALN

NAREC REFERENCE #29,p.738

(4) The following names are defined globally in the various
packages automatically compiled into programs by the com-
piler as needed by the programs., In many programs, some or
a1ll of them must not be used, but, in any event, good pro-
gramming practice dictates that they never be used (except
for the library function names and these only for bona fide

library function calls):

SUBSCR1 P
MULT1PLY

DI ViDE
F1ADD

F1SUB

F1MUL

FiD1v

I0 PACKAGE
PR1NTOUT
TOP OF FORM
DOWNL1NE
END OF FI1LE
LYBRARY PACKAGE
ARCCOS
ARCSIN
ARCTAN

COS

FL. TO FX
FX TO FL
EXP

LN

LOG

SIN

SPLIT

SQRT

TAN

COMSIN

NR#29,p.138

AT ITALUTIALUAN

<
pts
<
r
-
s
L
-
"y
-
i

APPENDIX| D
|
|
|
|

(- 4 obeq:)

"ON 3dvyi - "ON" 8044 3L JLva 43002

J33IHE ONIQ0J N-IVITIAN

139

NELIAC-N OPERATOR INSTRUCTION SHEET (L4/4/63)

RCC Problem Number

Problem Title

Sweep

Console Input System Unless Otherwise Specified.

Console Input System (3800-3bbb), specify Direct

Date 5.

NRL Account Number

Programmer

Telephone

If stored object program may cover

Operation.

Printer only (except reloadable dumps) unless otherwise specified.

1. Compile
Flowchart Tapes:
(1) F- (3) F-
(2) F- (4) F-
One Tape: LO c00.

More than one tape: LO cO!, LO cOL, LO cO3.

(5) F-

(6) F-

Stop on bad compilation unless otherwise specified. CIRCLE DUMPS DESIRED.

2., Name List Dump LO c05.
3. OP Dump LO ¢09.

L, Dump Locations (if desired):

‘5. Bioctal Dump and Comparison Load

Punch, LO c06, Printer, Load Tape, LO c07.
6. NAREC Dump

Both, LO c08, Printer.
7. Other Information:

Run Information Extra Copy LO cOd

LO cOa (if needed).

Box and Transfer.

Printer Code LO cOb. Punch Code LO cOc.

8. Special Instructions:

140

