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SYMBOLS

A dot over a symbol indicates differentiation
with respect to time.

A, nth Fourier cosine coefficient
A(t) Indicial admittance
B0  n Ih Fourier sine coefficient
C, proportionality factor for characteristic

load
D. (t) Duhamel integral for base motion
Fj (t) applied force acting on m,
Fi, inertia force plus applied force at mi in

the ath mode
F,. characteristic load acting on mi in the at5

mode
G(t) impulsive response
li impulse applied to mi
K spring stiffness for single-degree-of-

freedom system
Kij stiffness coefficient
M total mass of a structure
M, apparent mass in mode a
Na (t) Duhamel integral for an applied force
Pa participation factor in mode a
Qia inertia force acting on mi in the ath mode
T time
To period of a function
Vo velocity step
W work

:N absolute displacement of mi

Xi relative displacement between mi and the
base

X,. relative displacement between mi and the
base in the ath mode

Xya normal mode shape for mode a
Z base motion
g acceleration due to gravity
mi Ph mass
q. (t) time function for displacement
rJk relative displacement between mj and mk
t time
wi weight of Ph point
yi perpendicular distance between mi and

the base
,
6

k weighting function
ycj stress coefficient
8j• influence coefficient
0(t) rotational motion of a base
o-e stress at point c

C-a characteristic modal stress at point c due
to characteristic loads from applied force

hca characteristic modal stress at point c due
to characteristic loads from base motion

Oka orthogonal function

0 KVK7/m, the natural frequency for an un-
damped single-degree-of-freedom system

Wa natural frequency of mode a for an un-
damped multi-degree-of-freedom system

fl frequency of an applied vibratory force
of constant amplitude

iii



Elements of Normal Mode Theory

G. J. O'HARA AND P. F. CUNNIFF

Structures Branch
Mechanics Division

Elementary normal mode theory is derived and used in defining the dynamic response of linear
elastic strunctures. The theory is derived from the definition of a linear elastic structure by using
D'Alembert's principle and only those mathematical methods which are familiar to most engineers
and are no more complex than necessary. The cases of free vibrations and response to applied forces
and base motion are examined in detail. Each normal mode is shown to respond to dynamic loads as
a single-degree-of-freedom system with specific characteristics. Equations are developed for stress
and deflection. It is shown that these can be converted to the form where the stresses or deflections
are considered to be composed of two parts: one which ignores inertial effects (the static solution as
a function of time) and one which represents a dynamic correction. Generalized Fourier expansions
and characteristic load theorems are derived. The general problem of stresses and deflections is pre-
sented for arbitrary applied forces and base motions as well as for steady-state conditions.

INTRODUCTION

The response of linear elastic structures to
dynamic loadings has been the subject of several
earlier works, including NRL reports (1, 2). Re-
cently, normal mode theory has become more
widely used and accepted as a tool for structural
design and analysis. It was felt that a new and
clearer presentation of the background theory
and derivation of the equations was necessary to
help those who use this technique in their design
work.

This report is deliberately limited in its use of
mathematical methods to those which are no more
complex than necessary. No background knowl-
edge of Fourier transforms, Laplace transforms,
Hamilton's equations, or Lagrange's equations is
assumed. These general methods are so powerful
for this type of problem that solutions are pro-
duced with deceptive ease. The feeling of really
understanding the problem is lost while following
the operational rules. This report is a self-con-
tained reference teZt which includes many steps
not often published. However, no claim is made
to originality.

There are two basic approaches for the analyt-
ical representation of a linear elastic structure
responding to dynamic forces. One method breaks
the structure into a finite number of concentrated

NRL Problem F02-05; Projects RR 009-03-45-5752 and SF 013-10-01,
1793: 2760, 2962 This is an interim report on one phase of the problem;

work is continuing on this and other phases. Manuscript submitted
July 26, 1963.

masses which are restrained by a weightless
structure which has the same strength properties
as the real structure. Such systems are called
lumped parameter systems and have their govern-
ing equations of motion in the form of ordinary
differential equations. The second method treats
the structure as a continuous elastic body (an
infinite number of masses) in which (at least
segmentally) the material is assumed to be homog-
enous, isotropic, and to follow Hooke's law. These
systems are called distributed parameter systems
and have partial differential equations for their
equations of motion. Most engineering structures
are too complex to be solved by this second
method.

The primary concern of this report is to find
the motions and stresses of undamped linear
elastic structures which are idealized as lumped
parameter systems. It should be noted that the
derivations can be converted to those for distrib-
uted systems by replacing the influence coefficients
with Green's functions, and replacing the summa-
tions over all the masses by integrations with
respect to the mass. A thorough understanding
of the lumped parameter derivations will place
the reader in a very advantageous position when
dealing with problems of structures idealized as
distributed parameter systems.

The usual assumptions concerning linear elas-
ticity are made in this report. In addition, it is
assumed that all applied forces and deflections
are parallel. Only structures which rest on a base
are considered.
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THE SINGLE-DEGREE-OF-FREEDOM
SYSTEM

Differential Equations

Since the undamped single-degree-of-freedom
system is the simplest possible vibratory lumped
parameter system, some of its properties are re-
viewed. Consider a structure which is idealized as
a concentrated mass supported by a linear spring.
The structure has been modeled as an undamped
single-degree-of-freedom oscillator (Fig. 1). Mo-
tion and an applied force are indicated by Z and
F, respectively, while X indicates the absolute
response of the mass. The equation of motion is

X+ t 2 (X - Z) = F/m (1)

where 0o2 = Kim. The relative motion of the mass
(displacement with respect to the base) is desig-
nated by X, where X = X - Z. If there is no base
motion, the relative and absolute motions of the
mass become equal. For this case Eq. (1) becomes

X + (0 2X = F/mn.

C5 and C 2 are found by using the known initial
conditions on displacement and velocity, that is;
X(O) and Xý(O).

If there is no applied force, Eq. (2) becomes

+ (02 X = 0. (3)

This is the well-known equation of free vibration
(3), which describes the motion possible in the
absence of applied forces or base motions. The
solution of Eq. (3) is

X =X(O) cosot + (O) sin Cot
Wo

(4)

where Cs = X(O) and C 2 = X(O)/Io from the ini-
tial conditions. Let Eq. (1) be written as

or

(2)

Fig. 1 - Undamped oscillator

The solution of Eq. (2) is composed of two parts,
namely, the particular solution and the comple-
mentary solution. The particular solution for
such an equation is developed in the next section.
The complementary solution of Eq. (2) is

X, = CI cos Cot + C2 sin Cot.

Therefore,

X =X +X,

X C5 cos Cot + C2 sin Cot + XP

where X, is the particular solution. The constants

-F
X + Co 2 =-+ &o2Z

In

X +Co02 X=- Z.
In

(5)

(6)

The form of Eqs. (5) and (6) is the same. How-
ever, one is for absolute motion and one is for
relative motion. This distinction should be clearly
understood. To find the general solution of Eqs.
(5) and (6), the particular solution must be added
to the complementary solution. The particular
solution is of the form of a superposition integral
called a Duhamel integral. This integral is de-
rived in the following subsection.

Duhamel Integrals

It is characteristic of linear differential equa-
tions that solutions can be superposed. Thus, if
X 1 , X 2 , and X3 are individual solutions of such
an equation, then the complete solution is

i=

The indicial admittance and the impulsive re-
sponse are two quantities which are used to
represent superposition integral solutions for a
simple oscillator. The indicial admittance A is
the response of the oscillator to a unit step of the
disturbing force I(t), and the impulsive response

9,-
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G is the response of the oscillator to a unit im-
pulse. Since a unit step is the integral of a unit
impulse (Figs. 2a-2d),

A(t) = fG(T) dT

F (t)

(7)

because superposition holds.
Assume that a unit step of force as shown in

Fig. 2a is applied to the oscillator and there is no
base motion. Equation (6) becomes

X + t02X = 1
m

/J

" /

A!TI
-4Ti4.-

I = Lim I_. &T

AT-- o EAT

t
Fig. 2c - Unit impulse

The method of undetermined coefficients can
be used to find a particular solution. The assump-
tion that X= Co yields oj

2C 0 = 1/mr; after rearrange-
ment this yields Co = IK. Thus the solution is

1X =k+ C, sin Cot + C2 cos cot

where the C's are determined from the condition
that at t = 0, X = 0 and X = 0. Then

F(t) I

G(t)

0

Fig. 2d - Impulsive response: the response to a unit impulse

�1*
0

1

t
Fig. 2a - Unit step of force

A(t).

2
K

I1.
K

0

T s e o e s hk (1 - Cos U gt). (8)

This response is shown in Fig. 2b. Using Eq. (7)

1
G(t) = - sin Cot.

mWo (9)

This response is shown in Fig. 2d.
Consider the problem of finding the response to

a general transient force as shown in Fig. 3. The
principle of superposition can be used to find the
solution in terms of the indicial admittance or the
impulsive response. The method consists of break-
ing up the forcing function into a number of steps
at equal time intervals and summing the response
to these steps. The response at any time t is a
function of the elapsed time, t - T, from the appli-
cation of the step AF. Writing AF = (AFIAT)IAT,
we obtain

X(t) = F(O)Am(t) + theorem A oT inTegraT=AT

From the fundamental theorem of integral

C.,

.9-

_M __f

w W
Fig. 2b - Indicial admittance: the response

to a unit step of force

F ý
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Fig. 3 - General forcing function partitioned into a
number of steps of equal time intervals

calculus the limit of a sum of the form of Eq. (10)
as AT- 0 is

X = F(O)A (t) + J[d -A (t -- T) dT. (11)

Integration by parts gives

X = F(t)A(0) + f F(T)G(t - T) dT. (12)

For the undamped linear oscillator, Eq. (11)
becomes

x:F(t) -F(0) + F() -cos Cot)K K

I (T) cs .o(t - T) dT (13)

and Eq. (12) becomes

x = - F(T) sin &)(t-- T) dT. (14)

These are two of the possible forms for Duhamel
integrals. Inspection of Eq. (6) immediately leads
to a Duhamel integral for base motion alone:

X = -I1f• Z(T) sin t(t -- T) dT. (5
(00

Appendix A discusses differentiation of integrals
in the form of Eq. (15).

INFLUENCE AND STIFFNESS
COEFFICIENTS

If a static force F, is applied to a linear elastic
structure which is fixed to an immovable base, the
deflection due to distortion of any point on the
structure is proportional to the force, or

X j = Xj = 8jiFi. (16)

This is simply the definition of a linear elastic
structure, and the proportionality factor 8jj is
called an influence coefficient. It reads as the
deflection at j due to a unit force applied at i. In
the introduction it was assumed that applied forces
and deflections were parallel to each other. If
more than one force is applied to the structure,
then the principle of superposition is used to
find the deflection at any point or set of points.
Thus:

X, = 8,1 Ft + 81 2 F 2 + ... + 81nF.

X2 = 82 F, + S2 2F 2 + ... + 682Fn

which may be written as

Xi = iFi, j 1, 2, ... , n. (17)

Unless otherwise indicated, from here onward,
all summations are taken from i = 1 to i = n. For
example,

.= andE=E.
i i=1 a a=1

There is a relationship between the influence
coefficients of the form 8ik and 8ki, known as
Maxwell's law of reciprocal deflections. To show
this, first apply a force Fj and then a force Fi.
Calculate the internal work. Then reverse the
procedure of loading and calculate the work.
Since for a linear elastic structure the energy
depends only upon the applied loads and final
deflections, the work done in both cases is the
same.

In the first case, when load Fj is applied the
work done is

1 1W =-• F2X2 =-- *j

4

.9--
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and when load F1 is applied the work done is

S= FX i + (work done when Fj moves due to
Fi)

=1,iiFz + Fj~jiFi.2

The total work is
1 1 2

-8jjF1 + - iiF + FijiFi.

In the second case, application of the loads in
reverse order gives the total work as

I 5 +- ISjjF + F1 8jjFj.

To satisfy the equality of energy, 8,j = 8ji. There-
fore, the array of influence coefficients

F-6, , 1 ... & -

521 822 "... 82n

is symmetric about the principal diagonal,
A stiffness coefficient Ki, is the force required

at i when the structure is loaded in such manner
that all points are restrained from moving except
j, which moves a unit distance in the negative
direction. If Eq. (17) is solved for the forces,
there results

Fi = • KijXj .

Note that Kjj = lf8 ij (see Appendix B). In an
analogous manner it can be shown that K -=Kij,
so that the array of stiffness coefficients is sym-
metric about the principal diagonal. For some
structures it may be more convenient to use
stiffness coefficients than influence coefficients in
defining mode shapes and natural frequencies.

GENERALIZED FOURIER EXPANSIONS

This section reviews some important properties
of generalized Fourier expansions which are

used in the remainder of this report. As an intro-
duction, it is noted that the decisive property of
the set of functions {cos (2nmrt/To) and sin (2nirt/
To)} which allows the arbitrary function f(t) to
be expanded in the form

A40  
2 nart • 2nirt

f(t) 40 + A. cos -T + B. sin To_2 ~, T 0 , TO

between the limits 0 and To is that the integral
of the product of any two of these functions which
are distinct is zero. Sines and cosines are by no
means the only functions with this property. In
fact, they are perhaps only the simplest example
of the infinity of such possible functions.

Orthogonality

If a sequence of n real functions {4k,} has the
property that over some interval (finite or infinite)

Y I6•k'kkb = 0
k-

and

k

then the O's are said to be orthogonal with respect
to a weighting function ,k.

Completeness

If there exists no function Fi, except the identi-
cally zero function, with the property that

S3i 0i.Fi = 0

for all members of an orthogonal set {jki•},
then the set {fia} is complete. If one of the
members of the set {4ib} were omitted, the re-
sulting set is not complete since

S34ia1b= 0.

Expansions

An arbitrary function yi (i = 1 ... , n) has a
formal expansion which is analogous to its Fourier
expansion. Let

yj = bibi, + b 2 0i 2 + ... + b.(Ai.

t=
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where the O's form a complete set. Multiply both
sides by j/i,. and sum on i:

Y ,,8iaOy, = blZ i(A4iaii +

i t+ b02 fti'+a +..

+ b., 13i4koi.an.
i

Now from the orthogonality conditions all the
sums on the right are zero, except the one which
contains the 071a. Therefore,

ba=

This leads to the expansion

~/42 (18)

Now let

tjia = V/l 7ia.

Then

tfti atPib = i'ii b = 0

and

~P4ia

since the original Ok's are orthogonal. Therefore,
it is no specialization to assume that an orthogonal
set is also orthonormal. This fact is not used in
this report, because it is desired to present nor-
mal mode theory as simply as possible and to
present end results that are directly useful for
calculation purposes.

FREE VIBRATIONS

Orthonormal Functions

Some authors set

>213&a = if

as a "normalizing" condition, while others set

•t,,o= 1.

This last technique is a favorite of mathemati-
cians because it creates an orthonormal set. An
orthonormal set has the property that

X *j.qjb = 0
j

and

Normal Modes

Assume that a weightless structure attached to
a fixed base is carrying a set of n concentrated
masses mi which are attached at the n points i.
Consider its free vibrations, that is, the possible
motions in the absence of external forces. This is
done by introducing D'Alembert's principle, which
states that a system in motion can be considered
to be in equilibrium. at any instant if appropriate
inertia forces - mj X are applied to the system.
For the case of the freely vibrating structure,
simply apply these inertia forces to view the struc-
ture as being in a state of equilibrium. The set of
forces on the structure is now treated as a static
problem. Recall that for an elastically distorted
structure in equilibrium

X= 8ijFj.
j

Any set of orthogonal functions can be converted
into an orthonormal set. In fact, let

Tha = 0ka a/ r, -oa•

(17)

For free vibrations the only forces on the structure
are the inertia forces, so

= - 8,, m1 X2. (19)

This is a set of n differential equations with con-
stant coefficients expressing the Xi's in terms of

6
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the X2 's. Since there is no base motion, Yj = Xj
and Nj = Xj. Equation (19) is rewritten

- - 812 2 . (19')

To obtain a solution try Xi = X1 sin (wot + /3),
which is usually done in the single-degree-of-
freedom system. Then

X•, sin (cot +/3) = Co
2 sin (Cot +13) , 8ijmjXj

or

Xi = (o2E 8ijmj"Xj
J

(i=1,2, ... , n). (20)

There may be a solution of the problem if these
n algebraic equations can be solved for the dis-
placement ratios and the o's. When written out,
this set is

(0o
2 m818I -- 1) )VI + (L2

m 2 812.X 2 +... + -- o
2

mn8lnYXn = 0

Co2mM821 Y1 + (&o 2 m2 822 - 1) Y2 + ... + Co
2
mA. Xk = 0

Wo
2

m 1 ,Xi.] + ,o2
m.M2 .2 XY2 + ... + (to

2
mA8,, -1) .I , = 0.

Inspection of this set shows that it is a set of linear
algebraic equations all of which are equal to zero.
If a solution is to exist other than the trivial one
where all the .,j's equal zero (static equilibrium
case), it occurs only for those values of Co which
make the determinant of the coefficients of the
Xj's equal to zero (4-6). This leads to an algebraic
equation of degree n in (o

2 usually called the fre-
quency equation. Since undamped structures are
considered, these roots are real and positive (4).
These frequencies are called the fixed base natural
frequencies of the system oscillating in the ab-
sence of external forces. Except for a few special
cases they will be distinct. Those systems which
have a pair or more of equal roots are called de-
generate systems. Other techniques for solving
such a set of equations treat them as an eigen-
value-eigenvector problem, which is a charac-
teristic value problem with latent roots (5).

For the systems where the roots of w2 are all
distinct, the ratios of amplitudes of the masses
can be found by the back substitution solution

of the set of equations, which is defined by
Xia ý dZi Xja-

S= to ~8,jnj
J

(21)

Note the following:
1. A subscript a has been added to the Xj's

to identify those which correspond with Coa.

2. The Co0 's are called the fixed base natural
frequencies of the system.

3. The sets of the Xja's are called the normal
mode shapes, and are defined by Eq. (21) for each
mode a.

4. Equation (21) is still satisfied if all the Xja's
are multiplied by any factor C. This means that
the ratios of the displacements have been found
for each mode and not the absolute values. This
is not too surprising because the fixed base natural
frequencies of a linear elastic structure are not
amplitude dependent.

5. The ratios of the numerical values of the
Xi.'s can be arbitrarily fixed in any convenient
fashion. One technique sets the amplitude of one
of them equal to unity. The remaining amplitudes
then become some multiple of unity.

6. For the degenerate systems, back substitution
in Eq. (21) does not produce the set of mode
shapes. Other techniques such as matrix defla-
tion or special forms of adjoint matrices can be
used (5). It is assumed that these mode shapes
can be found in order to proceed.

Orthogonality of the Normal Modes

There is some additional information which
can be obtained about the normal mode shapes.
They are orthogonal to each other. To establish
this, multiply both sides of Eq. (21) by miY ib and
sum on i. This gives

2 miXbXi, = Wo'amXibE8ijmjXja
i

which can be written as

Mim X iXa, = aoZmjXjEO8jimiXfb
i ~j

since Bij = 8ji. Changing the order of subscripts
in Eq. (21) gives

Xjb=.• 8jiMiXfib. (21')
Cob i
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The right side of this equation appears in the
previous one, so

SmiXibXia = a I mj Xja Xjb.
i ~ 0

)b j

Now, since

E-i Xib Xi. = jMj Xj. Xjb
i j

the previous equation becomes

I --ý ) FMj Yj Xj.a= 0.

There are two possible cases; b = a, or b 0 a. When
b = a, the term in the brackets becomes zero and
the summation becomes

MJ

This is a series of positive terms which cannot be
zero. When b # a, the term in the brackets is not
zero, so that the summation term must be zero.
This yields the orthogonality conditions

and

mjXJa # o0

>mjXjaXjb = 0.
J

(22)

(23)

Equation (23) shows that the normal modes are
independent of each other.

Type of Normal Mode Solution

The distortion of the structure is completely
described if the set of X1 's is found. However,
when defining the normal shapes, they were found
to be relative ratios which are orthogonal to each
other. Let mode response at point i be Xi,(t).
There is no bar over the letter because it is actual
response that is desired. If X1 ,(t) is found, the
total response Xi can be found by superposition,
that is,

a

The problem resolves itself into finding the Xia's.
At each i in each mode a there is a relative
amplitude of Xi.. There must be a function which
converts the Xia to X1,. The technique used is
very similar "to the concept of the separation of
variables in the solution of certain partial dif-
ferential equations. That is, a solution will be
sought in the form

Xia = Xiaqa

so that

and

Xf = EXiaqa

a

x = -xiaqa.
a

(24)

(25)

Now if q. is found, the free vibration problem is
solved. Substitution of Eqs. (24) and (25) into the
original set of differential equations (Eq. 19') yields

YK,Xaqa = - 8ijmjYXj.a ia
a j a

By transposition

E(4(ia ijimjij + Yiaqa) = 0
a 2

and by using Eq. (21) this becomes

(+ q.Y1 i= 0*.
a a

(26)

(27)

The orthogonality relationship can now be used.
Multiply both sides of Eq. (27) by mi Xfb and sum
on i:

>~~±qa) + m oX 0.

There is only one case when the summation over
i is not equal to zero: when a = b. The summation
over all the modes a is reduced to

-' + qb = 0
Cb

or

ia + W2qý =0Oaa (28)

4^:

M,

I
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where the subscript b is arbitrarily changed to a.
Equation (28) is in the form of Eq. (3) and has the
free vibration solution

q= qa(0) cos co,,t + 41 (0) sin Cot. (29)

Returning to Eq. (24),

X = Xaqa(0) cos o),t + E ia -(0) sin ot.
a a

(30)

Initial Conditions

Assume that the general initial conditions at
t = 0 are Xi = Xi(0), X1 = X, (0). Equation (30)
yields

Xi(0) X XI~oqa(0). (31)

Upon differentiating and introducing the initial
condition on velocity, Eq. (30) yields

X.,(0) = Y"ia.t' (0). (32)
a

Again the orthogonality relationship can be used
by multiplying both sides of Eqs. (31) and (32) by
mi Xlb and summing on i:

•miXibXi(0) = ,qa(0)YmiXibXia

and

EmXbX,(O) = ,'4,(0)mXlbXi,.
i a i

Therefore,

1 mi X taXi (0O)
q,,(0) - miX2 (33)

and

a(0) (34)

t a

Substitution of Eqs. (33) and (34) into Eqs. (31)
and (32) respectively produces

x,(0) = ' j(0

a mXj,,

and

X,(o) =E I _,
a YMiXa

This expansion of an arbitrary function into a
series of modal functions is called a generalized
Fourier expansion. Substitution of Eqs. (33) and
(34) into Eq. (30) gives the complete normal mode
solution for free vibrations, that is,

Xi am. T , Xj.Xj (0)
Xl -= X -Ka COI Cat2 mjj

+EXi.3:mjXjaXj(0) S- sin Woat.a W.,;mjXj,,
a

(35)

Several important points related to free vibra-
tions of undamped linear elastic structures are
now summarized.

1. The system is described by ordinary differ-
ential equations which are linear and have con-
stant coefficients. This allows superposition.

2. There are as many modes and natural fre-
quencies as there are independent masses,
although some frequencies may be redundant.

3. Each normal mode is periodic, of frequency
(o., and the relative amplitudes of each of the
vibrating masses is fixed for this mode.

4. The normal modes are orthogonal to each
other.

5. A solution of the form of a linear combina-
tion of the normal modes is possible, that is,

Xi = EXia = >KXaqa

for any possible deflected position Xi.
6. An arbitrary set of values, such as Xj(0) and

X1(0), which are assigned to each mass point can
be expanded into a series involving the mode
shape functions, and each resulting coefficient of
the series assigned to a different mode (generalized
Fourier expansion).

7. Equation (35) shows that while each normal
mode vibrates freely in a periodic fashion, the re-
suiting motion need not be periodic for any mass

C':

4-'

.9-



r

point. It is, in fact, aperiodic except for the case
when the roots of the frequency equation are
commensurable, like a Fourier series.

8. The term XYi may be read as the a"h mode
shape number at the mass point i. Unlike in-
fluence and stiffness coefficients, the array of the
Xi. as defined by

a

is not symmetrical, so that XLd is not of necessity
equal to XdC.

RESPONSE TO AN APPLIED FORCE

Consider a structure which rests on an immova-
ble base, and suppose a force Fk, applied to ink,
is time dependent but independent of structural
reaction. Using D'Alembert's principle and in-
fluence coefficients, the distortion of the structure
is described by the n equations

Xi= - ijrjj + 8
ikFk.

J
(36)

(24)

SikFk = i ~ aA
a

(38)

.9-

C:
Multiply both sides by miXib and sum on i:

Fk IMi ib8ik = EAkayMi Yib ia.
i a i

The left side is Fk kb/1oj by Eq. (21) and the right
side reduces from a series in a to a single term by
virtue of orthogonality. So,

FkXkb
2=Akb miX2b

Therefore, upon changing subscripts,

ka =_ FkXk.

Equation (38) becomes

XiaXka
SikFk = Fk 2 O#aljm-2

a a2X,.a-
2

(39)

The influence coefficient is given by a normal
mode expansion of the form

A solution of the form

Xi = Xiaqa
a

XaaXkaSik = j "MV .
a aj ja

(39')

is sought. Substitution of Eqs. (24) and (25) into
Eq. (36) yields

YXiaqa = -Y 4aY2ijmj)Xja + 
8 ikFk.

a a I

Transposing,

UsinaEq. (21)+ tis.my b )it SakFk.

Using Eq. (21) this may be written as

+ qa) Yia = SikFk.
(37)

The left side is the same as in free vibrations.
The influence coefficient 8ik times the force Fk
must be brought into the parentheses. Therefore,
this expression is expanded into a series of the
mode shapes. Let

For direct influence coefficients this expression
is a series of positive terms only, that is,

a Xka

Substitute Eq. (39) into Eq. (37) to obtain

qa +X, 0 XkaFk
(A) _ a) (=i . .j

Transpi j na

Transposing,

(39")

~(+a a2 F )j a

Now the orthogonality relationship is applied.
Thus,

"Xk.m ) X ixbxla0.

G. J. O'HARA AND P. F. CUNNIFF10
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Therefore,

4a, + & 0 2 Xk.Fki ja2~o m X10 (40)

Equation (40) is in the same form as Eq. (6) for a
simple oscillator when Z is zero. The simple oscil-
lator was shown to have Eq. (14) as a particular
solution. This same expression is applicable pro-
vided co. replaces co, q. replacesX, and XkOFk(T) /

SmJ 2X replaces F(T)/m. Hence,

q. toaXkmlJ_ Fk(T) sin toa(t - T) dT.

2 J o

The solution for Xi is

X to Enj2X •k¢ af

Xi= J Fk(T) sin toa(t-T) dT.
a j oa (41)

This is the response equation due to an applied
force Fk(T) for a structure which is initially at rest.
If the structure is not at rest, then Eq. (35) should
be added to Eq. (41). It is noted that the ratio of
the response between points i and j in mode a is

Xi. i.'.

Xja XYj.

If more than one force is applied at the same
time, superposition is used to solve the problem.
Since the derivation assumed the force to be ap-
plied at Mk, sum the d applied forces. In this case

a M ja

Z )ks.aFi (T)] sin o a (t - T) dT (42)

for the particular solution.

RESPONSE TO BASE MOTION

Suppose a structure initially at rest is attached
to some base. Assume that this base undergoes a
motion Z(T) which is a known time dependent
function.

Consider the equations of an elastically dis-
torted structure:

(17)Xi = 18ijFj.

Using D'Alembert's principle, this becomes

Xi= - 1 ijmjxj (19)

where Xi equals the absolute acceleration of Mi.
Since Xi = X i - Z, Eq. (19) is written

Xi =- sijmj(Xýj +4 ) (43)

J

This expresses the relative displacement X, in
terms of the relative acceleration of mj and the
base acceleration. The usual means of solution is
used again. Let

x, = E)Viaqa
a

and substitute into Eq. (43):

SXiaq.= -Y ,4EijmjYja - iXsijmj.
a a j j

Making use of an expansion in terms of the modes
for 7. 8 ij mj leads to

N''a+ q. + - 2 j Xi) a 0.
a a am 2jao

The orthogonality conditions give

mj Xjmi ..
4a + o2 qa Z.

This equation is in the form of the equation of
relative motion for a simple oscillator if there is
a base motion and no applied force, namely Eq.
(6) without the F/m term. A particular solution is
given by Eq. (15). This same expression is applica-
ble provided toa replaces wo,. qa replaces X, and

I. m j "Xja Y,,m X2 replaces Z. Hence,

q_= 2-j- Z'(T) sin ao 0(t-T)dT

and

xi'ZmjXj:a tXi =- jo 2m L (T) sin&Ja.(t-T) dT.
a. J0 (44)

%I
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This is a general equation for the relative response
of a linear elastic structure when the base motion
is a known function of time. The absolute motion
of M3 is Xi = Xi + Z, so

_,=Z(t)

-• ~mjf•2 Z(T) sin woa(t -- T) dT.
_W aJ 01M

Before proceeding to some special topics it
might be well to consider some important points
which have arisen in this discussion of applied
forces and foundation motions.

1. A solution in the form of a linear combina-
tion of normal modes was obtained.

2. Each normal mode acts as a single-degree-of-
freedom system with specific characteristics when
responding to applied forces or base motions.

3. Since the equations of motion are linear, the
"initial" conditions for a structure can be ac-
counted for by adding their equation of motion
to the Duhamel integral solutions.

4. A generalized Fourier expansion for the in-
fluence coefficients was obtained in terms of the
mode shapes and natural frequencies.

5. The ratios of the deflections Xi were found
to be the same as the ratios of Xi.'s.

SPECIAL TOPICS

Response to a Step Function of Force

Equation (8) is the response of an oscillator to
a unit step in force. For a step in force equal to
F, the response is

F F
X = cos ( ot2mfl0d mco2

If the corresponding equivalent terms of the
multi-degree-of-freedom model are again sub-
stituted for the oscillator response, the normal
mode solution is

XXiXXk.Xi = Fk Y, 2m'X_

-- FkX rmjX COS WOat.
a Co

2
1fjX

Using Eq. (39'), it is written as

Xi = 8,ikFk - Fk> Y X ka- COs aost. (45)

This produces the interesting result that the de-
flection is the static deflection, Sik Fk, plus a
dynamic correction.

A similiar equation for Xk is

X2
Xk = 

8
kkFk - Fk E 2 n-2 cos oa t. (46)

a 2 Jo2

This equation shows that each normal mode term
Xk o ,MjmXJ is positive. Therefore, the maxi-
mum possible deflection of Xk would occur if
all the cos wOat values were simultaneously - 1.
This leads to the result that

IXk1 max. max = 2 8
kkFk.

Inspection of Eq. (45) shows that the term XKiXka
AdoJMj XZj is negative as well as positive. There-
fore, for a step force applied at k,

IXfl max,. max > 2ikFk.

If there are many such applied forces Fk,
superposition is used to write

- dd Xi. 1: Fk Xk.

Xi =A 8
ikFk = - - Cos (0jt (47)

aj ja

which is again the static deflection plus a dynamic
correction.

Impulse

Using the oscillator response to impulse, the
response to impulse applied at mass k is

X1 =Ikt Y, - sin oat (48)
aj 2 Ja

where Ik is I times the unit impulse. So,
XiaXka

ii = I' YX - C C os.t.

a ja

G. J. O'HAR A AND P. F. CUNNIFF12
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Since the structure rests on a base and the masses
were assumed to be capable of independent move-
ment, then at t - 0, the velocity of mi must be
zero, so that

Xi.Xk.X =-0. (49)

i j a1

Similarly, the velocity of the mass which is struck
by the impulse is Ik/rM at t= 0. Therefore,

m m (50)a XmjXý Mk"
j ja

If there are many applied impulses all occurring
at the same time, the solution by superposition
is

X- y k - sin owat. (51)
a cualmj X2

i ja

Sudden Motion of the Base

Consider the response of a structure initially at
rest to a step change in the velocity of the base.
The single-degree-of-frcedom solution is X =
(- Vo/to) sin ot, and X = - V0 cos cot, where V0
is the velocity step. Therefore, the normal mode
solution is

Xia. Ymj X a

-i - Vo m -j- cos Wot. (52)
a ja

At t = 0, the absolute velocity of each mass must
be zero, so that its velocity relative to the base
must be - V0. When applied to the above equation,
this means that

Xia = .Xj. (53)
.j )a

General Disturbing Force

Starting with the previous solution of Eq. (41),
integration by parts yields

X, Fk ( t) E x i,. XL.

a o.Tmjax
j Jo

XiaXka
- F-(-)X -2 2 COS c-,at

2Yaj X2a (')ai X

SL )cos coa(t - T) dT.
21mxWj ja

If F-(O) = 0, this reduces to

X, = 8,,.Fk (t) X X A.,,

iaf'. ja

Fk.(T) cos c,.(t - T) dT.

This equation indicates that the deflection can be
considered to be composed of two parts: the re-
sponse, ignoring inertia effects (the statical com-
ponent as a function of time), and a series of terms
which represent the dynamic correction factor.
This equation has the advantage that if F(t) and
F(t) contain no discontinuties, all of the statical
component is accounted for when the mode series
is cut off at some mode. For many applied forces,
follow the same procedure which was used in de-
riving Eq. (42) from Eq. (41).

Equivalent Forces for Base Motion

As another special case let F (t) =- m.C(t),
that is, the force on a mass is proportional to that
mass. Assume that such forces are applied to each
mass and C(t) is not a function of k. Then Eq.
(42) becomes

X ,oXmkXk,. t
-- C(T) sin co. (t- T) dT.

However, this is precisely Eq. (44), if C(T) -

Z(T). Therefore, the displacement response for
many applied forces can be converted to the
relative displacement response due to base motion
by the substitution Fk(T) = - mk.Z(T) and sum-
ming over all k. This is not too surprising since it
is a principle of mechanics that acceleration of
the frame of reference is indistinguishable from
a change in the gravity field. This is precisely
the meaning of "let F&(T) equal - MrkZ(T) and
sum over all k."
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Reciprocity

As in the static case, there is a reciprocity
theorem for the dynamic response of a linear
elastic structure. Consider any forcing function
F(t). First apply F at k and measure the displace-
ment at i,

X= X i X k" , f Fk(T) sinto&.(t-T) dT.

Now apply the force at i and measure the dis-
placement at k:

XiaXkaX E.= -m Fi(T) sin woo(t-T) dT.
a &,Yj .Xa

If Fi(T) = Fk(T), then Xi = Xk.
This reciprocity theorem has many uses

and is especially advantageous in impedance
applications.

Relative Motion Between Masses

Sometimes it is necessary to know the relative
motion between two mass points j and k. Let
rjk be this motion. For many applied forces

=X(Xja- Xk.O) ftrjk. = j w--- X--k.

(OIi jvaf

)iXiFi (T) sin wo.(t - T) dT (54)

and for foundation motion

(Xjoa- k)Y mX IXta
rJk =- - I oa - mJ•X f

a (T) asIn o(t T) 0

Z (T) sin wo,, (t - T) dT. (55)

Steady-State Vibrations

In this section the response to disturbing func-
tions of the periodic type is derived. Consider
the steady-state response of a system to a forcing
function of the typeFk = Fk sin fit. The equations
of motion Xi = •XXiq,, and ii,, + &o)q, = (Xk.
FA- sin fit)/YrmjX. are now solved. First assume2 t

fl # o ). Then,

Xi = Fk sin f1t X XjaXk.

& 2 1W 2-mj 0a

plus the solution which involves the modal re-
sponses at their own frequencies. For a structure
initially at rest this is

- Fkf_ Xi.Xko sin co at
a W•2 j j

This second part of the solution is usually ignored,
and only the first part is considered. The result
is called the "steady-state response." If the func-
tion Fk = Fk cos Oit is applied, it is only necessary
to exchange cos fOt for sin fit in the steady-state
solution to find the response. That portion which
is usually ignored has the set of sin cot's replaced
by cos o a t's.

As in the single-degree-of-freedom case, for
fl<<ol (the fundamental natural frequency),
the steady-state solution becomes

Xi - SikFk sin fit.

The steady-state response for many applied forces
all of the same phase becomes

d

Xi Y FkXkaXi= sin ftt X k=i

aO' 1 --- )-•rmjX.a W2l j Ja

Letting Fk = - mkZ and summing on k, the
steady-state response to a periodic base motion
is

(57)

Ssin t XtmkXk

Wa2/j ja

(58)

It may occur that 0 coincides with one of the
(a 's, say (ob. Then for this mode the solution
changes. Consider

4b + OJqb 2 X kbFk sin coWt

T t t s 2

This has the particular solution

14

F-.

(56) -
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qb = -tFk Xkb cos cobt
2Stbsma X2

So the steady-state solution is
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to obtain

SXi.Xk.aB sin nrt/To,a T2 (,) (60)
a , j . ?a

'Xi +Xj 1.X5VkFk sin cot

W
2

/ j )a
a

tFkXXkbib
2 o•m,,Xrj2 cos "ort. (59)

j 2 b

Mode b grows with time because of the presence
of the t term. This is an example of resonant
buildup.

Consider now the problem of a periodic dis-
turbing force Fk (t) of period To which is not a
simple sine or cosine function; the steady-state
response is desired. A general method of solu-
tion is to let

F.(t) =-4--+ Co. nTrt
kj 2 +X ,c To,

n=1

or

0 nfrt
F.(t) = B. sin

where To is the period. These are the Fourier
cosine and sine half range expansions (6, 7) of
the functions. The coefficients are given by Refs.
6 and 7:

A o=y Fk(t) dt

A F*=-2o F.(t) cos ' dt

B. T F(t) sin T dt.

Reference 7 gives a practical way of calculating
these coefficients.

Since the response to sine and cosine functions
is known, replace Fk sin fit in Eq. (56) by

B. sin "lr. t
,1 To'

CHARACTERISTIC LOAD THEOREMS

A concept known as characteristic shape is now
discussed. A knowledge of these theorems will be
of considerable help when considering stress.

Definition

A load distributed over a structure in such a
manner that the load intensity is proportional to
the product of mass and mode shape for a particu-
lar frequency is called a characteristic load. That
is,

=i E~miXi.., (61)

There is no loss of generality if the proportion-
ality constant E. is replaced by the product of

.o and a new proportionality constant Co. Equa-
tion (61) becomes

= 0o)2CamiXia. (61')

Statical Theorem

"If a structure is loaded statically with the a"'
characteristic load, then the deflection curve is
proportional to the at^ normal mode shape."

Proof of this theorem is as follows: Consider
the static deflection of the fh point on a structure.
This deflection is

X- = X8JFi. (17)

If the set of F 's form a characteristic load, then
Eq. (17) may be written as Xj = w2cCXajim1 X1 .
Equation (21) states that

X t8jimlXi. (21)

Hence

XJ = CalXJi.

The deflection of any point j is proportional to

r--

19-
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the normal mode displacement, thus proving the
theorem.

Virtual Work Theorem

"If a structure loaded with a characteristic load
of the atl mode is subjected to a virtual displace-
ment corresponding to the bt1 mode, then the
characteristic load does no virtual work."

Proof of this theorem is as follows: The work
done at point j under these conditions is

I FjaXjb = C )2 XjyjXk,
2 2

0 c a X 0 Xb

The total work is the summation over all points
or

C,,
Jr/ -2Y Mj Xj,, Xjb.

From orthogonality conditions

Y mjXja Xj = 0.
J

Hence the work is 0.

Transient and Steady-State Response

"When a structure is loaded with a character-
istic load which varies as some function of time,
it responds as a single-degree-of-freedom system
with the natural frequency and mode shape
corresponding to the characteristic load."

Proof of this theorem is as follows: Consider
the response to a transient force system,

Xi X i. [7Yk.Fk(T]
a 2a

sin co.,(t - T) dT.

Let the Fk(T)'s form a characteristic load for
mode b. Then if f(t) is a function of time,

Xi=

C TJ ja

k I

The Duhamel integral has a value only when
a = b, because of the orthogonality conditions,
so that

X1 = Xb•oCb5  f(T) sin ojb(t - T) dT

thus proving the theorem.
As a special case consider a structure subjected

to a set of steady-state driving forces Fk(t) = Fk
sin Xt. If the F's form a normal characteristic load
for mode b,

X,,Cb)c2
1MkX&AbX k sin Xt

X,= b k

CbXib sin Xt

This equation indicates motion is only possible
for the mode for which the characteristic load is
applied, because the sum has been reduced to one
term.

Characteristic Shape Coefficients

In this section on characteristic shape theorems,
much use is made of a proportionality factor C,.
but nothing has been said about how to calculate
it. Since normal mode expansions are intimately
connected with the theory of generalized Fourier
expansions, it is possible to compute the coeffi-
cients C. in the normal manner by means of the
orthogonality relationships.

Consider a structure of n masses subjected to
the action of a set of n forces which remain
proportional to each other in time (some of these
forces may be zero). The ith force may be ex-
pressed as

Fi = Fif(t).

If the set of Fgs form a characteristic load which
is summed over all modes, then

FTf(t) =f(t)c C ,m utiplo bt

To compute the coefficient Ca,, multiply both

F-
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sides of this equation by Xi5 and sum over i
i to get

EFXib - YCn 2Y M, X,a Yib.a

This expression only has a value when a = b, so

YFi Yib = Cb&o)Emi Y2b.

The generalized Fourier coefficient is then

o2Xm 1 Xi.
a i ia

It is now possible to write out the response of
mass k as

XNot A f•.a f(T) sin w,,(t - T) dr.

Note that for a single applied force F, this im-
mediately reduces to

Xý. - E XiF• f• f(T) sin o,,(t - T) dT.
j ja

FORCES AND STRESSES

Single Applied Force

Before proceeding with a discussion of stress,
it is necessary to determine the inertia loadings
that the masses apply to the structure. It has been
shown that each normal mode acts as a single-
degree-of-freedom system with certain character-
istics. If the absolute acceleration of each mass
point mi is found, the inertia forces can be added
to the structure as a. loading by D'Alembert's
principle.

Consider the case of an applied force at mA.
with no base motion. The q. equation is

ii. + CW.q= - kaFA- )
j a

Solving for 4,,

X k.FA(t) 2

I mjX
2  caq,"

i ja

Since

= XX 1 0 q,,

then

Xi.,Xk.Fk(t) -co2Xjaq,"

a mjo a

It has been shown that

and

XiaXk. 0

a MjX2JJ,j .a

(49)

(50)

so that for any mass but the Ph (where the force
is applied)

i= X = - kcz.X,,q.

and for the kth mass

".--2_

mTa

The inertia loadings are

Qi = Y&c
2

mXXiaqa (i # k)

and

Q - Fk(t) + E,02m kXA.qa.
a

These equations describe the inertial loadings
for each mass point. At m k, there is an external
force Ft.. The sum of the forces on mk is the net
applied force:

QK + FK(t) = E 0)2mA. XKaq,.

a

The structure is therefore loaded in mode a by a
force system of the form

Fi, w= miX,,qq. (for all i).

F-

-r
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These forces acting on each mass in mode a
are characteristic loads if it is recalled that

qa X ." Fk(T) sin co,(t - T) dT.

Equation (62) may be rewritten

Fia = Wo2miXj,,C'Nj(t) (63)

where

Therefore,

Xi~ia a Mj X2.F a

Fi/mi - 1 2,,•a Oa a

using Eqs. (49) and (50). The inertia loadings are

Qi=-m i X1 =-Fi+ E W .-MiX.aqa
a

The net force acting on each mass is

Qi + Fi = a 01~miXiaqa
a

Na(t) 01,, Fk(T) sin W a(t - T) dT.

Therefore,

Fi. = PiaNa(t)

where

These loads are characteristic loads of the form

Fia = oam2 iXiaCaNa(t) (64)

where

C,'=
ao2 mX

Fi,, = cmi XiaC1. (63')

Many Applied Forces

Consider the case where there are many applied
forces acting on a structure which vary as dif-
ferent functions of time. The 4a equation is

d-
YX XkFk

- m~ Y2.X --co• q0
2 Jo

so that

- d -

Xia X, XkaFk

i= Xia - k=, -2 X aqa

i ja

_ ý (X~a,,F + X2 aF 2
xmjX 2
.i 3a

2- OXaqaa

N'(t) = Waf k[ k.Fk(T) ]01a,(t-T)dl'

Alternative Form

In deriving the characteristic loads for a single
applied force and many applied forces, it has
been assumed that the summation over all of the
modes is performed. This is required in order
to use Eqs. (49) and (50). The following presenta-
tion derives the equations one may use for the
case where the summation does not include all
the modes, say the first "u" modes of the "n"
modes present.

Single Applied Force

The absolute acceleration of mr is

_ X1aXK.F,:(t) u _
X= -- t2aXiaqa.

O i 2 j,, 0-

The inertia load at each point is

Q=U _miXiaXiaFK(t) + .
Q X E aOami X maqa.

1 j 2 =

ow

18

C. Xka

0 2  Xj2
a j ja (for all i).
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The net force on mk is

to K. XF,,F(t)
FK(t) +QK=FKjt)-E- X

U

+ E &o2MX 10q0.a,a=1

Many Applied Forces

The absolute acceleration in mode "a" is

- d -

Xia I XK2FK

SW -,, X iq

XmJX 0 2 ,

Therefore,
-d

X1OYiaY-XKaFK U -x,=XX ooX )2n.Z c'-ooY~~~m.•~ 2.- •= aX iaqa"

a=1 a=1 2 J ,, a=1

The inertia loadings are

d-

K=1
-iMiý = - Y 1 3 , - XF= m GX,= l XmjX

2

+ W 2om1iXiaqa .

The net force acting on each mass is

U MiX ia f XK,,FK
Fi + Qi 

Jo Fi x=,a=1 ja

+2 &j2oM,Xi,,q0.
a-a=1

Base Motion

Consider the case of base motion alone. Equa-
tion (6) becomes X + co2X= - Z or X = - 02X.
The ath mode equation for a multi-degre4'-of-
freedom system can be written by replacing A by

• o by &oj, and X by X 0q .. Therefore,

X =- - co2X, 0 q

so that the inertia force acting on each mass is

Qi= - miXia = toamiXiaqa (for all i). (65)

Once again, these inertia forces are characteristic
loads acting on each mass in mode a. If the ex-
pression for qa is introduced into Eq. (65), it
becomes

Qia =- miXiaPaOa(t)

where

Paj =-

Smj Xa

D.(t) = to°o Z(T) sin coa(t - T) dr.

The term Pais sometimes called the participation
factor.

Stresses

The concept of a characteristic load is used to
show a practical procedure for stress calculation.
It is true that the stress at some point c is propor-
tional to a load, say Fk. This is a direct conse-
quence of the assumption of linear elasticity. For
example, if the load is doubled, the stress is
doubled. Therefore;

Grc = yckFk

where yck is the stress at c due to a unit load at
k, and can be considered to be a stress coefficient.
If there are many applied forces

d

orc= Y yckFk.
k=1

(66)

Suppose there are n applied forces and two
stresses of interest. Then

ac = yclFi + Yc2F 2 + ... + ycnFn

org = ygvFi + 'Y92 F 2 + ... + ygFn.

Note that the array of the y's need not be square,
and there is no reciprocal relationship.
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Suppose the set of Fk's applied to the structure
is a characteristic load for mode a. A "character-
istic modal stress" at point c could then be deter-
mined as

&ca -- Dycjja.
i

(67)

It has been shown that each of the characteristic
loads vary in time proportional to the solution of
the Duhamel integral

N. (t) - cof F,(T) sin co.,(t - T) dT.

Therefore,

Ucac, = 5caNa(t)

Summing on all a,

X k m, X -a=y Y

a a xmx3a

by Eq. (69).

Now integrate Eq. (68) by parts:

(re = XFcaFk(t() - Fk(O)XEa cos W atI

Sucya Fk(T) cos Wa(t - T) dT.
a 0

Using Eq. (70),

so that

TCc = Xocu = Y¢eaN,(t).
a 0

(68)

The procedure is to find the modal characteristic
stress in mode a due to the characteristic loads on each
mass, multiply them by the proper Duhamel integrals,

and sum over the modes.
In order to show that the stress can be con-

sidered to be composed of two parts as in the case
of response, first expand yVc by the generalized

Fourier expansion theorem and then integrate
Eq. (68) by parts. By proper substitution the
desired result will be found.

The generalized Fourier expansion for yj9 is
obtained directly from Eq. (18) by replacing hi,,
and fli by Xa and mi, respectively. Therefore,

X jaTimXia yci

a YmiX V (69)

Now.

"uca = F-yejFjaa,, XcFJ

trc = 'YckFk(t) - Fk(0)XFea COS coat

aa

-F,,f Fk(l') cos wo,(t - T) dl'.

This states that the stress at c can be considered
to be composed of two parts: the stress, ignoring

inertia effects, and a series of terms which repre-

sent a dynamic correction factor.

To find a similar expression for base motion let

Fk(t) =- - Mk2(t)

and sum on all k. Hence,

U, Z=- Z(t)Emyck+ Z (0)X5 oca COS 0,t
k a

+ or a Z (T) cos o,(t - T) dT
a

where O'ca is the characteristic modal stress at

point c due to the motion of the base. Multiply

the numerator and denominator of the first term

by g (the acceleration due to gravity):

where the F2j are characteristic forces, defined
by Eq. (63'), so

Ycjmj . ja Xa,.y a
XkA0 Emj XjayC

2

70)

(t)
g A

Now

I WAV k
k
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is the static stress due to the structure's own
weight; so,

r-C= -) (,c,) + Z(0) of'c cos c,0 t
g a

+ rc Z(T) cos o. (t- T) dr

which is again in the form of a statical component
and a dynamic correction.

Stresses Using Deflections

Some engineers prefer to use deflections as a

means of finding stresses. It has been demon-

strated that each mode responds in a character-

istic mode shape. Then for unit deflection of any

mass j in each of the modes (provided this modal

deflection is not zero, Xl,, - 0) there is a charac-

teristic stress at c due to deflection of the mode.

Call this j .. Then

0'1=C J F( T)sin o,(t--T) dT

and

0 .J X- 7,X,
Ca Ja

J a. ja

Z(T) sin w a(t- T) dT.

Stress and Deflection Checking

If the purpose of an analysis is to compute
stresses or deflections, normal-mode theory in-
dicated that the proper equation must be solved

as a function of time and the separate modal
responses added togethertimewise to produce the

desired results. For engineering purposes, how-
ever, it is often quite satisfactory to use shock
spectra for calculating these structural effects.
A shock spectrum is a plot of the maximum abso-

lute values of the relative displacement, times
scaling factors if desired, of a set of either damped
or undamped single-degree-of-freedom oscil-

lators with negligible mass which have been sub-

jected to the shock motion. As a second definition,
instead of using the maximum absolute values of

the relative displacement, a shock spectrum may

plot the maximum positive and maximum nega-
tive values of the relative displacement.

It is noted that the time to the peak values is

ignored in the definition of a shock spectrum. In
the case of the second definition of a shock
spectrum, this technique gives two stresses or

deflections for each point, a maximum of maxi-
mum positive values, and a maximum of max-
imum negative values.

For example, consider a structure of n-degrees-

of-freedom, subjected to a base motion, where

stress is the object of consideration. The stress
contribution of mode a at point c is

cra c = D.M)

This can be thought of as having two parts, ,ca

and D,,(t). When 0=, is computed, it is either
positive or negative. If only the maximum values
of D0 (t) are used, then there are two stresses of
interest: the maximum positive and maximum
negative values. For each mode there are then two

products UC,,Dg (product positive) and FD.-

(product negative). If the two sums

X(cO+ and Ec.D-O
a a

are formed, then a conservative value for both
the positive and negative maximum stresses will

be found. This method will give a better result
than simply using maximum absolute values and
is, of course, still conservative because of the

neglect of the time to peak stress in each mode.
Sometimes only a design shock spectrum (8-11)

is provided. A design shock spectrum is a plot of
values for use of the analyst in predicting the

stresses, etc., in a contemplated structure for
which no measured shock spectrum exists. It is

noted that a design shock spectrum for a par-
ticular structure is composed of carefully selected

information and is not just a combination or

envelope of data points taken from existing shock
spectrum curves for similar types of structures.
Since this is a set of maximum of maximum values

there is no way of knowing whether D. is positive
or negative. A possible procedure is to argue that
the largest stress (or deflection) at c occurs, and

because of phasing, etc., a "statistical expected
value" of the rest is added to it. This results (for
stress) in a formula like

10,cl = IcrcbI + IF ca1j- (cr,) 2 (71)

C:
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where I or is the largest stress at c caused by a It is of

mode. Such a formula should never be used for modal mass

an intermediate step, but only for a final result. The sum of

EFFECTIVE MASS WITH BASE MOTION

The question often arises as to the dynamic
reaction of a structure on its base. The problem

is to replace the actual structure by a set of simple This may be

oscillators, such that the force transmitted across

the base is precisely the same for the simple oscil-

lators as for the structure. These oscillators must A

have the same fixed base frequencies as the struc-

ture, so their frequencies must coincide with

normal mode frequencies in order that the time It was showi

variation of the forces be correct. The question

then arises as to how much mass each oscillator

should be assigned- Consider the case of a com-
plex structure subjected to a unidirectional
translation shock motion Z (t), applied at the

base with no rotation. The absolute acceleration Therefore,

of the point i in mode a is

Sia.TMj Xj.

Nia - D. D(t).
Equation (7

J J

the effectiv
From Newton's laws the force exerted by this modes is e

mass i is structure. S
tive quanti

m1 X,0 E. m Xj, amount re:
Qi2 D,, (t). few modes

2 Ja The loc
prescribed

The force present in mode a is then the sum of must equa

the individual forces, or Choose a
about. The

( MiXi.)2 i is yi, theý" ý Do(t).

Now the force exerted upon the foundation by a torque

simple oscillator is

F = - MD(t)
The distan

where M is the total mass. Therefore the effective the torque

mass acting in mode a must be

(ImX,-,,) 2

M.-

interest to compare the sum of the
es with the total mass of the structure.
the modal masses is

M'=1

i Jo

written as

X ,a mt X1 ,a
kf' = m,2 •.JXJ,

l J a

n that

X•,m 2 X 2,a
I .L- = 1.

J

M'= m = M.

(53)

(73)

73) then indicates that the sum of all
e masses M. for the total number of

qual to the total mass of the actual
ince the effective mass is always a posi-
ty, this enables one to estimate the
maining in the other modes after a
have been calculated.
ation of these simple oscillators is
by the fact that the moment of each

Il that of its corresponding mode.
point on the base to take moments
n if the perpendicular distance to mass
moment of the a"5 mode is

Tmi Xiayiymj "Xja
( - D. (t). (74)

ce to the oscillator for the ath mode is
divided by the force or

Tmr X i.(72)
(75)

"Liii-----
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SUDDEN CHANGE
IN THE GRAVITY FIELD

As an example of theoretical interest showing
how normal mode theory may be used in the ab-
stract sense, consider a structure vibrating freely
after a sudden change in the gravity field, say
from zero to gravity g. The maximum deflection
of the point i in mode a from the new equilibrium
position becomes

xi.= g=x1 mX,-
&)2jMjX2

aj 3aJ

The maximum potential energy of mode a
becomes

~XmX 10g
2 (FM,X 1 )

In mode a the maximum kinetic energy of
vibration is mix ( 52

-jXmXac~a

where Xi,, is the actual modal displacement at j.
During a free vibration the potential energy must

- equal the kinetic energy, so

- 1
2(,)27 __ - 1 t)m12co~m2 X,2  =20

aj ia a

Now from the section on effective mass with base
motion

M. 3X
M =mjVO.

(72)

is always positive and less than M, the total mass.
Therefore

ORT 6002 23

where X,, (rms) is the root-mean-square value of
the actual amplitude of the mode shape. This
equation shows that X ,,(rms) tends to vanish in
the higher modes because

and

g, 0 0as &Ja.._

a0a

A similar result may be obtained for strain
energy in the following manner:

5F2 (v ) d 1 2 E ,jf 2E XE WXm-a
a j

is divided by the total mass, giving

f &2 (v)dv 2X (inS)

However, since

X2 (Ms) - g2M0

then

r--y-dv = ME" g2M'

The strain energy in a mode tends to go down as
mode number goes up since

I
,--, ) 0 as w a"-'

Although these results do not seem to have
immediate practical significance they were in-
cluded, as stated before, to show an example of
the abstract use of normal mode theory.

Xm ;X2.g2 m = .x .l

W4M M
a

Taking the square root of both sides

X (rms) =g M
(.02

RESPONSE TO BASE ROCKING

Sometimes the base of a structure undergoes a
rocking motion. If the time history of this motion
is known, then the concept of many applied forces
and changes in the gravity field can be used to

%solve this problem. Since this report deals only
with those structures which deflect parallel to the

C:,
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applied loads, the results presented here will be
for the relative motion of a mass parallel to the
base and perpendicular to a line drawn through
the center of rotation. That is, only components
of inertial forces parallel to the base are consid-
ered. This is a good approximation if the motions
are small.

If the base rotational acceleration is 0(t), then
each mass has a force -- mjyi(t) applied to it.
Summing these forces gives:

Xiay~mijajYoa mr. ft
X I = - I j - "f

a j a

0(T) sin 010 (t- T) dT. (76)

The absolute motion of mi is

X i = Xi + yiO(t). (77)

The remaining equations for acceleration,
stress, etc., can be derived in a similar manner
as for those equations presented in this report.

Appendix C shows that a structure under uni-
translation and small rotation may be treated as
a lumped parameter system of n masses for uni-
directional translation under the following
restrictions:

1. The sum of the n masses equals the total
mass.

2. The n masses are so placed on the model
that the moment of inertia about the center of
gravity equals the moment of inertia of the orig-
inal structure about the center of gravity.

SUMMARY

Some important points brought out in this dis-
cussion of normal mode theory are the following:

1. Undamped linear elastic structures have
ordinary linear differential equations with con-
stant coefficients as their equations of motion.
This allows the principle of superposition to he
used.

2. The normal mode shapes may be defined by
using either stiffness or influence coefficients. Max-
well's law of reciprocal deflections holds for both
cases.

3. There are as many normal modes and natural
frequencies as there are independent masses,
although some frequencies may be redundant.

4. In a free vibration each normal mode is
periodic with frequency (o,, and the relative am-
plitudes of each of the vibrating masses is fixed
in this mode.

5. The normAsl modes are orthogonal to each
other.

6. In all cases investigated a solution was found
in the form of a linear combination of the normal
mode solutions. That is,

Xjr= Xa= Zloq,,
a aX

7. The theory of generalized Fourier expansions
was presented, which allowed an arbitrary velocity
and displacement set of initial conditions to be
used in the solution of the free vibration problem.

8. For free vibrations each normal mode vi-
brates in a periodic fashion, but the resulting
motion need not be periodic.

9. The array of the normal mode coefficients
is not symmetrical.

10. Each normal mode acts as a single-degree-
of-freedom system with specific characteristics
when responding to the applied forces or base
motions.

11. The solutions were presented for structures
initially at rest. Since superposition holds, the
initial conditions may be accounted for simply by
adding their equation of motion to the solutions
which were derived.

12. It was shown that the stress or deflection at
a point could be considered to be a component
which ignored inertial effects, plus a dynamic
correction.

13. For the single-degree-of-freedom system it
is often stated that the maximum stress or deflec-
tion due to a step change in force is double the
static case. This was shown to be true for deflection
of the mass where the force was applied but not
true for the other masses.

14. It was demonstrated that the results for a
structure responding to many applied forces can
bc converted to the relative response due to base
motion by the principle of mechanics which states
that the acceleration of a frame of reference is
indistinguishable from a change in the gravity
field.

15. As in the static case a reciprocity theorem
for the dynamic response of a linear elastic struc-
ture was shown.

V
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16. The special cases of response to impulses,

sudden base motions, steps of forces, and steady-

state vibrations were discussed.

17. The characteristic load theorems were

proven.

18. The distribution of forces applied to the

structure by applied forces or base motions were

shown to be characteristic loads for each of the

modes.

19. Stress coefficients and their use were

introduced.

20. The use of characteristic loads and stress

coefficients was shown to be an advantageous way

of solving the stress problem.

21. Three approaches were shown for the prob-

lem of stress and deflection checking: (a) use of

Duhamel integrals as time functions, (b) use of

both the maximum positive and negative values

of these integrals, and (c) use of the maximum

absolute value of the integrals.

22. The effective mass and its location for a

structure subjected to a base motion were derived.

23. The effect upon modal stress and deflec-

tion of a sudden change in the gravity field was

discussed.

24. The response of a structure to base rocking

was discussed.

C:1-
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APPENDIX A

DIFFERENTIATION OF AN INTEGRAL

The Duhamel integrals given in the single-
degree-of-freedom section were for relative dis-

placement. Sometimes the velocity or acceleration

might be desired, and one may wish to differenti-

ate one of these integrals. The following is known

as Leibnitz's rule and its derivation may be found

in almost any advanced calculus or advanced

engineering mathematics textbook.* Given

f(T, t) dT

then

dc _ b(ft) df dlb
T dT +df[b t

da

f [at) t] --T"

For example:

X--I Z(T)sin w(t -T) dT

Z(T) cos wo(t - T) dT

[ Z(t) sin (1

- 0-- 1 sin )

Therefore,

X- 2 = (T) cos cu(t - T) dT.

Differentiation again yields

o -f Z'(T) sin o(t - T) dT-- Z(t).

Note that

X=x+2= + o2X

-- Z(T) sin wo(t - T) dT.

APPENDIX B

USE OF STIFFNESS COEFFICIENTS

In the section on influence and stiffness coef-

ficients it was stated: "A stiffness coefficient, de-

noted by the symbol Ki , is the force required at

i when the structure is loaded in such a manner

that all points are restrained from moving except

j, which moves a unit distance in the negative

direction." If Eq. (17) is solved for the forces,
there results

Fi = .KijXj.

For free vibrations apply D'Alembert's principle:

-- mXi= - KujXj. (B1)
J

Assuming a solution in the form Xi X= sin
(cot +/3) yields

MnXCU2 sin (cot+t 3 ) =sin (cot + P) EKIjXYj

or

M,X, W2 = XK j Xj.

This is a set of equations of the form

(M, tn _ K 1,)X,-K,2 X + ... +- KX ,n=0

-K,,XI+ (mco2 -K 2 2)XY+ ... +- K"n" 0

*For example, C.R. Wylie, Jr., Advanced Engineering Mathematics,"

Ncw York:McGraw-Hill, 1951.

Ai�±';.
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Inspection shows that it is a set of linear algebraic
equations equal to zero. The determinant of the
coefficient of the -i's is the frequency equation,
and

X- 1 : ,-..
N = ~in~o (B2)

The normal modes are the same ones which were
found before, so they are orthogonal.

Multiply both sides by m jXýih and sum on i:

-1 -

minx ibXX >K
a j

Ek Xj.EKji Yib
. j

since Ki = K j . Now

Letting

Xi X- ''iaq.

we have from Eq. (BI)

m*> X.a4. + jKiiXXjjqa = 0
a j a

which may be written as

or+ qajKi ) = 0

or

+ oaq.)inX, = 0

since

EKjj Xib = mj Xjt.W2
i

so

02

m i =Nb X 2i m2 Xjb Xia.

This reduces at once to

2 JiniJ ib~ia = 0

which is the same expression as was found pre-
viously for the orthogonality conditions.

miXiaoWa j j. ijXja.

Multiply by XYu and sum on i. Then

q. + o2 qa = 0

as before.

This is as far as the use of stiffness coefficients
is demonstrated, because the results for deflec-
tions, stress, etc., are the same as for influence
coefficients. Note that

K 91

APPENDIX C

REPLACEMENT OF ROTARY
INERTIAS BY MASSES

The equations of normal mode theory for uni-
directional motion may be used for the case of a
structure which has unitranslation and rotation
in a plane provided certain modifications are
made to the lumped-parameter model represent-
ing the structure. The only restriction in what
follows is that the rotation, 0, must be small.

As an example consider the body shown in
Fig. Cl. The mass of the body is M, and r is the

- radius of gyration of the body about the center

REFERENCE AXIS

Fig. CI - Example of translation and rotation of a beam
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Fig. C2 - Replacement of the beam by two masses

of gravity. Let x and 0 be the translational and
rotational displacements about the center of grav-
ity respectively. The equations of motion for the
body in free vibrations are

Mi +K,(x- 1 ,0) +K2(x+ 120) =0 (CI)

Mr 2 - K, 2(x - 110) + K.2 2(x + f20) = 0.
(C2)

(mie 2+ m2e2)O -K,2 1 (x - 210)

+ K 2 2 (x + 12,0) = 0. (C4)

Fig. C3 - Free-body diagram showing the forces acting
on the beam

Suppose this structure is replaced by two masses
such that m i + M 2 = M, and the masses are placed
at distances el and e2, respectively, from the cen-
ter of gravity such that m 1e1 = m2 e2 . Find el
and e 2 so that the new structure is equivalent to
the original structure. Figure C2 shows the masses
on the model of the structure. Figure C3 shows
this model at some instant after motion of the
structure occurs.

The equation of motion in the x-direction is

d 2 d 2m d - (x - e,0) + m2 -L (x + e 2-0)

Comparing Eqs. (CI) and (C2) with (C3) and (C4),
respectively, if

Mr2 = mie2 + m2e2

the two sets of equations are the same. Therefore,
a structure which translates and rotates may be
idealized by a lumped parameter model of two
masses such that the influence coefficients are
found only for unidirectional motion, provided
the following restrictions are met: (a) the sum of
the two masses equals the total mass, and (b) the
two masses are so placed on the model that the
moment of inertia about the center of gravity
equals the moment of inertia of the original
structure about the center of gravity.

Therefore, all equations developed in this re-
port for unidirectional motion are applicable.

It is noted that a logical selection of the two
masses is 1in = M2 . It then follows that e 2 = =r.

G. J. O'HARA AND P_ F. CUNNIFF
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+K,(x- 1,0) +K 2 (x+ 120) =0

or

(M' + m.2 )li + (- mre, + m 2 e,)6

+ Kt(x - 1,0) + K2z(x + 120) -0.

Now,

- mie, + m 2e2 = 0

and

mI + M2 = M.

Therefore,

Mi +K,(x-- 20) +K2(x+ 1620) =0. (C3)

The equation of motion in the 0-direction is


