
NABUR
A NAREC Assembler for the Burroughs D825

Modular Data-Processing Computer

ROBERT M. MASON AND IRENE G. FISHMAN

Applied Mathematics Staff
Office of Director of Research

January 13, 1964

U.S. NAVAL: RESEARCH LABORATORY
"Washington, D.C.

NRL Report 5974

NAREC Reference #30
r-r-l

CONTENTS

... I..
Abstract.. 1....
Problem Status... 1 ¢:

Authorization ... 1

INTRODUCTION .. 1

PART I - NABUR LANGUAGE .. 1

1. Prelim inary D iscussion .. 1

2. Program m ing Sheets .. 3
3. Symbolic Addresses or Labels ... 8
4. Regular or Quasi-Regular D825 Instructions .. 10

5. T riad ic Form s .. 10
6 . O perator Syllables .. 11

7. In d ex Syllables .. 12
8. Basic Address Syllables (Memory and Branch) .. 12
9. Special-U se Syllables ... 13

10. Pseudo-Instructions .. 15
11. NABUR Operator Instruction Sheet ... 18
12 . So u rce T ap es ... 18
13. E rror Statem ents .. 18

PART II - THE NABUR ROUTINE .. 19

1. N am e of Program .. 19

2 . C lass .. 1 9
3 . P u rp o se .. 19

4. Language Used.. ... 19

5 . A u th o rs .. 19
6. Form al Statem ent .. 19
7. Operator Instructions ... 24
8 . O u tp u t ... 24
9. Tape Labels .. 25

10. Address Information ... 25
11. External Working Memory .. 25
12 . V ersatility ... 25
13 . R em arks ... 25

ACKNOWLEDGMENTS .. 26

R E F E R E N C E S ... 26

APPENDIX A - Numerical Listing of Burroughs 825 Instructions 40

APPENDIX B - Block Diagrams of Key Subroutines ... 41

APPENDIX C - Summary of NABUR Rules .. 48

i

C:

r

r" ...

NABUR

A NAREC Assembler for the Burroughs D825
Modular Data-Processing Computer

ROBERT M. MASON AND IRENE G. FISHMAN

Applied Mathematics Staff

Office of Director of Research

NABUR, an assembly routine written for the Naval Research Electronic Computer (NAREC), pro-

duces object programs suited to the Burroughs D825 Modular Data-Processing Computer. The input

data for this routine may consist of one or more punched tapes coded in a source language that aug-

ments D825 basic machine language. This report discusses conventions to be followed in writing source

programs and general aspects of the routine itself. A numerical listing of Burroughs D825 instructions,

block diagrams of key subroutines, and a summary of NABUR rules appear as appendices.

INTRODUCTION

This report concerns anassembly routine called

NABUR, written for the NAREC (Naval Research
Electronic Computer), that permits the use of

this machine in the automatic assembly of object
programs for running on another of NRL's com-

puters, namely, a Burroughs D825. The D825
Modular Data-Processing System has been devel-
oped to perform command-and-control functions
in a large military man-machine complex. The
initial system, constructed for NRL with the des-

ignation AN/GYK-3(V), has now been installed
and tested. Reference 1 is a paper reviewing the
design-criteria analysis and design rationale that
led to the system structure of the D825.

Part I of this report states the rules of NABUR

language. These rules must be followed explicitly
in writing D825 source programs for NAREC
assembly. Part II explains the assembly program's
basic features, so that later improvements can be
made to the NABUR system, if required. It is of

interest to note that the NABUR program has
also been written in an assembly language, namely
NAR (NAREC Assembly Routine) symbolism.

Although the NABUR program bears some in-

ternal resemblance to the Burroughs 220/D825
Modular Processor Assembler (e.g., at one stage

in its development it copied its error statements
from this assembly program verbatim), it differs
markedly in regard to basic conventions. The

symbolism employed in writing NABUR source

NRL Problem R06-07; Projects RF. 001-08-41-4552 and SF 001-08-

01, Task 9249. This is an interim report on one phase of the problem;

work on this problem is continuing. Manuscript submitted May 23,

1963.

programs has been planned to conform closely
to the symbolism of the Burroughs D825 machine
language. Thus, all combinations given in Ref. 2

are retained to designate D825 operations (these
are listed in Appendix A), and only combinations
consisting of three letters are introduced to repre-
sent quasi-regular and pseudo-instructions. The
use of these terms will be made apparent in later
sections of this report.

The underscore symbol, i.e. "-" applied

to a numeral is used in this report to indicate
decimal numbers, unless they appear as expo-
nents or subscripts or are otherwise unambig-
uous. No such indication is used in describing
outputs, either in listing NABUR error statements
or in illustrating the checking-output format.
The comma symbol, i.e. "," after a numeral is used
in this report to indicate octal numbers only where
it is necessary to show the correct usage of the

comma according to the rules of NABUR source
language.

Part I
NABUR LANGUAGE

1. PRELIMINARY DISCUSSION

A "NABUR source program" is a routine hand-

written in symbolic (i.e., NABUR) form. Such a
program is typed on one of several NAREC Flexo-
writers using so-called standard six-bit NAREC
character representation to obtain a punched
tape called a "NABUR source tape." One or more

of these source tapes are read into the NAREC
memory at assembly time in order to arrive at

I

R. M M. S 0N ANnD 1.. G. FIS H NIAN

the subject data which is handled internally by
the NABUR assembly routine. The end product
of the assembly process is a D825 machine-lan-
guage program called the "object program." The
output consists of a bioctal punched paper object
tape for input to the Burroughs D825 computer
and a hard copy of the checking output.

The NABUR assembly process therefore splits
tip into two important phases: input and output.
The input phase precedes the first of two passes
made by the assembler through the subject data.
It involves reading in first the NABUR system
tapes, and second, the source tapes. That part
of the output phase that produces an' object tape
for later input to the D825 will follow an assem-
bly if the assembly is successful. Otherwise, an
object tape is produced only by special request.
The object phasc also includes some line printing
that occurs (a) during readin, (b) at midpass, and
(c) at regular intervals during the second pass.
It also may include a printout of error statements
during either the first or second pass, or both. It
is not necessary to punch out a tape dtiring this
preliminary part of the output phase, but it is
possible to do so if this is requested as a special
instruction on the NABUR Operator Instruction
Sheet.

At readin, printout consisls of a listing of hcad-
ing and check sum for each source tape. This in-
formation will be checked for accuracy by the
NAREC machine operators, if they are advised of
the expected values of the check sums in advance.
In case of a discrepancy, the operators then can
take necessary steps to ensure a correct run,
either by rereading the tape in question to try to
obtain the correct sum, or if this fails, by return-
ing the problem folder to the programmer for
further study. At midpass, printout consists of
a listing of labels and their octal equivalents. Some
of these labels were reserved in advance by the
NABUR system to relate actual addresses in thin
film to the common names of certain D825 regis-
ters or to render binary meanings to certain
mnemonics helpful in stating transmit modifier
syllables or 16-bit absolute addresses. Others
have been reserved in name only (semireserved)
so that the progriammer may tell the assembler
what he is placing in the BAR, BPR, or SAR regis-
ters. The remainder are labels that have been
either preassigned, defined, or assigned to NA-
BUR words as symbolic addresses by the pro-
grammer. During the second pass, printout

consists of a checking output in which D825 octal
coding worked out by the assembler appears
alongside a restatement of the original lines of
the source program. A more complete discussion
of the nature of NABUR output is to be found in
Part II, Section 8 of this report. At the success-
ful conclusion of an assembly, printout consists
of a most inscrutable six-bit character represen-
tation of the bioctal object tape which serves pri-
marily to assure the programmer that his assem-
bly was successful and that an output tape was
punched.

On its first pass through the subject data the
assembler must search and partially decode the
information available to it in order to associate
a numerical value with each symbolic address or
label. At this time the assembler begins to form
a pre-image of the D825 object program in the
NAREC memory. It does this by creating a skele-
tal frame on which to hang the object data. As
each operator syllable is formed it is placed in this
frame. As each nonoperator syllable is discovered,
a blank syllable consisting of twelve binary-zero
digits is inserted in the frame, but only for the
time being. During the first pass the assembler
may find a few obvious mistakes, such as the same
symbolic address assigned more than once or an
erroneous character punched on the tape. If so,
it will record one or more suitable error mes-
sages, for example, the statement "duplicate la-
bel," or the statement "improper number of spaces
in the specification field." If any critical mistake
is found during the first pass, the assembly process
will stop at midpass, after first listing the labels
used and indicating the occurrence of a "bad
stop" by printing five asterisks, i.e. " on
the output sheet. Otherwise, the assembly process
will continue.

On its second pass through the subject data the
assembler tries to complete the object program
started earlier, by filling in the missing pieces of
object data in their proper places. This object
data is injected (one, two, three, or four consecu-
tive syllables at a time) by means of a "Store Q'
subroutine. A block diagram of this subroutine
appears in Appendix B. Further checking for
illegalities is carried out during the second pass,
notably for exceeding the maximum size limits on
components for syllables, writing octal or decimal
numbers improperly, etc.

Sometimes several diagnostic messages will
bracket a single mistake and help the programmer

2

NRI REPORT 5974

to pinpoint it. However, there is no guarantee
that every mistake contained in the source mate-
rial will be turned up by the assembly routine,
for logical errors often masquerade as legitimate
source statements. During the second pass the
object program is completely filled in, if it is pos-
sible to do so. Provided no mistakes are found,
the assembly process concludes by punching out
a copy of the object program on paper tape. This
tape contains the machine-language D825 object
program that has been produced. This program
is punched in the same character coding as that
provided by the Flexowriter model associated
with the D825 computer.

2. PROGRAMMING SHEETS

Figure 1 shows a sample NABUR Programming
Sheet. At its top, space is provided for stating
the title of the problem, the programmer's name,
the date of completion of the sheet, the RCC
problem number, the tape label assigned, and
finally the page number. The remainder of the
sheet is divided into rows, corresponding to
NABUR source lines, and columns, correspond-
ing to various chunks of information which go to
make up complete source statements.

Tape feeds and code deletes are ignored by
the NABUR source-program input routine;*
hence, they are not counted as characters. All
other characters in the source programs, includ-
ing format characters (carriage return, tab, and
space), will enter the NAREC memory. Recogni-
tion of format characters is basic to the assembly
process. Because format characters play a funda-
mental role in keeping the assembly routine on
the right track, rules for their use must be care-
fully observed.

Excluding comment lines, which do not reappear
in the checking output, each line of NABUR source
programming contains one and only one instruc-
tion. Sometimes this instruction will be regular
or quasi-regular, leading to insertion in the object
program of an operator syllable followed by at
most six other syllables. At other times, it will
be a pseudo-instruction, perhaps FLO (floating
point) or INT (integer), not calling for insertion
of an operator syllable, but rather for insertion
of four data syllables; or, in the case of SYL (syl-

*A. B. Bligh and I. G. Fishman, "Alphanumeric Tape Readin Sub-

toutine," NAREC Bulletin No. 60, April 22, 1963.

C..5.•,

I,.,

lable), calling for insertion of a single data syl-
lable. Less often, it will be a pseudo-instruction
notifying the assembler of something of which it
must take cognizance, but not leading to insertion
of any syllables in the object program at all.

At the beginning of any line, the character
"carriage return" followed by an "m" will indicate
the end of that particular source program (there
may be more to follow); the character "carriage
return" followed by the character "tab" will indi-
cate that the remainder of the line represents a
comment* or the continuation of a comment; and
the character "carriage return" followed by any
character other than those mentioned above will
indicate the start of a line designation. Additional
carriage returns will always have the effect of re-
initializing for the beginning of a line.

Three vertical double bars cross the NABUR
programming sheet (Fig. 1), dividing each line into
compartments. These double bars represent
"tabs." The first two of these tabs enclose and set
off the symbolic address assignment field, which
may be left vacant; the remaining tab terminates
the address specification field. Four vertical single
bars also appear on the NABUR programming
sheet. These single bars represent "spaces." The
first space follows the operation field and must be
there, even though the operation in question re-
quires no address groupings (e.g., SSU-step stack
up). In this case the remaining spaces are omitted
by the typist, and the tab signified by the last
double bar comes immediately after the space fol-
lowing the operation symbol. The next two spaces
act to separate address-grouping fields. The
second one is omitted if address grouping III is
not entered, and both spaces are omitted if and
only if address groupings II and III are both not
entered. The tab signified by the last double bar
immediately follows the last address grouping
entered, if any. A space is typed (along with the
remark that follows) only if the letter "r" appears
in the remark indication field labelled "r." Re-
marks reappear in the checking output.

These format requirements are summarized
below for instructions having three, two, one, or
zero address groupings.

(3) CR Line TAB Symb. Addr. TAB Op. SPACE
Al SPACE A2 SPACE A3 TAB r SPACE
Remarks CR

*A distinction is made among "comments," "remarks," and "asides"

by the NABUR system. The exact differences in the meaning assigned to
these tertms are stated expli itly on Page 18.

C

3

R. M. MASON AND I. G. FISHMAN

E

bC,...

/

4

/

F-

x

z

z

a

/

NRI. REPORT 5974

(2) CR Line TAB Symb. Addr. TAB Op. SPACE
Al SPACE A2 TAB r SPACE Remarks CR

(1) CR Line TAB Symb. Addr. TAB Op. SPACE
Al TAB r SPACE Remarks CR

(0) CR Line TAB Symb. Addr. TAB Op. SPACE
TAB r SPACE Remarks CR

Symbolic addresses and remarks often are omitted.
The left-most column of the'NABUR program-

ming sheet is used for line designations. Usually
these are decimal line numbers, but as long as they
include one non-tab character and do not start
with an "in," "tab," or "carriage return," their
composition is arbitrary. In normal practice, a
source line will consist of a line designation fol-
lowed by a tab followed optionally by a symbolic
address followed by a tab; then will come a NABUR
instruction word. This word will always begin
with a three-letter operation symbol followed by
one space and as many as three address groupings,
each separated by one space. This word will always
end with a tab. Theoretically, there is no limit to
the number of characters in a NABUR word. After
a NABUR instruction word possibly comes an
"r," a "space," a remark, and then a "carriage
return." If there is no remark, the last tab is
immediately followed by the carriage return.

The columns headed "Address Grouping I,"
"Address Grouping II," etc., correspond exactly
to the syllable layout of D825 instructions given in
Appendix D of Ref. 2. When the operation at hand
has nonoperator syllables associated with it, those
columns corresponding to the positions of these
syllables in the layout are to be filled in by the
programmer. All other columns are to be left
empty. Prior to the first address grouping and
immediately after the operation symbol, a space
will be inserted by the typist. A space will also be
inserted between each adjacent pair of address
groupings. The last address grouping in a line will
be immediately followed by a tab. No space or tab
characters are permitted within an address
grouping.

All numbers appearing in address groupings
are considered to be decimal integers, if not
immediately followed by a comma character.
Otherwise, they are to be taken as octal integers.
NABUR takes care of conversions to binary. Octal
integers are translated, character by character,
from 6-bit to 3-bit form to obtain binary; decimal
integers are translated, character by character,
from 6-bit to 4-bit form and then converted to ob-

tain binary. Leading binary zeros are added as
necessary.

Figure 2 is a reproduction of a portion of a
source program as it originally appears on the
NABUR Programming Sheet. Figure 3 shows the
complete typed copy of the corresponding source
tape which was obtained as a byproduct during
tape preparation. For comparison, the output
example given in Part II, Section 8, includes this
same source program as one of four that were
assembled together using the NABUR program.
An explanation of this output must be postponed
until that section is reached.

The following terminology
the remainder of this report
subject of address groupings.

is used throughout
in dealing with the

ADDRESS PREFIX

Either a leading "+" (sometimes understood)
or a leading "-" is carried by an address grouping
to indicate how the following quantities are to be
interpreted. This interpretation may be summa-
rized as follows:

Address Grouping Pertains to

M - Memory Syllable

S - Shift Syllable

la - Index Increment
Amount Syllable

Meaning

The following
quantity is a di-
rect address (+) or
an indirect ad-
dress (-).

The following
quantity is a count
of leftward (+) or
rightward (-)
binary displace-
ments.

The following
quantity is an in-
crement (+) or
decrement (-).

A leading "slash" (or "oblique") character, i.e.,
"/," is used to introduce a triadic form. (See Part I,
Section 5.)

5

6 R M. MASON AND I. G. FISHMAN

EE

z

5z

-5' F'

-Z5

NRL REPORT 5974 7

4815 aresin/arecos subroutine campbell/ej r

nnnn

0 arcb stf bpr n
1 ltf n bar
00 def inbpr arcb
01 def inbar arcb
2 stw ssr n
3 ltw n +74,
4 badhnn
5 ltf n 17,
6 esl n +1 n

brb n n arcb2
arcbl trm n pu n

9 cls h arccl arcb3
10 cgr h arcc2 arcb4
11 bmu h n n
12 bsu n arcc3 n
13 dsa n +2 n
14 bmu h h n
15 bsu arck5 h n
16 bdv arck4 n n
17 bad n arck3 n
18 bsu n n n
19 bdv arck2 n n
20 bad n arckl n
21 bmu n n n
22 bad n arcc4 n
23 uct arcb6
24 arcb2 xuc +1 //17,/0, arcbl
25 arcb3 bmu h h n
26 bsu arck5 h n
27 bdv arck4 n n
28 bad n arck3 n
29 bsu n n n
30 bdv arkk2 n n
31 bad n arkkl n
32 bmu n n n
33 uct arcb6
34 arcb4 stf 17, n
35 itf n 37,
36 ltw h +160,
37 bsu arcc5 n n
38 srj 3, 0,
39 arcrl stf 37, n
40 ltf n 17,
41 stw +160, n
42 bmu n arckb n
43 bsu arcka n n
44 bmu n n n
45 bsu arcc6 n n
46 stw +74, n
ý itw n ssr

arcb6 uct arcb7/17,
49 arcb7 srr
50 ab7l trm n xu n
51 srr
52 ab72 bsu arcc6 n n
53 srr
54 ab73 bad arcc6 n n
55 arr
56 arccl int 132404 746316 3255,
57 arcc2 int 166203 674746 1000,
5 arcc3 int 040000 000000 0000,
59 arck5 int 132465 255632 1603,
60 arck4 int -005241 026062 4515,
61 arck3 int 343532 000065 6622,
62 arck2 int 031201 621751 2156,
63 arckl int 041463 102013 1753,
64 arkk2 int 062403 443722 4334,
65 arkkl int 103146 204026 3726,
66 arcc4 tnt 062207 734244 3343,
67 arcc5 int 200000 000000 0000,
68 arcka int 212716 304511 6426,
69 arckb int 025641 515104 4031,
70 arcc6 int 144417 665212 2212,

Fig. 3 - Typewritten source program

R. NI. MASON AND 1. G. FISHMAN

ADDRESS UNIT

An unsigned, uncompounded element may be
either (a) a decimal or an octal integer, or (b) a
label written in accordance with the definition
given in Part I, Section 3. If it is an integer, call it
x, then it must satisfy the inequality 0 -- x -< 4095,
unless otherwise stated. If not, an error will be
noted.

EXAMPILES

3891
sam
17,

ADDRESS QUANTITY

An unsigned, possibly compounded element
consists of one or more address units joined by
"W' or " -" concatenation symbols. These symbols
operate as "plus" or "minus" signs, respectively.

EXAMPLES
3 8 9I+17,-,sam
17,+3891-sam
0- sam+3891+17,

NOTE: All of Ithese exprsi sions will produceIfieSamethe ticcme]c cc alice

ADDRESS GROUPING

Either a "+" prefixed address quantity is fol-
lowed by three or less "/" prefixed address quan-
tities, or a "/" prefixed address quantity is fol-
lowed by five or less "/" prefixed address quanti-
ties. An address grouping is terminated by the
first space or tab character; an address quantity,
by the first space, tab, or slash character; and
an address unit, by the first space, tab, slash, plus,
or minus character.

ADDRESS ARITHMETIC

This is a feature of NABUR assembly that is
provided by a fundamental subroutine, called
"Adar." See the block diagram of this subroutine
given in Appendix B. The expression

"-sam+pete-3,..."

appearing at the beginning of a memory syllable
address quantity has the following interpreta-
tion. (a) The leading "--" sign indicates that the
following quantity is to become an indirect ad-
dress. (b) Both "sam" and "pete" are unreserved
labels having numerical values determined by
the assembler during the first pass, and for the
rest of the assembly these values are to be found
in the table of octal correspondences. (c) Both
"pete" and "3" are "address modifiers," whereas
"+pete" and "-3" are successive "modifications"
of sam. (d) The plus sign "+" and minus sign

"are concatenation symbols used to form the
compound address quantity. The Adar subrou-
tine places no restriction on the number of modi-
fiers that can be used in writing a single address
quantity.

The last column, headed "Remarks," is provided
for the convenience of the programmer. The
typist will not punch on the source program tape
what is written in this column, unless the letter
"r" (which is typed too) appears in the remark
indicator field. Thus, the last column will contain
(a) nothing, (b) an aside, which is not typed, or
(c) a remark, which is typed and reappears in the
checking output. To have the source tape contain
a passage of explanatory text that is felt to be
too long to be a part of the checking output, sim-
ply initiate the line with a "CR tab" combination.
Stich a line will constitute a "comment." Comments
differ from asides in that they are typed on the
source tape; they differ from remarks in that
they do not reappear in the checking output.

3. SYMBOLIC ADDRESSES OR LABELS

Some operator syllables must occupy the left-
most syllable position of a computer word. For
example, repeated instructions must be stored
with their operator syllables occupying a leading
position. In order to accomplish this through
assembly, each such instruction must be marked
in the source program. The mark is a "symbolic
address."

A NABUR word is assigned a symbolic address
by making an appropriate entry on the NABUR
programming sheet in the column headed "Symb.
Addr." and adjacent to the word itself. Each stich
entry must meet the following definition of a
label. A "label" is a string of five or less strictly
alphanumeric characters containing at least one
unmistakable letter somewhere in the string (i.e.,

8

C

NRL REPORT 5974 9 C

some alphabetic character other than the letter
"1"). The programmer should also be careful to
avoid confusion between the letter "o" and the
numeric character "0," which have different cod-
ing. A certain number of such strings, some called
"reserved labels" and others called "semire-
served labels," are already present in the NABUR
program table of octal correspondences and there-
fore cannot be used for symbolic addresses by
the programmer. These are listed in Table 1.
Although permissible, it is not advisable for sym-
bolic addresses to be chosen so that they spell
out operator symbols.

EXAMPLES

valid: b2b5 d alpha
w1 lilti r'

not valid: snag bar stk4 xr Cý
not advisable: fad cla nop

If a source line is assigned a symbolic address,
then the object syllables resulting from it will
always be left-justified in the object program.
NABUR will, if necessary, generate a sufficient
number of "dummy" NOP instructions (zero
operator syllables) as filler. On the other hand,
if a source line is not assigned a symbolic address,

TABLE I

Octal Correspondences

RESERVED

SEMIRESERVED

snag
indi
bar
bpr
sar
iar
pcr
rtc
ipr
tfc
xir
idr
isr
pdr
rci
rpr
ssr
ccr
rir

psr1
psr2
rpil
stkl
stk2
stk3
stk4
pu
mU

x•l
pr
mi
xi
inbar
inbpr
insar

400000
200000
000055
000054
000060
000063
000057
000114
000110
000124
000122
000074
000040
000064
000062
000044
000050
000123
000130
000100
000102
000047
000140
000144
000150
000154
000001
000002
000003
000005
000006
000007
no fixed value; initially zero
no fixed value; initially zero
no fixed value; initially zero

Label I Octal Equivalent

10

then the object syllables resulting from it will notnecessarily start out a new computer word. This
means that data specified by either a FLO or an
INT pseudo-instruction will not necessarily be
placed in a single word. The four syllables of data
that result will "go around the corner," if neces-
sary. It is important to remember that each in-
struction to which a jump is made must be assigned
a symbolic address.

It has proven advantageous to give the thin-
fihn registers their common names, so that the
assembly routine can fill in their actual addresses
where required. This has been accomplished in
a straightforward manner by permanently re-
serving these names and addresses in the table
of octal correspondences. Table 1 lists the labels
currently accorded such preferential treatment
by the NABUR system.

The majority of these reservations connect the
common names of D825 thin-film registers with
their octal codes or actual addresses. The remain-
der relate binary numbers with mnemonics use-
ful in coding variant syllables for the transmit
modifier instruction (TRM), or simplify setting
"snag" or "indirect address" bits in second or
higher level, L6-bit absolute addresses. All of
these correspondences are fixed. The semite-
served labels, on the other hand, correspond to
no fixed octal codes ov actual addresses. Thus,
they are reserved in name only. For example,
in the DEF (Define) pseudo-instruction they tell
the assembly routine what the D825 program
being assembled expects to have "in BAR," "in
BPR," or "in SAR."

A label must not contain more than five char-
acters; if it does, an error statement is printed
out and only the first five characters enter the
table of octal correspondences. The total num-
ber of distinct labels that may be used by the pro-
grammer must not exceed 2747. If tiffs rule is
violated, another error printout will result.

4. REGULAR OR QUASI-REGULAR
D825 INSTRUCTIONS

NABUR language is patterned after the ma-
chine language of the D825 computer, as defined

NOTE: NABUR rules, as distinguished from NAR rules, permit
only, one tH)c o| symbolic address, ll:ll]lCJ;' [|it internal symbolk ad-
(|l'{'ss. hi p:ll'li•'tllaI', Ih('l'C •ll'C IiO lllllnht*Ied H1S[ltl([iolls ol exlel'llal

symbolic addresses in Ihc NABUR language. Nevertheless, lable look-

up and table enuy ale accomplished by means of sublotllines \vrillen

hlr the NARI:C Assembly Rouline. The authors wish m Ihank Alan B.
B[igh to1 making these subroutines avai[able to them.

NRL REPORT 5974

the address grouping. Such syllables are recog-
nizable by the assembly routine because of the

presence of leading slash characters. They must

have some one of the following forms:

/Q1/Q2/Q3

/I.1/Q2

/Qo

where Q1, Q2, and Q3 are address quantities.

When indexed, the address grouping for such
syllables must have some one of the following
forms:

/QI/Q2/Q3/Q4/Q5/Q6

/Q1 /Q2/Q3/Q4/Q5

/Q.1/Q2/Q3/Q4

where Q4, Q5, and Q6 are address quantities de-
noting index registe'rs, and Q1, Q 2 , and Q3 are
as before. (All quantities Q= Q., Q2, Q3, Q4, Q5,
Q6, used to fill triadic subfields must satisfy the
inequality 0 -- Q.< 15.)

In short, all non-empty triadic subfields must
be preceded by the slash character. Moreover,
trailing triadic subfields may be left uncoded,
if no nonzero quantity is involved. However, any
blank triadic subfield which is followed by non-

blank triadic subfields must be coded either as
zero or vacuously. As an example, if in an un-

indexed syllable Q1 and Q3 are zero, whereas

Q2 is nonzero, then the address grouping may
have, among others, either one of the two triadic
forms:

/0/Q2

or

//Q2.

6. OPERATOR SYLLABLES

The operation symbols designating regular
D825 instructions all become lodged in the object
program image as operator syllables. Since quasi-
regular instructions map many-to-one into the
set of regular instructions, their operation sym-
bols also become lodged in the object program
image as operator syllables. On the other hand,
pseudo-instructions never are put into the object
program as operator syllables. They do, however,
often contribute one or more syllables of data.
On occasions, such syllables may act as operator
syllables. For an example of this, see the dis-
cussion of the SYL (Syllable) pseudo-instruction
in Part I, Section 10.

During the first pass, the assembly process de-
termines the first six binary digits of each operator
syllable from a table relating three-letter opera-
tion symbols to D825 octal order numbers. The
remaining six binary digits contain three 2-bit
address indicators which identify the possible
"addresses" of the instruction. For each particu-
lar type of operation symbol, the address group-
ings (if any) making up the remainder of the
NABUR word determine the contents of the
second half of the operator syllable.

O-Operator Syllable

A1 A2 A3ORDER NU MBEFR CODE CODE CODE

This determination rests on
in Table 2.

the information

TABLE 2

Determination of Address Indicator Bits

Address Grouping Code Definition

STACK or NO Jfn 00 Step stack
REFERENCE [h 01 Hold stack

MEMORY [Q1 10 An unindexed address grouping
REFERENCE 0.Q1/Q2... 11 An indexed address grouping

(index quantities follow any
other quantities to which they
are applied).

1 1 C'
C,,

R. M. MASON AND I. (. FISHMAN

7. INDEX SYLLABLES

X-Index Syllable

I I I I I I I I I
INDEX REGISTER INDEX REGISTER INDEX REGISTER

ADDRESS ADDRESS ADDRESS

Index syllables are expressed as triadic forms
(see Part I, Section 5) and appear following the

quantity or quantities they modify, in contrast

to their ultimate position, as syllables, in the object

program. All quantities Q designating index

registers, must satisfy the inequality 0 -< Q_< 15.

The three 4-bit portions of the X-index syl-

lable, which correspond to the information given

at the right of the first slash in an indexed ad-

dress grouping, are filled directly if the index
registers are nonsymbolically stated. But if the
index registers are symbolically stated, these por-

tions are filled from the label table. Suggested
symbolic labels to be given index registers are
X1, X2, ... For example, an expression like

+ sam/1/x3

would mean "index the address corresponding
to sam by means of index register 1 and the index
register preassigned to or defined as x3."

8. BASIC ADDRESS SYLLABLES
(MEMORY AND BRANCH)

M-Memory Address Syllable

I , I , i I i I ~ I I I I I

to the indirect-address bit, the quantity Q1 has
to satisfy the inequality

0_ Q1 -< 2047.

An indexed memory syllable must be written
as an address grouping A having some one of
the following forms:

QI/Q2/Q3/Q4
Ql/Q2/Q3

Q./Q2

where Q1, Q2, Q3, and Q4 are address quanti-

ties. Moreover, Q1 designates a relative address

and Q2, Q3, and Q4 designate index registers.

In all cases the indexing quantities follow the

basic quantities in an indexed situation. This has
been done for the programmer's benefit, despite
the fact that the D825 object program has its syl-
lables stored the other way around. Nor should
it be overlooked that a hidden correction is applied
in each memory-syllable determination. The re-

stilt put in the object program will be "Q1 minus
the contents of the BAR" or Ql-inbar." The

programmer can override this at his own option
by including "inbar" explicitly within the quan-
tity. That is, he must write "Ql+inbar."

It is often useful to be able to bring the nega-
tive value of inbar, the current contents of the
BAR, to an index register. At first glance the rules
of NABUR will not permit this. Still, it can be

(lone with only slight inconvenience by taking
QI to be "+0-inbar."

B-Branch Address Syllable

1 1 1RELATIVE ADDRESSta)

I I II I I I I I I I I I

If a memory syllable refers to an indirect ad-
dress, the corresponding address grouping should

bear a "-" prefix; otherwise, it should bear a
"+" prefix (which may be understood). An un-

indexed memory syllable should be written as an
address grouping of the form:

H-Al

where Al is a simple address quantity, Ql1. As
one binary digit of the memory syllable is allotted

RELATIVE ADDRESS (a)

The branch-address syllable differs from the

memory syllable in that it does not have an in-

direct address bit position. The forms are the
same. Consequently, the value of Q1 may have

its maximum range, i.e., 0 -- Q1 -- 4095. Again,
note that a hidden correction is applied in each

branch-address syllable determination. The result
inserted in the object program will be "Qi minus
the contents of the BPR" or "Ql-inbpr." The

12

NRL REPORT 5974

S. .. .

programmer can cancel this by the device em-
ployed in the preceding paragraph. That is, he
must write "Ql+inbpr."

9. SPECIAL-USE SYLLABLES

T-Thin-Film Address Syllable

VAR. T.E REGISTER ADDRESS

In the NABUR system, the D825 thin-film
registers follow their octal codes given in the 16-
bit T.F. Register Map on page C-2 and the 12-
bit T.F. Register Map on page C-3 of Ref. 2. The
programmer, accordingly, may write octal in-
tegers from "000," (or simply "0,") to "177," to
refer to the thin-film registers. Alternatively, he
may write the corresponding decimal equivalents
"0" to "127" or use either the common names
already reserved in advance in the table of octal
correspondences (Table 1) or new names, defined
or preassigned by pseudo-instructions, such as
xl, x2, etc., for index registers. But he may not
number the limit registers in decimal, as shown on
page C-2, Ref. 2 (i.e., "0" through "15"), because
this conflicts with the earlier sequence for index
registers. He could, of course, label the limit regis-
ters rO ... , r15, and to these labels preassign or
define decimal values 16 through 31. Note how-
ever that decimal values "0" through "15" and
octal values "0" through "17" must be used when
designating limit registers in the Iv-Index Incre-
ment Variant Syllable.

The association of octal codes to the labels of
thin-film registers is complicated by a restriction
to key registers (marked by heavy dots in the T.F.
maps on pages C-2 and C-3 of Ref. 2) when an
entire 48-bit word is being referenced. Failure to
select a key register to head a multiregister store
(STW) or load (LTW) thin-film quasi-regular
instruction leads to an error statement, unless the
address quantity involved is indexed, and there-
fore of unverifiable correctness as far as the as-
sembler is concerned.

Iv-Index Increment Variant Syllable

This syllable is used only with the XLC (Index
Limit Compare) instruction. Treatment of the
last two portions of the syllable has already been
described. The variant consists of a bit for "in-
crease" or "decrease" and three bits to determine
the branch condition.

The "+" or "-" prefixed to the Index Amount
Syllable leads to a "0" or "1" placed in the Index
Increment Variant Syllable. The XLC instruction
has been split into eight quasi-regular instruc-
tions, as shown in Appendix C, IX, and the par-
ticular one used will determine the contents of
the remaining three bits in the variant.

Ia-Index Increment Amount Syllable

I I , I I I I I I I
AMOUNT OF INCREMENT

The programmer must prefix a "+" or
character to the Ia syllable to indicate increment
and decrement, respectively. This will lead to
placement of a "0" or "1" in the proper binary
digit of the Iv-Index Variant Syllable. The value
of the Ia syllable quantity has the range 0 -_ Q -
4095.

S-Shift Syllable

VARIANT AMOUNT OF SHIFT

The programmer must prefix a "+" or
character to the shift syllable address grouping
to denote the direction of shifting. The interpre-
tation of this sign will agree with the conception
of a right shift as a multiplication by a negative
power of two (i.e., minus exponent implies use of

"prefix) and of a left shift as a multiplication
by a positive power of two (i.e., plus exponent
implies use of "+" prefix). This convention cir-
cumvents a possible need for introducing four-
letter operation symbols.

The prefix will contribute one bit to the variant.
The shift syllable has been split into eight quasi-
regular operations, as described in Appendix C,
IX, and the use of one of these will determine
the contents of the remaining three variant bits.
The shift amount Q has the following range:

0 _- Q.< 63.

I I I I J I I I I I I

VARIANT INDEX REGISTER LIMIT REGISTERV ADDRESS ADDRESS

13 :,:

R. M. MASON AND I. G. FISHMAN

Vt-Transmit Variant Syllable

I -- - I ' I , ' -- I II ~VARIANT

The variant in this syllable is contributed by
the program through translation of various re-
served labels (pu, imu, xu, pr, mr, xr) which ap-
pear in the associated address grouping. Mean-
ings are attached to these labels in Appendix C,
X.

L-Logical Machine Condition Syllable

MACHINE CONDITION FLAGS

The L.ogical Machine Condition syllable will be
treated as a SYL-type syllable.

The subroutine jump address syllable will be
treated as a SYL-type syllable, except that once
more a useful, but concealed, correction is ap-
plied in each determination. The function of
this correction is to make more natural the use
of the machine's abilities. The resulting Ja syl-
lable, inserted in the object program, will be "Q1
minus the contents of the SAR" or "Ql-insar."
If it is ever necessary to do so, the programmer c*an
override this correction by writing "Ql+insar."

Ji-Subroutine Jump Increment Syllable

I I I I I I I I I I I

BAR INCREMENT

The subroutine jump increment syllable will
be treated as a SYL-type syllable. Its determina-
tion can be made relative to the BAR by writing
"Ql-inbar."

Rc-Repeat Count Syllable

F-Field Definition Syllable

I I I I I I I I I I I I I

N SHIFT AMOUNTr< FIELD LENGTH X1 FIELD BEGINNINj

This is a triadic syllable. The associated address
quantities must lie in the range 0 < Q-_ 7.

C-Character Syllable

I I I I I I I
CHARACTER

The 6-bit character of the character syllable
is treated as a SYL-type syllable. The range of
the quantity Qis as follows:

0--Q - 63.

I I I I I I I I I I I
COUNT OF REPETITIONS

The repeat count syllable will treated as a SYL-
type syllable.

Ri-Repeat Increment Syllable

I I I I I I I I I I I

s2 INCREMENT S3 INCREMENT S4 INCREMENT

The programmer should rely on Ref. 2 for
occasional use of the repeat instruction in order
that he may be able to conform to the machine-
language-instruction format. This syllable is proc-
essed as a triadic form.

10-I/O Syllable

Ja-Subroutine Jump Address Syllable

VARIANT

The range of Qfor the I/O syllable is 0 -< Q-- 3.

I I I I I I I I I I I I
RELATIVE ADDRESS

14

NRL REPORT 5974 15

Vs-Special Register and Computer
Interrupt Variant Syllable

VARIANT

The range of Q for the special register and
computer interrupt variant syllable is 0 _- Q < 7.

10. PSEUDO-INSTRUCTIONS

The following paragraphs describe pseudo-
instructions currently available to programmers
using the NABUR system. A pseudo-instruction
which will handle I/O Descriptors is under con-
sideration.

INT (Integer)

This pseudo-instruction is used to insert a
signed, 47- binary-digit integer as four succes-
sive syllables in the object program. The pro-
grammer must ensure that this integer arrives
in the object program as a single D825 word, if
so required. This always can be done by marking
the NABUR word containing the INT instruction
with a symbolic address. For clarity, since only
one address grouping is required, the program-
mer may allow the integer quantity to spill over
into more than one address-grouping field. And
he may use spaces in a free fashion unless he is
using a compound address quantity, for this would
terminate incorrectly at the first encountered
space. Although this operation was designed ex-
plicitly for signed and unsigned decimal or octal
integers in the range -247 to 247, it is possible to
use a label instead of an integer or to use con-
catenation symbols to tack on additional address
units, such as labels.

EXAMPLES

(How to set the contents of "spot" equal to the
numerical address corresponding to "dot.")

spot INT dot

(How to set up a second or higher-level 16-bit
absolute address with indirect or snag bits.)

INT 65535+indi
INT 6 5535+snag
INT 65535+snag-indi

FLO (Floating Point)

This pseudo-instruction converts the number
which follows the operation symbol into standard
D825 floating-point binary form. It requires all
three address groupings for its specification, so
the rule for spaces is not relaxed in this case, as it
was for INT. The FLO operation can handle only
signed or unsigned decimal numbers. The man-
tissa will be normalized, and any overflow or
underflow that occurs in the exponent will be
detected and considered an error. True zero
will be converted into standard D825 floating-
point-zero form (i.e., 7777 0000 0000 0000).

In the FLO pseudo-instruction, a number is
defined by the expression

(Ai X 10 A2) × 2 A3

where Al, A2, and A3 refer to the three consec-
utive address groupings, reading from left to
right. The required form of these three distinctly
treated address groupings is as follows. The Al
form will contain (a) from I to 18 decimal charac-
ters, (b) a leading plus or minus, the plus being
optional, and (c) a decimal point, also optional,
but if missing assumed to be located at the imme-
diate right of the last digit. The form of A2 and
A3 will be that of any address quantity, such as
is allowed in the SYL pseudo-instruction.

SYL (Syllable)

This pseudo-instruction translates the quantity
in the first address grouping, Al, of a NABUR
word from source language into a twelve-digit
binary integer and places this result in the syllable
that is next to be filled in the object program.
Explaining this another way, it puts the syllable
in the position indicated by the Q-arrow. (See
Part II, Section 6.) The form of the data in a
SYL address grouping is identical to that found
in an ordinary, unindexed branch syllable address
grouping. In other words, it is an address quantity.

The SYL pseudo-instruction injects an arbitrary
syllable explicitly into the object program. For

R. M. MASON AND I. G. FISHMAN

example, it is the only direct way to place a non-
zero NOP operator syllable (i.e., one having a I
in some address indicator bit position) in the object
program. SYL also can be used to place a HLT
(Halt) operator syllable in the object program,
whose six address indicator bit positions contain
an identifying integer.

PRE (Preassign)

The table of octal correspondences may be
expanded by the source program in three separate
ways. (In the unlikely event that this table becomes
full, the assembly process will record an error
statement.) One way, described earlier, occurs
when a new symbolic address is encountered by
the assembly process sometime during the first
pass. The actual address, in octal, that corre-
sponds to the symbolic address so detected is a
function of the present position of the Q-arrow.
Occasionally, however, the programmer may wish
to preassign an octal address to a label. For
example, if a programmer using NABUR wishes
to utilize, with no further assembly, object tapes
occupying known positions in the D825 core
memory, he can preassign symbolic addresses to
correspond to their actual machine addresses.*
A particular label can be preassigned or assigned
only once during any assembly run; however, it
can be defined more than once, or even assigned
(or preassigned) a value initially, and then de-
fined to be some other value, later. Moreover,
several different labels can be given the same
value, either by preassignment, assignment,
definition, or some combination of these, if
required.

DEF (Define)

The DEE pseudo-instruction is another way in
which to introduce values into the table of octal
correspondences. (The remaining way is by
assigning a symbolic address to a NABUR word;
this is discussed elsewhere.) The DEF operation is
similar to the PRE operation. But with PRE, only
new labels can be entered into the table of octal

*In the NABUR system, preassignment is accomplished I)y it iseudo-
instruttion that is treated iii the samne manner .s an), other NABUR
intrti nt tuin atid consequently preassi.ign tapes and stotrce tapes are
ioneeptuatitli) liy tti or i lia ' eN cien be imtade into one tape. Neterthe-

less. despite the fal t that NABUR preassignments (an be intermingled
with the steps of tlhe soiree program, it is adxisable to write all the

preassigns necessai N lot ain assembly oii one tape, to be i ead iln befo re
the otiher tapes.

correspondences. Should there already be an entry
having the same spelling, the program will accept
the new value, but also will provide an error
statement. On the other hand, with DEF, it is
possible to give new octal values to symbolic
addresses or labels that have already been entered
in the table, provided only that they are unre-
served. So, in contrast to the PRE pseudo-instruc-
tion, the programmer may change the value corre-
sponding to any unreserved or semireserved label.
For example, he may change those values corre-
sponding to "inbar, inbpr, or insar" at points
where he expects the running program to reset
the BAR, BPR, or SAR registers. The same rules
for address groupings that hold for PRE also
apply to DEF. All labels will be stored in the
table of octal correspondences on the first pass;
any label which will not appear in this table at
the end of the first pass must necessarily be an
error. Define operations, but not preassigns or
assigns, are reiterated on the second pass.

Clearly, D825 programs must reset the BAR
at least once every 2048 words. The assembly
routine must be told what setting applies at
various points to compensate the values from
the table of octal correspondences.

RES (Reserve)

The reserve pseudo-instruction sets aside a
stated number of consecutive syllable positions
located next in the object program leaving them
with zero contents. Only one address grouping
is used, which contains an unindexed address
quantity of SYL form. This is acted upon by the
Adar subroutine to establish the number of
syllable positions that are supposed to be kept
vacant.

NOR (Normal Mode)

This pseudo-instruction requires no address
groupings for its specification. Its purpose is
to signal that further operation of the D825
program being assembled is to be in the normal
mode.

CON (Control Mode)

This pseudo-instruction is the reverse of
NOR. Its purpose is to signal that further opera-
tion of the D825 program being assembled is to be
in the control mode. It also requires no address
groupings.

16

NRL REPORT 5974

NABUR OPERATOR INSTRUCTION SHEET (6/11/62)

RCC Problem Number

Problem Title

Assembly

Date

NRL Account Number

Programmer

Telephone

Format: Hexadecimal, Infinite Column. Output: Line Printer. (LO 12C1).

First Address in Object Program 0000000 ---)--

Source Program Tapes (Place on slow reader befotre heading):

Tape Check Cont.

Label SLIm P.B.

t 1 •- /I
i)0

(2)

(3)

(4)

(5)-

(6).

(7)

(8)

Tape

Label
Check Cont.

Sum P.B.

"((10).

" (11)

"(12)

(13)

(14)

(15)

" (16)

(RO 12C2). Stops at 1390 if no.etrrors.

It there are assemhlh errors: STOP or PROCEED.

If no assembly errors: Change output to: tine Printer and Paper Tape Punch.

Push Continue.

Label output tape

Special Instiuctions:

Fig. 4 - NABUR operator instruction sheet

17

I.

2.

3.

4.

5.

6.

7.

8.

ký)

R. M. MASON AND I. G. FISHMAN

11. NABUR OPERATOR
INSTRUCTION SHEET

Figure 4 shows a NABUR Operator Instruction
Sheet. It is more or less self-explanatory. Notice

that "Format" is already specified. It will be
necessary for the programmer, however, to decide
upon the intended first address of the object

program in the D825 memory. This address

must be entered in the space provided on line 2.

It is possible to write as many as 16 source tape

labels on one sheet, along with the check sums

for these tapes. To write more than 16, simply

attach another sheet by stapling, and renumber

the appropriate lines of the second sheet, starting
with (17), (1-8), and so on. Also, make a note under

line 8 (Special Instructions) telling the machine

operator to continue reading tapes in the order
indicated on the next sheet.

12. SOURCE TAPES

The steps followed in preparing NABUR

source tapes are similar to those followed for

NAR source tapes. Both kinds of tapes are read

into the NAREC and therefore must have a
related structure; namely, they must contain a

heading of the standard form preceded by
heading recognition symbols, and the body of
the source program must be preceded and

followed by the standard NAREC prepare and end

routines, respectively. All characters in the body
of the source program, excluding tape feeds and

deletes, will enter the NAREC memory, including

all format characters (CR, tab, and space). Recog-
nition of format characters is an intrinsic part

of the assembly process.
But NABUR source tapes do differ from NAR

source tapes in many ways. For example, both a

title and other expository matter may be included
within the body of a NABUR tape by treating this
material as a commentary. Comments, it may be

recalled, (a) are preceded by a "CR tab" combina-

tion, (b) are typed, and (c) do not reappear as

part of the checking output. To obtain something,

called a remark, which does reappear, it is neces-
sary to place an "r space" combination immediately

after the tab following the last address grouping.
More than one source tape can be read into the

NAREC before starting the NABUR assembly
process; thus, for example, several subroutines

can be read in before or after the main program.
In this case, the object program will be assembled

from the component tapes in the consecutive
order of their readin. In the event of a faulty
readin, it will be possible for the machine operators
to reread only the last source tape in an attempt to

obtain the required check sum. In planning

several tapes for the same assembly, remember
that a given symbolic address can be assigned
only once, whether this be by assignment (writing
a label in the symbolic address field), or by pre-

assignment. The NABUR system will record an
error statement whenever this rule is violated.
The total number of characters permitted for

the subject data is 32,768; the total number of

words allowed for the object program is 4096.

Longer programs could be handled with some

minor changes to the assembly routine.

13. ERROR STATEMENTS

Considerable checking is built into the NABUR
system, and an appropriate error statement

(Table 3) is printed out whenever an error is

detected. Although no hard and fast rule is possi-
ble, it is usually the case that when a source

mistake is detected, an erroneous syllable will be

formed, partially correct, partially zero. Such

faulty syllables are not easily corrected by over-
punching, because the object tape is coded in

bioctal; nevertheless, they often can be corrected
at the D825 console.

TABLE 3
NABUR System Error Statements

Number

I
2

3
4

*5
6
7
8

*9
*10

11
12

13

"*14
15
16
17

Message

number or label too large
illegal op code
the iar cannot be loaded in normal mode
symbol table capacity exceeded
duplicate label
improper stack reference
missing operand
index identifier not previously defined
index assigned not between 0 and 15

index improperly designated
improper amount syllable

xlc inst improper index or limit register
identifier

indirect branch
improper octal number
improper character field definition

single shift amount greater than 47
improper shift specification

18

NRL REPORT 5974

TABLE 3 (Continued)
NABUR System Error Statements

Number Message

18 double shift amount greater than 11
19 invalid numbering of an instruction
20 illegal input to octal digit function
21 halt used in control mode

*22 faulty symbolic address
23 illegal branch condition designated
24 label not previously defined
25 argument not previously defined
26 i-o instruction used in normal mode
27 missing bus designation
28 improper special register designation
29 lsr used in normal mode
30 improper value preassigned or defined
31 improper t.f.r. key address
32 improper t.f.r. address
33 missing operator
34 concatenation element not previously

defined
35 repeat increment greater than 15
36 item vector exceeded

*37 label reserved
*38 improper number of spaces in specifi-

cation field
39 illegal character definition
40 improper indirect address
41 syllable greater than 4095
42 undefined base register label
43 improper number on tape record
44 relative address greater than 2047

*45 improper decimal number
46 argument not defined

*47 mistake in source line

*Most commonly seen.

Part II
THE NABUR ROUTINE

1. NAME OF PROGRAM

NABUR - A NAREC Assembler for the Bur-
roughs D825 Modular Data-Processing Computer

2. CLASS

L1 Executive Routines, Assembly

02 Simulation and/or Interpretation of Other
Computers, Other

3. PURPOSE

19
S. ..

a. To assemble an object program in Burroughs
D825 machine language from one or more pro-
grams written in NABUR source language.

b. To check for programming errors and print
out corresponding error statements wherever
appropriate.

c. To provide, in the event of an error-free
assembly, both a punched object tape that is
compatible with the requirements of the D825
input format and a dual-language hard copy
(or "checking output") in which source lines and
object words appear collaterally.

4. LANGUAGE USED

NAR lB and NAREC interpretive language

5. AUTHORS

R. M. Mason and I. G. Fishman

6. FORMAL STATEMENT

When the NABUR program has been placed in
its working position in the NAREC, and a start
order executed, the program will clear portions
of the memory, reset certain parameters, and
almost immediately call for a keyboard insertion
by the NAREC machine operator of the intended
first address for the D825 object program to be
produced, i.e., the octal integer written by the
programmer in the space provided on line 2 of
the NABUR Operator Instruction Sheet. The
machine operators will box this first address as a
right-justified hexadecimally coded octal integer
and push the transfer button, whereupon the
program will convert it to pure octal and store the
result in qadd, a working location in the NABUR
program. Next the program will call for the
source tapes to be read in, including format
characters but excluding delete and tape feed
codes, as a succession of 6-bit characters. The
heading is read in as well, and then printed
out, but not stored permanently. The (augmented)
check sum for each component source tape is
computed and recorded. After all source tapes for
the assembly have been read in, forming the sub-
ject data, a second start order will begin the
assembly process.

Consider Fig. 5. Upon readin, the material in
Fig. 5a takes on the appearance shown in Fig. 5b.
After readin of all the source tapes to be assem-
bled, the NABUR program begins its first pass

R. M. MASON AND I. (G. FISHMAN

through the subject data. In both the first and
second passes a subroutine called "Subject Deline-
ator" is employed to distinguish in memory the
current line of subject data to be examined. It
does not place this line in a detached situation.
In Fig. 5b a "P-arrow" applied successively at
points P1, P2, P.3, and P 4 denotes the first character
of each string to be considered. Also, a "Q-arrow"
might be defined that always points to the next
available syllable position in the object program.

A line of subject data is defined as a non-empty
string of characters other than carriage returns,
preceded by, but not including, one or more CR's

on the left (open), and followed by one or more
CR's, but including only the first (closed), on the
right. In Fig. 5b, the 18 characters at PI, namely
0 through CR, would comprise the first line of
subject data to be isolated by the Stbject Delineator
subroutine. The NABUR program treats each
source line independently, using the character
handling and manipulating programs of the
CHAMP system. An examination of what would
happen with the most general form of line will
illustrate practically the whole approach. The
most general form of source line is:

X " ',\l I SY *1 TIAB OPS SPAXCE Al SPACIE A2 SPACE A3 I AB R* CR

where

X is a line designation

SYM is a symbolic address

OPS is a three-letter mnemonic operation symbol

Al, A2, and A3 are address groupings
which may contain indexing

R is "r space remark"

* denotes that the starred element is optional.

The positions of tabs and spaces are critical in
identifying particular components of the source
line. In the first pass, only a framework of the
object program resulting from assembly is created.
The number of tabs per line must always total
three, and if this rule is broken, the assembly
process will record an error statement to that
effect on the first pass. The character substring
enclosed by the first two tabs is taken to be the
symbolic address. If there is no entry between
the first two tabs, the assembly program accepts
the fact that this line is not marked, and goes on.
If there is an entry, tests are made of the accepta-
bility of the symbolic address, following the rules
given earlier in this report (Part I, Section 3).

If acceptable, the symbolic address is next com-
pared with the entries in the table of octal cor-
respondences. If it does not duplicate any entry of
the table, whether it be reserved, semireserved,
or unreserved, it is entered along with the current
address of the object program, qadd. The presence
of a symbolic address on a line will reset qadd
to the left syllable position, starting a new line
if necessary. Should the symbolic address fail
any of the tests made on it, suitable error state-
nients will result, and usually, faulty syllables
can be expected to appear in the object program.

Next to be examined is the operation symbol.
It is always present in every line of subject data
containing a NABUR word and consists of three
letters-no more, no less-between the second tab
and the first space.

If the operator symbol is that of a regular or
quasi-regular machine instruction, a subroutine
called "Oper" is brought into play. First, this
subroutine recognizes the machine operation
involved and begins to fill the operator syllable by
inserting the corresponding order number. Then,
depending on the type of instruction, it searches
the subject data to find the accompanying address
groupings in the source line and sees whether the
required number of groupings is present, whether
the memory syllables are allowed to be stack
references, etc. This address indicator informa-
tion is "OR"ed into the operation syllable, by
means of a "Variant Bit" stibroutine, called
"Vabi." (Appendix B 'has block diagrams of the
"Oper" and "Vabi" subroutines.) Once the
operator syllable is filled, it is inserted into the
object frame. During the first pass, room that
will be required during the second pass for
non-operator syllables is filled in temporarily with
zeros to maintain the correct structure of the
object program. Pseudo-instructions are handled
differently from regular and quasi-regular
machine instructions. They do not contribute an
operator syllable. Some may transmit a signal as to
the mode of operation, normal or control; others
may generate matter that contributes one, or
four, syllables to the object program. Where the
pseudo-instruction does contribute syllables
(usually data) to the object program, sufficient
zero syllables will be placed in the object structure
in the first pass.

It may be worthwhile to discuss how syllables are
stored in the object program. From one to four
syllables, once assembled, whether by the "Oper"
subroutine, by other subroutines in the second

20

21NRL REPORT 5974

pass, or by generation of zeros, are placed in a
NABUR working location, called "qsyl". Since
four syllables comprise one 48-bit D825 computer
word, there are 12 bits or four octal digits per
syllable. A subroutine called "Store Q' can be
invoked to store one, two, three, or four syllables
from qsyl into the current position in the object
program, as indicated by the Q-arrow. The first
syllable may be placed in any of the four possible
positions it can occupy in a computer word.

This is the extent of the first pass. Incidental
checking has been taking place as to the validity
of the operation code, the correct number and
kind of address groupings required for the partic-
ular operation, and format in general, all with
corresponding error statements. After the first
pass, the object frame for the preceding ex-
ample (Fig. 5) would be as shown in Fig. 6
(remember that all digits are octal in the object
program).

0
1
00
01
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

arcb

arcbl

stf bpr n
ltf n bar
def inbpr arcb
def inbar arcb
stw ssr n

ltw n +74,
bad h n n
ltf n 17,
esl n +1 n
brb n n arcb2
trm n pu n
cls h arccl arcb3
cgr h arcc2 arcb4
bmu h n n
bsu n arcc3 n
dsa n +2 n
bmu h h n
bsu arck5 h n
bdv arck4 n n
bad n arck3 n

Fig. 5A - Passage of source text

Character number

1 2 3 4 5 6 7 8

Word number I CR 0 P" TAB a r c b TAB

2 s t f SPACE b p r SPACE

3 n TAB CR 1 - P2 TAB TAB t

4 f SPACE n SPACE b a r TAB

5 CR 0 0 TAB TAB d e f

6 SPACE i n b p r SPACE a

7 r c b TAB CR 0 P4 1 TAB

8 TAB d e f SPACE i n b

9 a r SPACE a r c b TAB

10 CR 2 TAB TAB s t w SPACE

11 s S r SPACE n TAB CR 3

12 TAB TAB 1 t w SPACE n SPACE

13 + 7 4 TAB CR 4 TAB

14 TAB b a d SPACE h SPACE n

15 SPACE n TAB CR 5 TAB TAB 1

16 t f SPACE n SPACE 1 7

Fig. 5B - Corresponding source tape image

Fig. 5 - Readin example

C,,;..

R. M. MASON AND 1. G. FISHMAN

Character number

1 2 3 4 5 6 7 8

Word number 17 TAB CR 6 TAB TAB e s I

18 SPACE n SPACE + 1 SPACE n TAB

19 CR 7 TAB TAB b r b SPACE

20 n SPACE n SPACE a r c b

21 2 TAB CR 8 TAB a r c

22 b I TAB t r m SPACE n

23 SPACE p u SPACE n TAB CR 9

24 TAB TAB c 1 s SPACE h SPACE

25 a r c c I SPACE a r

26 c b 3 TAB CR 1 0 TAB

27 TAB c g r SPACE h SPACE a

28 r c c 2 SPACE a r c

29 b 4 TAB CR 1 1 TAB TAB

30 b m u SPACE h SPACE n SPACE

31 n TAB CR 1 2 TAB TAB b

32 s u SPACE n SPACE a r c

33 c 3 SPACE n TAB CR 1 3

34 TAB TAB d s a SPACE n SPACE

35 + 2 SPACE n TAB CR 1 4

36 TAB TAB b m u SPACE h SPACE

37 h SPACE n TAB CR 1 5 TAA

38 TAB b s u SPACE a r c

39 K 5 SPACE h SPACE n TAB CR

40 1 6 TAB TAB b d v SPACE

41 a r c K 4 SPACE n SPACE

42 n TAB CR 1 7 TAB TAB b

43 a d SPACE n SPACE a r c

44 K 3 SPACE n TAB CR

Fig. 5B (Continued) - Corresponding source tape image

Fig. 5 (Continued) - Readin example

22

NRL REPORT 5974

STF (BPR) LTF (BAR)
1540 0000 3010 0000

STW (SSR) LTW (+ 74)
1540 0000 3010 0000

BAD LTF (17,) ESL
6520 3010 0000 3610

(+ 1) BRB (ARCB2)
0000 2602 0000 0000

TRM (PU) CLS (ARCC1)
3410 0000 7432 0000

(ARCB3) CGR (ARCC2) (ARCB4)
0000 7532 0000 0000

BMU BSU (ARCC3) DSA
6120 6410 0000 3610

(±2) BMU BSU (ARCK5)
0000 6124 6444 0000

BDV (ARCK4) BAD (ARCK3)
6040 0000 6510 0000

Fig. 6 - Object frame

The first zero location remains to be filled in
during the second pass with the address of BPR
read from the label table. The n, denoting normal
stack reference, does not call for a syllable; but
rather, is coded in the appropriate address
indicator bits of the operator syllable. The assem-
bly routine automatically takes care of this conver-
sion for the programmer. After going through
all the source lines, the assembly routine enters its
midpass phase and prints out the contents of the
table of octal correspondences. Then it decides
whether or not to go on to the second pass. At
the time of printout, any errors considered to
be sufficiently damaging to the program as a whole
will result in setting a "whoa" flag. This flag
later will attempt to terminate the program at
midpass, after the assembly routine prints out
the table of octal correspondences followed by
five asterisks.

The second pass contributes the rest of the
syllables to the object program structure, does
extensive checking of the address groupings
themselves, and prints out a checking output

for each line as it is formed. The appearance of
this output will be described in detail later (see
Part II, Section 8).

As in the first pass, each line of subject data is
considered independently, and again use is made
of the Subject Delineator subroutine. This time,
however, the operator syllable is passed over, and
direct attention is given to the address groupings
accompanying the operation symbol. Regular
machine operations are matched to a routing
table which sequences control through the differ-
ent types of action blocks needed to completely
specify syllables for the operation. For example,
the first line of subject data previously examined
uses operation STF. This STF corresponds to
octal order number "15," which is added to a
constant to produce a jump address that sends
the control to a routing table. Control, under
the direction of this table, is then sent through the
memory syllable subroutine and returns to
"home." In the third subject line of the same
example, the routing table for BRB will send con-
trol to the memory syllable subroutine, again to
the memory syllable subroutine, then to the
branch syllable subroutine, and finally to "home."
Each action block will check for its particular needs
in the address grouping and will form the corre-
sponding object syllable and store it in the object
program. Special action blocks are written for
indexed syllables, triads, etc. Inside an address
grouping, address arithmetic is permitted for
certain syllables, notably the memory syllable.
The address units may be symbolic addresses, or
unsigned decimal or octal numbers, as long as
they conform to the rules of writing NABUR
language described in the first part of this report.
Newly constructed syllables are stored in the wait-
ing empty spaces in the object program. After
examining the line of subject data in question,
and after returning from the routing table
indicated by the operation, the NABUR system
produces a line of checking output.

Moreover, in the second pass, lines containing
pseudo-instructions are processed somewhat
differently. In the case of CON (control mode),
NOR (normal mode), DEF (define), and PRE
(preassign), the appropriate action is taken, setting
addresses in the symbolic address table, or flags
to indicate mode, but no syllables are added to
the object program. In the case of RES (reserve),
the required number of syllables is again set equal
to zero.

C-...,,

23

R. M. MASON AND 1. G. FISHMAN

In the case of FLO, INT, and SYL, 'the num-
ber of syllables entered into the object program
is four, four, or one, respectively. After each in-
sertion the corresponding line of checking output
is produced. Since they are pseudo-instructions,
FLO, INT, and SYL never directly contribute
operator syllables.

The above procedure is carried out for each
line of subject data. When all such lines have been
exhausted, another determination is made by the
program as to whether any error printouts have
occurred in the second pass. If at least one error
has been detected, the program will stop immedi-
ately. If no errors have been found, the program
will produce a D825 punched paper tape contain-
ing the bioctal object program. This will be re-
produced on the line printer also, but since the
characters punched are bioctal, and the line
printer is hexadecimal, it will be unintelligible,
and will serve only as notice that an output octal
tape has been produced.

7. OPERATOR INSTRUCTIONS

The NABUR Operator Instruction Sheet has
been discussed in Part I of this report. Current
operator instructions for loading the NABUR
program are posted in the NAREC machine
room.*

8. OUTPUT

The assembly routine starts printout (Fig. 7a)
by providing a heading for the output: three
carriage returns, followed by "NABUR D825
MODULAR DATA-PROCESSING SYSTEM
ASSEMBLY," followed by four carriage returns.
Next, a heading "READIN INFORMATION"
is supplied, followed by two more carriage re-
turns. The assembly routine also furnishes two
types of information in connection with every
source tape read in. First the word "HEAD-
ING-" is printed and is immediately followed
by the heading of the source tape. This heading
can include the tape label, title, name of pro-
grammer, date, etc. If a particular source tape
has no heading, the word "NONE" will be printed.
The second type of information furnished is the
(augmented) check sum of the body of the source

*Copies of these directives are available to qualified persons upon

request. Address inquiries to Director, U. S. Naval Research 1Labora-

tory, Washington, D. C., 20390, Attention Code 4550.

tape. This helps when a particular source tape
is required for subsequent assembly. If the check
sum has been entered on the NABUR operator
instruction sheet next to the tape label, accurate
readin of the source tape may be certified. The
above printout occurs before and during readin
of tapes. The only other printouts possible dur-
ing the first pass are error statements. They have
the same three-line form whether they occur
during the first or second pass, as follows.

xxxxxxxxxxxx

n mmmm

SSSSSSSSSSSSSSSSSSS SSSSSSSS

The x's stand for the hexadecimal contents of
the location in the assembly program from which
the error message was generated; n stands for
the error tally, which is an ascending decimal
counter beginning with one; the m's stand for
the error message itself; and the s's stand for
the particular line in the source program in which
the error was detected.

Whether or not errors have been detected in
the first pass, the program goes into midpass
(Fig. 7b). At this time, the heading "SYMBOLIC
ADDRESSES USED" is printed out, followed by a
table. This table always begins with the reserved
addresses, starting at "snag" and ending with
"xr," and the semireserved addresses, "inbar"
through "insar." Next will follow, in order, the
labels found in the first pass. The printout of the
table of octal correspondences will have the form:

000000 aaaaaa

where the o's represent the 18-bit octal integer
associated with a label, and the a's represent the
1-to-5 character label. Upon completion of this
printout, the assembly routine decides whether
or not to go on to the second pass. If at least one
error has been recorded in the first pass, the as-
sembler will print out five asterisks and come to
a stop. Otherwise, the assembler will start the
second pass (Fig. 7c). First, the column headings
"ADDR," "OBJECT SYLLABLES," "LINE NO,"
"SYMBOL," "OP," "SOURCE LINE," and "RE-
MARKS" are printed to clarify the checking out-
put that will come a segment at a time after each
source line has been examined. (Recall that in

24

NRL REPORT 5974

the second pass, the nonoperator syllables are
placed in the object frame, which was constructed
during the first pass.)

The checking output has the following form:

nnnn mmmmmm I ssss ssss ssss ssss I kkkk aaaaa ops Al A2 A3

where
nnnn stands for natural numbers generated

by the assembler to number the output lines
decimally in ascending order

mmmmm stands for the actual octal address
of the 'object line

ssss represents the object program syllables,
consisting of four octal digits each (if an octal
syllable does not apply, four dots are printed
instead)

]uprightsl enclose the four object syllables
kkkk stands for the line designation found

on the source tape
aaaaa represents the symbolic address or label

associated with the source line, if any
ops denotes the three-letter NABUR operation

symbol
Al, A2, and A3 stand for the associated ad-

dress groupings, which may-or may not be
indexed, and may or may not all be present,
depending upon the particular instruction
used.

NABUR output is illustrated by the following
sample, Fig. 7, which has resulted from assembling
together four source tapes. (A portion of the
handwritten programming for the first source
tape is reproduced in Fig. 2. The complete typed
copy of this source tape appears as Fig. 3.) The
checking output is designed for programmer
convenience in studying the octal D825 machine-
language program that is assembled. To this end,
the output page has been divided more or less
down the middle, the left half applying to the
object program, and the right half, to the source
program. In theory, a line of source data should
correspond to a line of object data. In practice,
however, the source data may require several
lines to be printed within the limits of its column.
No new line of object data is provided until the
source line corresponding to the preceding line
of object data has been completely printed. Simi-
larly, no new source-line data are provided until
all the object line has been printed, within the
limits of its column. Since an instruction in the
D825 computer may require from one to seven
syllables, there is no actual instruction word, as

25

such. The format of the object-syllable field re-
lates the object line to the particular source line.
It is split into four syllable columns, each with
positions for four octal digits. Bona fide zero
syllables contain four octal zeros. Each pertinent
object syllable is printed out in its actual location
in the object tape. Therefore, it so happens that
if all the lines in the column headed "object syl-
lables" were compressed upward so that a line with
dots in a syllable position would be filled with
a following line's syllable, all dots would dis-
appear, no object syllables would be lost, and a
true representation of the object tape would result.

The presence of an r in the remark indication
field of the NABUR programming sheet will cause
the following remark, and the r itself, to be typed
by the typist and to be printed out in the checking
output. The remark is printed out on a separate
line after all object material and corresponding
subject material for the particular line have been
printed. The only other type of printout which
may occur during generation of the checking
output is the error printout, which is described
earlier in this section. Should no errors be found
in second pass, the assembly program will provide
output in the form of both a punched paper tape
and line-printed material. The tape and hard
copy contain the assembled actual bioctal object
program for the D825 computer (Fig. 7d).

9. TAPE LABELS

Tapes with basic tape number 4825 are used;
current versions are available to the machine
operators.

10. ADDRESS INFORMATION

Not pertinent.

11. EXTERNAL WORKING MEMORY

Not applicable.

12. VERSATILITY

The system is self-contained and does not lend
itself to programmer changes.

13. REMARKS

The assembler at present requires about ten
seconds to process each source line.

C..i'

1C'.

R. M. MASON AND I. G. FISHMAN

ACKNOWLEDGMENTS

The authors wish to thank Harold Ashby and
Frank Zurcher of the Burroughs Laboratories
at Paoli, Pennsylvania, authors of the Burroughs
220/D825 Modular Processor Assembler, for
permitting them to study this program thoroughly
before work on NABUR began. The authors
also appreciate the willingness of the Burroughs
staff to explain why certain features of their ap-
proach to the problem are imposed by the logical
design of the D825 and of its operating system,
i.e., the AOSP (1,3).

The authors would also like to acknowledge
the most cooperative help given by Alan B. Bligh,

Bruce Wald, and Alice Jo Campbell in setting up
the NABUR conventions.

REFERENCES

1. Anderson, J.P., Hoffman, S.A., Shifman, j., and Williams,
R.J., "D825 - A Multiple Computer System for Command

and Control," pp. 86-96, in AFIPS Conference Proc., Vol.
22, 1962 Fall Joint Computer Conference, Spartan:Wash-
ington, D. C., 1962

2. "The Burroughs D825 Modular Data Processing System,

Programming Manual," Burroughs Corporation, Contract
Nonr 3521(00)(x), Jan. 31, 1962

3. Thompson, R.N., and Wilkinson, J.A., "The D825 Auto-
matic Operating and Scheduling Program," in AFIPS Con-

ference Proc., Vol. 23, 1963 Spring Joint Computer Con-

ference, Spartan:Baltimore, 1963

26

NRL REPORT 5974

ThNNNN

0000
* INPHT 0001 DIRECTOR TAb1E 18CNS. 3683-368C

INPUT 0001 ORDER 1INF VECTOR TABIE 1BCNS. 36F3-36

* TRANSFER CONTR01 TO SYSTEM-START AT ORDER lINE 0001

SYSTEM TAPE INPUT- HEADING--
S4825-0000 NABUR I RMASON/RS 8/11/62

FIRST WRDR 0000- ED27 00 8019 61
* lAST WORD 091F- nO0o o0 00D0 00

STANDARD CHECK SUM EA6C 6B 39AA 58
AUGMENTED CHECK SUM

SYSTEM TAPE INPUT- HFADING--

'dblem nuuiber 06...

perator,..

hecked by
h 0 .Y

S

0

0
EA6C A4 2211 58

48P5-0920 NARUR I FISHMAN/MM 12-'
1-8-63?J

•1-16-63?J

1/18/63MM

•3-29-631J

FIRST WORD 0920- 093F 42 0942 42
lAST WORD 0D78- 9596 4n o0W0 00

* STANDARD CHECK SUM 5EE9 6F
AUGMENTED CHECK SUM

• SYSTEM TAPE INPUT- HFADING--
NONE
FIRST WORD OD80- MDQE 42 OD9F 43

* lAST WORD 1545- 0o00 on 0000 00
STANDARD CHECK SUM 532E DD
AUGMENTED CHECK SUM

NARFC INSTR. EXECUTED 9Y SYSTEM 12C1 10

* NNNN

03F8 AF

4D47 DOn

5EE9 DF 61DF AF

532F 85 9ED6 DO

* 0000

NABUR D-825 MODULAR DATA-PROCESSING SYSTEM ASSEMBLY

READIN INFORMATION

• HEADING-

4815 ARCSIN/ARCCOS SURROUTINE
3-29-637J

a CHECK SUM 5D39t8995709

4UHEAnING-

4817 SIN SUBROUTINE CAMPBE

CAMPBEE'/PJ

11/MM

1-31-63

2/1/63

Fig. 7A - Portion obtained during readin

Fig. 7 - Sample output (printout only). This figure represents the
concluding step for the example given in Figs. 2, 3, 5, and 6.

0

27,:

r'r

0

S

S

0

S

0

S

0

0

0

L . -

5-6;)

R. M. MASON AND I G. FI SHiMAN

3-4-63?J

• CHECK SUM 2FB23F3AE9C9

HEADING-
* 481A COSINE SUBROUTINE

2/i13/63MM

•3-4-63*J

CHECK SUM 96C58960514A

HEADING- S4619 SOUARE

3-4-63?J

* CHECK SUM 2E9A18Cn782A

HEADING-

4820 BINARY To DECIMAl
3-12-63?J

CHECK SUM 2B8302287522

CAMPBE11/PJ

RORT SUBROUTINE

OUTPUT ROUTINE

P-1-63

CAMPBEII/FJ

CAMPBEll 2/1/63MM

Fig. 7A (Continued) -Portion obtained duting reaclin

Fig. 7 (Continued) - Sample toutptit (printout only). TIhis figure represents the
concluding step for the example given in Figs. 2, 3, 5, and 6.

2/12/63RS

0

t0

28

C.:

NRL REPORT 5974 29
I ...

* NNNN

0 0000*
SYMBOLIC ADDRESSES USED

* 400000 SNAG
200000 INDI
000055 BAR

* 000054 BPR
000060 SAR
000063 IAR

* 000057 PCR
0001-14 RTC
000110 IPR

* 000t24 TFC
000122 XIR
000074 IDR

S"000040 ISR
000064 PDR
000062 RCR
* 000044 RPR
000050 SSR
00n123 CCR

* 000130 RIR
, 000100 PSR1

000102 PSR2
* 000047 RPRl

ooo040 STKo
000144 STK2
* 000150 STK3

= 000154 STK4
000001 PU

So000002 MU
00n003 xU
000005 PR

* 000006 MR
000007 XR
000000 ---

* 000214 INBAR 0
000214 INBPR
000000 INSAR

* 000000 ARC8
000004 ARCB1
000014 ARCB2

* 000015 ARCB3
000021 ARCB4
000n24 ARCRi

* 000031 ARCB6 0
000032 ARCB7
000033 AB71

* 000034 A872
000035 A873
000036 ARCCI

* 000037 ARCC2
000040 ARCC3
000041 ARCK5

* 000042 ARCK4
000043 ARCK3
000044 ARCK2
000045 ARCK1 0

000046 ARKK2
000047 ARKK1

* 000050 ARCC4 •

Fig. 7B - Portion obtained at midpass

Fig. 7 (Continuied) - Sample output (printout only). TIhis figure represents the
concluding step for the example given in Figs. 2, 3, 5, and 6.

30 R. M. MASON AND IL G. FISHMAN

000051 ARCC5
* 000052 ARCKA

000053 ARCKB
000054 ARCC6

• 000055 SINBG
000061 SINB8
000063 SIN82

• 000066 SINB3
000073 SINB4
000074 SINB5

• 000075 SINe6
000103 SMUIT
000104 SHAIF

• 000105 SONE 0
000106 SPART
000107 SINK4

* 000110 SINK3 0
000111 SINKi
000112 SINC9

* 000113 SINC7
oo0114 SINC5
0001.15 SINC3

* 000116 SINCI
o O00117 SPI
000120 COBEG

* 0001.24 COB1.
000126 COB2
000127 C0B3

* 000134 CB4 0
a 000135 CB5

000136 COB6
So000140 CR27

0l0!46 COC1
000147 COC2

* 000150 COC3
000151 C0C4
000152 COC5
000153 COK6
000154 COK4
000155 CRK2

* 000156 COKO 0
000157 COK9
000160 COK7

* 000161 COK5
000162 CRK3
000163 COKI

* 000164 SOBEG
000167 SR1
000173 S082

* oo0176 S083 0
000201 SQB4
000202 SQ85

* 000204 SOCI 0
000205 SQC2
00n206 SQK52

* 000207 SOKI•
000210 SQKI0
000211 SQKK2

o 000212 SQKK5 0
000213 SQKKO
000214 OUTPR

o 000221 OB8
000223 OBI
000230 082

o 000231 083

Fig. 7B (Conti in tied) -Port ion obtained at midpass

Fig. 7 (Continued) - Sampoile otutput (printout only). This figure represents the

concluding step Iot the example given in Figs. 2, 3, 5, and 6.

NRL REPORT 5974 31

000236 8B4 ,:
* 000240 085

000242 086
000250 0B8
000255 089 -

000257 0810
000262 0811

• 000270 OIIM
000271 OONE
000272 OERR

* 000273 OFOUR
000274 OTEN
000275 OBYN

0 oo0276 OSPCE
000277 OCR
000300 OMINS

* 000301 0END 0
000302 OWO
000303 OwI

Fig. 7B (Continued)- Portion obtained at midpass

Fig. 7 (Continued) - Sample output (printout only). This figure represents the
concluding step for the example given in Figs. 2, 3, 5, and 6.

R3 M. MASON AND 1. G.(FISHMAN

ADDR OBJECT SYLLABLES LINE NO SYMBOL

n 000000
* 1 000000

2 000001
3 000001

* 4 000001
5 000001
6 000002

0 7 000002
9 000002

* 9 000003
10 000003

* 11 000004

12 000005
* 13 000006

14 000006
1;5 000006

16 000007
17 000007

* 18 000010
19 000010
20 000011

S 21 000011
22 000011

* 23 000012
P4 000012
25 000013

* P6 000013

27 000015
* ?A 000015

29 000015

* 3n 000016
31 000016
32 '000017

* 33 000017
34 000020
35 000020

* 36 000020

37 000021
0 3A 000022

39 0n0022
40 000023

* 41 000023

42 000024
* 43 000025

44 000025
45 000026

0 46 000026
47 000026

* 4A 000027
49 000027

OP SOURCE LINE REMARKR

"11540 n054 10 ARrB STE BPR N
I 3010 0055 II ITF N BAR
I I0 DEE INBPR ARCB
1 01 DEF INBAR ARCO
11540 1090 12 STW SSR N
I 3010 1074 13 ITW N *74,
16520 14 BAD H N N
I 3010 0017 ... 15 ITF N 17,
1 3610 16 ES1 N *$ N
10201
I 26n2 0014 BRB N N ARCI2
I 0000 8 ARrB1 TRM N PU N
13410 00i0 I

S. 7 4 3 2 0 0 3 6 19 C I S H A R C C 1 A R C M 3
10015 I
I 7532 0037 0021 10 CGR N ARCCP ARCB4
16120 Il BMU H N N
I 6410 0040 12 BSU N ARCC3 N
i 3610 13 DSA N *2 N
'0102 I
I 24............ 114 BMU M H N
I-'. 6444 0041 115 BSU ARCK5 H N

16040 n042 116 BDV ARCK4 N N
I 6510 0043 117 BAD N ARCK3 N
16400 118 BSU N N N
I 6040 0044 119 BDV ARCX2 N N
I 6510 120 BAD N ARCK1 N
10045 I
I.... 0In.......... 121 BMU N N N
I 651n0 0050 22 BAD N ARCC4 N
12240 n001............ 123 UCT ARC@6

S.. 0 0 0 0 0 0 0 0 2 4 A R r BS X U C *1 / / 1 7 ,/ 0 , A R C R I
1252 00n1 3760 0004 1

16124 125 ARrB3 BMU H H N
I 6444 041 26 BSU ARCK5 H N
I............... 6040 27 BDV ARCK4 N N
10042 I
I 6510 0043 128 BAD N ARCK3 N

S. 6 4 0 0 1 2 9 B S U N N N
16040 0046 130 BDV ARKK2 N N
I.......... 6510 0047 131 BAD N ARKKl N
6100 32 BMU N N N
I 2240 0031 133 UCT ARCU6

S. 0 0 0 0 3 4 A R r B 4 S T F 1 7 , N
11540 n017 I

S. 3 0 1 0 0 0 3 7 1 3 5 I T F N 3 7 ,
13030 l1.40 136 1TW H *16fl.

S. 6 4 4 0 0 0 5 1 3 7 B S U A R C C 5 N N
11450 0003 0000 138 SRJ 3. 0.
S.... 0000 139 ARrRI STF 37, N

11540 0077 I
S.... 3010 0017 140 ITF N 17,
1540 1140 141 STW *160, N
S.... 6110 0053 142 BMU N ARCKB N

16440 on52 143 BSU ARCKA N N
S.... 6100 144 BMU N N N
S. 6 4 4 0 1 4 5 B S U A R C C 6 N N

10054 I
I 1540 1074 146 STw *74, N

S.. 3 0 1 0 1 4 7 I T W N S S R
11050 I

Fig. 7X - Portion obtained during second pass - the checking output

Fig. 7 (ContintIed) - Sample output (printout only). This figure represents the
onucluding step otr the example given in Figs. 2, 3, 5, and 6.

�0

to
0

0

0

0

0

0

0

0

0

0

0

mommmmi

32

q0 000030

* 51 000031

5 2

54

55
56

57
58

59
60

* 61
A2

64
45

* 66
67
68

* 69
70
71

* 72
73
74

* 75
76
77

* 78
79
s0
A I1
8?

A3

84

A 85
86

* 87
8 8
89

* 190
91

* 92
93
94

0 95
a 96

* 97
98
99

lo10
lo10

000032

000033
000033

000034
000034

000035
000035

000037
000040
000041
000042

000043
000044
000045
000046
000047
000050
000051
000052
000053
000054
000055
000055
000056
000056
000056
000056
000056
000057
000057
000057

000060
000060

000061
000061

000062
00o062
000063
000063
000063

000064
000065
000065
000066
000066

000067
000067
000070
000070
000071

NRL REPORT 5974

onoo00nO0 0000 148
0n17 0n32 I
. . 0000 149

12260

I 40n

13410

16440

16540

11324
1662

I C400
11324
14052

: 3435
1 C312
10414
0624

11031
10622
2000

12127
0256

11444
1540

10200
I...,
I....

13630

Io...

10201
I..

10300

10312
I..
I..
10300

I..
10502
1
6440
... .

17532

10042

16510
I....
16510

n000
00•3

M054

nO54

'0474
0347
0000

6525
4102

3200

0162
6310
0344
4620
0773
o000
1630
4151
1766
0054

0302

?240

6130

54no

341 0

7432
0030

0031

0032

M034

0ý000

0400

0400

0400

633.6
4746
0000
5632
6n62

0065
1751
201.3

3722
4026
4244
0000
4511
5104
5212

3010

0004

5400

0006

0026

3610

0001

0027

2240
0020

3630

6040

ARrB6 UCT ARC87/17,

ARrB7

A8710000

0000

0000

0000
3255
1000
0000
1603
4515

6622
2156
1753
4334
3726
3343
0000
6426
4031
2212

0055

0300

3610

0000

3610

0201

3610

0011

0011

6110

0102

0033

SRR

TRM N XU N

SRR
A872 BSU ARCC6 N N

SRR
AB73 BAD ARCC6 N N

SRR
INT

I

151
152

153
I54

155
156

157
158
159
160

161
162
163
164
165
166
167
168
169
170
10
IlI
100
l01
12
13
14
15
16
17
18

19

110
-Ii

112
113
114
115
116
17
118

11.9
120
121

122
123
124
125
126

1324047463i63255.

INT 166203674746100M,
INT 04000000000000on,
INT 1324652556321603.
INT -0052410260624515

INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
STF
ITF
DEF
DEF
SSU
BRB
SSD
DS1
IXR
ESi

3435370000656627.,
0312016217512156,
041 4631 02013t7753,
0624034437224334,
1031462040263776,
0622077340443343,
20 0000000000000n,

21 271 6304511 6476,
0256415151044031
1444176692122212,
BPR N
N BAR
INNPR SINIO
INBAR SINUG

N N SNSi

H *2 N
N N N
N .1 N

UCT 3N192
SINBI SSD

BMU H SMUIT N
DS1 N *10 N

iXR
ES1

SINB2 SSD
TRM
DSA

Cis
BSU
UCT

SINg3 COR
BMU

BMU
DSA
BAD
BDV
BAD

N
N

N
N

N N
*1 N

PU N
-2 N

H SHAIF SINB3
SNNE N N
S11483

H SPART SIN86
N SPI N

H M N
H of N

N, UINK4
SINK3 N
N SINKI

N
N
N

C!

33
r ..

ri.

0o

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
Fig. 7C (Continued) -Portion obtained during second pass-the checking output

Fig. 7 (Continued) - Sample output (printout only). This figure represents the
concluding step for the example given in Figs. 2, 3, 5, and 6.

I

ARrC1

ARCC2
ARrC3
ARrK5
ARrK4

ARrK3
ARrK2
ARCK1
ARKK2
ARKKI
ARrC4
ARrC5
ARCKA
ARrKB
ARrC6
SINBG

R. M. MASON AND 1. G. FISHMAN

BAD N N N
BMUN N N
DSA N 49 N
Ssu

SINU4 OR@ N N STNNY

* 102
103
104

* 105
106

* 107
108
109* 110
111

112
* 113

114

* 11s
116
117

* 118
119

* 120
121
122

* 123
124
125

* 126

127
* 128

129
130* 131
132

* 133
134

* 135
136

* 137
138
139

� 140
141
142

* 143
144
145

146
147

* 148
149
150

* 151
152

* 153
154

000071
000071
000072
000072
000072

000073
000073
000074
000074
000074
000075
000075
000075

000076
000076
000077
000077
000077

000100
000100
000101
000101
000101
000102
000102

000104
000105
000106
000107
000110
000111

000112
000113

000114
000115

000116
000117
000120
000120
000121
000121
000121
000121
000121

000122
000122
000123
000123
000124
000124
000124

000125
000125

3610

12602
1.1

0300

I....
3610

oI,..

0035

16510

10040
Io...
I..1

16100
I+...

12240

10013
10400
11,000
10060
13100
11011
15173
1

I0000
14002

10012
4024

10014
13110
11540

3410

10004

3630
I....
10300

10445

7512

XU N

*3 N
HN
gINC9 N

0111

0o0 7

3410

0102

651 0

0037

6100

3610

001 6

3013
no0o
0000

7107
7574
3551
M434

23A6
3111

1464
5273

4417
3755
0054

0001

0300

051 2

6110

3630

0027

6500

0200

0300

0003

6124

0036

6104

6510

0110

0000
3013
0000
0000
2072
2541
7137
7701

5735
4614

2573
6n16

6651
2421

3010

0200

3610

2240

0026

0512

0016

6100

0000

0400

0400

6130

6104

6510

0041

0200

0000
3013
0000
0000
1575
2540
2633
7655

1052
4267

1260
1302

0101
1033

0055

2602

0002

0006

3610

0000

127
128
129
130
131

132
133
134
135
136
137
138
'39

140
141
142
143
144

145
146
'47
148
149

151

152
151
154
155
156
'57

158
'59

160
161
I.
162
163
I0
II
100
101
12
13
14
I'15
16
17
18
19
110
itII1l

112
113

DSA H -10 N
COR2 CGR N COC2 C986

Fig. 7C (Continued)-Portion obtained during second pass -the checking outlput

Fig. 7 (Continued) - Sample output (printout only). This figure represents the
concCluding step for the example given in Figs. 2, 3, 5, and 6.

SSD
SRR

$INSB S3D
TRM
SRR

SINg6 DSA
emU
eMU

BAD
BNU
BAD
emU
BAD

BmU
BAD
BMU
DSA
SSU
UCT
INT

INT
INT
INT
INT
INT
INT

N

N
H
N

N
N
N
N
N

UINC7
H N
SINC5
H N
SINC3

N

N

N

NNN
N SINCI N
NNN

N '8 N

SINg4

O0133fy1330i33Mi3.

0400060000000000.
1000000000000000.
0060710720721975,
3100757425412540.
1011355071372633,
"-1173043477017655

SINC9 INT 00002366
SINC7 INT -0002311

SINC5 INT 00121464
SINC3 INT -0024527

SINCI INT 00144417
9P1 INT 31103759
COREG STF BPR N

ITF N BAR
DEF INBPR CO
DEF INIAR C0
TRN N PU N
ssU
BRB N N CIBI

SSn
ESA N #2 N
DSA H -10 N
UCT CR52

COAl S9D
BMU N CII N
ESA N -37 N

SMUIT

SHAIF
SONE
SPART
SINK4
SINK3
SINKI

to
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

97351652,
146144267

2973126M.
366161362

669161ni,
24211633,

BEO
BEG

34

35 C:NRI REPORT 5974

10 5 000126
156 000127
157 000127

158 000130
* 159 000130

160 000131
161 000131

* 162 000131

163 000132
* 164 000132

165 000133
166 000133

S •167 000133

168 000134
S •169 000134

170 000135
171 000135

* 172 000135
173 000136
174 000136

0 175 000136

176 000137
* 177 000137

178 000140
* 179 000141

180 000141
181 000141

182 000142
183 000142
184 000143
185 000143
186 000143
187 000144
188 000144
189 000144

190 000145
191 000145

* 192 000146
193 000147
194 000150

* 195 000151
196 000152
197 000153

198 000154
199 000155

a 200 000156
201 000157

* 202 000160

203 000161
* 204 000162

2

205 000163
* 206 000164

207 000164

I....
17532
I..,o

Iu113

16510

I...o

10035

I..

13610

12602

I..
10300

5410

10031

16440
1I....
6124

0040

16104

I..
6510

10110

10013
I0001.

10000
10002
10000
I4000

10010
14047

10037
0000
14002

001-2
14024

10014
11540
1....

0030

6120

0034

6100

0105

3410

0032

2240

M007

6130

61,4

6510

0043

0200

301 3
0000
4000
0000
0000
5162

n727
3647

7777
23A6
3111

1464
5273

4417
0054

002o

6130

6104

6510

0200

0300

0003

0300

0007

3610

0037

6510

0042

6100

2240
3013
0000
0000
on0o
0000
7467

5323
1053

7760
5735
4614

2573
6026

6651

3n10

0300

3610

0033

6510

0036

0000

0400

0400

6440

0000

0112

6510

0041

6100

3610

0014
3013
0000
0000
0000
0001
0055

7527
7555

7573
1052
4267

1261
5317

0101

0055

114
115
116

117
118
119
120
121

122
123
124
125
126

127
128
129
130
131
132
133
134

135
136

137
138
139
140

141
142
143
144
145
146
147
148

149
150
151
152
153
154
155
156

157

158

159
160
161
I,
162
163
I,
164
10
I I

S9D
COR3 COR

DSA

IMU
BMU
BAD
BMU
BAD

BMU
BAD
BSA

sSu
COR4 BRO

SSD
SRR

coRs SSD
TRM
SRR

00R6 IXR
S9D
BSU

H C033 C@87
N +11, N

H
H
N
N
N

N
N
N

N

N N
CMK6
0381(4
H N
C0K12

N
N

N

N N
COKM N

N00(N

N CUB9

N XU N

N C0C5

C0C4 N

N

N

UCT C093
C007 BSU C0C2 N N

DSA N
BNU H
eNU H
BAD N

C0ri
0002

0OK4

001(

COKO
COK9
COK7

CORS
0013

COBK

SQAEG

eMU
BAD
BMU
BAD
BMU
BAD
emU
DSA

SSu
UCT
INT
INT
INT
INT
INT
INT

N
N
N
N
N
N
N
N

*I1 N
14 N
C0K9 N
CGO7 N

14 N
CIKS

14 N
CIK3
N N

N N
66! N

N

N

N

C094
0013361 330133613,

00004000000600M60
000i066000066000.

-0000516274670065

INT 0010072753237127,
INT -n047364710637555

INT 0037777777607573,
INT 0000236697351052,
INT -0002311146144267

INT 0012146425731261,
INT -0024527360265317

INT 0014441766516161
STF BPR N
ITF N BAR

Fig. 7C (Continued) -Portion obtained during second pass-the checking output

Fig. 7 (Continued) - Sample output (printout only). This figure represents the.
concluding step for the example given in Figs. 2, 3, 5, and 6.

C'

C-.
C-'

0

0

to

0

0

0

0

0

0

0

0

0

0

0

0

0

0

I

I

jo

R. N1. MA SON AND 1. G. FI SIIMAN

DEF
DEF
CIA
ITF
CEO

INBPR solM
INIAR SOIEG
N
H 17,
N i SOB
N H 9084

0 208
209
210

* 211
212

• 213
214

* 215

216
* 217

218
219

* 220
221
222
2 22.3
224
225

• 226

227
* 228

229
230

* 231
232
233

* 234
235

* 236
237
238

239

* 24f)
241
242

* 243
244
245

* 246
247
248

* 249
250
251

a 252

* 253
254

* 255
256

* 257
2158

p B0s2
N 03

000165
000165
000165
000165
000165

000166
000166

000167

000170
000171
000171
000172
000172
000173
000173
000174
000174
000175
000175

000176
000176
000177
000177
000177
000200
000200
000200
000200

000201
000202
000202

000203

000205
000206
000207
000210
000211
000212
000213
000214
000214
000214
000214
000214

000215

000216
000216

000217
000217

000220
000221

2000
I 3030

10015
I 3410

7532 noPo

10021 0016

6511 0022

16440 n024

3610 0502

6040 0026

3610 0101

0300
I.... 6001

10300
I.... 3610

10300
I 6004

3614 0017

13610 0102

13760 0003

12000 0000
11000 o0n0
1044 4445

10665 0713
3453 6760

12111 1112
1152 1267
2422 1203

12000

I 3030

10013
I 3070
10035
I 3010

10033
I 3030

10017 0056

13574 0017
10066

0017

0001

0007

3610

6040

2240

6511

6440

0o00

3610

0501

6500

0500

1252

0000
0000
0000
3605
0071
4417
7413
5656
2322

1014

0017

0034

0032

0005

0061

7606

0000

7432

0502

0023

0012

0025

0027

0000

0501

6504

0000

0400

0001

0000
0000
0000
7615
7361
3463
7432
6320
3372

3010

0054

3010

7416

0100
0017

100
101
12
13
14

Is
16
t

17
1
18
19
110
Ill
III112

113
114
115
116
117

18

119
120
121
122
123
124
125
126
127

128
129
130
1
131
1
132
133
134
135
136
137
138
10
100
101
I1
12
1

14
I4

16

17

1

19
HIT

0IR TRS OBYN/17, EWM/17,

Fig. 7X (Continued)C- Poition ohtained duroing second pass -the checking tUtl)Ut

Fig. 7 (Continedl) - Sample output (printout only). This figure represenis the

concluding step for the example given in Figs. 2, 3, 5, and 6.

0

TRM N PU
SO1 COR H SOC

DSA N -2
BAD N SOK
BDV SaKii
BSU 901(K

UCT 5OB3
9502 DSA N -2

BAD N S0K
BDV SOKKI

BSU SOKKO
DSA N *.I

90R3 SSD

BDV N N H
DSA N -1,
SSD
DSA N -1,
BAD N H N
S9D
BDV N H N
BAD N N N

SOR4 DSA N -0,

SRR
5Q05 DSA N #2

XUC *1 //

SO0 INT 20000

9Q02 INT 10000
90S12 INT 10444
SOKiI INT 06650
SOKI INT 34536
9OKK2 INT 21111

0OKK1 INT 11521
S0KKO INT 24221
UUTPR CIA N

DEF INBPR
DEF INBAR
1TW H 14,
ITF N 13,

N
N2
N
N

N
1(2

N

N
N

'p

0

0

0

0

0

0

0

0

H
N
N

H
N
N

N
17, IM, 9O01

00000600060.

nnononoononn,
44;36057615,
7130071736i.
76n44173463,
11274137432,
26756566320,
20323223372,

RUTPR
PUTPR

N

N

/17. N

iTF MIM117, 35.

ITF N 34,
ITE N 33,

ITF H 32,
CIS N MERR/17, 888

0

0

0

0

0

0

0

36

NRi REPORT 5974 37 ,

259
260

241
262

263

* 264

265
* 266

267

• 268

* 269

27n
* 271

272

• 273

"274
* 275

276

* 277

278

279

* 280

281

282

* 283
284

* 285
2A5286

* 287

288* 289
a 290

* 291

292
* 293

294
* 295

296

000222
000222

000223
00022 3

000224

000225

000226
000227
000227

000230

000232

000233
000234
000234

000235

000237
000237
000237

000240

000241

000242

000243

000244

000245

000246
000246

000247

000250

000251

000252
000253
000253

000254

000256
000256

000257
000257

000260

12000

no,°.

10017

10014

0014

2240

13560

14077
10420

10401

13010
I....
13740
I,,,.

1 252
10200

161t4

loot;10015

I
11540
I..o°

12252

I1714

I no57
I
1673

.I...

0011
I
14077
10420
1....
10401
I....

13010
1....
13740

1
11252
12240
1
12000

0017

10017

2240

3010

0055

0000

3560
0015

o00 7

7017
7017

2735

0015

0022

Mort

341 0

001 7

not0

1124

0024

no46

0043

3560
701 7
7017

2735

0015

0041

0001
0017

301 0

0057

0063

0007

1010

0031

0201

0n17

0000
0n64

0n67
0067

0022

1252

ono0

1231

0001

0060

1252

1252

3070

1252

2000

0017
0067
0n67

0n41

I952

0000

2231

0013

0011

0100

3070

3670

2602

0062

0000

0000
0015

1252

2000

0001

0000
0026

0000

2240

0000

0001

0001

0017

0001

3010

0062
0015

1252

2000

000O

0000

0034

0000

3070

3560

Fig. 7C (Continued)- Portion obtained during second pass-the checking output

Fig. 7 (Continued) - Sample output (printout only). This figure represents the
concluding step for the example given in Figs. 2, 3, 5, and 6.

C-,

C-

I-.
I�.

to

0

110 UCT 08I
Ill iB CiA N

112 1TW N *10,
113 ITF @ONE/17, 31,

114 ESI 0*1N8AR/14, +1, N

115 BRB N N 082

116 TRS OSPCE/17, N
117 UCT 083
118 O62 TRS SMNINS/17, N

19 583 AIF OW1416./17. /I./l

120 XIE 401, /11,/158, II
14
121 CIA N
22 ITF N 15,
123 XUC 1, /116,Mo, 694

24 OB4 XGR 1., /11./11, 096

125 SSU
126 TRM N PUN
127 065 BMU N STEN/17, N

128 UCT 093

129 586 STW TFC N

13o XIS 1, ang,1, R
131 XGE 1. t/1.4m/14o 4311.1

132 ITE OEIUR/i'7m 31,.

133 XGE o, //13,/13, PRIM

134 CIA N
135 ITEF N 11,

36 TRS OSPCE/17, N
137 OBA AIF OW1/16,/17. /I./i
10./.15# WI/16,/17,
138 XIE 46110 1,/5,I
19
139 CIA N
140 ITF N 19,
141 XUC 1. 1116/01. 119

142 919 XIS 1, //II1.1i, @as

143 UCT 0g1
144 Nola CIA N

145 ITIF N 13,
146 TF FEIUR/17, 11,

147 TRS ICR/17, NI

0

0

0

0

0

0

0

0

0

0

0

0

0

0

jo

R. M. MASON AND 1. G. FISHMAN

297 000261
O 298 000262

299 000262

300

* 301

302

303
304

* 305
306
307

* 308
309

* 31n
311
312

* 3313

314

* 315

NNNN

000264

000265

000266

000267
000270
000271
000272
000273
000274

000275

000276
000277
000300
000301

000302
000303

I....
13560
1....
17017
17017

12735

10340
1
10065
1
10000
10000
10000
10000
10000
15353
0000

10000
10000

14444

I0000
10000

001 7

0067
(1067

0046

7564

7017

0000
0•00

0000
4545

0000
oono
0000
4444

0000
0000

2240
6063

0015

1252

1252

3574

0n67

00000o000

OnO0

0000
0000
4545

0034

4077
0420

148
149 @Bal
ISO
1,/00/150 mwlt6

.... I

0401 151
0.... 12
0001 152

0017

0100

3407
0001
0017
0004
0012
5353

0000 0060
0000 0053
0000 0040
4444 4444

0000 0000
0000 0000

153
117,
'54
'55
156
157
158
159
160
1
161
162
163
164

165
166

@11m
SONE
MERR
IFRUR

MBYN

ISPCE
OCR
OMINS
@END

UCT 1B8
TRS eCR/17. N
ATF OW1116,117, /1./i

s/17.

XIE 461, //I5,/15, ON

XNN 1t //16*/0. 0,

TRS lEND/17, ONI1/16,/

HIT
INT 3407,
INT Is
INT t7,
INT 4,
INT 12P
INT -1353454545459353

INT 60,
INT 53#
INT 40.
INT -0444444444444444

0Wo INT 0,
Owl INT 0.

Fig. 7C ((ýontinuecl)- Portion obtained curI iing set(OC- pilss-the c ecking oUtpUt

Fig. 7 ((Continuced) - Sample OUtlpUt (printout only). This figure represents the

conctluding step for the example given in Figs. 2, 3, 5, and 6.

to
0

0

0

0

0

0

0

0

38

C•

NRL REPORT 5974 39

PI'SH"P(H/8HHO!O8HVEH<T6<ICHTQAEP4AFILOWH(EHT<L4wj)$.IHW(,H

* L!H/2(9+JTF* L4Wl)*(.IH?w*(,!H:L2(9PCVSHFS!$1W(I/OP(ESHVP(I*LHfw(JLwt'p 0
(HOSRHH/2*VA CH0 W(' W' -4 QJ]A"?ROK1:H -4l5SA2@(J)<*R
PCDA!YO+TRV 1S IIHO-V(N4JF2?CH9,0(6FE6N2MA.JB?07;8 rv

* IW6<S) (91jVYJ+2+P('8H"96< OE80<OEH<T2(NOL86EHfl.EH4TgCHTEHN,<(0
A7IW(82(1-A90LH.L4E8T<IHA*(B!HCILEHTI<6<VO OCH0 EHT<L4L8DIH~t IHFL IH(LI
HILEHTH<2(C-8-8-8- H*0M0GP494Q5S5(HID OF6B A CATX"3Y#DHJ(49I,I.K.+IW

* 56+*(4JA*$-<I;VY TT9HF"41HBP(°8H"CHT<A< @FH<E8)*2(NLH6EH 0
E8>*4*72O4A8OEHT-LnLABlHCL IHDL HEEHT)<6<P0 RCHO 'HA0WC92(MW(7EHT!L4L8F!
H(L IH)L !H.L!H?LEHTH<2(I-8-8-8-T(<T(ROK"HM7C347(:E:H*n"r=uu.8A3Y#nHJ

* (<91,I.K+IWSA*L(4JA*6fVIIVY TTP(oBH"oB8VYNPCHT4AOMpQAIEH><1|I2(3W(42 0
(4H><!1I5*(6W(7EHTT$TEEH>TOEH>T! 0* IEIV> EHT<!JTE*$OHHJi
E>XPNIM-OALCIK*$VC]1 I!I-QAIJ*JK$S(O42R32BG08UHI8H-8UVO•aHc8HB.eAOAVS•Tr,

* QVIVY2(MO8HHHBUV"9FUT<T6<ID*VR2(PD*VW(aUVKP MUVK+J T7D208HP+JTP(2*JT.96<
CHTLIV*2(PP(14.JT2J4*JTVI,SUV#9*JT!A?0OHID*VR(xUVKP OUVK*J T7D)OAHP*JTR(
)4JT29C2(MO8H-8UVUID*V12(CD*Vl(zUVKP OUVK*J T7DoJT!(4WDOVIUVKCNMTV +fr

a MMMMMMM

* 0m

MMMMMMMM
* NNNN

Fig. 7D Portion obtained at conclusion of assembly

Fig. 7 (Continued) - Sample output (printout only). This figure represents the
concluding step for the example given in Figs. 2, 3, 5, and 6.

R. M. MASON AND 1. G. FISHMAN

Appendix A
NUMERICAL LISTING OF BURROUGHS D825 INSTRUCTIONS

00
01
02
03
04
05
06
07

10
11
12
13
14
15
16
17

20
21
22
23
24
25
26
27

30
31
32
33
34
35
36
37

NOP
HLT
SSU
SSD
SRR
IRR
RVS

RPT
BRC
XLC

SRJ
STF
TIO

CLA
SER
UCT

LCM
CBF
BRB

LTF
LSR
CSE

TR
TRS
SHF

No Operation
Halt
Step Stack Up
Step Stack Down
Subroutine Return
Interrupt Return
Reverse Stack

Repeat
Branch on Condition
Index Limit Compare

Subroutine Jump
Store Thin Film
TrAnsmit to Input/Output

Clear
Store External Requests
Unconditional Transfer

Logical COMPLEMENT
Convert Binary to Floating Point
Branch on Bit

Load Thin Film
Load Special Register
Character Search

Transmit Modified
Transmit
Shift

40
41
42
43
44
45
46
47

50
51
52
53
54
55
56
57

60
61
62
63
64
65
66
67

70
71
72
73
74
75
76
77

AIF
SAF
BSF
BAF
LOF
LXF
LCF
LAF

CLF
CGF
CEF

LXR
LOR
LAN

BDV
BMU
FDV
FMU
BSU
BAD
FSU
FAD

ACL
ACG
ACE

CLS
CGR
CEQ

Adjust and Insert, Field
Strip and Adjust, Field
Binary Subtract, Field
Binary Add, Field
Logical OR, Field
Logical EXCLUSIVE OR, Field
Logical COMPLEMENT, Field
Logical AND, Field

Compare Less, Field

Compare Greater, Field
Compare Equal, Field

Logical EXCLUSIVE OR
Logical OR
Logical AND

Binary Divide
Binary Multiply
Floating Divide
Floating Multiply
Binary Subtract
Binary Add
Floating Subtract
Floating Add

Alphanumeric Compare Less

Alphanumeric Compare Greater
Alphanumeric Compare Equal

Compare Less
Compare Greater
Compare Equal

40

NRL REPORT 5974 41

C ...

r

Appendix B
BLOCK DIAGRAMS OF KEY SUBROUTINES

NRL REPORT 5974

STORE 0 SUBROUTINE

ENTER ENTER
st2q st3a

ENTER

43 C..

I . ..

ENTER

STORE NOP SUBROUTINE

ENTER

R. M. MASON AND 1. G. FISHMAN

z

0

0

z
0

in
0.
0

44

I-
i.i

I

C

NRL REPORT 5974 '45 "

or

Lii

o--zw

oo

o

oo

m m

~oz
.0 0
0 c

R. M. MASON AND 1. G. FISHMAN

ADDRESS ARITHMETIC SUBROUTINE

adar ENTER

ADAR

46

NRL REPORT 5974

COMMA SUBROUTINE

ENTER

TEST SYMBOLIC SUBROUTINE

ENTER

DECIMAL NUMBER SUBROUTINE

ENTER
adec adeb

Are no Record
alt digits
decimiat? error statement

eadet e
ade2

(_Exit 1 Ei

SYMBOLIC ADDRESS SUBROUTINE

ENTER

47
C ..

1ý "

R. M. MASON AND I. G. FISHMAN

Appendix C

SUMMARY OF NABUR RULES

I. NABUR WORDS

A NABUR word contains one and only one

NABUR instruction, which may be regular,
quasi-regular, or pseudo-, depending upon the
requirements of the source program. It consists

of a three-letter operation symbol and three ad-

dress groupings, the last one, two, or three of

which are to be omitted if not required to specify

the operation.

II. LABELS

A. A "label" is a string of five or less strictly

alphanumeric characters containing some letter
other than "1," e.g., "b2b5," "d," "alpha," "wI,"
"1 IltI," etc.

B. Operator syllables of instructions to be exe-
cuted just after jumps must occupy the left-most
syllable position of a computer word. This can
be brought about by assigning a symbolic address
to such NABUR words.

III. ADDRESSES

A. Contents of address syllables are determined
from address quantities by the action of the Adar

subroutine. NABUR subtracts the appropriate
base register (BAR, BPR, or SAR) settings (found
in "inbar," "inbpr," or "insar," respectively, as

a result of "defines" by the programmer) from
the M-, B-, and Ja-syllables respectively.

B. The automatic subtraction of the appro-
priate base register setting can be compensated
for by adding either inbar, inbpr, or insar to the
quantity in question, for example "Ql+inbar."

IV. SYMBOLS

A. The slash, "/", must precede all index quan-

lilies, which when utilized must follow all other
address quantities within the grouping. For ex-
ample, QI/Q2/Q3/Q4, where Q1 is a memory
address quantity, and Q2, Q3, and Q4 are quan-

tities designating index registers.

B. The comma ",", coming at the end of a string
of figures all less than or equal to 7, denotes an
octal integer.

C. A space must separate address groupings;
no space or tab is permitted within an address
grouping.

D. A space must follow an operation symbol.

V. THIN-FILM DESIGNATIONS

A. The letter "n" means "normally step operand
stack."

B. The letter "h" means "hold operand stack."

VI. THIN-FILM REGISTERS

A. Thin-film registers may be denoted by the
octal codes given to them in the maps on pages
C-2 and C-3 of Ref. 2. They also may be denoted
by the decimal equivalents of these octal codes,
by their common names as stated in the maps,
or by new labels defined by the programmer.
Limit registers require a reduction of their codes,
modulo sixteen, in writing the Iv-syllable. This
must be done beforehand by the programmer.

B. Regular instructions STF and LTF are used
for single thin-film registers. If a group is re-
quired, quasi-regular instructions STW and LTW
are used, and care must be taken to start the group
with a key code.

VII. INDIRECT ADDRESSING

A. Indirect addressing is accomplished within
memory syllables by prefixing a "+," sometimes

understood, or a "-" to the address grouping.
B. Indirect addressing is accomplished within

second or higher level, 16-bit absolute addresses
in some computer word, say "spot," in the pro-
gram, by using the INT pseudo-instruction with
the reserved label "indi," as suggested in ihis ex-
ample: "spot INT 65535+indi."

VIII. SNAG BIT

The snag bit of a second or higher level, 16-
bit absolute address in some computer word,

48

NRL REPORT 5974

say "spot," in the program, is set by using the
INT pseudo-instruction with the reserved label
"snag" as suggested in this example:

"spot INT 65545+indi+snag"

IX. QUASI-REGULAR INSTRUCTIONS

A. Thin Film:
STW "store thin word"
LTW "load thin word"

B. Shifts
DDA "drop-off, double, arithmetic"
DDL "drop-off, double, logical"
DSA "drop-off, single, arithmetic"
DSL "drop-off, single, logical"
EDA "end-around, double, arithmetic"
EDL "end-around, double, logical"
ESA "end-around, single, arithmetic"
ESL "end-around, single, logical"

C. Index Limit Compare:
XNN "none"
XEQ "equal"
XGR "greater than"
XGE "greater than or equal"
XLS "less than"
XLE "less than or equal"

XUE "unequal"
XUC "unconditional"

X. TRANSMIT MODIFIERS

The reserved labels "pu, mu, xu, pr, mr, and
xr" are interpreted with the following key:

p "transmit plus"
m "transmit minus"
x "transmit with changed sign"
r "transmit rounded"
u "transmit unrounded"

XI. SOURCE PROGRAM MESSAGES

Type
Message

Identification

REMARK "r" in remark
indication
field

COMMENT New line
beginning
with "CR tab"

ASIDE "Blank" in
remark indi-
cation field

Typed on
Source
Tape?

Reappears in
Checking
Output?

yes yes

yes no

no no

49
C,7

r"

C..,

C-'r

