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The Moments of a Sampled Binomially Distributed Variable
H. M. SUSKI
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A statistical variable consisting of two components is considered. One component has as its density
function the universe of the variable; the other component, the distribution of the mean. The use of
a two-component variable leads to the introduction of two orders of finite sampling.

For the case of a binomially distributed variable, the throry of moment-generating functions is
used to derive equations for the first four moments about an arbitrary origin. The second (J12), third
(/), and fourth (IL4) moments about the mean are obtained, as well as the moment numbers/31,3/32,
yi, and Y2. Thedetailed steps of the derivations, including underlying assumptions, are given.

The results consist of derived equations and of graphs of A12, /3, and p4 as functions of p, the prob-
ability of success in a single trial. These graphs show the effect of both orders of sampling.

INTRODUCTION

Statistical methods provide the means for calcu-
lating moments, which are the parameters de-
scribing the distribution function of a statistical
variable (Ref. 1, pp. 50-52). Functions which
generate the moments (lRef. 1, pp. 54-55, 81-84,
and 90-114; Ref. 2, pp. 26-28, and 35-43; Ref. 3,
pp. 248-252) permit the, comparison of distribu-
tion functions and their associated variables. Use
is made, in this report, of moment-generating-
function theory to derive expressions for the
first four moments of a binomially distributed
variable. Such expressions have been derived
(Ref. 1, p. 52) for the case of finite sampling. The
variable treated in this paper has two components;
the two distribution functions associated with the
components are the universe itself and the error
in the mean. By including the second component
of the variable, a second order of sampling is
introduced. Thus, it becomes necessary to evalu-
ate, using the law of large numbers, the effect
of both orders of sampling. This evaluation is
made in terms of an empirical problem in which
the (constant) probability p in the case of Bernoulli
trials is measured.

Equations for the first four moments about an
arbitrary point, for the moment about the mean,
and for the moment numbers are derived from
fundamentals. Graphs of these equations are
presented as the results.

In discussing the problem involved in measuring
p, it is found that the choice of sizes for the two
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orders of sampling essentially establishes a priori
an upper bound for the error in determining p.
This result is demonstrated with a set of graphs.

GENERAL DISCUSSION

A Composite Statistical Variable w = x + y

Consider the statistical variable

w = x + y, (1)

where x and y are two components into which
the variable w can be separated. We will be con-
cerned with finite sampling from a universe; let
n be the sample size (the first order of sampling).
The x component is considered to be the theoreti-
cally correct value of the variable, as if it were
obtained from the universe without sampling
error. The y component is introduced to account
for the sampling error, resulting from uncer-
tainty of the mean value because of finite sampling.
The sampling error can be represented as a de-
viation from the mean or the expected value of
the x component.

Probability Distribution

In general, for a continuous variable x having
a density function f(x), the relation

F(x)IA f(x)dx Pr(a -- x -- b), (a -- b), (2)

is the probability that x will fall within the limits
a and b when the sampling is random. The defini-
tion given by Eq. (2), called the distribution func-
tion, implies

1
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F(x)IxLx) =F f(u)du Pr(u f- x), (3)

and hence,

f!f(u)du = F(o) - F(--) = 1 = 0 = 1. (4)

Note that

The moment generating function has the prop-
erty that linear functional relations are easily
handled. Thus, by changing the variable in Eq.

(10), with an appropriate change in the limits

of integration, we get

(11)

dF(x)F' (x) d -x - f(x)

or

dF(x) =f(x)dx.

If in Eq. (11) we let h(x) = cll(x), then

(5)

M, H(0) = fe°Hx)dF[cH(x)] =MH(cO). (12)

(6) If we let h(x) = c + H(x)

Also,

fju)du = F(x)fb = dF(X) = fx)dx. (7)

Moments and Moment Generating Functions

The moments of the variable, which aid in de-
scribing its distribution function, are defined as

Me+H(O) e eOc+H(x)]dF[c + H(x)]

= eOMn,(O). (13)

Expansion of elx in Eq. (10) as a power series
permits the integration to be carried out term by
term:

SfbMX• (0) 1 f(x)dx + 0 1xf (x) dx

vi= f(x - a)idF(x),

where i is the order of the specific moment and

a is an arbitrary point about which moments are
obtained. Similarly,

Ii= x -f )idF(x) (9)

defines the i-th moment about the mean.
We introduce the parameter 0 (following Ref.

2, pp. 26-28) and define the moment generating
function for the variable x with the .aid of Eq.
"(6) as

M,(0) = eOxdF(x) = e°xf(x)dx, (10)
fa a

where the subscript is used to indicate the specific
variable or distribution function being considered.
This permits. a power series approximation to the

moment generating function. The coefficients of
the terms of appropriate order agree with results

obtained using Eq. (8) or Eq. (9).

+ . x2f(x)dx + (14)

But Eq. (14) can be rewritten as

02 03
M,(0) = Vo+ VO + V2-+ V:I+ .... (15)

where the coefficient of Oii! is the i-th moment

about the origin a = 0. In general, the i-th moment
about the origin, as obtained from the moment
generating function, is given by

v i= xif(x) dx.
(16)

Note that an advantage of Eq. (15) lies in the fact
that if a moment generating function can be ex-

panded in a power series similar to Eq. (15), then

the i-th moment is automatically the coefficient of
the i-th term in 0.

The i-th moment about the origin can be evalu-

ated by computing the appropriate derivative of

(8)

M,, (0) = faIe~h(x)dF [h(x)]1.
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M,(0) at 0 = 0, since repeated differentiation of
Eq. (15) shows that

d&M,(0) (17)
vi dOi

The case of the discrete variable is obtained by
analogy. Using Eq. (16) we get

bvi = I xiPr(x),
X=aI

(18)

where each Pr(x) is the probability that the
discrete variable takes on the value of x chosen in
the range from a to b.

Constant Probability of Bernoulli Trials

Our concern is with a discrete variable x which
is binomially distributed. The binomial density
function can be written (Ref. 3, p. 137) as

b(k,n,p) = Pr(x = k), (p is constant). (19)

v b (knp) = 1.
k=o

(24)

The Law of Large Numbers and
the Upper Bound of Error

The number of trials or the sample size n can
be estimated from the law of large numbers (Ref.
3, p. 141), which can be stated as

Pr (- P < )--1, (25)

where k/n is the measured value of p and E is the
measuring error. From the law of large numbers
we see that the measuring error becomes vanish-
ingly small as n is increased without limit. It is,
therefore, possible to make the measuring error
as small as desired by appropriately selecting-the
value of n. This suggests that, by convention, we
may select an upper bound of error a priori.

If tolerances in p are provided, count tolerances
for k can be defined for Eq. (21) as follows:

It gives the probability that there are exactly k
occurrences of the value x in n trials when the
probability p of occurrence in a single trial is con-
stant, the case of Bernoulli trials. Additionally,
the binomial distribution furIction

n
B(k,n,p) Z • b(x,n,p) = Pr(x _- k) (20)

x=k

gives the probability that there are k or more
occurrences of x out of n trials. Furthermore, it
follows that

ki = npi and k 2 = nP2.

In general

Ps 1- P - P2,

(26)

(27)

'i.e., the actual value of p will be a constant (for a
stable process) and have a value between pi and

P2. The distribution of values of k for the general
case is given by Eq. (19).

x-COMPONENT

B(k,,k2,n,p) E b(x,n,p) - E b(x,n,p)
X=kl x= k2

Pr(k <- x <k 2 ). (21

Note that

Pr(x = k) = b(k,n,p) = (nk) pkqn-k, (22;

where

( k)!
and that the zero-order moment is

Moment Generating Function

In effect we have been describing a two-level
process which is permitted a long-period varia-
tion; i.e., p is constant for at least the duration
required to observe the result of n trials. In any
sampling interval, p` is expected to have a value
within the limits, given by Eq. (27).

We obtain describing characteristics of the
distribution function of our statistical variable
from the moment generating function given by
Eq. (15) or Eq. (18). In Eq. (18) the function
Pr(x) is given by Eq. (22), and the limits a = 0,
b = - are of interest to us. This choice of limits
assures us of considering all possible values of x.
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We note that

Pr(x) = (:$) pxqn-~x = (-q + p)fl, (28)
X-O x=O

which is the binomial theorem. As n increases

beyond limit, i.e., n - -,

+ 6n(n -- 1)(n -- 2)plea°(q + pe°)n-3

+ n(n-- 1) (n--2) (n-3 3)p4e4° (q + pe°) n -4._ (36)

The evaluation of these four derivatives at the

origin (0=0, e0 = 1, q+p= 1) yields the first four

moments about the origin, as follows:

P1 ý np (37)

SPr(x) - • Pr(x)
X=O '=O

(29)

and

7 eOxPr(x) -> MAO(O). (30)
a7=0

Since there is no inconsistency in Eqs. (28) - (30),

it follows that for all n the binomial moment

generating function is

MA(O) i eOX (nl) pxqflx
x=O

i e
0
' (n pk q nk - Mk(O)

k=o

= (k) (peO))k q'-k, (31)
k 0

V2 = np + n(n - 1)p 2 = npq + (np) 2 ( 3 8 )

v 3 =np+3n(n--1)p
2 +n(n-1)(n-2)p

3 (39)

P4 = np + 7n(n - 1)p 2 + 6n(n - 1) (n-- 2)p3

+ n(n-- 1)(n - 2)(n-- 3 )p 4 . (40)

By virtue of Eq. (13) moments about the mean
can be obtained. The following relation (Ref. 2,
p. 18) permits translation from the origin to the
mean.

JLi = Vi- Vi-1V1 + 2 i - 2V1

(41)

Using Eqs. (37) through (40) and applying Eq.
(41), we obtain the following for the first four

moments about the mean:

or

Mk(O) = (q + pe°) n (32)

Moment Equations

Successive differentiations of Eq. (32) yield the

following:

D 1Mk(O) = npeO(q + peO)n-, (33)

D2 Mk(O) = npeO(q + peO) n-1

+ n(n - 1)p 2 e 2
1(q + pe")n-2 (34)

D3 Mk(O) = npe°(q + pe°) n1

+ 3n(n - 1)p 2 e 2 0 (q + pe°)n-2

+ n(n - 1) (n - 2)p 3 e3 0 (q + pe°) -3 (35)

D 4Mk(O) = npeO(q + pe°) n- 1

+ 7n(n - 1)p2e2 6 (q + pe 6 )n-2

/ =• P1 -- =1 0

112 = V2 - V1
2

= npq

(42)

(43)

/13 = V 3 - 3V2Vl + 2V1. 3 = npq(q - p) (44)

J.4 = V4 - 4v3vi + 6V2 V 1

2
- 3 V 1

4

= 3(npq) 2
+ npq(l - 6pq). (45)

It will be recalled that the first moment vi,
called the mean or expectation, is a measure of

central tendency. The second moment /12, 'the

variance, is a measure of variation about the mean.

The third and fourth moments, measures of the

shape of the distribution function, are indicators

of skewness and peakedness, respectively. It will

be noted that the degree of the terms involved

increases as the order of the moment is increased.

Lower Degree Measures or
Moment Numbers (/3, y)

In Eqs. (43)-(45) the second, third, and fourth

degrees, respectively, of p are involved. It will be

--... +} ( -- 1)iVj i.
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noted that the third and fourth moments are func-
tions of the first and second moments. The second
moment involves the square of the deviations from
the mean; no distinction is made between devia-
tions above or below the mean. This useful prop-
erty is retained, and a first degree measure is
obtained if we define

0- = I (46)

where o- is called the standard deviation. Since
the third moment involves the third power of the
deviation from the mean, a new measure involving
the square of the third moment will have the
property of being independent of the sign of the
deviation from the mean; thus, we derive two
zero-degree, or third-moment numbers:

31 - /1 3
2

//j,2
3  

(

(47)

1Y = tL31O'-

Similarly, we also define two new zero-degree
measures, or fourth-moment numbers:

P2 = tL4/1L22 = tL 4 /-r
4

; Y2 = /P2 - 3. (48)

For a normal (Gaussian) distribution the odd
moments are zero, as is also Y2. The measure
Y2 can be used in making comparisons with the
normal distribution.

We have mentioned something about the first
four moments. Looking back at Eq. (14) we note
that the first, or zero-degree, term has been
ignored. By inspection we see that the zero-
degree term gives the area of the distribution
function; Eq. (24) is the normalized form of this
function.

y-COMPONENT

Second Order of Sampling and the
Moment Generating Function

( ..

within the error E which has been selected as
acceptable. If, however, p lies between limits as
given by Eq. (27), then we can expect variations
caused by tolerances in p as well as variations
from the expected limits of error.

We, therefore, consider a set of measurements,
represented symbolically by

K =fkj. (50)

Every element of the set K is obtained from the
same distribution [Eq. (21)], and each has the
same moment generating function [Eq. (32)]. It
will be assumed that the set is finite and has N
members, i.e., there are N measurements taken.
We have, therefore, introduced the second order
of sampling, the set K. Each of the N elements
kj, is a sampling of the first order obtained after
n trials. The first order of sampling sets the
measuring precision [Eq. (25)]; the second order
of sampling yields information about the distri-
bution of measured values, i.e., the sampling
error.

We are interested in finding characteristics
which describe the membership of the set K.
Consider the sum of the members of the set.
From the sum we obtain the average as follows:

I N kl + k-t -2 .. + kN
=- E kj = (51)

The assumption can be made that K has members
which were obtained independently. The assump-
tion of independence and the use of Eqs. (11)
and (12) permit us to obtain the moment gener-
ating function of the mean of the second-order-
sampling set K. We find that

Mk.(0) = M[(k,+k2 +...+kN)/NI (0) (52)

To determine the moments it is necessary to
make calculations as indicated in Eq. (18). In the
binary case this amounts to getting the frequency
count k of occurrence for a sample of size n. A
single measurement (n trials) yields a single value
of k in Eq. (31). We should expect, by virtue of
Eq. (25), that

= Mku(3)Mk, wef...Maly(!)

and using Eq. (32), we finally obtain

(49) Mk.(O) = (q + peO/N) nN

5

(53)k/n - p or k --- np

M M (k,+ .+kN) ON)
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From Eq. (37) and (42) we find that the mean

of the universe is np. We are interested in devia-

tions from the mean, i.e., in the y component or
the variable.

. SUSKI

+npe- (np+a -/N) (q+pe)n(q+peO/N)nN -1 (59)

The first moment is obtained by setting 0 = 0 in
Eq. (59):

A)y=k -np.

Using Eq. (13), we obtain

M,(O) = M._,np(O) = e -PMT.(0)

- e -PMkU ) (

THE COMPLETE VARIABLE w = x + y

Moment Generating Function

Having an expression for the moment gener-
ating function of the two components of the

variable w [Eqs. (32) and (55)], we can obtain

the moment generating function M,,(O). We make
use of another property of moment generating
functions (Ref. 2, p. 63) which can be expressed
as follows:

M,,,(0) = M(X +Y).(O) = M, (0) M,,(0) , (56)

i.e., the moment generating function of the sum
of independent variables is equal to the product
of their individual moment generating functions.

We obtain the following as the expression for
the moment generating function of a sampled,
binomially distributed variable:

MA(O) = (q + pe°))ne-nP(q + peOIN)nN. (57)

Let us take one further step. We desire the
moments about some arbitrary point a. Hence,

M1 e .(0) (nP+a)O(q+peO)n(q+peO/N)nN. (58)

Moment Equations

Differentiation of Eq. (58) gives

dM-,( (0)
dO

- (np+a) e-(- I a)°(q+pe°)f(q+pe°/N)"N

+npe- (np+ a - 1)0(q+peO) n-1 (q+peO/N) nN

vi (w - a) = np - a.

Differentiating Eq. (59) and setting 0
obtain the second moment:

v 2(w- a) = (np - a) 2 + npq + (n/N) pq.

(60)

0, we

(61)

55) Using Eq. (41), a parallel case of Eq. (43) results:

112 P V2 - Pi
2

or

/tL2(W - a) = npq + (n/N) pq. (62)

Differentiating once again and setting 0 = 0,
we obtain the third moment:

v 3 (w--a) = (np--a)3

+ 3(np - a) (npq + (n/N) pq)

+ (1 - 2p) (npq + (nIN2) pq). (63)

Using Eq. (41), a parallel case of Eq. (44) results:

g:= v:3 - 3p 2pJ + 2 V1
3

or

gi:,(w- a) (1- 2p)(npq + (n/N 2 ) pq). (64)

Differentiating for the fourth time and setting
0 = 0, we obtain

V4 (w--a) = (np--a)4

+ 6(rnp - a) 2 (npq + (n/N) pq)

+ 4(np - a) (npq + (n/N 2 ) pq) (1 - 2p)

+ 3 (npq + n/Npq) 2

+ (npq + (n/N 3)pq)(I -- 6pq). (65)

Using Eq. (41), a parallel case of Eq. (45) results:

114 = V4 - 4v:3vi + 6v2v 1
2 - 3 V4

or

t. 4 (W - a) = 3(npq + (n/N) pq) 2
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+ (1 - 6pq) (npq + (n/N 3) pq). (66)

Using the above derived expressions for the
moments in Eqs. (47) and (48), we obtain the
following moment numbers:

le (1-- 2p) 2 (N 2 + 1)2

npqN(N + 1)3

= (1 - 2p) (N2 + 1)

= npqN(N+ 1)3

92=3 + 1--6pq N 3 +l

pq nN(N + 1) 2

Pr (-- nE _- k-- np _- nE)

((E Vn 4(E~

or, finally,

_k _ E (<(67)

(68)

(72)

Note that Eq. (72) leads to Eq. (25) as n - o.
In the case of the variable w, which has a var-

(69) iance npq [1 +(1/N)], let the upper bound of
error be 8. Then,

1--6pq N 3 +1
pq nN(N+1)

2  (

Upper Bound of Error

The DeMoivre-Laplace limit theorem (Ref. 3,
pp. 168-173) can be stated as follows:

Pr(a e _ k - b) - D(xb) -- ((xa), (71)

where

Xb

F(xb) =f .p(u)du.

Let us first derive a result for the x-component of
the variable w; then we shall consider w.

Let

Prn- 1< + I(11N) q

1- 1+ (11N) j

The right-hand side of Eqs. (72) and (73) is of
the form

Now

l(t) - (- t) -

4)(-- t) = I -- 4(t);

so

43(t) -- 4D(- t) = 24D(t) - 1.

(74)

(75)

(76)

a= n(p - E), b = n(p + E),

a _ n(p - E)
X ( o - ( •n p q ) '

b - n(p + E)
X b /-I( npq )"

Hence,

Pr (n(p--E) - k• n(p+E))

CD np -4- nEý _ ){np -- neý

or

Pr (np - nE - np < k - np _- np + nE - np)

If we assign a confidence limit CL as follows

"Pr(IW - a)= CL, (77)

then

1+ CL
2 (78)

from which t in Eqs. (72) and (73) can be evaluated.

GRAPHICAL RESULTS

The effect of the two orders of sampling on
the values of the moments can be shown graphi-
cally. By an appropriate choice of scales, it is
possible to present the results numerically in a
general way. Figures 1 through 4 show the graphs

7 C
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Fig. 3-The effect of two orders of sampling on the third moment numbers 61
and yi. The generalized scales must be multiplied by n-' for/3, and by n-1/2 for
y . The symbol n refers to the first sample size; N refers to the second sample size.
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of /2 and /13; /-t4; /3, and yi; and /32 and y2, re-
spectively, as functions of p. The effect of both
orders of sampling is clearly shown. It is interest-

ing to note that fk4 has two components, one of

which is essentially independent of the second

sample size; however, this comp6nent has little
or no effect when combined with the other
component.

For the case where p is measured, an upper
bound of error can be estimated from Fig. 5
when the first (n) and second (N) sample sizes
are known. Alternatively, for a given a priori
error which can be permitted, the necessary
sample sizes n and N can be selected.

While the results are indicative of ideal expec-
tations, the derived theoretical results must be
used with care. This is so because early assump-
tions were made [Eqs. (25), (29), and (71)] which
involve large sample sizes.

r"ACKNOWLEDGMENT

Various parts of the paper reflect the fruitful-
ness of discussions with Mr. C. V. Parker and
Dr. P. A. Crafton of the Security Systems and

Avigation 'Branch, Electronics Division, and with
Mr. A. Ziffer of the Statistical Analysis Branch of
the Applied Mathematics Staff of the Naval
Research Laboratory.

REFERENCES

1. Kendall, M.G., "The Advanced Theory of Statistics, Vol.

1," 3rd ed., London Griffin, 1947

2. Hoel, P.G., "Introduction to Mathematical Statistics,"

New York:Wiley, 1947
3. Feller, W., "An Introduction to Probability Theory and

Its Application, Vol. 1," 2nd ed., New York:Wiley, 1957

11


