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Synthesis of Unity-Gain Complex-Zero RC Networks

CHARLES F. WHITE "

Equipment Research Branch

Radar Division r

Resistance-capacitance networks provide filtering through insertion loss variation with

frequency. For prescribed voltage transfer functions containing complex zeros and negative-

real poles, known synthesis procedures lead to RC networks exhibiting an undesirable

frequency-independent loss. A new network synthesis procedure is set forth and applied

to obtain (a) four 7-element RC networks exhibiting damped complex zeros and (b) a 6-

element RC network with undamped complex zeros of transmission. When these new net-

works are applicable, the prescribed transfer function is realized exactly, including the unity

multiplicative constant. In addition, these networks have fewer elements than previous
realizations.

BACKGROUND

Resistance-capacitance networks have impor-

tance throughout electronics, especially in high-

performance automatic-tracking radar systems,

in signal processing systems, and in the rapidly

developing field of microelectronics. Collaterally,

there is a general interest in improved procedures

for the direct synthesis of networks from pre-

scribed voltage transfer functions. The present

report presents a new synthesis procedure used

to realize so-called "notch" networks, useful in

providing bandpass characteristics when used in

an amplifier feedback path and in providing equal-

ization in automatic control systems.

INTRODUCTION

In the development of procedures for the syn-

thesis of networks directly from prescribed trans-

fer functions, the usual approach has been to seek

generality and to accept, as inevitable, such un-

desirable characteristics as a multiplicative constant

less than unity. The somewhat different viewpoint

taken here is that a network realization requiring

an amplifier to compensate for flat loss does not

qualify as a suitable passive network. insistence

upon a multiplicative constant of unity, however,

entails acquiescence to a restriction upon the

prescribed transfer function parameter space.

In the case of voltage transfer functions con-

taining two complex-conjugate zeros of trans-

mission and two negative real poles (a function

NRL Problem R05-04. This is a final report on one phase of the prob-

lem; work is continuing on the basic problem. Manuscript submitted
May 21, 1963.

important in servosystem equalization), the syn-
thesis of resistance-capacitance networks by either

of two previous methods leads to networks with

an undesirable frequency-independent loss. In a

typical instance, the Guillemin (1) parallel-ladder

procedure leads to a network with ten elements.

In the transfer function there are five constraints

to be met: two poles, two zeros, and the constant

multiplier. If a canonic circuit existed, i.e., one

with the same number of elements (adjustable

parameters) as the number of imposed constraints

specifying the required performance, the circuit

would contain five elements rather than ten. The

Dasher (2) procedure, using a bridged twin-T

structure, typically results in networks with nine

or, in some cases, eight elements. With both pro-

cedures the usual result is a rather large flat loss.
The synthesis procedures to be presented are

based on an insistence upon an exact realization of

the prescribed transfer function including the

multiplicative constant. The resulting networks

have an additional advantage of having fewer

elements than those derived using the other

applicable procedures. The extent of an associated
restriction upon the prescribed transfer function

parameter space is specified and examined.

A brief preliminary statement of the basic net-

work theory related to tie use of admittance

function is given in the following section to sim-

plify the presentation of the synthesis procedure.

NETWORK SHORT-CIRCUIT
ADMITTANCE FUNCTION

Measurements (or computations) made upon a
network under the short-circuited conditions

1
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shown in Fig. I permit determination of the short-
circuit admittance functions* listed in Table 1. In
matrix form

(]U
[I2'] = [Ylly y2j .[E].

For unbalanced two terminal-pair networks in
parallel, as in Fig. 2, the admittance parameters
add. Designating the two networks as a and 63,
we may write

[2I =[Yl' -+•- y2 Yl2a -+ Yý12# E[ .12 Y21 + Y210 Y2 2.+ Y2ý1[2~

tl INETWORK 2 2 I NETWORK E2

(a) (b)

Fig. 1 - Network arrangements for defining (a) yl and Y21
and (b) Y22 and Y12

(2)

For the case of open-circuited output terminals,
the voltage transfer function is expressed in terms
of the short-circuit admittance- parameters by

E2 --Y12

E1 Y22'
(3)

For the conditions of Fig. 2,

E 2 - Y12. + y120 (4)
E, Y22a + Y22" 4

The network relationships stated above are
fundamental to the synthesis procedure presented
in the following paragraphs.

*For a complete discussion of material presented in this section see,
for instance, M.E. Van Valkenburg, "Introduction to Modern Network
Synthesis," New York: Wiley, 1960.

Fig. 2 - Unbalanced two terminal-pair networks in
parallel. The y-parameters add as indicated in
Eq.(4).

TRANSFER FUNCTIONS WITH DAMPED
COMPLEX ZEROS AND NEGATIVE-

REAL POLES

A voltage transfer function containing two zeros
and two poles has the form

E2 s 2 + As + B
E, s2 + Cs + D' (5)

2'

TABLE 1

Network Short-Circuit Admittance Parameters

Admittance ymbol Definition Network Terminal-Pair
Parameter TJ Short-Circuited

Input ylt Output

02

Itrar trnfrn2 uput

Reverse transfer YI2 n'
12 Input

Output Y22 12 Input
TEl=0

2
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where E1 = input voltage; E 2 = output voltage;
s o jow, the Laplace complex frequency var-
iable, where o- = the abscissa of absolute conver-
gence, j = \/7]-, and w = natural angular frequency
in radians per second; and A, B, C, and D are
positive real constants. Restriction to damped
complex zeros and negative-real poles is expressed
by the series of inequalities

0 < A2 < 4B < 4D < C2 . (6)

(Networks with such characteristics have impor-
tance in servosystem equalization of the rise at
the system lowest natural resonant frequency.)
Anticipating a realization through two networks
in parallel, we separate both the numerator and
denominator of Eq. (5) into two parts as follows:

S2 +A S+ BE2 A
Es(s +C-h) +h(s+ +

where the separation parameter h is a nonze
positive constant. We now presume a faci
(s + pi) in order to allow the following iden
fications:

a - Network

/6 - Network

r s2J y 0 + p-

s(s + C- h)
Y22t - +

s+pi

-Y1215 - S+p•

Y22P +

- -(G-h) - •'2/2

It I

I• i REMOVE

IZ I

Iy

'_ýS I FT 
Y ,

REMOVE

* Z2
C2  C,

o-NEWRIK

a-NETWORK

(7)

ELEMENTS
REMOVED

C2

GC G2  
S 2

Y12 = I+C
2 S+ R (CI +C

2 )

c IC2 s(s+ R I'C
Y22 -I+C - I I

CI +2 S+RI (C i+(C2)

(a)

ero
tor -_ _ 0

_co - l h A~ 0

S I I - i

(8) 1 SH) FT

I " - I Y'

(9)

ELEMENTS
REMOVED

SR2

t---! REMOVE , ZI

J -NETWORK

(10)

(11)

I S+R

Ss+
R3 R4 C 3

R + R2 + R3 +R 4

_ R2+R, (R,+ R4) R3 03
Y22" R2 R4  R3+ R 4

S + R -R 3 R4 C5

Mb)

Fig. 3 - (a) The a-network realization and (b) the
13-network realization

For an RC-network realization requiring both
the lowest critical frequency to be a zero and the
alternation of zeros and poles, the following
sequence is required:

D/h<pi <C-h.

The details of a ladder realization of both the
a- and the /3-network are given in Appendix A.
As shown in Fig. 3, an exact realization of the
prescribed transfer function is obtained for the
a-network. Such is not the case, however, in the
/3-network realization (Fig. 3(b)). The procedure

S... .

C'

3•
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at this point is to set the desired multiplicative
constant A/h equal to the realized expression.
Thus,

A =pi-- (D/h)
h pi-(BIA)'

or, solving for the pole, we find

D-B
Pth-A* (13)

We may now rewrite the transfer function param-
eter space restriction associated with this realiza-
tion as

D D-B
h-< <C-h,h>O.h h- (14)

For complex zeros, the separation parameter h
must satisfy

A + C (C-A1 (DB)

<h<ADIB (5
<h<A+C + C-\ 2-(D B)

where the smaller of the two right-hand terms is

to be used.

The derivation of (15) and the details of an
analysis of the significance of this restriction are
given in Appendix B. Figure 4 shows the region
of interest (damped complex zeros and negative
real poles) given by the inequalities (6) as values
of A4/VB and A/V,-Dt less than 2 and values of
C//.B and C//V-D greater than 2. The portion of
A, B, C, and D parameter space which is un-
restricted by the inequalities (15) lies to the
right of the applicable BID (dc loss) lines. In Fig.
4, the shaded areas represent restricted space
for BID values between unity and 0.9412.

The synthesis procedure under discussion
leads directly to the network shown in Fig. 5(a).
By a change in the form of the R and the RC
impedance paths bridging from input to output
terminals, a second network shown in Fig. 5(b) is
obtained. The RC inverse networks (3) corre-
sponding to Figs. 5(a) and (b) are shown in Figs.
5(c) and (d), respectively. Figure 6 shows a set of

2 3 4 5 6 7
C

Fig. 4 - For the transfer function Ez/E, = (s2 + As + B)!
(S2 + Cs + D) restricted to complex conjugate zeros and
negative real poles, AIVX and A/N/D are less than 2 and
CV-B and C/VD are greater than 2. By the inequalities D/h <
(D -- B)/(h - A) < C - h, h > 0, parameter space is additionally
restricted to the right of the applicable BID lines shown above.

networks obtained by forming the corresponding
RL inverse network. Any of these eight 7-element
networks provide an exact realization of the pre-
scribed transfer function, including the unity
multiplicative constant specified by Eq. (5), pro-
vided only that a nonzero positive constant h can
be found such that the inequalities (15) are
satisfied. The element values are specified in
Table 2.

LABORATORY MEASUREMENTS

To make an actual physical network, a transfer
function was settled upon in the following way
(references below are to parameters shown in
Eq. (5)): (a) design with a center frequency of 1
radian per second by setting N/B_ = 1, i.e., B = 1;
(b) for complex zeros (A < 2), arbitrarily set
A = 1; (c) desigri for a specified zero-frequency
transmission (-6 db) by setting BID = 1/2, i.e.,
D = 2; (d) design for a maximum loss (-20 db) by
makingE2/Ei at ow = 1 equal to 1/10, approximated
by setting C = 10. Using (15), for A = 1, B = 1,

2
• Ito .94

< ký
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TABLE 2Formulas for Elements of the Networks
Shown in Figs. 5 and 6

Component* Applicable Magnitude Expression

(h -- A) (C -- h) - (D -- B)
R1, C5, L5 (h -- .4) (C - h)2

1
R2, C6, L6

h--A

.4D -- hB
R3, C7, L7 AB(h --. 4)

1R4, C8, Ls

.4D -- hB - 1
R•, C9, L9 t-

.4B-( h --.4) .4

D--B
R6, C10, Llo

.4D -- hB

1 (h -- .4) (.4D -- hB)
Rio, C4, R2----o (D -- B)2

1 (C -- h) (h - .4)
C•, RT, --

R1• D-- B

1 (h -- A) (C -- h)
C2, Rs, --R,8 (h - .4) (C - h) -- (D -- B)

1 .42(h- .4)
C3, Rg, RI9 .4D -- hB

*Units are ohms, farads, or henries, as appropriate. The reciprocals
I[RjT, liRas, 1/R•, and l/R2o are shown, rather than the direct expres-
sions, for tabulation simplicity.

Introducing an impedance scaling factor of 106,
we simply regard the resistance values as in units
of megohms and the capacitance values as in units
of microfarads. Having taken advantage of the
numerical simplicity of design at a center fre-
quency of co = 1 radian per second, we now scale
to a suitable frequency for ease of modeling and
measurement. For a center frequency of 1000
cycles per second, we may divide all resistance
values by the factor 20 and divide all capacitance
values by the factor 314.16. Then the final calcu-
lated values for the laboratory setup are: R • = 4.5k,

NRL REPORT 5972
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-j
w 0

-J

-2

a.
Z -4

0 -6
'UM
U, -8
.J
'U
-0 |

-t

.a. -12

1-- -14

Z
-- -16

1- -18
a-

-20
0

10,000

FRE0UENCY (CYCLES/SECOND)

Fig. 7 - Steady-state frequency response measurements made on 7-element network

R2 = 100k, R: = 50k, R 4 = 50k, C1 = 0.0135, C2 =
0.00416, C3 = 0.00318, where k means thousands
of ohms and the capacitance values are in micro-
farads. The steady-state frequency response
measurements obtained are satisfactory, as seen
in Fig. 7.

Note that a degree of freedom is expended by
the arbitrary choice of A. The width of the at-
tenuation notch is strongly influenced by this
choice. The spread in the values of the network
elements is similarly influenced by the arbitrary
choice of h (= 1.5) within the allowable range, in
the present instance, of 1.11252 < h < 2.

NETWORKS REALIZED BY
EARLY PROCEDURES

Transfer functions used to illustrate the syn-
thesis procedures of Guillemin and Dasher are
found in the literature. For example, the pre-
scribed transfer function

E 2  s
2

+s+ 1

E, s2 +4s+3 (16)

is used by Van Valkenburg* in illustrating Guil-
lemin's parallel-ladder synthesis procedure. As

*See p. 328 of reference cited in previous footnote.

shown in Fig. 8 the network contains ten elements;
the prescribed transfer function is realized only
to within a multiplicative constant of 1/15 (re-
quiring a compensating amplifier gain of 23.5 db).
Substitution of the parameters of Eq. (16) into
(15) yields

2< h <3. (17)

Accordingly, any value of the separation param-
eter h between 2 and 3 may be used with any of
the eight 7-element networks of Figs. 5 and 6 to
obtain an exact realization of Van Valkenburg's
transfer function. As a second example, the pre-
scribed transfer function

E 2 s2+s+3
E- S2 + 6s + 8 (18)

is used by Truxal (4) in illustrating Dasher's
bridged twin-T network synthesis procedure. As
shown in Fig. 9, the network contains nine ele-
ments; the prescribed transfer function is realized
only to within a multiplicative constant of 1/25
(requiring a compensating amplifier gain of 28
db). Substitution of the parameters of Eq. (18)
into (15) yields

2.382 < h < 2.667. (19)

50,000

6
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When the prescribed transfer function falls
within the requirements specified by (15), the
separation parameter h can ordinarily be given
any of a range of values, and the 7-element net-
works represent available physical realizations.
For those special cases not included, Guillemin's
or Dasher's procedure may be used.

2
0

TRANSFER FUNCTIONS WITH
UNDAMPED COMPLEX ZEROS

2- AND NEGATIVE-REAL POLES

Fig. 8 - Guillemin's parallel-ladder synthesis method as
used by Van Valkenburg to obtain the network shown.

Prescribed transfer function

E 2  ( s
2

+s+l\

Realized transfer function

E 2  1 ts 2+s±+
E,15 \ • /"+3)

A resistance-capacitance network realization of
a voltage transfer function containing two com-
plex-conjugate zeros on the j0o axis (zero damping)
and two poles on the negative-real axis, expressed
by

E 2  s
2 +D

E, s2 + Cs + D'
(20)

may be approached in the same manner as the
case for damped zeros by writing

E2 s2 + D
s(s+C-h)

(21)

where, again, the separation parameter h is a
nonzero positive constant. As before, we now
presume a factor (s + a) in order to allow the
identifications:

S
s+a

a-Network
Fig. 9 - Dasher's bridged twin-T synthesis method as used by

Truxel to obtain the network shown.

Prescribed transfer function

E2 (s
2

+s+3

E1ý kl+ 6s + 8

Realized transfer function

E 2  1 (s
2
+s+3)

E,ý2-5 ýs2 +6s±+8?

Accordingly, for values of the separation param-
eter h given by the inequalities (19), any of the
7-element networks may be employed for an exact
realization.

s(s + C - h)
y2- s + a

(e D"--y12JS-
-s + a

/3-Network LD
y22s --Ss h)

(22)

(23)

(24)

(25)

The a-network is identical with that obtained
before (see Fig. 3(a)). As shown in Fig. 10, the
/3-network is, in this case, realized with the desired

135/2

r

t.
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S0
-00 -YG2

I Y2

|1l = "22

SHIFT
o0.,,d•

ELE MENTS
REMOVED

UNITS ARE OHMS AND FARADS

Z2 = zI Z( )

REMOVE '2
_C3T

C-h-a
(C-h)2

R2 = -

R3 
ah-D

3 h hD

C-hGI = a

C-h
C-h-a

h
2

G3 ah-D

D
-YI2  s+-

D

h ( s+- h
Y2 = s+0

Fig. I1 - Realization of the voltage

transfer function E2 /E, - (s
2 

+ D)/
(s 2 

+ Cs + D) for the restrictions

Dlh <a< C- h,h> 0,a> 0

Fig. 10 - The /3-network for parallel-T realization

multiplicative constant (a direct consequence of
setting the obtainable objective, i.e., seeking a
numerator D rather than the more general B).
The complete parallel-T network shown in Fig.
11 provides an exact realization of the prescribed
transfer function, including the unity multiplica-
tive constant, given in Eq. (22) provided that the
restrictions

D/h <a< C-h,h > 0, a> 0, (26)

or, equivalently,

Dla < h < C- a, h > 0, a > 0 (27)

can be satisfied in a particular instance.

SYMMETRICAL RC
PARALLEL-T NETWORK

The well-known parallel-T network of Aug-
ustadt (5) in its symmetrical form and designed
for a null (shown in Fig. 12) has the transfer
function

E 2  s
2 

+ I

E, s2 +44s+ 1
(28)

For the function given by Eq. (28), the restrictions
given by (26) take the form

1/h < a < 4 - h.

Fig. 12 - Augustadt's parallel-T network
in symmetrical form proportioned

for a null at (a = I/RC with voltage

transfer function EIE, = (S
2 

+ 1)/
(s2 +4s+ l)

0.1785 0.0479

I.833 .502 78.44

8.833 0.0265 0.2926

1.460 11.28

UNITS ARE OHMS AND FARADS

Fig. 13 - The RC parallel-T voltage transfer function

ESEI = (s
2 

+ 1)/(s
2 

+ 4s + 1) was prescribed. The

network shown was realized using the Guillemin
synthesis procedure with the result

E2  ( s2+I
E, k s2 + +4s +1/

R3  R2

T C 3

,6 - NETWORK

8

(29)
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Using the outer pair to define the limits of h,

2 - VA < h < 2 + V3. (30)

For h = 2 and a = 1 we need only an impedance
scaling factor of 2 to obtain the identical net-
work of Fig. 12. In striking contrast, the network
of Fig. 13 was obtained using the Guillemin par-
allel-ladder synthesis procedure as guided by (6).

We may observe that the synthesis procedure
developments reported here, while lacking
complete generality, do lead to efficient net-
works (in this example, a well-known configura-
tion).

SUMMARY

A procedure for network synthesis from a
prescribed transfer function has been presented
and applied to complex zero functions to find
one-reactance-kind networks exhibiting no flat
loss and containing fewer elements than previously
known networks.
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Appendix A
Ladder Developments of a-Network

and #3-Network

Consider the following specification functions:

Y12. (8)

a-Network

s(s+ C-h) 9
jz2a S+1 "(-99

From the pole-zero plot of Fig. Al(a) - identical
with Fig. 3(a) - , we see that one of the zeros of

Y22 is located at the desired zero frequency so that
removal of the corresponding pole is the first step.
Thus,

1 s +plzo= -(= - ,

Y12 s(s+C-h)
(Al)

One of the required zeros of transmission has been
realized. To realize the other zero in --Y2, we
shift the zero at -(C -I h) to the origin. Thus,

(C -h) (s + C - h)
Y=- C-h- p (A3)

and

y2 = ys - yl (0) = (C - h)(s + C- h) (C - h)2

C-h-ps C-h-ps

(C - h)s
C-- h-p (A4)

The final step is removal of the corresponding pole
at the origin. Thus,

Zi=Zs-Z(0) + p, Pi
s(s+C-h) s(C-h)

C-h-pi
(C - h) (s + C- h)-

1 C-h-p, I
y2 (C-h)s• ( C-h)p"

V' - h "-p_(A2)

9

and

(A5)
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- -(C-h) - O 2

Y -Y12

Tr T ~ Y22
1 ,1

REMOVE
'I' .I z

I z

Iy

S FT 
Y ,

REMOVE
1 z2

G2 CI

a- NETWORK

ELEMENTS
REMOVED

C2

R2

CF-

C1 G2 s
2

-Y12 = CI+C
2  S+ R1 (Ci +051

C C2 S(S R1 - + C2
( a2 C' + ) 2 S I

R I (C 1+(;2)

D B
_ 1 h A_•o -p - - 0- i

I i
I g] T I Y22

I ShFT

I

I Y.

S1 REMOVE i

ELEMENTS
REMOVED

03

Consider the second set of specification func-
tions:

S-Y1 2/3 -- _____s + B

#3-Network

h(s +p)

Y2p S + Pi

(10)

(11)

From the pole-zero plot of Fig. A 1 (b) - identical
with Fig. 3(b) - , we see that the required zero
of transmission at s = -B/A can be obtained by
shifting the y22 zero at s = -D/h. The correspond-
ing pole is then removed. The last term in z1 is
identified as a series resistor R 4. Thus,

(A6)Y1 Y22 - Y22 (-B/A)

s+pi Bh, +pD h AD

_ 'Pt P1 +--

B sp
(A7)

3 I l3 G3
-o -Y12 zR4 R3+- R4

S+R 3 R4 C 3

S + R 2 + R3 +R4

R2+R4 (R 2 R4 ) R3 G3
R 2 R 4  R 3+ R4S+'

R 3 R4 C3

(b)

Fig. Al - (a) The ca-network realization and (b) the fl-
network realization (both networks are the same as in
Fig. 3)

Clearly, the quantities removed are represented
by a series capacitor C1, a shunt resistance R1,
and a series capacitor C2. The realized ratio
-'Y2/Y22 is in exact agreement with the prescribed
transfer function.

and

B

-. j= s+p~

(h )2 --D l

_Y pt _-D) A'

-- +

B hp, - D'
A

(A8)

(A9)

Clearly, the quantities removed are represented
bý a shunt resistance R2 and a parallel combina-
tion of a resistance R 3 and a capacitance C3
connected in series with a resistance R 4. The
realized ratio -Y12/Y22 is equal to

10



-jY120 (7 S? + R3~ C3

Y22P +R R 2+R 3 +R 4+ D

(PlR-RC +

(--zI-(-)
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The prescribed function is obtained only for

S(A10) D

A= h
h B"
Pt A

Solving, we find

(All)
D-B
h -A'

112)

(A12)

(A13)

Appendix B

S. F. GEORGE

Consultant, Radar Division

White Network Boundary-Value Problem

We are given the transfer function

E2 sS+As+B O<A,B,C,D, (B1)
E, s2+ Cs + D'

with a general restricted domain specified by

A2 < 4B < 4D< C2 . (B2)

The added restriction given by White is

D D-B
h h--A Ch, h 0. (M)

From the general restriction (B2) we have

4 < 2 B,-A< C, B <D, A<h. (134)

From the White restriction (B3) we have:

1. Using the left-hand pair of inequalities,

D<D-B
h ith-A' (B5)

or

Therefore,

A> hBID or h < ADIB.

2. Using the outer pair of inequalities,

D/h < C - h,

or

(B6)

(B7)

D < h (C - h),

which becomes

h 2 -- hC+D<0.

Therefore, one solution is

Then, from (B6), (B4), and (B8) we have

Selecting from (B9) the particular inequality

A ( <it + (BlO)

(B8)

(B9)

(1110)D (h--A) < h (D--B)
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and looking first at values of A > C/2, we have

,2

(A - 2)<()2 - D

A2 -AC < - D
or

D < AC-A 2 .

But, from the general restriction,
than B. Therefore,

B < D <AC2 -A 2,

or

AC-A2 > B.

4.5

4.0

3.5

3.0

2.5(B 11)

D is greater

(B 12)

2.0

1.5

1.0

0.5

Therefore,

B
C>A+ (B 13)

Dividing both sides of (B 13) by /'B, we have

CI/VB- > AI/V/- + V-/A. (B14)

This is the added restriction of White for A >
C/2 or A/V/B > C/(2VBA).

Now let us look at (B 10) for A < C/2. Since from
(B10)

A C

where p is positive, then (B1O) must always be
satisfied for A < C/2. Hence there is no added
White restriction. Figure B1 shows the plot of
(B14) and the added White restriction (cross
hatched).

From (B12) we also have the inequality given
by

AC-A 2 > D,

0 0.4 0.8 1.2 1.6 2.0 2.4 2.

A /,f-

Fig. B1I - Restrictions with respect to A, B, and C in relation
to r = BID

From the general restrictions, (B2), we have

A < 2/-D and C > 2V/D. (B 16)

Thus, Fig. B2 can be drawn to look the same as
Fig. B 1, except that D replaces B.

We have used (B5) and (B7) and two parts of
(B3) to obtain the results above. Now we must
see what, if any, further restrictions are imposed
by using the right-hand pair of inequalities

D-B< (h-A) (C-ih). (B17)

0

or Expanding (B 17) we obtain

D--B < hC--AC-h2 + Ah,

12

ClVýD > AI1ID + V/-g/I. (B 15)
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4.0

3.5

3.0 7

2-5 /

2.0 -Z/

/ /
1.5 /

1.0

0.5

///

0 0.4 0.8

Fig. B2 - Restrictions with

1.2 1.6 2.0 2.2 2.4
A/I

respect to A, C, and D in relation
o r = BID

From (B6) and (B20) the upper bound on h may
be determined, using whichever expression yields
the smaller value. Now from (B21) let us examine

A <A+C+ - (A - ),
2 2+ 12

or

A C )(A ýC)Y
2  (2- < -+ 2 (D-B B22

2 2 2

Since A < C always, the inequality of (B22) is
always satisfied provided the radical is real. For
this to betrue, we must have

D - B < (A 2 C) (B23)

or dividing by D,

B I/A C \

D 4 DV VD
(B24)

Let

r=B/D, 0< r< 1.

Then, we may have eitheror

h
2 -h(A+C)+(D--B+AC)<O. (B18)

Solving (B 18) for h we have

2 2 ( 2)- (D-\B)(B19)

A/V/b - C/VP > 2VT -- r

or

CI/V-- A/P- > 2V/I -r.

Since C > A, the last expression, (B27), must hold.
Therefore,

c > A-+ 2 V-_ \ .
VP V1

(B28)
h < A+ C+ A-C2- (D -- B). (B

Now, from (B9) and (B20) we have

hB<A<h<++ A -C
2 (D--B).

D h 2 2~ 2 -(-)

This is a family of lines on Fig. B2 with slope +1

and ordinate intercept 2N//---r. Table B1 shows

some values of the intercept CN/DV as a function
21) of r.

I.,

C'

(B25)

and

(B26)

(B27)

20)
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TABLE B I

Values of CN/VP as calculated from (B28)

Value of r C/VP intercept

0 2
0.5 1.4
1 0
0.75 1
0.9375 0.5

We could have divided (B23) by B to obtain

B l C A 2
(B29)

or for r= B/D, where 0 < r < 1,

C/IVBP-A/V/-B > 2V(1/r- 1)

or

C >--±-+2 -1.
VV- -- L (B30)

This is a family of lines on Fig. BI with slope +1

and ordinate intercept 2/(I/r) -- 1. Table B2

shows some values of the intercept C/I/B as a
function of r.

TABLE B2

Values of C/\/- as calculated from (B30)

Value of r C/V/B intercept

1 0
0.9412 0.5
0.8 1.0
0.5 2.0
0 00

For a more complete graphical portrayal, Tables
B3 and B4 have been calculated.

TABLE B3

Table of Values of y = x + 1 for
x

c C A A
y - or - and x - or,

y T x
2 1
2.01 1.1
2.03 1.2
2.07 1.3
2.11 1.4
2.17 1.5
2.225 1.6
2.29 1.7
2.36 1.8
2.43 1.9
2.5 2.0

TABLE B4
Values of Intercept XB or XD

for White Restriction Lines:

C A 2 1 A_+xB

C AA- -+ 2VF/ - r + XD

rXB XD

1 0 0
0.9 0.667 0.632
0.8 1.00 0.894
0.7 1.31 1.10
0.6 1.63 1.26
0.5 2.00 1.41
0.4 2.45 1.55
0.3 3.06 1.67
0.2 4.00 1.79
0.1 6.00 1.90
0 0 2
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