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A Brief Survey of Elementary Thermoelectric Theory

WILLIAM H. LUCKE

Energy Conversion Branch
Electronics Division

The three fundamental effects of thermoelectricity-Seebeck, Peltier, and Thomson-are presented
and the corresponding coefficients are defined. Following a simplified derivation of the Kelvin re-
lations, a more sophisticated and detailed presentation of the irreversible thermodynamic approach
to these relations is made. It is demonstrated that these relations are valid in spite of the arbitrary
assumptions as to the separation of thermal and electrical conduction made in the former derivation.

Next, a brief summary is given of a derivation of the expression for the Seebeck coefficient based on
a quasi-free electron model and simple energy dependence of an isotropic relation time.

In closing, the attempt to apply band theory to the search for better thermoelectric materials is
very briefly described and some interesting ideas for improvement are mentioned along with criti-
cisms concerning predictions of the maximum possible figure of merit.

INTRODUCTION

It has long been recognized that the concept of the
electrons in a conductor as a gas has a certain validity.
In terms of this model, the electrons may be thought of
as a gas of charged particles which undergoes mass
transport in the presence of an electric field, necessar-
ily transporting charge and kinetic energy; this last is
due to the fact that the electrons possess thermal energy
in the same sense as an ordinary gas. Obviously, this
gives us a means of transporting heat by the applica-
tion of an electric field and in fact, we can by these
means, transport heat against a thermal gradient!
The converse is also true: Because electrons carry charge
and can be caused to diffuse by the presence of a thermal
gradient, they can be made to transport charge against
an electric field. Thus electrons afford a very direct
means for the conversion of electrical to thermal energy
and vice versa.

While this naive model gives the broad outline of
thermoelectricity correctly, it fails completely'where any
attempt is made to extend it to a quantitative descrip-
tion of charge or heat transport. If, for example, heat
is to be transported, the electrons must be capable of
exchanging heat with both the source and the sink; this
obviously demands that the electron gas must interact
with its container, which is of course the lattice, and
the details of this interaction form, as is well-known, one
of the great problems of solid-state theory.

However, before we undertake a rudimentary discus-
sion of this formidable subject, it would be well to re-
view the classical history of thermoelectricity and to see
what thermodynamics has to tell us.

NRI, Problem 52E(2-02; Pi•oject SR 007-12-01.
This is an interim report; work on this problcm is continuing.

NOTE: This report is an expanded version ofa paper presented at the
7th Annual Seminar of the Chicago-Western Chapter of the American
Society for Metals, Chicago, May 10, 1962.

THERMOELECTRIC DEFINITIONS

The particulars of how Seebeck described the effect
named for him or how Peltier discovered his effect a few
years later will be omitted here. More will be said about
the Thomson effect because of its prominence in the
derivation of the very important Kelvin relations. To
define these terms:

The Seebeck effect refers to the appearance of a
voltage in an electric circuit composed of two dissimi-
lar conductors with the two junctions held at different
temperatures (Fig. 1). For a given couple, the voltage
depends on the difference in temperature between the
junctions. The effect is described quantatively by the
Seebeck coefficient a (formerly the thermoelectric
power), which is defined as

lim AV
a AT--- 0 AT

where V is the emf between the two junctions. The
Seebeck effect is reversible in that if the temperatures
of the junctions are reversed, the polarity of the voltage
reverses, but the magnitude is unchanged.

The Peltier effect occurs when a current flows through
the junction between two dissimilar conductors. Heat
is either rejected or absorbed depending on the direc-
tion of the current. Suppose that a conventional cur-
rent I is flowing from material 2 to material 1, the junc-
tion being maintained at a fixed temperature Th, and
that heat is absorbed (i.e., the junction is cooled) at a
certain rate dQldt. The flow of heat is found to be pro-
portional to the current I, the constant of proportion-
ality being the Peltier coefficient. Thus,

d-Q = 11I.
dt

I
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Fig. 1 - Schematic thermocouIple circuit showing absorption

of' Peltier heat at the hot junction, rejection of Peltier heat at

the cold junction, and Thomson heat being rejected along one

leg and a potentiometer placed to measure the Seebeck volt-

age. The clashed lines indicate the boundaries of isothermal
regions.

If the direction of current flow is reversed but its mag-

nitude is unchanged, heat will now be evolved at the

junction at precisely the same rate as it was previously

absorbed. Thus, the Peltier effect is also reversible.
The Thomson effect was predicted by Lord Kelvin

(William Thomson) on thermodynamic grounds before

he demonstrated it experimentally in 1853. Unlike the

other two effects, it may be observed where one con-

ductor only is present and refers to the fact that a cur-

rent flowing up a temperature gradient will absorb (or

evolve) heat. Given an elemental length dx of a con-

ductor in a thermal gradient, dTldx, the time rate of ab-

sorption or evolution of heat is (at a constant tempera-

ture) proportional to the product of the current I and

the gradient. The constant of proportionality will be

written as r and is called the Thomson coefficient.

If either the direction of the current or the direction of

the gradient is reversed, heat which was formerly ab-

sorbed will be rejected and vice versa. If both the gradi-

ent and current are reversed, the heat continues to be

absorbed as before. To calculate the total Thomson con-

tribution to the electrical energy, we integrate over the

length of the conductor from, say, x = 0, at which end

the temperature is T7, to x = 1, at which end the temper-

ture is Tl,. Thus,

t = I L dx = h I dT.
dt j, dxX Tr

Hence, the Thomson contribution depends only on the
junction temperatures and is independent of the details

of the temperature gradient. This is known as the Law

of Magnus and explains the usefulness of thermocou-

ples for temperature measurement.
Lord Kelvin's prediction of the effect was based on a

sound application of the second law of thermodynam-
ics to thermocouples: If Peltier heat is reversibly ab-

sorbed at the hot junction, and reversibly evolved at the

cold junction, then it follows that the heat energy ab-

sorbed at the hot junction furnishes the electrical energy

both to drive current through the couple and to actuate

the heat rejecting mechanism of the cold junction. In

other words, one can speak of a forward emf at the hot

junction which should be balanced by the IR drop in the

legs of the couple and an opposing emf at the cold junc-

tion. A potentiometric measurement of the Seebeck volt-

age would measure the difference between the hot junc-

tion emf and the cold junction emf. However, Lord

Kelvin observed that for certain couples, the Seebeck

voltage dropped to zero when a particular hot junction

temperature was reached, and further, that if he in-

creased the hot junction temperature beyond this value,

the voltage and current reversed. This would appear to

indicate that heat was being absorbed at the cold junc-

tion, causing current flow and the rejection of heat at

the hot junction, clearly a violation of the second law of

thermodynamics! Therefore, he postulated that there

must be another mechanism present which could absorb

heat and generate electrical energy, and as a result of

some very sound and original thinking was led to predict

the effect now named for him.

THE KELVIN RELATIONS

Classical Thermodynamics

Continuing his application of the second law of ther-
modynamics, Lord Kelvin was led to consider a quanti-
tative calculation of the change of entropy for thermo-

couple operation. Since all three thermoelectric effects

are reversible, a couple should, at first sight, offer an

ideal application of the second law (i.e., zero net change
of entropy); however, it is an experimental fact that the

irreversible phenomena of heat and electrical conduc-

tion are always present. Kelvin recognized this diffi-

culty but postulated that one could separate the irrevers-
ible phenomena from the reversible ones and consider

the latter separately. Proceeding on this basis he was able

to derive relations between the three effects:
On a per unit time basis we apply the first law:

Th fTh

V12,i= IH, 2 (T1) - IH1 2 (TI) +I f 7-, dT- I f"T dT

or

VTh

V,2 HflU(Th) -- Hl,2(T,) + f," (r 7-2 ) dT

2
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For incremental differences between cold and hot junc-
tions we have

T+AT

ABVy usu irs(T o AT) -e xao (T) +gives

By usual first order expansion this gives

(r, - r2 ) dT.

A V11 = HUd(T) + (l' AT- r2(T) + (r, - r2 ) AT

or

AV 12  dHI 2Al'(r,- dl'AnT theT lim

In the limit

since a 1 2 = lim A V12 'sic ~•=AT, 0 AT]

a12  = -I 1 + (ri -r 2 )
dl'

d H 12d- -T = a 12 - (T -' - T 2') "

or

(1)

Now apply the second law for an incremental tem-
perature difference and a reversible system:

AQ = AS = 0--II1'2 (T + AT) _/HfI1z(T)T T+ AT T

T+AT

+r T - T2 dTlT

The current can be divided out, and we note that the
first two terms are the incremental calculus equivalent
of

dT "112A

Therefore

0 =( 2)A'+ T T Al

from which we get

1 dH17 2  H1 2 + 1- 7i 20-T dT T• 2+

or, multiplying through by T and rearranging,

dFI,2  H•2
d'T 7 (T7 " (2)

Comparing Eqs. (1) and (2) we see that

H1, (Second Kelvin Relation)

Appropriate substitution of this result, the second
Kelvin relation, in Eqs. (1) or (2) yields the first Kelvin
relation, i.e.,

r-- 1 -q Tl' daT, (First Kelvin Relation)dl'

For some reason there seems to be a popular feeling
that the greatest value of the Kelvin relations is the es-
tablishment of a relation between the Seebeck coeffi-
cient a and the Thomson coefficient r. Actually, when
one accepts the concept of an absolute Seebeck coeffi-
cient, the form of the relationship between a and r can
be derived by considering the electrons as a working
substance that goes through a cycle and returns to its
original thermodynamic condition. From the conserva-
tion of energy standpoint, it should not be surprising
to find H, a, and r related; it is significant that their
relationships involve the absolute temperature.

The first Kelvin relation leads rather naturally to the
concept of absolute Seebeck coefficient. We have

-Tdat 2
r -- r 2 =--l' dl'2

dT"

As we have seen the T is characteristic of one material
only, whereas the a involves the difference of two mate-
rials. We come naturally then to write

d
T I- r ý dTTT(a a2~)

or in general

-T dadT"

Thus the integration of r1T of a substance from close
to absolute zero up to more common temperatures
would give reasonably accurate values for its absolute
a. Alternatively, if one member of a couple is in the
superconducting state, the measured Seebeck voltage
is that of the nonsuperconducting member. Since in the
superconducting state there is no transfer of energy
between current carriers and lattice, one expects no
thermoelectric effects, and, indeed, none have been
found. Combinations of these approaches have been
applied to the problem and values of absolute a can be
found in the literature.

The concept of an absolute a (which we shall see
later is associated with energy of transport) enables us
to construct a diagram showing the value of a at every
point in a thermocouple and making clear that its oper-
ation is a cyclic one with the charge carriers in the role of
the working substance. Suppose that the absolute a's
of two homogenous, isotropic materials have been de-
termined and lie along the arcs FC and HM (Fig. 2). A
couple is now made up of these materials and operated
with the junctions held at the absolute temperatures T,.

3
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Fig. 2 - Absolite Seebeck coefficient versus absolute temper-

aturc for hypothetical couple schematized on the right. The

points MCFH trelate physical location to values. The dashed

lines indicate boundar-ies of isothermal regions.

and Tl' as shown. We start out with a unit of charge just

inside the lower leg at the point M. If now this charge is

moved across the junction to the point C, it will ob-

viously absorb Peltier heat in the amount I. However,

by the second Kelvin relation this is the same as the pro-

duct of the absolute temperattre Tl, and the difference

in the absolute a's. From the diagram this is the product

of the line MC and the abscissa Tl' or the area MCDJM,

and gives the total energy absorbed at the hot junction.

As the unit charge is moved in the isothermal region,

there is no change in a and no change in energy (we put

aside irreversible losses for the moment). However, the

unit charge must finally move out of this region and

down the gradient that exists in the upper leg: essen-

tially it is moving from C to F. In this case a is falling

continuously, and the carriers find themselves moving

into regions of lower energy; they are essentially in

thermal equilibrium with the lattice, so they give up their

extra energy to the lattice as Thomson heat. As we have

seen this is given by

fTi

q- - T 7 dt

Since by the first Kelvin relation

da
T = T j'd

then

which is clearly the area CFEDC. Thus part of the Peltier
heat which was absorbed at the hot junction is passed

to the lattice. At the cold junction our unit charge un-

dergoes an abrupt drop in a and gives up the cold junc-

tion Peltier heat, which is given by the area FHLEF.

Again part of the hot junction heat has been given up.

Finally the unit charge travels up the gradient from H

to M; here a is continuously decreasing, so that Thom-

son heat is again evolved, this time in the amount

HMJLH. Upon arrival at the point M the unit charge has

returned to its initial condition and its energy must be

the same as it was initially. We have accounted for all the

energy absorbed at the hot junction save for the amount

enclosed in the area MCFHM. This clearly represents

the net electrical work done, which in the case we have

depicted would be dissipated by Joule heating in the

course of traversal of tite couple. In other words, when

the carriers are traversing an isothermal region they

evolve heat-Joule heat-but their a depends on the

temperature only and does not change. Corresponding-

ly in the regions of thermal gradient, Joule and Thom-

son heat are simultaneously generated. We could, of

course, open the couple and connect it to a load in some

apdropriate fashion; some of the electrical energy would

still be lost in the couple, but the remainder would be

available to do useful work.

It is also possible friom such a diagram to calculate

the reversible efficiency of conversion of heat to elec-

tricity. Evidently it would be given by the ratio of

MCFHM to the total area MCDJM. It is evident that the

Carnot efficiency cannot be realized because of the evo-

lution of Thomson heat at temperatures intermediate

between the source and sink temperatures. If, however,

the Thomson effect were absent (i.e., the a constant with

temperature) the arcs FC and HM would be horizontal

lines and the ratio of the areas would be in the ratio of

their widths, since the heights would be given by the con-

stant a. Hence the efficiency would be

a (Tl' -- T)
a T1,

which is clearly Carnot.

The reversibility of the thermocouple, and its useful-

ness as a heat pump can easily be demonstrated by again

starting with our unit charge at M but now traversing

the circuit in the opposite direction. In the first move to

H, Thomson heat would now be absorbed in the same

quantity as it was before evolved, since we are moving in

the direction of increasing a. Upon moving across the

cold junction heat would again be absorbed in the same

quantity as it was before rejected, because of the discon-

tinuous jump in a. Moving up the gradient in the upper

leg Thomson heat is again absorbed. Finally passing

across the hot junction Peltier heat would be evolved in

the same amount as it was before absorbed. Here again

4

f h d a f
q, T da dT = Tda•
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we account for all the heat absorbed and rejected, and
find that we have rejected more than we have absorbed
by the amount MHFCM. Evidently this is the work that
must be done to absorb heat at a cold sink and reject it

to a hot one! This is aside from the Joule losses. Again a

reversible coefficient of performance could be written

and again this will not give a Carnot expression unless

the Thomson coefficient is zero.
At this point some practical comments might be made.

The diagram is directly applicable to the graphical anal-

ysis of the reversible aspects of a real couple. In practice

such a couple would be constructed with the upper leg a

p-type semiconductor and the lower leg an n-type one.

In this case the hot junction heat absorbed would corre-

spond to the energy necessary for the formation of hole-

electron pairs plus the energy for them to diffuse away.

The cold junction heat evolved would correspond to the

energy given up on recombination plus the energy of

transport left after traversing the gradients. The Thom-
son heats, as before, correspond to changes in the en-

ergy of transport, which largely come from the shift of

Fermi level with temperature. We have, of course, made

the usual simplification that transport of holes is the

same as transport of positive charge. There is one

change which we have to consider and that is the Thom-
son heat of the electrons. Originally we spoke of Thom-

son heat evolved upon moving the unit of positive

charge up the gradient in the lower leg, as due to mov-

ing to lower values of a. Actually, of course, the elec-

trons move down the gradient from M to H; from the

algebraic point of view we would say that this is moving
toward increasing a; however, from the electron's point

of view it is moving toward a decreasing value of a. Re-

call that, in an n-type semiconductor, the Fermi level
is below the conduction band edge and so is negative.

In recent years, however, the development of that
branch of thermodynamics called irreversible thermo-
dynamics has put the Kelvin relations on a much firmer

footing. In this approach the irreversible effects, which

arise because of the departure from equilibrium, are

calculated to a first order (corresponding to a linear per-

turbation of the equilibrium state) and are included in

the equations. Clearly the results will be valid only for

small departures from equilibrium; however, the suc-
cess of the method shows that it is quite valid for thermo-

couple analysis under conditions ordinarily encountered.
In general, in a nonstatic situation there will be ther-

modynamic fluxes, or flows, which originate in thermo-
dynamic forces. These forces are expressible as gradi-

ents of thermodynamic variables. For example, a ther-

mal gradient (force) gives rise to a heat flow; similarly
a potential gradient gives rise to charge flow, and a con-

centration gradient to a particle flow. In each of these

cases the relation between the flux (or current density)
is a linear one:

JQ -KVT
J, -o-Vo

Jp -DVn

where

JQ heat flux
Je , charge flux
Jp particle flux
K - thermal conductivity

o- - electrical conductivity
D - diffusion coefficient

T = temperature
(A = electrical potential
n = particle density.

Irreversible Thermodynamics

In the preceding section the Kelvin relations were de-

rived on the assumption that the irreversible processes
of Joule heating and thermal conduction could be con-

sidered separately from the reversible phenomena of

thermoelectricity. However, the fact that Thomson and
Peltier heat absorption and rejection depend on the

flow of current is inescapable; and current flow is-
with the exception of superconductivity, where thermo-

electric phenomena are absent-always accompanied
by irreversible Joule heating. Correspondingly, the
Wiedemann-Franz relation shows that at least part of

the thermally conducted heat comes from the transport

of charge carriers. Hence, both reversible and irre-
versible effects are intimately connected with the me-

chanics of carrier transport and so with each other.

From th s point of view, the correctness of the Kelvin
relations would appear to be fortuitous.

Now the experimental facts of thermoelectricity
show that there is a crosscoupling between forces and

flows. A thermal gradient gives rise to an electric flux,

and a potential gradient to a heat flux. If we make the

assumption (a) of superposition of effects, and (b) that
the crosscoupling terms are linear in the forces, we can
write

J1 = MnV4 + M 2VlT

-= M21VO + M 22 VT

As to the assumption of superposition, there is little

to say except that it seems justified in a first order de-
scription. The assumption of linear crosscoupling terms

seems only natural in view of the linear relation of the
primary forces and fluxes; however, it, too, is justifiable
in terms of first-order perturbation.

5
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These equations are given td illustrate the form of re-
lations to be used. In addition to the two forces and
fluxes we have four coefficients which must be deter-
mined through experimentally determinable relations
between forces and fluxes. Without going into detail it
turns out that four independent coefficients are one too
many and the equations are useless as they stand.

Onsager, who laid the foundations of irreversible
thermodynamics, showed that if the proper pairs of
forces and fluxes are chosen, there are only three inde-
pendent coefficients to determine: in the absence of a
magnetic field the crosscoupling coefficients are equal,
i.e., M12 = M21.

We shall not undertake here a discussion of the vari-
ous ways in which proper pairs are found. However they
are found, they must meet the criterion that the sum of
the products of each flux by its force must account for
the total rate of entropy production (per unit volume)
in the system. In short, we are looking for pairs of forces
and fluxes which are linearly related:

Ji - LiFi + L12F.,

In the steady state with no heat flow to or from the
surroundings, we obviously have

V -iJ, = V •JP = 0

dsV .J' =d"

It is convenient to define a fourth flux JQ, the heat flux,
as

JQ= TJ.

following the usual relation between heat and entropy.
Substituting this into Eq. (4) we get

JQ = J, - )jp

or

(3a)

J 2 = L21F, + L22F, (3b)

whetre, under the condition that

dss-= Ji "F1 +J2 - F2,

L 2 1 = L12

Perhaps the most physically satisfying method is due
to Callen (1). Using what may be called "the method of
local equilibrium" we consider the system to be made
tip of a collection of small volume elements, each of
which is in local equilibrium and having its own par-
ticular values of the thermodynamic variables. If we
neglect thermal expansion, we may write for the ith
volume element:

Ti5Si AiU W -- ciN

where S is the entropy, U the internal energy, A the elec-
trochemical potential, and N the number of particles.
Now the fact that the extensive variables in this equation
have different values for the different elements sug-
gests that there must be fluxes of these quantities pre-
sent in the system, and moreover these fluxes must be
related by the same equation as that for the elements,
since it holds at every point in the system. Thus ifJ., is
the entropy flux, Ji, is the internal energy flux, and J,
is the particle flux, we must have

J, Jo + AJp • (5)

We shall use this relation presently to eliminate the in-
ternal energy current in favor of the experimentally ob-
servable heat current.

Our procedure is to obtain the expression for the
time rate of entropy production in terms of experi-
mentally observable quantities, and by comparing the
resultant expression with Eq. (3) to identify the proper
forces and fluxes. Putting these into a pair of equations
of the form of Eq. (3) we are certain of obtaining the
Onsager relation between the crosscoupling coefficients.
We have

IJ. J,, - IJ,,

1 1

and taking the divergence of both sides

- ds V + 1
j,'= -- ) " A

d-T1V .TJJ- l V J. V

In general V - J, = 0 and for the case of no heat ex-
change with the environment V it - 0, so that

dt V (I J, i, - V •' )i J,, -- " .A 3J,.
TJ J,, - Ail, . (4)

6
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Now by Eq. (5)

Jh =JQ + AJp

Therefore

t= V (G) . j + V () T) "J'

1TVA• JP-=V •'JQ -V •Jp..

Comparing this with Eq. (3) we may make the following
identifications:

Now 9 = /z + eO and VJ- = Vu + eVO, but in the iso-
thermal case V-k = 0; hence VA = eV0 and

Lite eVO e2LI
'T Vb 'T

Similarly the thermal conductivity is defined as the ratio
of heat flux to the negative of the thermal gradient with
the particle current zero:

JQ
K=--V-- for J,=0.

We set J, - 0 in the first kinetic equation and divide

through by L1u, getting

J1 -Jp

1
F,1 VA

J 2 =JQ

-=V (')

Hence we may write

-JVp-L11+T+L12 V (T)

- L12 VA + L12 V

(6a)

(6b)

which Callen calls the kinetic equations.
We may now identify the kinetic coefficients (the

Lj) with experimentally observable quantities. For ex-
ample, the electric conductivity aT is defined as the nega-
tive ratio of the electric flux Je = eJ, to the potential
gradient V0 with zero thermal gradient, i.e.,

Je
o-'v=o V for VT=-0.

For VT = 0 the first kinetic equation becomes

I
-JP = L,, T VA

and the electric current is, since Je - eJp,

Ll'

so that the electric conductivity is

Ltie _.A
'T VO

o= - V. +L1

Dividing the second equation by L12 gives

Js 1 + L21('
L1 2  l'" L,2kl' .

Subtracting the second from the first,

JQ =L( L2 _ T]
T_ _ I L Vii1)

Multiplying by L1 2 and recalling that

V h-aVT

we have

so that

JQ LL 22-L• 2
VT T2LHi

We now have two relations involving the kinetic coeffi-
cients. If we can find a third, then all three will be ex-
pressible in terms of experimentally observable
quantities.

To find the third we turn to the Seebeck effect. Fig-
ure 3 is a diagram of a thermocouple made of mate-
rials A and B with the left junction at the temperature
T, and the right at the temperature Tl'. The terminals
of the voltmeter are at the same temperature T,.. Recall-
ing that the Seebeck coefficient is measured under the

7
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chemical potentials by

V= (A,- _A1)

PI2 1 B

Fig. 3 Thermocouple composed of materials A and B.

Points 1 and 2, the terminals of the potentiometer V, are at

the same temperature Tr,

or

l fh L _( -!L ,2) dT.
VAB =e T TL

Since aAB = dVABIdT,

dVAB. 1 a (LI 2  - (L1 2 L 1

dT e TTIH ITL)IId-- -T aAB - L\ TL~tl/B -\ TLlt A J "

Recalling the concept of absolute thermoelectric power,
i.e.,

condition of no net electrical current flow (i.e., Je = 0,
hence Jp = 0) we again set Jp = 0 in the first kinetic

equation:

0=L•---I•V +L12V (T).

Solving for Vbt we get

it follows that

aAB - aA-- aft

t_ L12 "
aA= keTLsI)A

a- = ( L12
aB- wTi. /B

or in general

or
L 12a - eT L ii

djj L12 dT.TL12

To find the voltage measured we simply sum A around

the circuit. Thus, starting at Pt. 1, Fig. 3, we get

Ah -- l fL ) dT
r TL11r B

A -- h=-- fTh I L dT

Tr

--- = L dT.
J TLII, B

Adding gives

C.,2 -- =, f [(\TL) 3  (TL )]A1] dT.

Now since A is an energy, the voltage measured by the

voltmeter will be related to the difference of the electro-

L 12  . - e a = S p .

TLii

Thus we find the third relationship between the kinet-

ic coefficients and the experimental observables. We

shall not go through the algebra here, but straightfor-
ward manipulation shows that

LT

eT2

L12 =-- a-
e

L 22 = T30-a
2 + T 2K .

It might be well at this point to derive an equation

which will give some thermodynamic insight into the

nature of a and which will also be useful in developing

the Kelvin relations.
The second kinetic equation is

JQ = L12 I vi + L22V I

8

A

and

VA=- T Lý2L V = 1VT
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Now the entropy flux is related to JQ by JQ= TJ.; hence

JQ =L12XI V + 2TT =Tf Y - • T 2VT )

We solve the first kinetic equation (Eq. 6a) for VA and
substitute this in the above expression for J,,:

Li, IV A =--Jp -- L12 T

1 vA - ip-LIv1 Ln L IT

or

TJI - Jh - AJp

-h = TI + AJp.

We have just seen that

KJ = spJp - K VT.

Hence

Jh = TSpJp - KVT + gj,

j. = [ Jp L12 V()1+ L2VT , L,, V(1T)]+ TL2V•)

-L2 J, + (L 22TLII ( TL.) V()

L2 + (LL22 - L12)TL,- J\ TL_,V1

sJ (LtL.L 22 - L12  VT.T 3 Lo.

But

LtL22 - L2K1

T
2L ii

Therefore

KJ., = SJ,-p VT
-CSPP VT.

From this it is apparent that the entropy flux is made
Up of two terms. The second is the flow of entropy re-
suhting from the flow of heat; the first gives the entropy
flow resulting from the particle flow. In other words

L12 T (=S' )

= (TSp + 9) J, - KVT.

Now taking the divergence (and recalling that div
-p 0) gives

v Jh = SpVT .J + TVSp .Jp + VA "J, - V(KVT).

We wish to eliminate VA. From the first kinetic equation
(Eq. 6a) we have

Luoy VA = -Jp - L12V (
TJp TL12 V(1

VK• L L1 1 T

TJp + L12

+71 TL1 VT.

Recall that

e
2

Lts

T

and

L12TLI 1

hence

is the entropy flux per particle.
For the isothermal case VT = 0 and

= eaJp

e2 jp
V e2 SpVT .

or

Substituting,

V - Jh = SpVT- Jp + TVSp • Jp

= aJe .

Hence a is the entropy per unit charge flux.
To complete our derivation of the Kelvin relations

we must obtain expressions for the Peltier and Thom-
son coefficients. This is most easily done by returning
to the basic equation:

(S•jp )T Jp-V(KVT)

-SVT-Jp + TVSp *J,

e2jf,a- • - SVT • J, V (KVT) .

C.

3.~
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Canceling and rearranging terms,

e2J2
V " Jh =- eJ---- + TVS, " Jp - V (KVT).

Recall that

eJp = Je

and

Sp,= ea ;

hence

V +-+T (Va) .J, -V(KVT). (7)

Thus the divergence of the energy current is made up

of three terms. The first and third of these are obvi-

ously the result of Joule and conducted heat; it follows

that the second term must account for the Peltier and
Thomson effects.

Recall that the Thomson coefficient is defined for a

homogeneous conductor with a temperature gradient by

to the total heat absorbed (or rejected) in the region
where a changes from a,, its value in material A at tem-

perature T to ac3, its value in material B at the same tem-

perature, i.e.,

HIABJe (= T dx) J,

-T da
aA

= T (aB--aA)

or in general

H = aT

which is the second Kelvin relation.
We shall leave the subject of irreversible thermody-

namics here with the statement that it has been applied
to the thermomagnetic and galvanomagnetic effects by
Callen and others (1-3).

d (AtL = rVT'Jd
dx \ dt /

We may for such a case write the second term in Eq. (7)

as

daTgVT .Jo.

Comparing this with the above we see that

da
T-=T 5-T

and the first Kelvin relation has been demonstrated.

The Peltier effect is found at the isothermal junction

of two conductors, say A and B:

--•Jii -+ J•jA 1jB

Je

The Peltier coefficient is defined by

dQn= nJ,
dt

where HI is understood to refer to the heat absorbed (or

rejected) at the junction per unit current flux. Since no

junction is infinitely sharp, the Peltier effect must refer

TRANSPORT THEORY

Fundamental Concepts

Thermodynamics, whether reversible or irreversible,

can give information on the interrelations between

various thermoelectric quantities, but can give us no

information on the relation of those quantities and

structural details of the materials which exhibit them.

To do this, it is necessary to resort to quantum and

statistical calculations based on particular models.
We begin by imagining a homogeneous, isotropic

bar of conducting or semiconducting material which

may carry electrical and thermal currents in the x

direction. The rate of generation of heat per unit

time per unit volume in the bar is the difference be-

tween the electrical energy transported and the diver-

gence of the heat which flows in by thermal conduction,
i.e.,

dH = - aJQ

Our procedure will be to calculate the electrical and

thermal currents from first principles and then identify

the terms in the result with known experimental
quantities.

The electrical current transported by an electron

moving with drift velocity v, is given by the product

of v, and its charge, -e. To find the total current Je

it is necessary to sum over all the electrons in a unit

volume. Thus,

Je =-2e f v, f(m) dVm

10
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where V,, gives the number of modes available in a
unit volume, f(m) is the probability that a particular
mode is active, and the factor 2 arises because of spin
degeneracy.

In more familiar terms

J - 2e f
82.e v. f(k) dVk

where now dVk refers to the incremental density of

states in k space. Similarly, the heat current carried by a
single electron is given by the product of its kinetic en-
ergy E and its velocity vx; summing over all electrons in
a unit volume gives

JQ = T--E f(k) V, (k) f(k) dVk

The most general procedure from this point on may
be summarized in three steps:

1. Find the expression for the distribution func-
tion f

2. Pick the proper relation between E and k.
3. Carry out the integrations.

As the reader is undoubtedly aware, any attempt to
adequately describe the problems and the approaches
used in the first two steps would cover wide areas of
the solid state theory. The second step, in particular,
which is based on selecting the proper model of band
structure to account for particular experimental re-
sults, could well have a library written on it. Accord-
ingly, we shall restrict ourselves to the simplest ap-
proaches which still yield results of some general
validity. We will assume the standard quasi-free-
electron model and the existence of an isotropic re-
laxation time to describe the interaction between
electrons and lattice.

However, even these assumptions involve a consid-
erable amount of algebraic detail which would be out
of place here. Hence we shall confine ourselves to a
qualitative description of them. An excellent review
by Frank Blatt appears in the Solid State Physics Series,
Vol. 4, for 1957.

Now the distribution function which holds when
electrons are in static equilibrium is just the Fermi-
Dirac expression:

I

4 -(f 
-- ff)IkT + 1

The calculation of either electrical or heat currents
from this distribution function would yield zero, since
it is spherically symmetrical in the velocities. It is
apparent that the application of a field, or a gradient
sets up a steady-state condition in which a new dynamic
equilibrium holds, and correspondingly, there is a new
distribution. This new distribution must contain, more

or less explicity, the mechanism by which the electrons
interact with the applied fields. The well-known Boltz-
man equation describes the effects of these interactions
in general terms, so one begins with this equation and
puts in the details pertinent to the model he is using.
Of course the model is selected to give agreement with
experimental results, and one finds paper after paper
in the literature dealing with models of sometimes
frightful complexity.

As we have said the simplest model which still has
some degree of generality assumes a relaxation time
r*t and a spherical dependence of E on k. The relax-
ation time T* is defined in the following way: Iff is the
dynamic distribution function resulting from the appli-
cation of external forces, then if these forces are
instantaneously removed, the electronic system relaxes
from f to the static distribution f. exponentially with
a characteristic time T*, i.e.,

at (f-) M (f--M
3t

a~t (f -- M -- ' (f -M-)

Focusing our attention on electrical fields for the
moment, we know that the power which the electrons
gain from the field, namely, the product EJ, instantly
and completely appears as heat in the lattice. In other
words, the electrons are essentially in thermal equilib-
rium with the lattice and immediately pass on to the
lattice any extra energy obtained. The reciprocal of
-* is thus a measure of the strength of electron lattice

interaction; it also follows that the stronger this inter-
action, the less will the dynamic distribution differ from
the static one. In most cases, this interaction is so
strong that the dynamic distribution is adequately
described as a first-order perturbation of the static
one. In fact, we can write

( - oeE af. dT
(ak, h at dx)

where the field E and thermal gradient appear explicity.
Substitution of this expression for f in the equations
yields, since integration over the static distribution
gives zero

J, =-e eE + a-}i)Ki 1 dTe Y- K 2

adT) I dTeE~a K2 + ~K,JQ=(eE+ d- Td

tT* is used here to designate relaxation time. The similarity of this T
fot the Thomson coefficient is unftttinate; the connection between the
two is quite indirect.

II

r,.

4..,
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Recalling the first Kelvin relation T = - T da/dT,where

kT d ( ,f\)
dT \kT/

and the K's represent the transport integrals, which
are given by

1 f _,O]2f
Ki = -- 'n'----• )2xx - * (k) dVk.

We shall have a little to say later concerning the evalu-

ation of the transport integrals. For the present we

proceed with our derivation of the Seebeck coefficient,
continuing to denote them as above.

We note that in our expression for the accumulation
of heat the three terms Je, JQ, and E all appear. It is

convenient to eliminate one of them between the de-

rived expressions for J, and JQ. So we eliminate E,

perform the indicated differentiation on JQ and form
the expression for dH/dt. This yields

dH _ J2 Je [ T d (K2t 2 dT
dt e 2K, ad T -T•K J d•x

d ldT
KT T dxL j "

From comparison of this with Eq. (7), the first term

evidently refers to the Joule heating, so that

o- = - e 2Ki .

The third term is independent of the current but

involves dT/dx, so it refers to the conducted heat:

K ,K1 - K2
K TK,

Finally we note the second term, which involves the

product of the current J, and the temperature gradient

dT/dx; recalling that the Thomson heat is given by
-Jr dT/dx, we see that the Thomson coefficient is

T = [ - d t K2 ]

Recalling that

wehkTav

we have

(8)

At this point it might be well to show a figure (Fig. 4)
which indicates in more physical terms the meaning of

the expression we have just derived.

METAL

VALENCE
"BAND

Tre=Ac,+IEf; aT=-L(Ae5 -Ff)
_ke ( AEs 0f

kT kT

Fig. 4 - Energy diagram of the junction between a metal
and an n-type semiconductor. In the metal an electron is at
the Fermi level; in the semiconductor it is a distance AE,
above the edge of the conduction band which in turn is E,
above the Fermi level.

Electrons traveling in the metal will have an average
transport energy AE,. negligibly larger than that of the
Fermi level. Upon crossing the junction into the semi-

conductor, their energy must increase considerably,
first because of the height of the conduction band

above the Fermi level, and second because they gen-
erally will have a higher average energy of transport.
Thus the Peltier heat absorbed by the average electron
is given by

II H .se.ie = (AEsemi + IEfl)

if AE, is negligibly small (i.e., set the thermoelectric
activity of the metal equal to zero).

Thus

H1 (AEse.i - Ef)
e

12

a• =1 -2K - k-kle T kt

= k [ K2_F
e LkTK, kT "

_T X d _ [ K , k - ]S=-e j-d -T l -- T k kT •
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and since H = aT,

asemi T [ AEsei - Ef]

ks[Aeme _ -.

Comparing this with equation (8), K2IK1 gives the
average energy of transport referred to the band edge,
and the absolute Seebeck coefficient is directly related
to the average energy of the electrons participating
in the conduction process.

Transport Integrals

Returning now to the transport integrals: We have
stated them in the most general form consistent with
our solution of the Boltzman equation. To go further
we must put in details of the E and k relationship,
the density of states, and the functional dependence
of the relaxation time. Again we warn that very complex
and heinous models may be required, but we shall
stick to the simplest model, a single isotropic band of
standard form, i.e.,

h2 k2

2m*ý

Putting in the quadratic dependence of E we get

K -- A' f T*Ei+i/2ddf ds

where we have replaced the garbage in front of the inte-
gral sign with A'. (Since we need only calculate the ratio
of K2 to K 1 , there is no need to worry about constants.)
The next step is to make the assumption that 7-* may be
written as the product of a function 4 (T) and E to some
power s.

r* = J(T) ES.

In this context this assumption appears rather arbitrary.
Since r* is related to the strength of electron-lattice
interaction, it is physically reasonable that it should
depend on the electron energy. Theoretically if the
electrons are scattered primarily by the low-frequency
thermal vibrations of the atoms in the lattice, s would
be -1/2; on the other hand for ionized impurity scat-
tering s should be 3/2.

Since T is independent of E, we may remove it from
the integral and lump it with the other constant,
obtaining

K=- A f Ei+8+±/2 dd• dE .

Integrating once by parts yields

Ki=A (i+s+ 1/2) J Ei+S+l/2fo(e) dE

which is easily transformed to

Ki =A (i+s+ 1/2) (kT) i+S+ 1/ 1Fi+s-/2(

where

is the standard Fermi integral.
Thus, in general

K 2  (kT) (s+5/2) Fs+31 2

K, (s+3/2) F8 +112

illustrating how this term in the Seebeck coefficient
depends on the type of scattering experienced by the
carriers.

While we have taken a general case, it should be stated
that it is not always necessary to evaluate Fermi integrals.
If one is dealing with semiconductors of low carrier
concentration, Boltzman statistics may be used. In this
case K 2/K1 is simply kT (s + 5/2). If the conductor is
fully degenerate, the usual series expansion about the
Fermi level may be used.

We have indicated that Ef is measured downward from
the edge of the conduction band, so that its magnitude
is to be added in calculating the Seebeck coefficient
of semiconductors. In the case of metals, it lies at or
above the band edge and is subtracted from the K2/K 1

term. The constant k/e has the approximate value of
86 gv/degree, so that one sees that in metals the aver-
age energy of transport is quite small indeed, being
roughly 0.1 kT.

FIGURE OF MERIT

In any discussion of thermoelectric materials and
devices the figure of merit, denoted by Z, inevitably
crops up. One should be warned that the Z which turns
up in efficiency and coefficient of performance calcu-
lations is not the Z which is used in evaluating the
merit of a material, though the two are connected.
The Z appearing in efficiency calculations can be simply
derived from a quite elementary discussion of efficiency.
Its value lies primarily in the fact that it relates the
inherent characteristics of the materials used to the
efficiency of the device.

The Z for a thermocouple is

Z= (al -- a 2 )
2

13
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One cannot rigorously separate the contributions of
the legs (they are usually of different materials), but
this is done anyway and the Z for a material is written

0/ a2 a 2 (FZ=-•or K
pK K

In the vicinity of room temperature, Z values up to
3 X 10-3 are common.

One of the earliest attempts to put solid-state theory
to use in the thermoelectric field was an analysis of the
Z factors: a, a-, and K. These are all functions of the
Fermi level, which depends on carrier concentration
as well as band structure and temperature. Largely
ignoring all save the carrier concentration and using
nondegenerate statistics, the Russian loffe (4) came up
with a now famous diagram (see Fig. 5), which shows a
broad maximum in the a020, curve in the 10 19/cm 3

range of carrier concentration. Inclusion of the K

curve did not change the position of the maximum.

LOG CARRIER CONCENTRATION

Fig. 5 - Qualitative plot of ce, cr, K, and a2co against the

logarithm of carrier density. The total thermal conductivity
K is composed of the sum of the lattice conductivity Kvh and
the electronic contribution Ket By the Wiedemann-Franz
law the latter has the same form as the cr curve.

It will be noticed at once that this is in the region of

partial degeneracy, so that Ioffe's calculation was im-
mediately called into question. However, a far more
rigorous approach to the problem has not changed his
conclusions except to indicate that the variations in
effective mass from material to material may cause a

shift of the optimum carrier density to as low at 10I8 or
as high as 1 0 21. The corresponding optimum Seebeck
coefficient lies between 200 and 300 tiv/degree or
approximately 3 times k/e.

Boiled down to its essentials the attainment of a high
figure of merit depends on the discovery, or develop-
ment, of a material for which the expression

/-tm*3/2

Kph

is as large as possible. In this expression t is the carrier
mobilityt m* is the effective mass, and Kph is the lattice
thermal conductivity.

Possible approaches to this problem are legion, and

a comprehensive survey of them will not be made here.
There are, however, certain ideas that are interesting
to mention.

It has been suggested that materials having non-
spherical energy surfaces may, through the increase
in effective mass in a particular direction, offer a means
of improving Z. If, for example, a material having ellips-
oidal energy surfaces, but otherwise comparable with
an isotropic one, is properly oriented, one should
realize a high effective mass in the direction of the main
axis. However, the concomitant anisotropy of lattice
structure could give a very large increase in Kph in the
same direction, so that a higher Z value may or may
not be found. In general, nonspherical energy surfaces
are also associated with materials of low crystal sym-
metry. Here additional scattering of electrons by trans-
verse lattice modes is to be expected, with a concomitant
decrease in the mobility. Whether the decrease in A.
will offset the increase in m* is hard to say.

Another rule-of-thumb calculation indicates that the
presence of multivalley energy surfaces may well lead
to larger Z values. However, the presence of inter-
valley scattering can be expected to reduce both the
Seebeck coefficient and the mobility, so that an increase
in Z is not certain. Present theory does not give any
information on how intravalley scattering may be max-
imized and intervalley and transverse mode scattering
minimized.

We have already mentioned that large values of s
are realized for ionized impurity scattering, giving an
increased value for a. However, it turns out that the
resulting reduction in mobility outweighs the increase
in a. In fact, ionized impurity scattering must be kept
small in thermoelectric materials; a high dielectric con-
stant has this effect, and it has been suggested by Ure
that this is a major reason for the success of Bi 2Te3.

A narrow band gap means that a material will go
intrinsic at relatively low temperatures. For refrig-
eration this may not pose a problem, but it puts a distinct

tjL shall stand for carrier mobility for the remainder of this paper.
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limitation on the use of the material as a generator
since the appearance of minority carriers sets up an
opposing Seebeck voltage. If the mobilities of the car-
riers are about equal, the Seebeck coefficient falls
drastically with the onset of intrinsic conduction: in
addition the ambipolar diffusion of hole-electron pairs
increases the thermal conductivity enormously.

loffe (4) suggested a means of increasing the ratio
[./Kph by appropriate alloying of semiconductors. Gen-
erally speaking, his idea was this: If a given compound
A is alloyed with another compound B in which the
atoms are of different mass but have a similar valence
electron structure, then we might expect phonon prop-
agation to be reduced with carrier mobility only slightly
affected. This is particularly reasonable since the
phonons have a wavelength of about a lattice constant
and should be strongly scattered by the presence of a
foreign atom in the lattice. On the other hand, if the
electronic structure of the foreign atom is not too
different from the indigenous ones, the electrical dis-
turbance produced by it may well be small compared
to the electronic wavelength, which may be several
lattice constants in length. By and large, his idea has
been proven correct. Improvement in the Z value has
been achieved, though it is not as great as Ioffe hoped.

Two theories are extant on the mechanisms involved.
The Russians have suggested that electrons in a semi-
conducting compound move primarily on the metal
sublattice while holes travel on the nonmetal one.
For example, alloying n-type Bi 2Te3 and Bi2Se 3 should
improve the Z of the material, because electron mobility
is little affected but phonon conduction is reduced.
Correspondingly, alloying Bi 2Te3 with Sb 2Te3 should
have little effect on hole mobility. They claim experi-
mental verification for this, but the mobilities given
for the pure compounds are so much lower than those
found by American workers that the validity of their
results has been questioned.

On the other hand Cornish (5) has proposed that if
the ratio of the ionic radii of the metallic ions to the
nonmetallic ions, Rm/R,,on is greater for the alloying
compound B than for the original compound A, the
ratio of the electron to hole mobilities increases. Thus
for n-type material, RmIRo,, of B should be larger than
for A, while for p-type material, RmIR,ton for B should
be less than for A. In compounds studied so far, the
two theories make the same predictions, so at present
there is little reason to choose between them.

Attempts have been made to predict a theoretical
limit to the figure of merit, but the fact is that in its

present condition the theory of the solid state is incap-
able of such a prediction. However, Donohoe (6), for
example, has predicted an upper limit of 17 X 10-3

at room temperature. This is typically based on favor-
able but reasonable values of the pertinent parameters.
(By reasonable we mean reasonable in the light of pres-
ent experimental knowledge.) If his prediction is cor-
rect, the future of thermoelectric power generation may
be limited, but the attainment of only half this upper
limit would open up large areas to commercial thermo-
electric applications.

It should be noted that claims that the product ZT
can never be greater than 1 to 1.5 belong in the same
category as the attempts to predict an upper limit to Z.

CONCLUSION

Because of the inability of the present theory to make
quantitative predictions concerning the best we can
hope for or even to indicate where to look for it, a
large effort has gone into a search for better materials.
That the effort has been largely Edisonian in character
is not the fault of the investigators. Progress has been
made, particularly in the area of high temperature
materials, but there have been no breakthroughs.
The feeling is becoming more and more widespread
that any real advance in the application of thermo-
electric effects will have to be based on a solid theo-
retical foundation that is presently lacking. This calls
for nothing less than an extension and perfection of
the present theory. While the carrier concentration
of interest appears to fall midway between the metals
and present semiconducting devices, it is too early to
concentrate in this area.
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