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ABSTRACT

This paper describes and derives a numerical integra-
tion technique presently being used at NRL for problems in
structural dynamics. The method is capable of computing
damped and undamped shock spectra, Fourier sine, cosine,
and regular Fourier integrals (frequency response from
transient response), and the inversion of the Fourier sine
and cosine integrals (transient response from frequency
response). It can also be used to calculate Fourier series
coefficients, and for the numerical solution of nonlinear
equations. Several examples are worked out in detail and
some others calculated by NAREC (NRL's digital computer)
are shown to present some idea of the p r e c is ion of the

method. This report does not assume a sophisticated
mathematical background and uses only t h o s e techniques
which are available to undergraduate students in engineering.

PROBLEM STATUS

This is an interim report on one phase of the problem;
work is continuing.

AUTHORIZATION
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A NUMERICAL PROCEDURE FOR SHOCK AND FOURIER ANALYSIS

INTRODUCTION

In the calculation of the response of linear elastic structures to transient forces and

foundation motions it is often necessary or convenient to compute the response of a set

of single degree of freedom oscillators to the impressed transient. Normal mode theory,
for example, defines (1-3) a set of single degree of freedom systems whose superposed
responses become the structural response. It will be shown in a later section that the

solution of certain Duhamel integrals (dealing with the undamped single degree of freedom
mechanical system) leads to a means of evaluating Fourier series coefficients and to the
representation of the Fourier transform.

Quite often only a graphical record of the impressed transient is known or a Fourier

spectrum of the solution of the differential equations is known and the problem is to
calculate the structural response (4,5). This is usually accomplished by electrical analog

techniques, some general numerical integration method (6,7), or by graphical or semi-
graphical solutions (1,8,9). It is quite legitimate therefore to ask "Why present another
method?" The answer would be that although many procedures are available, most are
designed to show how a special technique, an iteration, an integration by replacement of
the original differential equation by one of finite differences, a Maclaurin series expansion

with associated assumptions in regard to the behavior of the derivative of the acceleration,
or an analogy is used to solve the problem. It was thought that the individuals involved in
solving these problems might profit both timewise in the calculation of the response, and
by an increased understanding of the problem, if a simple, powerful, yet precise technique
which closely followed an easily understood physical argument was presented.

In this method the differential equation of motion for the oscillator is not replaced in
the classical sense by one of finite differences, nor is any iteration required in the linear
case to obtain a solution, even though damping is present. The technique is simply a
logical extension of ones previously presented (1) and has been used extensively at the
U.S. Naval Research Laboratory since the author proposed it in 1956.

This report deals primarily with the undamped response of the oscillator to a founda-
tion motion when the velocity of the base is known. The numerical integration method is
also presented with an example for this case with linear damping, and the equations for

the damped or undamped response to applied forces or foundation accelerations are also
presented. The nonlinear cases are only briefly mentioned, as they will be the subject of

future reports. Some Fourier series coefficients are calculated and two inverse Fourier
transform problems are worked out.

SYMBOLS

A dot over a symbol indicates differentiation with respect to time.

An nth Fourier cosine coefficient

An nth Fourier cosine coefficient for half range expansion

Bn nth Fourier sine coefficient

Bn nth Fourier sine coefficient for half range expansion

1
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D(x) nonlinear dissipative damping term

5(c) D(i) with linear term removed

F(T) force as a time function

Fn force at time denoted by subscript

F,(w) Fourier cosine transform value at w.

Fs(w) Fourier sine transform value at c.

K linear spring constant

L a dummy variable

M mass

N total number of data points

R(x) nonlinear resistance function

R(x) nonlinear resistance function with linear term absent

Sn first forward difference at n

Sn2 second forward difference at n

Sn_ Sn -S _

T time

T. time at end of input

V step change of velocity of value V

X relative displacement

Y absolute displacement

Z foundation displacement

a,b an angle

c linear damping term in cX

di deviation or error at i

f frequency, cycles/time

f(t) a function of time

f(t + 0) right-handlimit of f(t)

f(t - 0) left-hand limit of f(t)

g(r), g(s) functions of r, s, etc.

h an increment of time

p damped natural frequency, rad/time

t time

a ratio of damping to critical linear damping

A, negative of average value of a function
S3.14159-------

6 an angle

x a frequency, rad/time

c undamped natural frequency of linear system, rad/time

2



NAVAL RESEARCH LABORATORY 3

THE SIMPLE OSCILLATOR

The simple oscillator of Fig. 1 has the following general differential equation of

motion:

MY + D(X) + R(X) = F(t)

where X = (Y - Z), D(X) is a dissipative term, and R(X) is a restoring force term.

Equation (1) may be written in the form

MY + C(Y - Z) + K(Y - Z) + D(X) + R(X) = F(t)

(1)

(2)

where D(k) and k(X) are the nonlinear terms of the dissipative and restoring forces. If

the system is linear, Eq. (2) reduces to

MY + C(Y - Z) + K(Y - Z) = F(t). (3)

Assuming that C < 2 vK' (i.e., C < critical), and using the notation

o2 = K/M, a = ' ', 2

Eq. (3) may be written as

S22a wY + o2 Y = 2 acZ +w
2 Z + -- t-

M (4)

There are two cases that will be the subject of this report: there is an applied force, but

no foundation motion; and there is foundation motion, but no applied force. Combinations

of solution for the linear system can of course be determined by superposition.

RI(X) o(/

I Fig. 1 - The simple oscillator

ýY

For relative motion
reduces to

(x) in the case of foundation motion with no applied force, Eq. (4)

K + 2acok + W2 x = _-z

for the damped case, and

S+ .2 X = -Z

C
C
I..

C"

(5 a)

(5b)
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for the undamped case. For applied force and no foundation motion they become

X+ 2a cx X' + -2 X = F(t) (5c)M

and

+ OJ2 X - F(t) (5d)M

since X = y - Z, and Z = 0.

DERIVATION OF METHOD

Undamped Response

In order to shorten this paper only the numerical integration equations for a linear

oscillator responding to a foundation motion will be derived in detail. The problem
considered is to obtain the relative response if a record of the velocity of the foundation
is known as a function of time.

The solution of Eq. (Sb) and its derivative can be shown to be (1)

X = cos wt + Zsin ct f J(T) sin w (t - T) dT (6a)

and t0

SXX 0 sin &t + -Cos Wt fZ(T) cos co (t - T) dT. (6b)

0

These are linear equations, so if the solution were known at t = t 1 , the values of displace-
ment and relative velocity could be considered to be "initial values" for time redefined to
begin there. Therefore if the Duhamel integrals could be integrated with good precision

over a time interval, At 1 = h, say, then these new values of x and */lwat t = t 1 + At 1 could
be used as "initial values" to continue the problem.

Consider a portion of a velocity record as shown in Fig. 2. For convenience the
record is divided in a number of regions by equally spaced time increments, h = At.*

Assume that X and k/&o are known for t = nh, i.e., Xn and Xin/&. The problem resolves
itself to finding the values of t = (n + 1)h. If Xn and kn/&) are considered to be "initial

values" and time redefined as starting at this point only, the integrals need be evaluated
at the new t = h. Suppose it was desired to use the average foundation acceleration over

the increment as the approximation to the true foundation acceleration; then

Average foundation 1 C Z(t) dt = n+1 -' (7)
acceleration - h f h

tn

by the mean value theorem. Over this region then (using the redefined t) the equation for

the foundation velocity becomes

Sn t(T= +h (8)

*This is an unnecessary, but convenient restriction. It makes the calculations less
cumbersome and machine programming easier.

4



NAVAL RESEARCH LABORATORY 5

where s, = Z, + 1 -Zn. Sn is in reality a first forward difference and Eq. (8) in effect
replaces the curved foundation velocity function in this region by a straight line. If greater

precision is desired an assumption can be made about the rate of change of the foundation

acceleration, such as, let Y be constant over the increment. A parabola passed through

the points 2n- 19 n, and Zn+l, or one passed through 2n,2n + IZn+2, will satisfy this
requirement over the increment. Therefore

Sn t n - I (9)'~) n + -h+ _-t-2- 1 9

or

where

Snt n (t2Z(t) = zn + -h + -2 h2

s2-1 =Sn -n1 =Zn+i - 2 Zn + ',-

n Sn+1 - Sn n+2 n+1 n

(10)

Note that S2 is not the square of S but is the second forward difference. In both equations

when t = h, Z(h) = Z"n + s, so the curve is not in this respect like a Taylor or Maclaurin

series expansion which has been truncated. It is generally more convenient to use Eq. (9)

in the numerical problem, because after the solution is started it uses a rearward point,

and no difficulties are encountered at the end of the forcing function.

n-i n n+l n+2 TIME

Fig. 2 - Portion of a velocity record

Over the time interval from in to in+l the equation of the curve has now been

defined, so the integration and evaluation at h can be accomplished. If the point by point
numerical integration equations are then scaled by wo for convenience in number handling,
the results are

Xn+ Xn Wco Sn (1 - cos h)

Sl - os)h +Xnh sn oJh

n- ~ 1 +csh sn (11a)

c ...
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and

X. - w sin wh + X n cos nh hsin h

- S2 (1-cos wh sinwh (11b)

Two reasons for using equally spaced time increments are apparent immediately: (a) it is

comparatively easy to use the parabolic approximation of the forcing function with equally

spaced points; (b) for any frequency the sines and cosines need only be calculated once, and

hence the trigometeric functions merely become numerical constants multiplying Xw, X, S,

and S2. Of course if the parabolic approximation to the forcing function is not desired, the
S•_ terms can be ignored, or higher order approximations to the input can be considered.

n-I
The natural expansion functions for the response of an oscillator are sines and cosines
(or, in the damped case, damped sines and cosines) and the results are of this form.

There still remains the problem of starting the solution. At the beginning of the input

Eqs. (6) are still valid. It is only necessary to account for the initial conditions, if they

are different from zero, and for the second difference term, S2, which does not exist

for the first step of the solution. Assume the general initial conAitions that at the begin-

ning of the forcing function (in reality at the left-hand limit of (t - 0) as t - 0, that is, as

t - 0 from the negative direction) that X = d, x = v, and there is a step change in foundation

velocity V. Then the starting equations become

So (1 - cos owh)

X1 o = dco cos w-h + (v- V) sinwoh - o sh

2 (1 -2cos wh sin wh (12a)

and
sin c•h

= - dw sin wh + (v - V) cos oh - So s in w-

Ss 2 (1 - coswh sin&jh\

-o c2oh2 2wh (12b)

Since during the integration each pair of points Xw and X are considered to be new "initial

conditions" for the next points, these equations also can be used to handle finite discon-

tinuities in the foundation velocity, at any time.

The step by step numerical integration equations exactly satisfy the original differ-

ential equation over any increment which is a straight line (S2 made zero) or a parabolic

arc. Therefore, consider the problem of the response of a linear oscillator to a velocity

forcing function which has at most a finite number of finite discontinuities and the segments

between these discontinuities are a combination of straight lines and second order parab-

olas. The proper use of these numerical integration equations will exactly solve the

problem at each calculated point with the exception of number round-off error, of course.

The numerical integration equations are stable and exact for this case regardless of

increment size. For segments which are higher order curves, the differential equation

is exactly satisfied up to the second difference in the forcing function. The closer the

approximating curve lies to the true one, the more precise the answer. The error in

this technique lies in the closeness of fit of the approximating segmental curves to the

forcing function; no error is inherent due to increment size alone, in the linear case.

6
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r

Damped Response

The differential equation of motion to be solved for the damped case is

X+ 2awX + 2 -- (5)

where again it is assumed the foundation velocity is the known forcing function. This
differential equation has the solution (1)

X = X(0) e-a t os pt + a2 sin pt

t

+ *(O) e-a"'t sin pt _ 1 Z(T) e-aw Et-T1 sin p(t - T) dT. (13)p Pf

0

If the same procedure is used to approximate the forcing function as in the damped case
then the step by step numerical integration equations (scaled by W for convenience) become

ne-a'Jh sin ph
Xn+1 C =Xnwe-acoh (cos ph + Sf si p2h) + a2

_-a.2  Ph

Sn [1 - eawh (cos ph sin ph)]7o-h +j sinph2

ns-I__fl.1 2a- e-acoh +I 2a cos ph- (I-2a2 2L sin ph

wh + 2 ~ whK2 w) ' jh 2/ - j(14a)

and

Xn+i Xn . e-acX h sin ph + 'n e-awh os ph - _ a sin ph

Sn e-awh sin ph Sn-1 ý1 _ e'"h [osphh/ah I ph]04b)

wh fl -1 2 wh 1,~h e ~ (ý h + ,2si

The procedure for obtaining the starting equations is the same as the undamped case.

A Word of Caution

Often it is assumed that the damped and undamped natural frequencies are equal. If such an
assumption is made the second difference (Sn ) should be dropped from the calculation because
the error in the exponential and trigonometric coefficient of this term in the X equation can
become larger than the true value of the coefficient. The abridged equations become

Xn+I o = Xnwe-acoh (cos wh + a sin aih) + in e-acxh sin wh

S
- {1 - e-a-h (cos woh + a sin wh)} (15a)

'n+l Xn e-ahsn *nh + 'n e-aah (cos wh - asinwh)

Sn -,,,h sincoh. (15b)
cýhe
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SAMPLE PROBLEMS

Two simple problems were chosen to show sample computations. Known solutions

exist, so that comparison with theoretical values is possible. Consider the following

velocity forcing function: Let

Z = 0, for t < 0

=iZ0 sink t, for 0-< t _ 47T/k

S= 0, for t > 477T/

and assume the initial conditions are such that the mass is at rest. The values of the

chosen parameters are w = 600 rad/sec, X = 1200 rad/sec, h =77/7200 sec, f) = 95.5 cps,

f = 191.0 cps, Zo = 90 in./sec, and a = 0.1 = 10% of critical (when damping present).

Table 1 is the listing of the velocity forcing function for 24 increments needed for the

integration. The values of the sines, cosines, and exponentials used in these examples

were taken to six decimal places, but the actual numerical integration was held to three

decimal places in the answers.

Table 1

Velocity Forcing Function

SZn Sn S___

0 0 +45.000 000 -12.057 714*

1 +45.000 000 +32.942 286 -12.057 714
2 +77.942 286 +12.057 714 -20.884 572

3 +90.000 000 -12.057 714 -24.115 428
4 +77.942 286 -32.942 286 -20.884 572
5 +45.000 000 -45.000 000 -12.057 714
6 0 -45.000 000 0
7 -45.000 000 -32.942 286 +12.057 714
8 -77.942 286 -12.057 714 +20.884 572
9 -90.000 000 +12.057 714 +24.115 428

10 -77.942 286 +32.942 286 +20.884 572
11 -45.000 000 +45.000 000 +12.057 714
12 0 +45.000 000 0
13 +45.000 000 +32.942 286 -12.057 714
14 +77.942 286 +12.057 714 -20.884 572
15 +90.000 000 -12.057 714 -24.115 428
16 +77.942 286 -32.942 286 -20.884 572
17 +45.000 000 -45.000 000 -12.057 714
18 0 -45.000 000 0
19 -45.000 000 -32.942 286 +12.057 714
20 -77.942 286 -12.057 714 +20.884 572
21 -90.000 000 +12.057 714 +24.115 428
22 -77.942 286 +32.942 286 +20.884 572
23 -45.000 000 +45.000 000 +12.057 714
24 0

*This is really S2.

8
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Undamped Response

The numerical integration equations for the undamped response become

Xn+c = 0.965926 XnW w + 0.258819 Xn - 0.130154 Sn + 0.021593 S2

Xn+i = -0.258819 Xn w + 0.965926 Xn - 0.988616 So - 0.002843 S2 1

Table 2 was prepared and the integration carried out in it. The theoreticalxWis included

to show the precision of the solution. The forcing function was defined for every 30 degrees

(on its own sine wave) and the response was therefore calculated at a time which corre-

sponds to an angle of 15 degrees.

Table 2

Undamped Response Computations

0 9  Theoretical 0.258819 +0.965926 -0.988616 0-.002843
0 *652 0.258819 -0105 +0.L0215eo9h-.28193 s [~ ~ +

Xný Xn Sn ý- N1 Xn~l' 2_ X n •1 in.l

} F

0 0 0 -5.857 -0.260 -6.117 -5.994 0 0 -44.488 +0.034 -44.454

1 -5.909 -11.506 -4.288 -0.260 -21.963 -21.962 +1.583 -42.939 -32.567 +0.034 -73.889

2 -21.215 -19.124 -1.569 -0.451 -42.359 -42.427 +5.684 -71.371 -11.920 +0.059 -77.548

3 -40.916 -20.071 +1.569 -0.521 -59.939 -60.000 +10.963 -74.906 +11.920 +0.069 -51.954

4 -57.897 -13.447 +4.288 -0.451 -67.507 -67.491 +15.513 -50.184 +32.567 +0.059 -2.045

5 -65.207 -0.529 +5.857 -0.260 -60.139 -60.000 +17.472 -1.975 +44.488 +0.034 +60.019

6 -58.090 +15.534 +5.857 0 -36.699 -36.433 +15.565 +57.974 +44.488 0 +118.027

7 -35.449 +30.548 +4.288 +0.260 -0.353 0 +9.498 +114.005 +32.567 -0.034 +156.036

8 -0.341 +40.385 +1.56
9  

+0.451 +42.064 +42.427 +0.091 +150.719 +11.920 -0.059 +162.671

9 +40.631 +42.102 -1.569 +0.521 +81.685 +81.962 -10.887 +157.128 -11.920 -0.069 +134.252

10 +78.902 +34.747 -4.288 +0.451 +109.812 +109.918 -21.142 +129.677 -32.567 -0.059 +75.909

11 +106.070 +19.647 -5.857 +0.260 +120.120 +120.000 -28.421 +73.322 -44.488 -0.034 +0.379

12 +116.027 +0.098 -5.857 0 +110.268 +109.918 -31.089 +0.366 -44.488 0 -75.211

13 +106.511 -19.466 -4.288 -0.260 +82.497 +81.962 -28.539 -72.648 -32.567 +0.034 -133.720

14 +79.686 -34.609 -1.569 -0.451 +43.057 +42.427 -21.352 -129.164 -11.920 +0.059 -162.377

15 +41.590 -42.026 +1.569 -0.521 +0.612 0 -11.144 -156.844 +11.920 +0.069 -155.999

16 +0.591 -40.376 +4.288 -0.451 -35.948 -36.433 -0.158 -150.683 +32.567 +0.059 -118.215

17 -34.723 -30.596 +5.857 -0.260 -59.722 -60.000 +9.304 -114.187 +44.488 +0.034 -60.361

18 -57.687 -15.623 +5.857 0 -67.453 -67.491 +15.457 -58.304 +44.488 0 +1.641

19 -65.155 +0.425 +4.288 +0.260 -60.182 -60.000 +17.458 +1.585 +32.567 -0.034 +51.576

20 -58.131 +13.349 +1.569 +0.451 -42.762 -42.427 +15.576 +49.819 +11.920 -0.059 +77.256

21 -41.305 +19.995 -1.569 +0.521 -22.358 -21.962 +11.068 +74.624 -11.920 -0.069 +73.703

22 -21.596 +19.076 -4.288 +0.451 -6.357 -5.994 +5.787 +71.192 -32.567 -0.059 +44.353

23 -6.140 +11.479 -5.857 +0.260 -0.258 0 +1.645 +42.842 -44.488 -0.034 -0.035

Damped Response

For this problem the numerical equivalent of Eqs. (14) become

Xn+1 0.966512 Xn C' + 0.252160 Xn - 0.127915 So + 0.021036 Sn_

Xn+1 =-0.252160 Xn ca + 0.916080 'n - 0.963180 Sn - 0.007006 S2_

The results and comparisons with the theoretical solution are shown in Table 3.

(17a)

(17b)

-I

I.,

(16a)

(16b)

9
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Table 3
Damped Response

0.9665123 0.252161 -1.52 +0.507 +78.931 +71 -1.252130 X1 +1 0.91608 -. 61 -0.169 +106.895"

0 + + -5.756 -0.254 -6.010 -5.890 0 0 -43.343 +0.084 -43.259

1 -5.809 -10.908 -4.214 -0.254 -21.185 -21.190 +1.515 -39.629 -31.729 +0.084 -69.759

1 -20.476 -17.590 -1.542 -0.439 -40.047 -40.187 +5.342 -63.905 -11.614 +0.146 -70.031

3 -38.706 -17.659 +1.542 -0.507 -55.330 -55.391 +10.098 -64.154 +11.614 +0.169 -42.273

14 -53.477 -10.660 +4.214 -0.439 -60.362 -60.344 +13.952 -38.725 +31.729 +0.146 +7.102

51 -58.341 +1.791 +5.756 -0.254 -51.048 -50.909 +15.221 +6.506 +43.343 +0.084 +65.154

6 -49.339 +16.429 +5.756 0 -27.154 -26.896 +12.872 +59.686 +43.343 0 +115.901

7 -26.245 +29.226 +4.213 +0.254 +7.448 +7.779 +6.847 +106.175 +31.729 -0.084 +144.667

8 +7.199 +36.479 +1.542 +0.439 +45.659 +45.985 -1.878 +132.527 +11.614 -0.146 +142.117

9 +44.130 +35.836 -1.542 +0.507 +78.931 +79.163 -11.513 +130.191 -11.614 -0.169 +106.895

10 +76.288 +26.954 -4.214 +0.439 +99.467 +99.528 -19.903 +97.924 -31.729 -0.146 +46.146

11 +96.136 +11.636 -5.756 +0.254 +102.270 +102.119 -25.082 +42.273 -43.343 -0.084 -26.236
12 +98.845 -6.616 -5.756 0 +86.473 +86.117 -25.788 -24.034 -43.343 0 -93.165

13 +83.577 -23.492 -4.214 -0.254 +55,617 +55.113 -21.805 -85.347 -31.729 +0.084 -138.797

14 +53.754 -34.999 -1.542 -0.439 +16.774 +16.214 -14.024 -127.149 -11.613 +0.146 -152.640

15 +16.212 -38.490 +1.542 -0.507 -21.243 -21.749 -4.230 -139.830 +11.613 +0.169 -132.278

16 -20.532 -33.355 +4.214 -0.439 -50.112 -50.469 +5.357 -121.177 +31.729 +0.146 -83.945

17 -48.43.4 -21.168 +5.756 -0.254 -64.100 -64.245 +12.636 -76.900 +43.343 +0.084 -20.837

18 -61.953 -5.254 +5.756 0 -61.451 -61.373 +16.163 -19.088 +43.343 0 +40.418

19 -59.393 +10.192 +4.214 +0.254 -44.733 -44.741 +15.495 +37.026 +31.729 -0.084 +84.166

20 -43.235 +21.223 +1.542 +0.439 -20.031 -19.662 +11.280 +77.103 +11.614 -0.146 +99.851

21 -19.360 +25.178 -1.542 +0.507 +4.783 +5.159 +5.051 +91.472 -11.614 -0.169 +84.704

22 +4.623 +21.368 -4.214 +0.439 +22.216 +25.509 -1.206 +77.629 -31.729 -0.146 +44.548

23 +21.472 +11.233 -5.756 +0.254 +27.203 +27.206 -5.602 +40.810 -43.343 -0.084 +8.219

Increment Size

The size of increment for shock spectrum calculations is restricted if the method

is used without modification. Since this is a point by point technique, if h = At is chosen

too large for the high frequencies, it may turn out that values near the peak are missed.

This results in a value which is too low. In the Fourier portion of the calculations (to

be discussed later) the only restriction on increment size is that the arcs approximating

the forcing function must lie close to the true curve, because the method must compute

the end point anyway. A good rule of thumb is to note if a set of trapezoids at a chosen

increment size would be a good approximation to the curve.

For forcing functions which are a combination of straight lines, are parabolic arcs,

or are "sufficiently smooth," the numerical integration equations themselves can be used

for interpolation purposes* without changing the approximation to the forcing function.

The analyst should be careful however not to use the values at n + 1/2 when integrat-

ing between n + 1 and n + 2. This technique should be particularly useful when hunting

for maximum values and has no justification or need in Fourier spectrum type of

calculations.

The NRL digital computer NAREC has been coded to use this technique (without

interpolation) in the case of the velocity inputs and some results are shown later.

*Caution: This is not a normal linear or quadratic interpolation. See Appendix A.
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FOURIER ANALYSIS

Fourier Integrals

Let a function f(t) be real and satisfy the Dirichlet conditions (10), and let

f If(t)ldt (18)

exist. Then

1/2 [f(t + 0) + f(t - 0)] = (s) cos w(s - t) dsdco. (19)

0 -

This is known as the Fourier Integral Theorem (10-12). The function on the left merely
indicates that the double integral converges to the average value of the left- and right-hand
limits at a finite discontinuity of f(t). For the remainder of this paper this will be written
as f(t), but this point should be remembered.

If f(t) is assumed to be either an even function (f(-t) = f(t)) or an odd function
(f(-t) = -f(t)), simplifications are possible. They result in

f(t) J f(s) cos cos cos cot dsdco

0 -- 0

for f(t) even and

f(t) 1  f(s) sin cos sin cot dsdco

0 -c

for f(s) odd.

It is convenient to have the previous Fourier sine and cosine integrals as transform
pairs. The cosine transform is,

Fc(co) = f(s) cos cos ds (20a)

where

f(t) = J Fc(co) cos cot dco (20b)

0

and the sine transform is

Fs(co) = J f(s) sin cos ds (21a)

0

where

f(t) =-2 F.(co) sincot dt. (21b)

0

L I 1 I B i I n P @ P A • • I a I A h • h A T• hV
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Examination of Eq. (20b) will show that if t = 0

f(o) = 2 Fc (co) dci.

0

This fact has application when the inverse transform of a function is to be obtained.

Fourier Series

It is often convenient to expand an arbitrary function in the range from t = 0 to t = T.

in a trigonometeric series of the form

f~t)=Ao • 2nTTt •(2

f = + An cos t + Bn sin 2n7Tt (22)2 T. To
n=1 n=l

This is the full range expansion form of the Fourier series and the coefficients are found
by means of the formulas

A (t) dt (23)

0A° = 2o ft) dt

An -T! f(t) cos -n0 dt (24)

0

and
To

2$ f(t) sin 2n at.(
Bn f 0  d.(5

0

Half Range Expansions

However, it may become convenient to expand in a series of only sines or cosines.

For example

f (t) " n s in nt--26)

n=1

or

f(t) =LO + cos n 7TO (27)

2 T, n o
n=1

These coefficients are given by

Bn = f(t) sinn--0 at (28)

0

12
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2 f(t) dt (29)
0 0

and

An = f 0 (t) Cos n#7dt. (30)

0

Parseval's Theorems

Of the many theorems associated with Fourier analysis some of the most useful are

known as Parseval's theorems. These are presented without proof. For the Fourier
integrals,

2f2(t)dt =fF2(-)d= 2 fF2 .)d. F(2) dwo.f2t dt=-j FFo dS= Fsf)do=

0 0 0 0

For Fourier series,

f 2 (t) dt T T + (An2 + B

0 L n=1

And for the half range expansions,

To 2

f(t) d t =-- + 2] = "L- Bn•

0n=l n=1

FOURIER ANALYSIS AND THE LINEAR OSCILLATOR

The integrals of the Fourier transform pairs, and for calculation of the Fourier series

coefficients are all of the form

L

f g(r) sin ar dr (3 1a)

0

or
L

f g(r) cos ar dr. (31b)

Now sine and cosine functions are obviously the natural expansion functions when dealing

with the solution of an undamped linear oscillator. The question to be answered is then,

"Is it possible and efficient to use the undamped response of a linear oscillator to an

applied transient to calculate Fourier spectra, Fourier series coefficients, and inverse

Fourier transforms?" The answer is, "Yes."

C
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Fourier Transform

To examine the problem in detail it is now time to return to Eq. (6a), which is repeated

for convenience,

ý0 t T i.(a
X Xo cos cot + sincot fJZ(T)sinco(tT)dT. (6a)

If the Duhamel integral is integrated by parts and then the mass is assumed at rest

initially, there results

tZ(T) cos w(t -T) dT. (32)

0

Use of the trigonometrical substitution

cos (a - b) = cos a cos b + sin a sin b

yields
t t

X = - cos ct f Z(T) cos cot dT - sin cot f Z(T) sin wT dT. (33)

0 0

Both of these integrals can be associated with the Fourier transform pairs for time equal
to t, so the equation may be written

X = Fc(w ) 2 + F s (cO) 2 cos (cot -)

where

Fs Fs _ Fc

n c + F 2  F +F
C S S

The quantity (F2 + F•2)1/2 is usually called the Fourier spectrum magnitude value at W,

and 6 is the phase angle associated with this vibration. The maximum value of this

equation, evaluated after the shock motion is over, yields the interesting result that

the "after" or "residual" shock spectrum is in reality the Fourier spectrum of the
foundation velocity.

Equation (33) and its derivative give
t t

X-cosWt f .(T)cos TdT-sin wtf f(T) sinfwTdT. (34a)

00

and

(x+ z)-sin cot Z(T)cos o&T dT-cos otf (T)sin wT dT. (34b)

0 0

14
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If X, X, and Z are known for a particular time To (in this case, say, the end of the transient),

then simultaneous solution of these equations gives the integral values. They are
TO X() ZT 0

f Z(T) cos owT dT = - X(T0 ) cos coT0 + X + c(o) sin coT0  (35a)

0

and

To X(T) + Z(T°)

f Z(T) sin wT dT- o+ cos coT0 - X(To) sin oT0 . (35b)

However, these are precisely Fco) and F.(co) as defined by Eqs. (20) and (21), for a func-

tion which ends in finite time and are of the form of Eqs. (31).

Fourier Series Coefficients

To find Fourier series coefficients for the full range expansion let oJn = 2nn/T 0 , and

evaluate the response X and k at To for each n desired.

Then

A r (T) 2 n 'TdT 2X

An T0  cos To

0

and
To

B T -(T) sin 2 n--TdT 2 (X+ Z)
STof To -To "c

0

For the half range expansions let on = nTr/T 0 . The coefficients become

An (-l)n X

and

Bn -o 2(- 1 )n (X+2~ +
con

where the x and X have again been evaluated for each n at t = TO. This is an automatic

consequence of Eqs. (35).

Inverse Fourier Transform

With the exception of a constant multiplier, the transform and its inverse as defined

here are symmetric. Therefore, if one is willing to stop the co integration short of

infinity, an approximation to the inverse transform can be found by the same methods.

However some unusual scaling is involved, especially if a machine program has been

used which scales the X and i/co by ow. When the direct transform of an arbitrary function

is found, Fourier sine and cosine spectra are scaled by co with the proposed numerical

integration equations. (This was so that more convenient numbers could be handled but

is not a restriction as they could be de-scaled.) Consider the Fourier cosine transform
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only, because the same approach applies to the sine transform. Suppose a machine program

calculated coFc as a function of frequency f. However, for the input let g(T) in reality be

g(co) and attempt to obtain the inverse transform. The machine at each frequency f calcu-

lates

L

2 fF7 = 2iT f f g(w) cos 27Tf co d(

0

whereas
L

g(t) = 2 g(co) cos cot dco

0

is desired. If the integral was multiplied by 1/7T2 f for each f, then the coefficient of the

integral would be correct. Time t in the second equation must correspond to 2icf in the

first, so t = 27f. An example showing the application of the numerical integration equa-

tions to the inverse transform problem is shown later.

There are of course many examples of the use of Fourier transforms in the literature.

Two of the interesting ones are the calculation of frequency response knowing the time

response to impulse, and the inverse of this, namely, the calculation of the time response

for impulse knowing the frequency (steady-state) characteristics. To demonstrate this

consider the Duhamel integral
t

g(co) = - J f(T) cos co (t - T) dT.

0

By successive changes of variable, this may be written as
t

g(co) = -fJ f(t - T) cos oT dT.

0

If f(T) was the response to impulse the cosine term could be considered to be the driving

function and the response to steady-state vibration can be found for large t.

APPLICATION TO NONLINEAR PROBLEMS

The numerical integration equations as derived here can be applied to nonlinear single

degree of freedom systems and to two degree of freedom linear and nonlinear systems.

This has been done and will be the subject of a later NRL report. To merely indicate

the method of solution consider a nonlinear oscillator responding to an applied force. The

equation of motion might be written as

+ 2 aco + co
2 X = g(t) -D(*)-R(X). (2a)

Now if over a short time increment the quantity on the right-hand side was considered to

be An which is defined as the negative of the average value over this increment then

this equation may be written as

X + 2acoX + co2 X= - An"

16
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This over this short time interval is a second-order linear differential equation with

constant coefficients and the solution is well known. Since the average value of An is

required, iteration can be used with the proper numerical integration equations as derived

here, and a step by step evaluation of the response is possible.

The undamped response equations could also be used by putting the k term on the

right-hand side. This then becomes the numerical equivalent of the phase plane graphical

method.

EXAMPLES OF MACHINE COMPUTATIONS

Fourier Series Coefficients

The 20th to the 30th Fourier cosine series (halfrange expansion) coefficients of the

function y = (7T/4) I sin 27t I are used to illustrate this application. The arch of the sine

curve was divided into 4, 6, 8, 10, and 12 increments (increment sizes 1/8, 1/12, 1/16,

1/20, and 1/24 the size of a sine period) and for each of these increment sizes the response

of an undamped linear oscillator was used to calculate the coefficients at 2-cps increments

from 40 to 60 cps. The input was given to six significant figures. Table 4 shows how many

periods of the responding system correspond to the increment size used. For example,

at 60 cps when 10 increments were used (n = 10) the ratio of the increment size (1/20) to

the period of the responding oscillator (1/60) is 3.0.

Table 4
Number of Periods of the Responding System

Corresponding to the Increment Size Used

Oscillator fRatio of Increment Size to Oscillator Period

Frequency LWhen the Number of Increments Used is n
(cps) n(cs) n = 4 n =_6 n = 8_fn = 10 In=1

40 5.000 3.333 2.500 2.000 1.167
42 5.250 3.500 2.625 2.100 1.750

44 5.500 3.667 2.750 2.200 1.833
46 5.750 3.833 2.875 2.300 1.917

48 6.000 4.000 3.000 2.400 2.000

50 6.250 4.167 3.125 2.500 2.083
52 6.500 4.333 3.250 2.600 2.167

54 6.750 4.500 3.375 2.700 2.225
56 7.000 4.667 3.500 2.800 2.333
58 7.250 4.833 3.625 2.900 2.417
60 7.500 5.000 3.750 3.000 2.500

Table 5 contains the results of the computation. The values of each of the coefficients

have been multiplied by minus 106. The numbers have been rounded to the sixth decimal

place to correspond to the six decimal place input. To show the precision of the method

the errors in percent of the calculated value when compared to the exact theoretical value

are given. For example, at 60 cps, with n = 10, A30 = 0.000287 (calculated), A3 0 = 0.000278
(exact theory), and Error = 3.2%.

A.,,,
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This was using an increment size which is three times the responding oscillator's

period. Therefore thirty or more coefficients can be calculated using only a few input
points.

For those forcing functions which are exactly satisfied by the approximations, the

only error present is the normal round-off error.

Table 5

Comparison of Calculated and Theoretical Values (Multiplied by 106) for Fourier Coefficients

Frequency Theoretical Computed Percent Computed Percent I computed Percent computed Percent computed Percent

(cps) Value m 4 Error n= 6 Error CT 8 Error n 10 Error n 12 Error

40 625 728 16.5 660 5.6 663 6.1 645 3.2 634 1.4

42 567 693 22.2 580 2.3 581 2.5 608 7.2 580 2.3

44 517 544 5.2 547 5.8 543 5.0 539 4.3 532 2.9

46 473 574 21.4 534 12.9 509 7.6 484 2.3 487 3.0

48 434 505 16.4 470 8.3 455 4.8 439 1.1 444 2.3

50 400 489 22.3 458 14.5 439 9.8 403 0.8 422 5.5

52 370 390 5.4 391 5.7 389 5.1 375 1.4 383 3.5

54 343 417 21.6 351 2.3 351 2.3 352 2.6 351 2.3

56 319 371 16.3 337 5.6 323 1.3 332 4.1 323 1.3

58 297 363 22.2 336 13.1 305 2.7 312 5.1 300 1.0

60 278 293 5.4 301 8.3 292 5.3 287 3.2 279 0.4

Inverse Fourier Transforms

To demonstrate that this method can be used to calculate the inverse Fourier trans-
form without the use of special tables the following two cases were worked out on the
digital computer NAREC.

Case I - The Fourier transform of a step function of heigth one-half unit, lasting two

seconds of time, and returning to zero with a step change of one-half unit was used as an

input to the shock record program. (This program prints out the scaled Fourier transform,

the Fourier sine and cosine transform, as well as + Xco(max) and -Xco(max).) Of course the

integration could not be carried out to infinite frequency so a cutoff frequency of approxi-
mately 83 cps was decided upon and about 100 output points were used to define the

function, up to time equal to 7T seconds. The error in the resulting transformation was so
small that a graphical plot of the original function superposed upon the results of the

inverse transformation will not show the precision of the method. Table 6 shows the

average algebraic error, the average absolute error, and the root mean square error.

Case II - As possibly a more severe test case, it was decided to try a damped sine

wave. The procedure was to let the NAREC calculate the original function for about four

complete cycles, defining it at 100 points. This digital record was then used as an input

to the shock record program to calculate the Fourier sine and cosine transforms at
intervals of 2 cps from 0 cps to 300 cps. The sine and cosine transforms were then used

to calculate the original time function again by using them as inputs to the shock record

program. The original time function was

y = e-ae t sin pt

where a = 0.2, c = 300, (f z 47 cps), p = ol1 - a
2 = 293.938+, and the maximum value of

y turned out to be about 0.736. Figure 3 shows the results of this computation. Agreement
would have been better if a higher cutoff frequency had been chosen, say 500 cps or 750

cps, and if more closely spaced points had been used to define the original input function.



Table 6
Numerical Results for Case I

Error Inverse Fourier Cosine Inverse Fourier Sine

Computation* Transformation Transformation

Average di . 10-3 10-3

Error N 0.23 0.14 .

Average E Idil . 10-3 . 10-3
Absolute 0.95 1.33

Error N

Root Mean
Square d?? 0.18 . 10-3 0.28 x 10-3

Error N

*di is the deviation at point i and N is the total number of data
points (101 for the cosine transform, and 94 for the sine
transform).
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Fig. 3 - Comparison of results for Case II, a
damped sine wave
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Damped Shock Spectra

To show the effect of damping upon shock spectra an actual foundation velocity record
(Fig. 4) was used. It was divided into 760 increments and shock spectra for damping ratios
of a = 0, a = 0.01, and a = 0.10 were calculated and are shown in Fig. 5. (Curves for a =

0.001 and a = 0.0001 were also obtained but are not shown for reasons of clarity.) Figure 6
is a plot of the effect of damping upon the peak value and the effect upon the shock spectrum
value useful in stress analysis (4) (that value corresponding to that fixed base natural
frequency of the structure).

TIME 0.1754 SEC

Fig. 4 - Foundation velocity

20 fps

15fps
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i-.-

C-)o (1
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Of /
0 0
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U/
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-j
>~

200 300
UNDAMPED NATURAL FREQUENCY(cps)

Fig. 5 - Undamped and damped shock spectra
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-- PEAK VALUE
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Fig. 6 -Effect of damping upon the shock spectrum
values of interest

SUMMARY AND CONCLUSIONS

An easily understood, yet precise, numerical integration method has been derived which
allows not only shock calculations to be made but also Fourier analysis. This technique,
like all others, has two kinds of error present: inherent and round off. For initial value
problems, and problems with forcing functions which have a finite number of finite dis-
continuities and can be exactly described by a set of straight lines or parabolic arcs, the
method (as handled by a desk operator) has no inherent error. For continuous curves
the differential equation is exactly satisfied up to the second difference of the forcing
function. The inherent error lies in the closeness of fit rather than in any built-in ones.
This method has its own advantages and disadvantages which might be partially listed as
follows.

1. High precision when using second differences since error depends upon "closeness"
of fit.

2. Response including a linear damping assumption is not much more difficult to
compute than response with no damping because the exponentials, sines, and cosines
must be calculated only once per frequency, if the interval is kept constant.

3. There are no pseudoequations assumed for the original differential equation.

4. There are no iterations required for linear systems.

5. The numerical solution for a theoretically solvable problem is more rapid than
the exact solution because the original values of the trigonometric and exponential func-
tions are used throughout rather than being calculated anew for each point.

6. As has been indicated and will be shown in a future report, the method can be
applied to nonlinear one and two degree of freedom systems.
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7. As with any step by step method it tends to become tedious for a large number of
increments when using a desk calculator but is conveniently coded for an electronic
computer.

8. Each new value depends on a pair of previously calculated ones, so mistakes are
carried along.
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APPENDIX A

OTHER FORMS OF NUMERICAL INTEGRATION EQUATIONS:
INTERPOLATION

The numerical integration equations are presented in this appendix in their time
form. That is to say they have not been evaluated for t = h, so that they may be used
to interpolate for t < h. To obtain the normal step by step equations let t = h and
simplify. The input (forcing function) is defined in the same manner as in the derivation.

FOUNDATION VELOCITY FORCING FUNCTION

The undamped equations are

Xn+1 c = XnwcoSots + X sin cwt-S ( - cos t)

S 2h

2-1 (t 1 cos cot sin wt

- -- 2+ 2 - _--

and nS sin cdt

Xn+ -- Xnofsinoit +Xn Cos Wt - sh

n-11 Cos wt -sin wt\
oah k-h- wýh- 2

The damped equations are

&e (ca sinpt i e-aot sinpt

1 --at t _a

- [ 1 -e Cs sPt+ s pt)]

Sn-1{t12 [(l2a2]ectip
2 ~~e at + ]eatsnp

-- hf 2 coh L c ]

+ -•+ e-• GLwCos pt

and
• Xn &j e -awt sin pt (

XXl + 'n e- awt os pt a sin pt

+ (C 
.sPt]}.

23
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APPLIED FORCES

From the nth to the (n+l)th increment F(T) is defined as

Sn T Sn_-1 T2 •F(T) =Fn + --- + -2 -T

The undamped equations are

Xn FnXn+1 = Xn Cos cot +- sin wt + k (1 - Cos CA)

Sn t sin cot

Sn2-1h2 t 2 (1-cos cot) sin ct+ [ a2h + t]
WK2hh2 2h 2

and
'n~l Fn

X -Xnsint +_n cos ot +-K sin wt

Sn - cos wt)

+ n 2t cos cot 2sin wtS--2K h2 o+h+ --- - C-2 -h
2 /

The damped equations are

Xi =Xl eawt ( Cos pt"+ a sinpt +-'-e-acot sinpt
+1 acot r __

Fn e- t (cos pt + a sin pt)]
K [r _.

S[t a e Co pt) (1-2a 2 ) e-awt sin pt]

K L1 ch -e csphjs2y - 2- OSp ) .] p

$ 2 -n1it2tj- 4at _2(1- 4a2)Za
+ 2K -h2 h Ch2 L- 2 T2- (1 - e Cos pt)

[ - 2a2 2a(3-4a 2 '1 e-a&t sin pt}
- a) 21 ;2
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and

iX+ Xn eacot w t , __ ip

Xn+l- Xne- __ -e acot cos pt- sin pt r,.

Fn e-acOt sinpt Sn[- eact c a - - ]
+.K w/- - +K -- h - oh aospt+P

Sn2--f2t +.1 4a (1 e-a- w t Co s pt)

+ 2-Kjcoh72 - oh- &2 h2) ( t

- 2(1 -2a2) a] e-a&ot sin pt}

L 2 h2 _ Zh] a2

FOUNDATION ACCELERATION

By means of the similarity between Eqs. (5a,b) and (5c,d) it is only necessary to

change the following in the numerical integration equations for applied forces to obtain
those for foundation acceleration. Let

so Fn "n S S s2 2
-co2' Knd- n on-1

K- = - -2 ' ,2 K w2



APPENDIX B

ANOTHER SET OF EQUATIONS FOR FOURIER ANALYSIS

The solution of the differential equation with the mass initially at rest, and the founda-
tion acceleration as the driving function can also be used to calculate the Fourier Integrals.
Consider

t

X- f Z(T) sin co(t - T) dT

0
and t

J - { -(T) cos co (t - T) dT.

0

These may be expanded to

Xco - - sin cot f Z(T) cos coT dT + cos cotf Z(T) sin coT dT

0 0

and
t t

-Cos WotJ f(T) cos coT dT - sin&ot~ fZ(T) sin coTdT.

0 0

Simultaneous solution yields

f Z(T) cos coT dT - Xco sin cot - X cos cot

0

and

f Z(T) sin oT dT = Xo cos cot- X sin cot.

0
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