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ABSTRACT

When sound waves from a simple source are ejected
into the ocean, the outward motion of the wavefronts is con-
trolled by the speed of sound, which is a function of the
depth. Temperature soundings by means of a 900-ft bathy-
thermograph and Nansen bottle casts were made to deter-
mine the sound speed c as a function of the depth z. Co-
ordinate acoustic soundings to 1000-ft depths were made.
Geometric ideas are developed for use in arithmetically
calculating the predicted sound pressure. The basis of the
calculations is the sound speed function c(z) determined at
the place and time of the acoustic soundings. In this re-
port, computational methods are developed and used to ob-
tain numerical values for horizontal ranges to the converg-
ence zone. These values agree quite well with experimentally
determined values. A sequel will attempt to compute the
detailed distribution of sound pressure in the zone.

PROBLEM STATUS

This is an interim report on the problem; work is continuing.

AUTHORIZATION

NRL Problem S01-01
Project RF 001-03-45-5250

Manuscript submitted May 20, 1964.
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COMPUTATION OF ACOUSTIC RAYS FROM TEMPERATURES
MEASURED IN THE DEEP OCEAN AND PREDICTION OF THE

RANGE TO THE CONVERGENCE ZONE

INTRODUCTION

This report is a development of some of the details of geometric acoustics in the
deep ocean. The ray computations are based upon the speed of sound function c(z),
shown in Figs. 1, 7, and 11 in which z is the depth and all the restrictions which make
ray analysis possible are considered to be in force.

Although the ocean is a good transmitter of sound, it deviates from the ideal in that
rays are not rectilinear. The actual rays are space curves, but to make the present
analysis possible, horizontal refractive deviation is considered to be negligible. This is
an assumption of great utility in that the rays then become plane curves confined to ver-
tical sections of the ocean, and the speed of sound c(z) is a function of only the rectan-
gular coordinate z, the depth below the surface. Another assumption is that, for short
periods of time, the ocean is free of temporal changes.

DEVELOPMENT OF APPROXIMATE RAY EQUATIONS TO FIT
REFRACTION PARAMETERS MEASURED IN THE DEEP OCEAN

Each ray (Fig. 2(a)) selected at the source (xo, z.) by choice of the angle of emis-
sion 0.o, measured from the plumb line, has the Snell's law constraint sin 6 = Cp im-
posed upon it at every point of the ray. The quantity p remains fixed throughout the
course of the chosen ray. The ray is generated by a point on the wavefront moving with
sound speed c, in the vertical xz plane, under control of c(z) and Snell's Law.

In the geometric context of this study, at the source point (x., z.) there is not a real
acoustic source out of which issues a spherical flux of volume. The source point is a
mathematical point through which one or many rays are imagined to pass, each with its
characteristic "emission" angle of passage through the chosen "source point." The rays
are plane curves which come from -mo and pass across the plane of analysis toward +Co.

The function x(z) describes the ray. The horizontal distance x attained by the gen-
erating point corresponds with R, the sonar range. The distance x is therefore of con-
siderable practical interest. The accumulated horizontal distance x 2 - x 1 from one point
(xI, z,) on a ray to any other point (x 2 , z 2 ) on the same ray is given below in eight equiv-
alent forms. The first four are descriptions of any of a number of plane curves out of
which one ray may be fixed by the restriction of Snell's Law and the sound speed function
C(Z).

fx2 dx (1)

x1

f'2 dx
jz dz (2)

z1

1
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J tan 0 dz (3)

2 sin 6 dz (4)

z 1 /- sin
2

q

pc d (using Snell's Law: sin 6 pc) (5)

1 - p 2 c 2

pl dz
1 2 

(6)z 1 p2

C2

2 dz (where -c 1*) (7)
p 77 2wee ~

1 D/2 _-p
2

SD2 - 1/ 2 dz (where D = •72 - p
2

) (8)

The expressions for x2 - x 1 are limited by the existence of singular points s1 , s ,
s3, etc. (Fig. 2(b)), where the integrand D-I/2 becomes infinite. For example, this is
indicated in

x, - x, 2 tan 6 dz

when C(z) is of such shape as to make tan 6, where 6 is measured from the z axis
(plumb line), increase without limit at certain depths.

The fourth expression indicates that the singular points s1, s2P s3, etc., occur
whenever sin 6 is unity (6 = -,/2). The ray is then horizontal. The singular points are
known as the vertices of the ray. To avoid the infinities at the vertices, evaluation of x
is best done by integration between two adjacent vertices. In this interval z changes
monotonically with x.

When c(z) does not change with z, the rays x(z) are straight lines and the problem
is trivial. The function c(z) as used here is based upon measurements at sea and, typi-
cally, has the form shown in Fig. 1. The whole C(z) curve is not readily expressible by
a simple algebraic formula. The empirical curve shown in Fig. 1 was determined for
the deep water north of Puerto Rico, Lat. 19' 19'N, Long. 660 12.5'W, in October 1960.
The form of C( z) in the shallow depths changes with the seasons. At the stated position
of observation, conditions are relatively stable and change in a predictable annual cycle.
In the very deep water c(z) does not change enough with seasons to be of concern for
this analysis. In any case the variation in the speed of sound in the ocean is limited to a
relatively narrow percentage. The whole range of variation in c(z) is only 3.6 percent

'*See Ref. 1.
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of the lower extreme, or 1.492 km/sec (Fig. 1). Ultimately, c(z) is a function of z only,
for it is determinable from the three intermediate variables of temperature T, salinity
S, and pressure P. Each variable is measured at depth z and described as a function of
z only, i.e., T(z), S(z), P(z).

The ray constraint p is the function which gives distinction to a ray chosen from a
bundle at the source point (x., zo). In the expression

l2 - 2 dz

x-I R p p2

the integrand is a function of z only and is integrable, if not by simple quadrature, then
by approximate or graphical means provided that -72 > p 2 . At the vertices 7

2 
_ p 2 and

the integrand increases without limit. Special attention must therefore be given to eval-
uation of the integral near the vertex points. The constraint p may be written in several
forms:

sin 6 (9)
C(z)

sin 6. (10)

C( zO)

1C ' (11)c( Z)

The first form is written for the general point of the ray. The second applies to the
source level z. and the angle of emission e0. The third applies to the depth z = Z of a
vertex where 6 = O(Z) = -/2. Note that x does not enter into these equations. Once the
source depth z. and angle of emission 6? are designated by arbitrary selection, the
depth of the vertex z can be found from

sin 0 1

C(Zo) C(Z)

and the c(z) function of Fig. 1. The constraint p is an important ray parameter. Once
selected at a particular point it remains fixed at that value throughout the course of the
ray, including passage through c(z) discontinuities. If the angle of emission is 6 = 7T/2,
then C(zo) = C(Z). The source is then at a singular point such as s, (Fig. 2(b)) and
depth z 1 , which is a vertex. The range of x in the computations to be made here, for
the convergence zone, extends from one arbitrary point x1, zI to another arbitrary point
x 2, z 2 as expressed by Eq. (7). There remains, however, the question of the limit ap-
proached by the integral as z approaches the level Z of one of the vertices. In the ab-

sence of an explicit algebraic expression for c(z) or 7)2( z), convergence of the integrals
cannot be tested mathematically. Convergence is a matter for concern only at the ver-
tices where D -0 and D1/ 2 is very sensitive to changes in c(z).

Errors of large magnitude can enter D- 1/2 when 6 is near 7T/2 . An estimation of

error propagation for a given ray is needed. The basic quantity is the speed function
c(z). A small error 6c is propagated into the function D- I 2 according to the formula

8D- 1/2 1 8C

D-1/2 C2D c

4
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Fig. 2 - Ray shapes to show (a) emission angle and
vertices, (b) a ray with multiple vertices, and (c)
parabola geometry

The fractional variation in D- 1/2 is proportional to the fractional variation in c. The
proportionality factor is D ' c-'2 . In forming the variations, p is held fixed because only
one ray is under consideration. Calling the error factor E, the relation for E is

1 1 1-- -- -- _ __ 1 in_/ os

c 2 D e2 (1 - sin2 g) COS 2 0

By virtue of the definition c = -q1, SD-1/ 2/D-1/2 is also equal to - (1/Cos 26) (i'/•). The
error factor E is unity if the ray is directed vertically downward, for cos 6 - 1 when

S= 0. If 6 = 7/2, as it does at a vertex, E-,-. The error in estimating D-1/ 2 is cor-
respondingly very great. Computation of x increments at a vertex from the numerical
data of experiments, subject to the usual observational errors, leads to magnified uncer-
tainties in the total x.

The n2(z) function from which x (through D) is derived is always finite. It appears
therefore that in the region near a vertex a reasonable algebraic expression for q2(z)
may be introduced to arrive at an integrable form of D- '/2 which, although an approxi-
mation, would more nearly lead to a good value for the x accumulation x 2 - xI than
would the uncertain value of D- 1/2. A formula of this kind follows from Taylor's expan-
sion. The Taylor expansion of the 772(z) function in terms of z near the point z. is

72(z) = 7)2(Z+ h) = "n2(Zn) + h •d4- 2(z +- "q[ i 2(z) + (12)
- n zn

As a first-order approximation, derivatives of order greater than the first are taken
equal to zero. This means that over a range h of the variable z near the point z,7 2(z) will be considered to have the constant slope

5
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M n = -ý ( z

This is the slope of the function pý2(z) at the reference depth zn. The function 7 2 (z) is

therefore linear in h at points near the depth z. so that

7 2 (Zn+h) = mnh + 772(zn)

The corresponding value of D at points near the depth zn is

D(Zn+h) = mnh + 772(zn) _ p 2 .

The quantity Dn = ý2( zn) - p 2 is fixed by choice of zn and the ray constraint p. It is
fixed during a variation of h; the variation of h is identical with a variation in z so that

Mh = z with proper regard to sign. The segment of x between x, and x 2 (accumula-
tion of x) is then

x 2- x =1 P 2 D _ 1/ 2 dD
Dn2 Mld

The limits D2,D, and x 2, x1 are within the region where -0ý(z) is an approximate linear
function of z. Integration gives

2P 1/ 2 
1 / 2]X2 - XI - mn D

2P [(mn h2 + DnO (mn h, + Dn) 1

.2p + D 1 2 Dn 2] (13)

The arc A of the ray lying between x1, z, and x 2' z 2 (Fig. 3) can be imagined to be
movable along the ray and to be adjustable in length so that it may be fitted to any refer-
ence point where Z = zn and 72 = 0 2 (zn). The subscript n designates that point on the
ray chosen for reference which must lie within, or on one end of, the interval, and 7ý2(z)

is linear in z if the first-order approximation is to hold. Adjustment of x1 , z1 to ver-
tex s 1, with coordinates xnI, zn, leads to the following special values:

x1 = xn m1 = Mn

z I = Zn sin On = 1

Ill = 0 p = 7n sin On = 7n

61 = on Dn= 7T
2 - p 2 = 0.
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Using these special values, Eq. (13) becomes, for points near vertex s 1'

x2- 2p I -/ ,

or

2 4p2 h 2(x 2 -x ) 2

This is the standard form of a parabola with vertex at the origin (Fig. 2(c)) and with a
geometric focus-to-vertex distance of

f P
2

2 rnI

The ray near s1 is therefore parabolic in form for a short interval in z over which
r 2(z) is linear in z. The range accumulation x2 - xI may be very great if the slope m1
is very small within the interval ii of z. If h, the increment of z, is held fixed as ml,
the slope (dý 2 /dz)n of the r

2
(z) curve, is allowed to approach zero, the interfocal dis-

tance 4p 2/M increases without limit. The ray x(z) is then a parabola which degener-
ates to a straight line issuing horizontally from a source at a depth where m- = 0. The
ray then continues in the horizontal x direction indefinitely as the axis of a channel or of
a refraction shadow area.

Fig. 3 - Ray segment: x(z) is a
monotonic function of z

SI

(X2, E2

An equation similar to Eq. (14) can be written for vertex s2 (Fig. 3) by introducing
into Eq. (13) the special values characteristic of the vertex s 2. These values are:

x 2 z xn

z 2 -= zn

m 2 m rn

sin 0n = 1

h2 -0

62 2

From these special values pertaining to s

p = 7)n sin en

- 2 2 - 0.Dn f7l - p 0.

S4p2 h1
(x 2  - l 2

x2 x1 2P (15

7 C

I-

C.

(14)

7nf

X - X, = -2P
rhM2

(15)
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The ray near the vertex s2 is also parabolic. The range h of z over which the para-
bolic form holds depends upon the range of r

2 (z) over which the second-order derivative
d 2n2 (z)/dz 2 = v may be set to zero. At the customary shallow depths in which a source
is situated, the z interval of linear -r7

2
(z) is usually small. But at s2, in the very deep

water, the linear range of T
2

(z) can be very large. The length of the linear relationship
between )

2 (z) and z in the deep ocean water below z = 2 km is given by the empirical
curve in Fig. 4. The equation for the linear part of Q2( z) below z = 2000 m is

r 2
(Z) - M( ZZ- ZI) + 712•

The subscript "one" now designates a point - 1
2

, z, on the n 2(z) curve. The constants
m, zI, and n12 in the linear 2 function were determined graphically from a full-scale
plot of •vhich Fig. 4 is a reproduction. The point of interest here is that from about
z = 2 km to the limit of observation at z = 6.6 kin, the q2(z) curve is a straight line of
constant negative slope m. The numerical value of m between 2 km and 6.6 km is the
negative number-8.860 X10 - 12. The rays are parabolic over 4.6 km of depth.

The two vertex parabolas, given by

1(16)

X 2 - , = 2

when pertaining to the vertex at s2 ) and by

2 =(17)
X + 2p2V m

when pertaining to vertex at s, (Fig. 3), are governed by the values m1 at s, and M2 at
s2. The number m is an ocean physical characteristic which varies with depth, as shown
by the slope of the curve in Fig. 4. When the ray passes through a vertex (Fig. 5) the
quadrants in which Ih and m differ in sign are forbidden to the ray by the presence of the
imaginary number (Eqs. (16) and (17)). Along the parabolic ray, h and m must therefore
have the same sign. At s1, mn is positive, corresponding to depths below za (Fig. 4).
The increment in depth h 2 must also be positive. Therefore, the ray at s, is concave
downward. At s2, the slope m2 is a negative number, corresponding to depths greater
than zb (Fig. 4), and h, must be a negative number. The ray at S2 is concave upward.
The slope number m also controls the formation of the "shadow zone," with axis at depth
z., and the SOFAR channel at depth zb (Figs. 1 and 4).

The first-order approximation to q
2(z) results in a parabolic shape to the arc A

(Fig. 3), expressed by Eqs. (16) and (17), when one end, either x, or x2, is made to co-
incide with a vertex, and the vertex is at the same time a Taylor's expansion reference
point. This is a special situation pertinent to the one ray issuing horizontally to the right
or left from the reference point.

For all other rays the reference point is not at a vertex, but at some point such as
x1, z, (Fig. 3). Again Eq. (13) applies to a small range h in z about x., z.. The pa-
rameters appropriate to this situation where the source point is not a vertex are:

x1I = xn hI = 0

Z, = Zn P = 7n sin 0.

0 < n < 2 D = 77n2 - (sin2 On
)

_)n2 = 7- n2 cos 2
On•
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Sl

h(4) 
h(+ +X

II

-Z+z A- =-
/•,Z = +hAZ 

-

H I

h(- ] (-)
-X +5

S 2

Fig. 5 - Vertex geometry showing sign of

Az (= h) and parabolic shape of ray in vi-

cinity of vertices

The point z ,xn about which n 2(z) is expanded is the source point. Equation (13) is then

__D.
X2 -Xn [ + 2] (18)

This equation follows from the use of the first-order approximation of the function )2( z)

and describes the refractive bending of rays issuing from a source situated in a depth

range where the function ný2(z) is linear in z, as it was on 10-25-60 (Fig. 6, BT 24). On

that day the sign of the slope m at the source depth z, = 8.5 m was negative, and the ray

bundle computed therefrom showed upward bending. This upward-bending bundle of rays

will not be reproduced here because attention in this report is concentrated on the re-

sults of the following day, Oct. 26. The source depth of 67.1 m on 10-26-60 falls at a

point on the corresponding 7n
2( z) function (BT 27-28, Fig. 6) where curvature is promi-

nent, and the second-order approximation must be used for any reasonable extension in

ray depth. However, the second-order term, which is dependent upon h2 , becomes neg-

ligible in comparison with the first-order term as h decreases so that near the source

the rays are always parabolic over a short increment in depth. The accompanying x in-

crement may, however, be very great without violating the approximation.

A second order of approximation wherein the second derivative of n2( z) is not zero

leads to an expression which also is integrable, but somewhat more complicated. The

Taylor's series in this case is taken from Eq. (12) when simplified to

2(z) = 71
2 ( Z) mh hv

7z + mnh + 2n 2

The symbol vn is written for the second derivative of -
2(z) at zn. The value of D for

the second-order approximation is then

D = ný
2 (z) - p

2 
= q

2 (Zn) + nMh + - 2
2

vn - + mnh + Dn
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TEMPERATURE (*F)

Fig. 6 - Bathythermograms No. 24 and 27-28 combined.

These data give the temperature-depth function T(z).

As before D. -= 12(z.) - p 2 and is a number characteristic of the given ray and the point
xn., z. used for reference. The accumulation of range across the layer of thickness
z2-Z1 is then

X2 X1 = p D- 1/2 dz
z1

- 1/ 2
+Dn) dh. (19)p v - + mh

h0=0

To use the approximate value of D, special values of the variables must be decided upon.

These are z, = Z , h 1  0, h 2 = Z2 , and z 2 - Z1 = h. The subscript n is dropped since

it is clear that v and m apply to the reference point Z .' As before, the differentials dz

and dh are identical. Three integrals are listed in the Handbook of Mathematical Tables
(2), one for v/2 < 0 and two for v/2 > 0. When v is zero the curvature of 7 2 (Z) is

zero and the integral reduces to the linear case already treated (Eq. (13)).

EMPIRICAL REFRACTION PARAMETERS AND THEIR USE IN
THE APPROXIMATE RAY EQUATIONS

The n2 function has been used instead of c because Officer (1) uses it prominently
in his book. It is simply related to the adiabatic compressibility 86 by the relation

C

r.

u_
I-

0~
(0-
0
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q2n p0/3. It also has the interesting property of being linearly related (with slope m) tothe depth z over a very large range of depths in the deep ocean (Fig. 4).

The formula used for computation of c(z) is the following polynomial of 24 terms:

c = 1448.60 + 4.618T - 5.23x10 -
2 T 2 + 2.3x10- 4 T 2

+ 1.25 (S -35) + (S-35) [- 1.1 x 10-2T + 2.7 x 10-8T4]

- 2.0x10-7 (S-35)4 [1 + 0.577T- 7.2 10-3T2]

+ 1.815X 10- 2 D - 5.291 X10-
1 2 D3

+ (S -35) [3.36x10-D - 4.55 x10-9D]

+ D 1- 1.9 x 10-6T2 + 6.35 x 10 -T3 + 4.1x 10-10T4]

+ T [6.95 xl0- 6 D- 5.27x 10-9D
2 + 2.7 x10-14D3]

+ 1.5x10- 6 D(Q- 35) + 0.94 x10"1 2 D 2 (T 35)2

- 2.94x 10-' 8 D3 (Cp- 35)3 - 1.214x 10- 3 (m- 35)

where D is the depth of observation and p is the latitude. The polynomial was con-
structed from the zero-depth formula of Del Grosso (3) and the depth terms discussed by
Mackenzie (4), using their notation. The function c(z) as shown in Fig. 1 is a synthesis
of bathythermograph (BT) sounding No. 24 of 10-25-60 and a Nansen bottle (NB) sounding
(5) taken on 2-16-58. The later BT soundings, Nos. 27 and 28 of 10-26-60, were used for
closer examination of the shallow depths. The temperature-depth functions T(z) for
BT 24 and for BT's 27 and 28 combined are plotted in Fig. 6. The depth range of the BT
soundings was from 0 to 900 ft. The NB data were taken from WHOI Atlas Station S325.
Salinity values S(z) for Station S325 were combined with the average T(z) functions of
BT's 27 and 28 to give the shallow-range sound velocity function c(z) shown in Fig. 7.
At the start of this study the record of BT 24 and a source depth of 79 meters were
chosen as foundation for building the equations and diagrams. When all the results of the
October 1960 expedition became available for close scrutiny, it was found that the best
experimental run was that of 10-26-60. In this run the source was at a 67.1-m depth.
The convergence zone sound pressure pulses were well defined, and two BT soundings
had been recorded-one, No. 27,. just prior to the acoustic sounding at 73x 101 yd; the
other, No. 28, just after the acoustic sounding. The station times on the date of observa-
tion were

1050: BT sounding No. 27

1245: 73 x10 3 yd, acoustic sounding

1250: BT sounding No. 28.

The BT soundings give the shallow T(z) function to a depth of 280 m (900 ft). The
smoothed average of the two T(z) functions from BT 27 and BT 28 when put through the
c(T, D, S) formula yields one of the c(z) functions in Fig. 7. The T(z) from BT 24 is in-
cluded for comparison. The shallow-water n

2
(z) functions developed from c(z) are

given in Fig. 8.

12
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Fig. 7 - Speed of sound function c(z) for
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Fig. 8 - The function 7
2 (z) for BT 27-28

compared with BT 24

There is a close similarity between the two n 2(z) functions at depths greater than
67.1 m. However, an estimate of the effects of the curvature near 67.1-m depth for the
BT 27-28 leads to the conclusion that the second-order term in the Taylor's expansion
cannot be neglected in computations based on the 10-26-60 data at these shallow depths.
This requires the use of Eq. (19). The slope m (curve BT 27-28) at the source depth
67.1 m (Figs. 8 and 9) is positive. As the depth increases away from the source the
slope continues to increase. The second derivative v = d

2n 2
(z)/dZ2 is therefore positive.

It continues to increase to about a 90-m depth where it drops rapidly to zero (Fig. 10).
If foreseen, the second-order approximation could have been avoided if the source had
been put at a depth somewhat greater than 90 m where q

2 ( Z) is linear. The depth of
67.1 m was dictated by the operating conditions of the submarine carrying the sound
projector.

S- N BT24

ý_B 2-2

13
C

- BT 24

BT272

1542

1540-
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0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

DEPTH Z (METERS)

Fig. 9 - Slope m versus depth for velocity function
c(z) in the shallow 280-mn depths (Layer I)

DEPTH Z (METERS)

Fig. 10 - Second derivative v of c(z) versus depth
in Layer I (0-280 rn depth)

All of the computations here attempted are dependent upon the precision with which
the oceanographic data T, z, S, and p (latitude) may be measured. The temperature is
the most important and is given by the BT soundings to about ±0.1°F, or to three signifi-
cant figures. In spite of the lack of temperature precision at the shallow depths, six dig-
its in c(z), five in n, and five in n2 were carried along. Deep-sea thermometers used
for the deep measurements had a scale precision amounting to about ±0.010C. At 20 0 C a
change of 0.1°C amounts to a change of 0.37 m/s in c(z). The first and second deriva-
tives, m and v, were determined from the first and second differences, but only to the
depth of 280 m. The complete function c(z) for the full depth range is plotted in Fig. 1
on a scale accommodating five digits. The points marked at shallow depth are derived
from BT 24. Figure 11 is given to show how the points for both BT 27 and BT 28 fit the
same c(z) curve. From the smoothed c(z) curve (full line, Fig. 1), values for further
computation were read.

-70

+60

+50

.40

+10

0

-10

I I I I I I I I i I
• I I I I I J I i . . . . .
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The slope m was graphically determined between two reference depths z 1 and z2

(Fig. 4).

Z, = +2.450 km
2 sc

71 = 0.4405X10-6 sec2 M-2

z 2 = +6.400 km
2 sc

22 = 0.4050x10-6 sec2 M-2

m = -0.8860x10-
1" sec2 Mi3n

The linear portion, of which the important constant is the slope m, is found to extend

from z = 2 km to the maximum depth of 6.6 km which is recorded in The Woods Hole

Oceanographic Institution Atlas Series (5) for station S325. It is from this station (S325)

that the data for the points indicated by plus marks in Fig. 1 were taken.

CALCULATION OF THE RANGE ACCUMULATION ACROSS
LAYERS I, 11, AND III

Table 1 contains data from which range accumulation and other quantities can be

computed in the layer z = 0 to z = 280 m. This is Layer I in which refraction is gov-

erned by the BT 27-28 thermal readings. All of the five parameters c, , 7, 2 , m, and v

in the table are characteristic of the sea water. The derived function D- 1/2 contains, in

addition to the speed of sound, the emission angle 6, at the source. The parameters 72,

m, and v are plotted in Figs. 8, 9, and 10. The function D- U2 is plotted in Fig. 12 for

the 85.30 ray, which was judged to be the minimum-range ray. Later, 87.1' proved to be

the correct angle. The range accumulation along any ray from the source at 67.1 m to a

depth of 280 m is given by the expression

280

X2- X 1 - p D1 2 dz = pA

67. 1
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2

10

5

0 50 I00 150 200
DEPTH Z (METERS)

250 300

Fig. 12 - Typical D / 2(z) function obtained
by measurements in Layer I (0-280 m depth)

where A is the area under the D- 1/2 curve in Layer I. Approximate numerical integra-
tion requires attention to several corrections. The area A can be symbolized as part of
a larger area A' by

285

A' 5 D 1/2 dz

67.1 280 285

65 67.1 280

The integrand is omitted for brevity. The 85.30 ray accumulation of range in Layer I is
computed as follows, using the Layer I data in Table 1. When numbers are inserted A'
is given by

280

A' 20 _ /2= .1 D-' 12\ 67.1 + D1/2 285
10 L 65.0 280

70

= 10 x 253.32 xlO+3 = 2.1 x 18.97 x 10+3 + A + 5 x 89.54x 10+3,

or

2533.2 xl0+
3 - 39.82 x0 +3 - 42.7 xl+3 A .

Thus

A = 2450.7 x 103 ,

and

X2 -X 1 = 2450.7x10+3 x 0.64518x10-3 1581.1 m .

The range accumulation along the 60 = 85.3' ray in Layer 1 (67.1-280 m) is 1581.1 m.
The summation sign represents numerical integration and the brackets represent the
average value of the enclosed quantity. The constants entering the above computations
are zo = 67.1m, Az = +10 m, 60 = 85.30,and p = 0.64518-10-3

II 1II

I 

i I

II II

,I Il I I 
II

I i
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Table 1
Refraction Quantities in Layer I

(Extending from the Surface to 280 Meters in Depth)

(6o = 85.30)

z (Meters) c (m/sec) x ×10' n2 X10
6 mX1012  vX10 13

D -_1/2 X10-3

1544.16
1544.33
1544.51
1544.70
1544.85
1545.00
1544.97
1544.84
1544.76
1544.68
1544.12
1543.10
1541.91
1540.67
1539.39
1538.15
1536.91
1535.70
1534.51
1533.35
1532.22
1531.17
1530.19
1529.30
1528.52
1527.89
1527.32
1526.77
1526.22
1525.71
1525.19
1524.93

0.64760
0.64753
0.64745
0.64737
0.64731
0.64725
0.64726
0.64732
0.64733
0.64738
0.64762
0.64805
0.64855
0.64907
0.64961'
0.65013
0.65066
0.65117
0.65167
0.65217
0.65265
0.65309
0.65351
0.65389
0.65423
0.65450
0.65474
0.65498
0.65521
0.65543
0.65566
0.65579

0.41939
0.41929
0.41919
0.41909
0.41901
0.41893
0.41894
0.41902
0.41904
0.41910
0.41941
0.41997
0.42062
0.42129
0.42199
0.42267
0.42336
0.42402
0.42467
0.42533
0.42595
0.42653
0.42707
0.42757
0.42802
0.42837
0.42868
0.42900
0.42930
0.42959
0.42989
0.43004

-10
-10
-10
-8
-8
+1
+8.4

+19.3
+16
+31
+56
+65
+67
+70
+68
+69
+66
+65
+66
+62
+58
+54
+50
+45
+35
+31
+32
+30
+29
+30

0
0

+2
+1
+1

+17.5
+19
+15
+15
+25
+10
+2
+3
-2
+1
-3
-1
-1
-4
-6
-4
-4
-5
-10
-4
+1
-2
-1
+1

0
10
20
30
40
50
60
65
67.1
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
285

In the upper part of Layer I extending from the source at 67.1 m downward to 90 m,
the refraction is such that Eq. (19) may be used for computation of the range accumula-
tion over this 22.9-m depth range. Using a standard formula for integration (Ref. 2,
p. 300, form No. 182), the range accumulation becomes

S-1/2 h-22.9

x2- x = p 2 sinh' Vh + m2

/2vDn -ýý h=m

(20)

The limitations on the formula are v/2 > 0 and 2vD. > M2
. The first 4erivative

m = d? 2/dz is plotted in Fig. 9. These values are listed in Table 1. The second

I..

C ..

17.82
18.11
18.41
18.73
19.00
19.28
18.25
18.60
18.57
18.70
17.76
16.37
15.11
14.07
13.19
12.47
11.85
11.34
10.89
10.49
10.15
9.86
9.61
9.39
9.21
9.08
8.97
8.85
8.75
8.65
8.56
8.52

z=280

T D' /2 = 253.320
z-70
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derivative v = d 2
-

2 /dz 2 is plotted in Fig. 10. Both m and v enter the Taylor's expansion
as characteristics of the n2( z) curve at the reference depth z,, which in the present
case is the source depth z0 = 67.1 m. At 67.1 m, the slope m = +11.7X10-1 2 and
v = +9.6 X 10-13. To simplify the argument of the hyperbolic function, division of numer-
ator and denominator by m leads to

h- 22.9
-12 Vh+ 1

2X1 =p ( V sinlf I ________ (21)
22X2-X \2 •/v Dn

_ 2 , D- - 1
m m

Although the parameters are still three in number (v, v/m, Dn/m), the use of the quo-
tients eliminates some of the awkward powers of ten and simplifies dimensional consid-
eration, and the argument of the hyperbolic function remains dimensionless. Examination
of the )2(z) plot of Fig. 8 and the v(z) plot of Fig. 10 shows that the tangent of -,2(z)

turns steadily toward greater numerical values as the depth increases to about 90 m,
after which the turning suddenly drops to zero, corresponding to the resumption of linear
slope in n2 (z) at 90 m. One may therefore take the layer of water 22.9 m thick between
67.1 m and 90 m as a region in which one kind of definable refraction takes place and
compute the range accumulation for a selected ray in the layer so defined by using Eq.
(21). The selected ray has an emission angle of -0 = 85.3'. The values entering the
computations are

CO c= = 1544.76 m/sec

z0  = 67.1 m

v = +9.6 xl0- 13

m = + 11.7 x 10-12

v/m = 8.21 x 10-2

h = +22.9m

0n = 85.30

cos
2 , = 0.006714

•n = 0.64733x 10-3

772 = 0.419036 x10-6

Dn = (cos2(9n)'n
2  = 2.8134 x10-9

p = (sin 85.30) -n = 0.64518 1i0- 3

Dn/m = 240.46

2(v/m) (Dn/m) = 39.48.

Equation (21) may be simplified by making the substitution

V
-- + 1in

2 v DnM 1

18
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At the upper and lower limits a is aT2 and a 1 . As further abbreviations

,1 = sinh- Ia 1

a 1 = sinh 81

182 = sinh- 1 a2

a 2 = sinh 182

The range-accumulation formula reduces to

X2 -X1 = P

1aT1 - 6.20 0.1

2.88
2 6.20 0.465

f8, = 0. 1620

/82 - 181

.613 = sinh 8,

sinh /32

-12 = 0.4500

j - 6.928x10-7

p 0.64518 x 10"
3

then

0.28 80
x 2 - X 1 = p 0.28 - 268.20m.

6. 928 ) 1"

According to the refraction formula, Eq. (21), the ray accumulates 268.2 meters of range
in passing from the source at a 67.1-m depth and 85.3' issue angle to the depth of 90
meters.

The same range accumulation for the ray (0o = 85.30) may be estimated by graphi-
cal means from Fig. 12 and the numerical data in Table 1. The range accumulation is

90 .0

X2 1-XD" 1 / 2 dz = pA.

The integral may be subdivided as follows:

90

A' = 10 ZD /2

70

95

J D-1/2 dz
65

67. 1 90 95

65 67. 1 90

10 x 52.83 x10+ + 2.1 (D1/2 x 19. + A + 5 (D-_1/2) x 16.4y 15.7

- 39.8x10 + A + 80.300 x10+3

19
F.

Since
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Thus

A ý 408.5 x 10 +3

and

x 2 -x 1 = pA = 0.64518 x10-3 x 408.5 xl103 = 263.6m.

This is to be compared with 268.20 m obtained by the range-accumulation formula above.
If there were no refraction, then

x 2 -x 1 = 22.9 tan 85.30 = 278.533m.

The curved (refracted) ray has the expected shorter x component.

Acoustic ray formulas developed from Taylor's expansion hold only over the limited
range of the expansion. They are limited to small ranges h (- Az) in the variable z, and
they are also limited to certain ranges of the physical parameters. For example, Eq.
(20) is limited by the condition 2vDn > m

2 because the argument I of sinh- 1 I becomes
infinite when 2vDn = m2. Equation (20) does not cover the interesting case of emission of
a horizontal ray from the source point because, then, D. n 7

2
(zn) cos

2 
7/2 = 0. This

being the case, it is better to return to Eq. (19) and insert Dn = 0 into the integrand. In-
tegration then readily leads to a different formula. It is however of interest to determine
the limiting emission angle at the source depth z0 = 67.1 m, where co = 1544.76 m/sec,
corresponding with 2vDf, = m2 . The angle must be less than ?/2 since Dn cannot be zero
in Eq. (21) and Dn = r) - p 2 , by definition. The ray constraint p p p0 = P" holds since
z. and z,, are the same point and 6. = 0.. The limiting angle an can therefore be
computed from the relations 2vDn = m2, Dn = ) np 2 , p (sin 007)n, and the 7 2(z) pa-
rameters

n2 = 0.41904x10-6

M= +11.7x10" 2

m2= 1.37x 10- 2 2

v= +9.6x10-3 .

Combining the three relations above it is found that

m2
sin2 on = -n277n2 v

= 1 - 0.00017.

The limiting emission angle 0, is thus found to be 89.2530.

The next layer, No. H, starts at 280 m. This is the end of the BT 27-28 sounding for
which -02 is known with some certainty. Beyond the end of the BT 27-28 record at 280 m,
the c(z) function (as shown in Figs. 1 and 11) was "faired in" to make a smooth connec-
tion between the shallow BT data and the deep-water Nansen Cast data. The interpolated
connection starts at 280 m and ends at about 1000 m. The course of the connecting link
is not all imagination. The two ends are fairly well fixed and the points from the S325
Nansen bottle cast taken at another time (February 1958) are available as a guide in
drawing the curve. The complete c(z) curve (Fig. 1) is drawn so as to coincide at its
shallow end with the 80-to-220 m stretch of both BT 24 (Fig. 1) and BT 27-28 (Fig. 11).

20
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The slight positive hook at z = 280 in is ignored. The function c(z) for BT 27-28 is
seen to make a rather poor connection at 280 in. In spite of this, the BT 27-28 c(z)
function (Fig. 7) is used for the full depth of 280 m. The BT 27-28 points are real ob-
servations; the interpolated section is an estimate.

Layer II extends downward from 280 to 2000 m. The refraction is controlled by the

interpolated section of c(z), Figs. 1 and 11, and a portion of sounding S325 extending
from 1000 to 2000 in. The water characteristics for Layer II are given to a depth of
2050 m in Table 2. The effect of the break in c(z) at 280 m on the range accumulation
requires comment. At the 280-m discontinuity two values of c(z) can be read: Table 1

gives 1525.19 m/sec, and Table 2 gives 1523.4 m/sec. The discontinuity is a fiction in-

troduced by lack of sufficient observational precision. The accumulation of range across

the discontinuity is given by

2 - x 1  = p D- 1 /2 dz

=p D 2) (z 2 -z 1)

where D- 1/ 2 is the average value within the layer of thickness Z2 - z . As the layer
is taken vanishingly thin so that z 2 - Z-1 0, the accumulation of range x 2 - x across the
layer also approaches zero and contributes nothing to the total range of the ray. The

bottom of the second layer (top of the third layer) is considered to be the horizontal sur-

face at 2000-m depth. This is the depth where the linear portion of the function n2( z)

(Fig. 4) begins.

The accumulation of range along the 85.30 ray in Layer 11 (280-2000 m) is given by

x 2 - p f2=2000 D/2 dz = pA.
¾ i280'm

The function D_ 1/ 2 in this range is plotted in Fig. 13. The end corrections, as before,
are indicated by the abbreviated equation

2050 280 2000 2050

A' IJ D 1/t2 dz +J +
250 250 280 2000

or

z=2000

z=' T 1
2 = 30/D12 280 + A + 50 KD1 2) 2050

250 2000
z=300

When the numerical values in Table 2 and Az = +100 meters are inserted, the above
equation is

100 x 107.71 X10+3 = 30 x 8.535 x10+3 + A + 50 x 6.08×x10+3

from which

A = 1.022 x 10+7

1)
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For

the range accumulation becomes

X 2 - XI

p = 0.64518x10 -3

6.4518 x 1.22 x 10+3

The 60 = 85.3' ray accumulates 6593.7 m of horizontal range in passing down through
the layer extending from zi = 280 m to the depth z2 = 2000 m. The layer is 1720 m
thick.

9

8-

67

2500 400 600 800 1000 1200 1400 1600 1800 2000
DEPTH Z (METERS)

Fig. 13 - Typical D_ '/ 2(z) function obtained by measurements
in Layer 11 (280-2000 m depth)

The third and final layer, having the refraction characteristics listed in Table 3, ex-
tends from z, = 2000 m to z2 = Z, which is the depth of the vertex and is different for
each ray. The vertex depth z is simply related to ray constraint p and the c(z) func-
tion by the formula

sin 6(Z)

c(Z)

Having chosen p, Z may be read from n(z), Fig. 14. In the present case where 60
85.3°,

p = 0.6458x10-3.

From Fig. 14 or Table 4 z is found to be 5109 m deep.

In the third layer of thickness Z- zn, n 2(z) is a linear function of z, and the accu-
mulation of range is

XD(Z)

x m.,= n

.0
D-1/2 dD.

The coordinates of the vertex are (x, z).

6593.7 m .

22
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DEPTH Z (KILOMETERS)

Fig. 14 - The function n(z) over the depth range from 0 to 6600 km

Table 2
Refraction Quantities in Layer II

(Extending from 200 to 2050 Meters in Depth)

(6o = 85.30)

z (Meters) c (m/sec) - X10 3  72 X10
6  ( / 2

D- 1/2 X10-3

200 1530.5 0.65338 0.42690 9.68
250 1525.7 0.65520 0.42929 8.76
280 1523.4 0.65629 0.43072 8.31
300 1522.0 0.65703 0.43168 8.05
400 1514.6 0.66024 0.43591 7.13
500 1508.3 0.66300 0.43956 6.55
600 1503.0 0.66533 0.44266 6.15
700 1499.0 0.66711 0.44503 5.89
800 1496.2 0.66836 0.44670 5.73
900 1494.5 0.66912 0.44772 5.64

1000 1493.2 0.66970 0.44849 5.57
1100 1492.9 0.66984 0.44868 5.55
1200 1492.7 0.66993 0.44880 5.54
1300 1492.8 0.66988 0.44873 5.55
1400 1493.2 0.66970 0.44849 5.57
1500 1494.4 0.66916 0.44777 5.63
1600 1495.5 0.66867 0.44712 5.69
1700 1496.8 0.66809 0.44634 5.76
1800 1498.3 0.66742 0.44544 5.85
1900 1499.6 0.66684 0.44467 5.93
2000 1501.1 0.66618 0.44379 6.02
2050 1501.7 0.66589 0.44341 6.08

-2000

T. D- 1/ 2.= 107.710
z-300

06.5

23 C
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Table 3
Refraction Quantities in Layer III

(Extending from 2000 to 5500 Meters in Depth)

z (Meters) c (m/sec) ] X×10
3 { 2

X10
6 z (Meters) Ic (m/sec) [ x10 3  2 X10

6

2000 1501.1 0.66618 0.44379 3800 1528.2 0.65436 0.42818
2100 1502.4 0.66560 0.44302 3900 1529.9 0.65364 0.42724
2200 1503.9 0.66494 0.44214 4000 1531.5 0.65295 0.42634
2300 1505.3 0.66432 0.44132 4100 1533.2 0.65223 0.42540
2400 1506.9 0.66361 0.44037 4200 1534.9 0.65151 0.42446
2500 1508.3 0.66300 0.43956 4300 1536.5 0.65083 0.42357
2600 1509.9 0.66230 0.43864 4400 1538.1 0.65015 0.42269
2700 1511.3 0.66168 0.43782 4500 1539.9 0.64939 0.42170
2800 1512.7 0.66107 0.43701 4600 1541.5 0.64872 0.42083
2900 1514.1 0.66046 0.43620 4700 1543.1 0.64805 0.41996
3000 1515.6 0.65980 0.43533 4800 1544.9 0.64729 0.41898
3100 1517.0 0.65920 0.43454 4900 1546.4 0.64666 0.41816
3200 1518.7 0.65846 0.43356 5000 1548.1 0.64595 0.41725
3300 1520.1 0.65785 0.43276 5100 1549.8 0.64524 0.41633
3400 1521.8 0.65712 0.43180 5200 1551.4 0.64458 0.41548
3500 1523.3 0.65647 0.43095 5300 1553.1 0.64387 0.41456
3600 1525.0 0.65574 0.42999 5400 1554.8 0.64317 0.41366
3700 1526.7 0.65501 0.42903 5500 1556.4 0.64251 0.41281

Table 4

Ray Parameters for Nine Typical Rays

Vertex C(Z)

Depth (m/sec) (degrees) sin 60 sin
2 

60 px10+3  p2 ×10+ 6
Z (Meters)

54.5 1545.03 90.969 0.999857 0.999714 0.647236 0.418915
4815 1544.76 90 1.0000 1.0000 0.64735 0.41906
4920 1545.69 88 0.99939 0.99878 0.64696 0.41855
5060 1548.59 86 0.99756 0.99513 0.64575 0.41699
5109 1549.95 85.3 0.99664 0.99329 0.64518 0.41625
5340 1553.28 84 0.99452 0.98907 0.64380 0.41448
5641 1559.94 82 0.99027 0.98063 0.64105 0.41095
6250 1568.58 80 0.98481 0.96985 0.63752 0.40643
8036 1599.23 75 0.96593 0.93301 0.62530 0.39049

By definition

D = 7n
2

- P
2

so that

Dn = 7n
2
(Zn) p

2

and

D(Z) 0 0.

The slope of n2( Z) is m. The accumulation of range then becomes

- 2p 1/ 2
X xnn

m
(22)
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This formula has been used to determine points on the ray as it passes across the layer
whose lower surface is at the vertex level Z. The thickness of the third layer is differ-
ent for each ray.

Numerical quantities for the ray 00 = 85.3' are

60 = 85.30

p = 0.64518x10-
3

p
2 = 0.41625x10-6

- = -8.860x10- 12 (slope of )
2(z), Fig. 4)

D- = 275.4x10-' 0 at z = 2000 m
1/2

D12 = 16.595 ×10- .

Thus

X - Xn -2 x 0.64518 X 10-3
- = 0. 16.5958xlO-10.8860 x 10-11 24.164 km.

The ray issuing from the source at a depth of z = 67.1 m and at an angle of 85.30
has a ray constraint p = 0.64518×x 10 -3. The ray, characterized by p throughout its
length, enters Layer III at a depth zn = 2000 m and at an angle as yet undetermined.
The ray proceeds through Layer III, reaching its vertex at z = 5.109 km, meanwhile
accumulating an additional range of

X- zn 24. 164 km .

The process used above amounts to a very long extrapolation of the ray coordinates
to the ray vertex (X, z) by use of the empirically determined q2( z) relationship below
z = 2000 m. The range accumulation could also have been computed numerically from

tabulated values of 7
2(Z). In the case of 7

2( z) variation with z for which no convenient
equation is available, numerical integration has been used. However, at some point the
function D- 1/2 becomes too uncertain or too large to be plotted. From this point onward
to the vertex, an extrapolation equation is used. In the simple case of linear q2( Z) the
extrapolation is readily accomplished by Eq. (22).

Table 5
Summary of (x 2 -x 1)for the Ray Characterized by 0, = 85.3o

Layer No. Layer Thickness (Meters)[ X - x, (km)

1 67.1 to 280 1.581

II 280 to 2000 6.594

III 2000 to vertex z (by formula) 24.164

(X- x 0 ) from source at 67.1 m to vertex: 32.339

2(X - x0 ) from source to convergence zone: 64.678

(or 70,733 yd)

r

F.
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The range accumulation achieved on 10-26-60 for the 85.3' ray, which traveled

downward from the source point at 67.1 m through Layers I, II, and III to the vertex

depth 5109 m and then returned upward to the source level at the convergence zone, has

been computed from numerical data of the c(z) function. The result is a range accumu-

lation of 64,678 m (see Table 5). Hydrophone soundings made on the same day revealed

enhanced signals at the source level over ranges beyond 66,000 yd. The range accumula-

tion of 64.678 km (70,733 yd) falls near the maximum enhancement observed at 74,000 yd

at a depth of 67.1 m. Identification of the shape and the limits in range and depth of the

convergence zone with particular rays or acoustic ray bundles requires a numerical de-

termination of a number of rays in which the 85.3' ray occupies an intermediate, but not
unique, position.

FUTURE WORK

The ray computation methods described will be further developed in a sequel, with

special attention being given to the location and detailed structure of the convergence

zone signal bundle.
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