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ABSTRACT

1t was shown in Reference (a), Appendix by Ming-Chen Wi -and. G. E.
Uhlenbeck, that if a short pulse with repetition frequency f , pe :
modulated by a signal with fundamental frequency f_, is put %hroq
car' generator (which produces flat-topped pulses Tasting until %
pulse), the output frequencies are lsf, + afy| where s and q are-
formula giving the amplitudes was presented, This report contain
the result in more detail than they gave, and without the resitrie
case of the ideal box car pulse. In the derivation, the pulse fo
qQuite general. 3Both a formula and graphs are then presented for -
the output frequencies of the pulse lengthehner when the signal am
output pulse of the lengthener decays exponentizlly with the time k7
lasts throughout the fraction 8 of the interval between pulses, reduces
further to the box car case whenod = 0 and £ =1. It is noted that the frequencies
sf, are ordinarily present, except in the ideal box car cage. Thege ‘results are

intended for application to the pulse lengthensr used in investig&@idns of Doppler
modulation of radsr echoes. : : R

an ideal "box
succeeding
egers: &
erivation of
to the specisl
is taken ‘to be
-amplitudes of
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INTRODUCTION

i, . 1t was reported in Reference (a) (pp.38 ff and pp.71 £f) -that if & short
pulse with repetition frequency fo' periodically modulated by a signal
amental frequency fmr is put through an ideal "box car" generator,
frequencies will be [sf, +af,| where s and q are integers; and &
presented giving the amplitudes, The proof of the formula, as in
appendix by Ming-Chen Wang and G. E. Uhlenbeck (pp.103 ff), is by &
Fourier analysis, the details of which were not given. B

2, At this Laboratory the question arose from work on Problem 0-106.1R~S

as to how the result would have to be modified when the output pul oes not have
the ideal box car form. In this connection, interest was expressed :in-having a
derivation of Wang and Uhlenbeck's result set down in more detail than they gave,
and without the restriction to the special case which they treated. .In"the present
report an arbitrary pulse form is presupposed in the derivation. .Specisalization

1s then made to a type of pulse form depending on parameters:aﬁandﬁfﬁ_=¢nd71ncluding
the ideal box car pulse forot =0 and (:'5-'= 1.

GENERAL CASE: _ASSUMPTIONS

3. Starting with a function £(t) which represents the modulating signal,
and a function g(t) which represents the unmodulated output pulse, - function
F(t) which represents the output will be defined, and a Fourier expangion will be
obtained for F(t). A practical set of assumptions is that f(t) an
plecewise continuous and have a plecewise continuous first derivat
case, (%) shall be defined at a point of discontimuity as B £( tn0;
the same convention shall be understood to apply to g(t) and P(4).
is used only in the .form of its Fourier series, and so any Yourier
converges for all values of t can be taken as defining £(t). '

ver, f(t)
8 which

MODULATING SIGNAL AND PULSE

4 represents
£{t) be
be developed

4. Let £(t) stand for the modulating signal amplitude,® whe
time measured from the injtial instant of some pulse interval, and !
periodic with the fundamental frequency £, or the period 1/f,. Le%
in the Fourier series :

. Cq =2 4 7 cos 2mpf,t + sin 2ppfit): (1)
g . 5 tig (o m® + Bp sin 2rpfg)s

* A box car generator ideally produces flat-topped pulses which.las

next succeeding pulse; or in more exact terms, the signal amplitud:
pulse 1s constant for the .duration of the pulse interval, having. ag™

the signal amplitude of the modulating signal for the initial 1nstahmnlffthe pulse
interval, R _

2 Compare, for example, Courant and Hilbert, Methoden der Mathematischen Physik,
Volume 1, Chapter 2, Paragfaph 5, PR

3 The amplitudes £(t), g(t), F(t) as functions of t will be referred.to as




where

B , S
¢ = i _13 =f'_9, '
w2ty % =52+ | (2)
5, If the modulating signal were a constent signal of ampl$ : 1, the
pulse lengthener would produce a succession of pulses, eqch one ide ral with
ite predecessor. ILet fo be the pulse repetition frequency and 1 ¢ interval

between pulses, Let the signal amplitude of these pulses be repre ed bty the
function g(t), as shown for one pulse interval in Figure 1 (a), .Plate 1

6, When the modulating signal amplitude is f(t), the output B(
pulse lengthener will consist of a succession of pulses, which diffe
unmodulated pulses of Paragraph 5 in that the signal amplitude g(.
each pulse ig mltiplied by the modulating signal smplitude f(t). £
instant of the pulse interval, as shown in Figure 1 (b), Plate I.-
instant of the pulse interval in which % occurs be written iﬁ; .
where k is the greatest integer such that k/f, € t, Then by the 4

F(t) = £({t}) glt) .

DERIVATION OF 4 FOURIER EXPANSION FOR F(t), IN COMPLEX FORM

7. Using (1) to express f({ﬁ}) in (3) as a series, and qu1. iying (%)

into the series tern by tern,

(=] A
v 0 St .
F(t)= > oq o2Mafnityyyy | U (e
Q=00
Writing {ﬁ? ag t (% ~ {t}). and factoring,

F() =§: cq o2 2riafn(t-{t}) ) 5

Q=eney

The expression 9“2"iqu(t"{ﬁ}) represents e oM afnt ;4 the first. p
and the periodic repetition of this function in other pulse interw
1% is continuous with a continuous derivat%ve §cept at the end po
intervals., Therefors the product e~<midfp t-Kt? g(%) is periodic ~the period
1/f0. and has the sane continuity properties as were assuned for. gf tgelf -
(Paragraph 3), Developing it in a Fourier series,® where the value ¢ ~ridint

8¢’ interval,
Furthernore
of pulse

"signal anplitude’ to avold confusion with the term "amplifude"=&sf
frequency components into which the functions are analyzed.

Except for ¢ =k/fy, when F(t) = 4(3(t-0) + 7(t40)) (Paragreph:3).

5 o gl
If the reader prefers to stay within th the f Fouri ried of

. v Bﬂiqﬁn?t "{giy of Fourier series. of real

functions, the exponential factor o~ hay first be exparided as
cos 2mafn(t - {t}) - 1 sin Zme(t -{t}). T




fof e'zﬂiqu(t"ﬁa) in the first pulse interval is used in exp:aas@gg=the coef—
ficients, and inserting this series into (5), o

el
Q=—ce S=—a0

. — I o S
F(‘b) = @'cq eaTT'iQfm'h ?E (fo I / o} o z'ﬂ'iqut g(t) e—zﬂisf.o.,'l::‘. q‘t.).e;?ﬁsfot. (6)

Multiplying cq oomiafnt 140 the series summed on s, and combiningﬁbhg;exponential
factors, o

Cac:

O oq (£ [MFog(t) e-Brilsty + afy)t at) o2MlsLo + afp)t, (7)

Jo==en  8Smeng

IBE EXPANSION IN REAL FORM

B. Rewriting this formula with abbreviations to save spaqﬁi@gﬁmhat follows:
o0 oo .
\ e ) .
COEDD SN (8)

Q=% B=-00
where

- mi(sfy +af)t , 9
'G(s! Q) =Ccg wa0+qu e ( 0 q m) ] | .. ( )
and. replacing sf,4qfy, by £ to get an expression wy in which f is: quite general,
1/f - :
wE = fo{) /% a(t) =21t 44 | o (10)

Using eir"x =cos x *i sin x ,

1/t 1/¢ o
wir =55 fy / °g(t) cos 2nft dt T4 o 4, / &(t) sin 2ntt gt . - (1)
9. Now let
Alsya) =0(s,q) + C(~s,~q) o (12)
For s = g =0, | :
% 4(0,0) =0(0,0) . o (12a)

Tb see what (8) becomes with this grouping, consider the terms C(s,q) which in
- (8) occur for all pairs of integers. Let s! and p denote positive % ers. The
pairs (s,q) may be grouped under four categories: the pair (0,0); for-each s!, the
two pairs (s',0) and (~&',0); for each P, the tvo pairs (0,p) and (0,=p); and for
each s' and p, the four pairs (s',p), (~s',~p), (s',~p) and (-s',p). . Bearranging
the summation in (8) accordingly, ) _ o

-3 -




(¥ ~

F(t) = ¢(0,0) +§: E:(s'.o) + c(-s',o.)]'::-:_

8'al
+ £ 40(0,p) +0(0,-p) + £ |o(s',B) # C(~s',~p)
p=l stzl .

+ C(s',=p) + C(—s',pﬂ .

Using (12) and (12a), and dropping the primes, this becomes

& S o = B
F(t) = %’A(o,o) + f A(s,0) + }_,_ JA(O,p) + E_ ﬂu.(s,p) + & . (13)
s=1 p=1 (. s=l = |
10. Write |
cq = lcq lei arg ¢q , wp = jwf| ot aﬁaﬁﬁf . (14)
By (2) and (11),
|c_ql = |cq] ’ arg C.g =.-arg cqu‘;

Using (14) in (9), and the result with pijx =coe x 11 sin x in (fg)h
A(s,q) = 2 lcql hsf°+qu| cos (2Msf, + afy)t + arg Cq 4~gr$3?sﬁo+qu) . (18)
For s =q =0, (12a) and (9) with (2) and (10} give directly )
| 1/f e -
l .
| 5 40,0) = ¢4 w, = 22‘2 fog °ogt) at . (16a)
For sf, + afy = 0, (16) reduces to |

Als,a) =2 1eq| || cos (avg cq +argw,)

2leql w, cos (arg cq) ' :3-  (17)

which when q = 0 reduces further to (16a).

2, the series

11.6 Using (14) and for positive p sotting arg Sp ==.i3Wpfm5§:T
(1) takes the form + nop:

© The formulas of this paragraph in torms of Yhe sine are added for convenience
in reducing the results to the formula of Reference (a). _




[2a]
———

co+>

£(t) = - 2 |e, {cos (2mptyt + arg qpi_)
p=l C
) . (18)
= ¢, + 2.. 2 ]cp | sin 2mpfy(t +85) .
) p.-:l

Then (16) becomes, for positive p, -
Als, #p)= #2lc, | 7ot ape, | 910 (27(sfo & )t + Apinby +are W yue ) (19)
which for s = 0 (p positive) reduces to o
| 400,p) = 2l ) Iwpe | sin (2mpr_t +2mpfpk, + arg o)t (198a)
For ¢ =0, (16) reduces ag follows:
A(s,0) = Blcol ,WSfOI cos (2Trsi‘ot +arg ¢, +arg wsfc)_.__' )
= g o [wsfol cos (Brrsfot farg wao) {20)

=2 ¢, ,sto' sin (mef b +7/2 4 arg ws-fo) -

RELATIVE AMPLITUIE AND RETATIVE PHASE

12, By (18) the factor 2le. | =2 le | in the above formulag igs the smplitude
of the frequency pfy = |q!fm. in tﬁe modulg.ting function f(4), except-for q = 0,
when 1t is twice that amplitude. However, for q = () and g =0, on 11f of A(s,q)
1s used in (13). Thus by (13) and (18), for any particular s and q;-w., qf |
ig the ratio of the amplitude of the term in (13) for that g and- q; gﬁe m
Has the frequency sfy + afy, to the amplitude of the fregquency ply i 'lf_m in £(t),
except for @ =0 and s #0 when 1t ig half that ratio.? The quanfb;, , -i-::lw'af°+qu
will accordingly be called the relntive emplitudes of the output fréguency
sfy T pfy for that s and q.8 LoD

13, The angle arg Cq is the phase of the frequency piy = |q|£m1n F(t)

considered as a cosine, tnlten with the algebraic sign of q. Hence by {16},

arg w5f9+qfl§nis the relative phase of the frequency si‘o +qfn in the-output term
8 S

for tha d q.
A SPECIAL CASE

14, Specialization is now made of the pulse function g(t) to

e following,
where 0< 3 &1 '

7 Thig exception will be clarified in connection with the gra.phi.c"ai];;f--ﬁi-.-'i-.'e{_atment,
Paragraph 24, T

8 When the same frequency Isfo + qu]is given by more than one ter_ms;';_pf- the Fourier
exponsion (13), phase relationships have o be baken ino account to get the total
amplitude of this frequency in the output (see Parsgraph 26 £f), SR




" o~ Xt hen Oct <ﬁ/f°g .:',.,.
g(t) = S (21)
0 when p/fo‘:tél/ﬁ?::

The pulse is shown in Pigure 2 (a), Plate 1.

15, For purposes of illustration, the modulating function

“may be talen
as follows, where 850 €201 .

£(t) = 5,(1 + € sin 27 (¢ +¢S')) o (22)

In this case the only frequencies f, present in the mod.ulatin‘g:;f:'
for p=0 and p =15 ¢y =8, 2k,| 2€5,, £, =§, and (13) redue
o0

F(t) = %A(o,o) + Z A(s,0) + A(0,1) + "’z”_. [.«\(ss.l)i‘l'5 Al
a=l s=1

'-t:ion are those
o

However, the discussion will be carried out so that iss applica
more frequencies present in the modulating function will be evi
nodulating function chosen for illustration, the modulating funed
are as shown in Figure 2 (b), Plate 1. K

With the
and output

16. Using (21) in (10), the interval of integration can:
since the integrand is O in the remainder of the indicated inte

en as (0, B/f,),
if ¢< and f are not both O, |

Integrating,

Ve T < @Jf, +em pift, | (24)

Then, as may be verified by substituting in (14),9

Iw I =P,(1 +e-204@/fo - zew‘ﬂﬁ/fo cos a.n. (25)
‘ ( (£B/1,)% + (2npe[E, 2
and
arg wp = gin™t e—°<15/f° sin a'n'ﬁf/;'n_ (26)

(1 ¥ o =I5 _go== flTo co'.s...:-a.{rr

~tand ((ampe/e) [(1BlE)) ,

where fore<{ >0 the principal values of the inverse functions ar 0. be used.

ientation of
4) the law
°_and included

Y The formulas are easily discovered and werified by usine the repre
(24) in the complex plane, applying in the case of the nu.".nera._t_%:g‘:

of cosines and law of sines for a triangle with sides 1 and o™ r‘g
angle vaf /£ 0"

P, (A




Integrating when &< and f are both O,

we = |we| = (_9 end arg wp =0 . - (27)
17, " Yhen = =Q, but f 750, the formulas simplify as folldms;;;-;_
v = 1o T £/f, A eMPL/f, _ -miAf/f, . -ﬂiéﬁf/fa
£ =F RTLAL[E, TBL/f, 21 S
_ puaTatle mprs, (28)
TAE[£, ' L
_ . |sin TRE /5, - -
fwgd =4 _Tr_ﬁf'ﬁo_- , arg wp = - Wﬁf/fo + arg .
18. Substituting from (25) and (26) (or from {28) ife< =-Q), :fnt:o (19},

(19a) and (20), and from (27) into (16a), and using the results in.
values of ¢4, 2|cy| and § given there, the Fourier expsnsion of I
obtained explicitly; and it is easily verified that the terms sim
the formula of Reference (a) for thé case thato< = 0 and B = 1
ideal box car pulse. In the unsimplified case when @_4 1 and ol

term A(s,q) of (23) isg: ' ‘

to those of
- gives the
' the general

A(s,q) = 2]eq |,

(29)
) To L
N (1 4+ o2 HB/fo g~ F'/fO cos 2m fO;q =
SR )
sf, +qf
~ ten 1 ﬁ 0
==
o
where
co={c°|_—.so , arg c,= 0 , -
= €8 ) :
Icl‘ _ g-% , arg cj_'_l _‘t Z!TfmS:F .é-

engthener in
&l presentation

Use of this special case is made in the study of a practical pulse
Reference (b). However, at least in the unsimplified case, a grap
of the results is more illuminating than the rather unwieldy formu:




THE FREQUENCY NOMOGRAPH

19, A nomographic method of exhibiting the ocutput frequenci . .afg + pfy, | was
glven in Reference F;). Thus in Plate 2, corregponding to each qﬂhthe;g?equencies
pfp for p =0, 1, . . . which is present in the modulating funqtiqnem;et 8 horizon-
tal line be drawn (shown dotted for p = 1) with the ordinate plp. . The abscissas

of the intersections of this line with the lines of the frequegcx-_ agram thenfgive
all the possible output frequencies associated with the @odulatim _Q%QTGY P+ -f |
This is clear, since the equations of the lines of the disgram ar f]_j sfy + pfy |
if £ |is considered as a continuously varying abscissa and po & :ogtinuously
varying ordinate. In this connection it is helpful to think of ﬁ nes

i£] = é['sfc, + pf, | as coming from lines f = sfy + qf, where p= | q

first in the axis of abscissas when absolute value signs are appl
in the axis of ordinates when absolute value signs are further.ag
small figure at the upper right in Plate 2 identifies the signs o
the three parts into which the line f = gfy +qf, is broken by the:

-reflections.

20. To illustrate with the modulating function of Paragraph 15, pfy, is then
restricted to the two values O*f  and 1-f . For p = 0, the horigenital .1ine is the
base line, and the corresponding output frequencies are 0 and sty =1, 02, ).
For p =1, the horizontal line is as shown in Plate 2, and gives .the additional
cutput frequenciss T, sfo +.fm, Isfo —'fhl. {Dotted lines are dn to help in
recognizing where thesge frequencies fall on the base scals, but ;¢ re labeled
only at the intersections whers they originate, omitting absolute: ¢ slgns when
superfluous, )

TEE RELATIVE AMPLITUDE CURVE

plitudes. of each
of these frequencies in their terms A(s,q) in the Fourier : 13),10 1n
relation to the amplitudes of the modulating frequencies from which“they originate.
From the discussion of Paragraph 12, only one curve is required fo
pulse function g(t), and this curve is simply |we| 2s a function ¢
is defined from g(t) by the integral (10). The family of these cur

pbresented for the femily of pulse functions depending on paraneten
was introduced in Paragraph ﬁ. :

22. In the computation, a number of fixed values of >4 B/f

|we| in multiples of [was caleulated as a function of | £] in ma]
(25).11 The resulting curves are plotted in Plate 3. The scales |
numerical if the values of'3 and f, were specified, :

O por s = q =0, the term is not A(s,q) but 2A(s,q). This tefm and any others
with f = s§f, +qfy = O may be considered exceptions to the main &% ion, -and their
treatment is postponed to Paragraph 28, o

1 The labor of computation is not great, as for each/f/f,, the

requires to be calculated only for one half cycle of 2mff/f.; there
the numerator can be used over. The calculation becomes especially
graphically from the triangle mentioned in the footnote to
~./f, = 0, wa I/p is taken from (sin x)/x tables, by (28).




23, . These curves may be used in conjunction with the freouengy nomograph to
associate the relative amplitudes with the frequencies pictorially. " Suppose for
illustration that (3= 0.75 and>¢P/f, = 0.5, and let the modulatifg ‘function be
the one of Paragraph 15, Using the value £=0,75 to locate fo at 0.75 of the
distance from the origin to the point labeled fo/ﬁ on Plate 3, let-a-frequency
nomograph (Plate 2) be made up to this scale. Then selecting proper-curve of Plate
3 for ><ﬁ/fo== 0.5, imagine Plate 3 positioned over the nomograph: in & plane per-
pendicular to the nomograph, first along the base line for the ocutput frequencies
associated with the modulating frequency pf, = 0L, (p= 0), and then along the
horizontal line at the modulating frequency pf, =1*f, (p= 1) for the output
frequencies associated with the modulating frequency * f;m, as showniin Plate 4,

i ' b8, previously
t.the relative

amplitudes associated with those frecuencies in the terms A(s,q).
expansion obtained for the output. The absolute amplitudes are
multiplying the heights of the lines on the p = O panel by S, and:
panel by & Soe

2L, On the =0 panel, the relative amplitudes are shown twice (by a double
line), except forj?f[ = 0, indicating that in each of these cases “the absolute
emplitude is twice the height of the line times S.. This is necegsary from the
formulas (compare Paragraph 12), It becomes inteiligible why thisis so, if it is
supposed that the panel had been positicned for a very small ordin -pfe  There
wsuld then be, for each sfo (s = 1, 2, ...) two lines erected at.fedprby - ﬁrequencies
which would come together a4t the frequency sf, when pf, approaches.O.

25, It is to be emphasized that what has been obtained are-the- amplitudes of
particular terms A(s,q) in the Fourier Expansion obtained for F{t), It can,
however, happen that more than one of these terms have the same frequency

(i.e., fsi‘o +aqf, | = |stt +q'f, |where s #s' or q # '), and in such & case the
total amplitude of the frgquency in F(t) will dspend on the phases. with which the
several terms combine, Also, the terms for frequency lsfo +qf 0 constitute
something of an exception, and som:z remarks are called for to prévent misinterpret-
ation of the relative amplitude lines in their case, These details are treated
nzxt (Paragraphs 26 - 28). : '

COINCIDENT CUTPUT FREQUENCIES

n

which is an exact multiple of fo/2, the horizontal line for this p'will pass through
double points of the frequency nomograph where the lines forming theé nomograph cross.
As in the case of Faragraph 24, double lines may be erected; but unlike that case,
the two lines of a pair belon% to distinct terms A(s,q) of (13) which will ordin-
arily have different phases,l2 Two or more terms of (13) with the -same | sf +'qu|
may also occur with different valuss of p = q § that is, when the-horizontSl linss
corresponding to two or more modulating frequencies intersect the lines of the
nomograph in points having the same abscissas.

26, When the modulating function f(t) contains a frecuency‘prm:with p>0

! In the case of Paragraph 2, the two nearby frequencies have a phase difference
which vanishes as they come together, as is to be expected since they are repressnt-
ed by nearby points of the line f = sf, + qf, before tha double reflection (Para-
graph 19}, 1Ia the case of the present paragraph, the points of the two intersecting
homograph lines are distant points of the line £ = sfy + af , which have been
brought into superposition by the double reflection, a

-

-9 -




27, By Paragraph 13, the phase of any term A(s,q) may be found. from the phase
of the modulating frequency pf, = |q|f, to which it corresponds by-adding the rel-
ative phase angle arg Wap +qf + For this purpose the alggbralc-s;_ngupf-q;apd .

f =sfy +qf, cannot be ° *m disregarded, as they were in the e@s¢~o£ amplitude
(compare‘(IST). The signs of q and f for any point of a line of the frequency
nomograph can be read off the supplementary diagram in Plate 2 (Pﬁragraph 19)..

Tho relative phase arg w, is arg wle| with the sign of f. If a need to determln?
the phases of the terms ﬁ(s,q) for £he pulse functions of Paragraph 14 should arise,
the family of the curves for arg wiel as a function of |f| could: _;obtained from
(26) in the same manner as the fami{y forlw] = [W|fU as a function of |f| was
obtained from (25) (Paragraph 22), and could be plotted to accompghy Plate 3.

CONSTANT (O FREQUENCY) TERMS

28. The relative amplitude line erected at the origin represpnﬁs;lwol.
Multiplying it by the constant term co of £(t) and applying the al braic sign of
Wy glves the term %A(0,0) of F(t) (compare (16a)).13 If any one: he modulating
frequencies pfy, with p >0 is an exact multiple of f,, it gives ri 0. an additional
constant term. The relative amplitude line erected for this term:multiplied by the
amplitude of the modulating frequency gives a quantity which is a.maximum possible
ebsolute value of the term, which may not actually be realized. ‘Such a constant
term may be thought of as originating from a sirusoidal fluctuation, with that
relative amplitude, which as %fl went to 0 has been frogzen in some--particuler phase
(compare (17)). i

AMPLITUDE NULLS

29. It is noted that for == 0 and B =1, the frequencies af: (s=12, 2, ...)
are absent. This appears since the curve of Plate 3 for a&pyfd %10 has nulls at
the frequencies sfo/FB(compare (28)), ad with 3 = 1, the sf . £ ¥ points

from which the curve' is entered coincide with these nulls, ki
these frequencies reappsar if {3 decreases from 1, so that the
coincide with the nulls, is indicated by the steepness of the {
voints. M IfoC# 0, so that £ B/f, # 0, the curves no longer have-nulls, but for
small values of I°¢1they have prondunced minima occurr'?§ appraximately at the
noints sf /F;with approximately the values ﬁll - e"°‘ﬁ O]/?(h“ﬁVﬁcj2'+ (275)2)3
(compare ?25)). These considerations are of interest for designing . pulse length~
eners in the effort to eliminate pulse repetition frequencies. o
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