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AB3STRACT

It was shown in Reference (a), Appendix by Ming-Ohen Wang and G. E.Uhlenbeck, that if a short pulse with repetition frequency f , peOriodicallymodulated by a signal with fundamental frequency f , is put throulgh anideal "bozcar" generator (which produces flat-topped pulses lasting until the succeedingpulse), the output frequencies are isf0 + qf~j where s and q are integers; aformula giving the amplitudes was presented, This report containnsadoerivation of-the result in mare detail than they gave, and without the restriatioi. to the specialcase of the ideal box car pulse. In the derivation, the pulse fotrm-is taken'to bequite general. Both a formula and graphs are then presented for the amplitudes ofthe output frequencies of the pulse lengthener when the signal ampi•tudbeof theoutput pulse of the lengthener decays exponentially with the time con•tantot&, andlasts throughout the fraction P of the interval between pulses.., This reducesfurther to the box car case when •< = 0 and 1. It is noted thlat' the frequenciessfo are ordinarily present, except in the ideal box car case. These results areintended for application to the pulse lengthener used in investigaotions of Doppler
modulation of radar echoes.
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I NTBOIhJCT ION

1. It was reported in Reference (a) (pp.38 ff and pp.71 ff) that if a-shortpulse with repetition frequency f£, periodically modulated by a sinl with fund-amental frequency fm' is put through an ideal 1box car" generator,f1 the outputfrequencies will be jsf0 + qfm I where s and q are integers; and a fprmiua waspresented giving the amplitudes. The proof of the formula, as initoated. in theappendix by Ming-Chen Wang and G. E. Uhlenbeck (pp.103 ff), is by a.ttraightforward
Fourier analysis, the details of which were not given.

2. At this Laboratory the question arose from work on Problem O-106.IR-Sas to how the result would have to be modified when the output pulsýe-'4oes not havethe ideal box car form. In this connection, interest was express ed n having aderivation of Wang and Uhlenbeck's result set down in more detail than they gave,and without the restriction to the special case which they treated,.. In the presentreport an arbitrary pulse form is presupposed in the derivation, Specialization
is then made to a type of pulse form depending on parameters ae and -'j'. And-including
the ideal box car pulse for a.=O and(= 1.

GENERAL CASE. ASSMlPTIONS

3. Starting with a function f(t) which represents the moduilting signal,and a function g(t) which represents the unmodulated output pulse, hto functionF(t) which represents the output will be defined, and a Fourier expsn0ion- will beobtained for F(t). A practical set of assumptions is that f(t) and,,g( t) each bepiecewise continuous and have a piecewise continuous first derivative. 2 In thiscase, f(t) shall be defined at a point of discontinuity as *(f(tO)!+f(t40)), andthe same convention shall be understood to apply to g(t) and F(t•). Ho'wever, f(t)is used only in the form of its Fourier series, and so any Fourier series which
converges for all values of t can be taken as defining f(t).

MODULATING SIGNAL AND PULS)

4. Let f(t) stand for the modulating signal amplitude, 3 whorelt representstime measured from the initial instant of some pulse interval, and, le.t t) be
periodic with the fundamental frequency fm or the period I/fm. Let it be developed
in the Fourier series Let i e

f~t) =- e27rqfmt _ao ,••
f(t) q e1

0q+ (q. cos 2 npfmt + bp sin 2pyft) (1)q== -ý. + --I

4..

A box car generator ideally produces flat-topped pulses which.la.st:'until thenext succeeding pulse; or in more exact terms, the signal amplitiitdof a;::,box carpulse is constant for the duration of the pulse interval, having. as •it•ts value
the signal amplitude of the modulating signal for the initial instant••of the pulse
interval.

Compare, for example, Courant and Hilbert, Methoden' der Mathematigac1en Physik,
Volume 1, Chapter 2, Paraggfaph 5.

3 The amplitudes f(t), g(t), F(t) as functions of t will be referredt• o as
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where %P2= 2 0 2 _C (2)

5. If the modulating signal were a constant signal of amp.ltude 1., thepulse lengthener would produce a succession of pulses, each one identtoal withits predecessor. Let f. be the pulse repetition frequendy and 11/ ,•,:the intervalbetween pulses, Let the signal amplitude of these pulses be represented by thefunction g(t), as shown for one pulse interval in Figure I (a), Pla.te I.
6. When the modulating signal amplitude is f(t), the out•pmt P.flt) of thepulse lengthener will consist of a succession of pulses, which differ:from theunmodulated pulses of Paragraph 5 in that the signal amplitude g( is) throughouteach pulse is multiplied by the modulating signal amplitude f(t) .fo. the initialinstant of the pulse interval, as shown in Figure I (b), Plate 1..I:et-the initialinstant of the pulse interval in which t occurs be written k/f , i;e. (t, = k/fowhere k is the greatest integer such that k/fo - t. Then by the definition.4

F(t) = fU-t}) g(t) * (3)

DERIVATION OF A FOURIER EXPANSION FOR F(t). IN COMPLEX FORM

7. using (1) to express f('t} in (3) as a series, and, nul tiplying g(t)into the series term by term,

F(t- 2  _Cq e2f nt}g(t) .e (4)

Writing f{t} as t -(t - (ti), and factoring,

F(t) ztCq e27Tiqfmt e2flqfn(t-t) g(et) . (5)

The expression e'qfn(t't4) represents e-2wiqfnt in the first.. pulsinterval,and the periodic repetition of this function in other pulse intervals,. Furthermoreit is continuous with a continuous derivat j~ve ~ cept at the end points of pulseintervals. Therefore the product erewq -fp txt g(t) is periodic with the period-/fo, and has the sane continuity properties as were assued for(gt:,)i.tself(Paragraph 3). Developing it in a Fourier series, 5 where the value .27riqfrt
"r signal amplitude" to avoid confusion with the term "amplitude" as applied to thefrequency components into which the functions are analyzed.
4 Except for t = k/fo, when F(t) = C(F(t-o) + F(t-o)) (Paragraph ý3•)..
5 If the reader prefers to stay within th the 2r of Fourier ser.iesj of realfunctions, the exponential factor e- 2 7q'mtt - { a fizst be eITed •scos 2rqfm(t -(t}) - i sin 2inqfm(t -(t1).

-2-
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for e" 2 rlqfm~t-.}) in the first pulse interval is used in expressing, the coef-ficients, and inserting this series into (5),

F(t) = z 0 q e2nqfmt (fof y /f 0 e- 2 7riqfmt
~ 0

Multiplying cq e2riqfmt into the series msmmed on s,
factors,

a(t) e- rinoin •th ex rosn oti. (6)

and combining..he :exponential

F(t) =
v- 1/f°0

4-- Cq (f o £ g(t) e-2Wi(sfo +
s="C- c 0

qfm)t dt) e 0'%C(fo + qfm)t

THE EP•,ANSION IN MAL FORM

8. Rewriting this formula with abbreviations to save space . in. what follows:
00

F(t)= 7 C(s,q).

where

O(s,q) = cq Wsfo+qfm e 2 w-i(sfo +qfm)t (

and, replacing sfo4qfm by f to get an expression wf in which f is- qui te general,

1/fo -•f
t iX Wf = f g (t ) 8- if t dt

Using e cos x _±i sin x

w1 -f= f / g(t) cos arrft dt :i i fo lfo gt) sin 27Tft dt.

0
9. Now let

A(s,q) = O(s,q) + O(-s,-q)

For s = q = 0,

I
ý A(0,0) = C(0,0)

(10)

(ii)

(12)

(12a)
Tb see what (8) becomes with this grouping, consider the terms O(sq) which in(8) Occur for all pairs of integers. Let st and p denote positive iJtegers. Thepairs (s,q) may be grouped under four categories: the pair (00) foreach 'two pairs (s'.O) and (-s',o): for each p, the two pairs (O,p) and and foreach a' and p. the four pairs (s?,,p), ' )(p, and (C)-sap). Re••..arranging
the summation in (8) accordingly,

-3-.
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F(t)- =(o,0) + .L(st,o) + C(-STO)

+ I (Op) + C(D,-p) + +-L "(-S,-Pp=l s'=l 1 + -•

+ 0(s',-p) + C(-s,,p .,

Using (12) and (12a), and dropping the primes, this becomes

P~t) ( 0,0) + z AL,0 + *AO p* ic ~ ~ + A i h rp )§ . (

s=l p=l s=l '

10. Write

Cq= oq I ei arg cq, IWf IWfI ei ,g .Wf* (14)

By (2) and (11),

Itcql kI I . argc .q -arg•c q
I f= t•1 , arg w._f -arg wf . (15)

Using (14) in (9), and the result with e-+x cos x ±i sin x in ('i2),

A(s,q) = 2 1cq I fo f I cos (2n( f0 + qfm)t + arg cq +art.wf..qf) .(i)
For s q 0, (12a) and (9) with (2) and (10) give directly

2 A(O,o) = c w = ao fo / g(t) dt ('16a)

2 0
For sfo + qfm = 0, (16) reduces to

A(s,q) 2 I cq I Iwo I cos (arg cq +arg wo).
" 2 cqI wq cos (arg cq) , (17)

which when q = 0 reduces further to (16a).

11.6 Using (14) and for positive p setting arg c+p = ±2Trpfmpme/2a: the series
(1) takes the form P..

SThe formulas of this paragraph in terms of the sine are added fori convenience
in reducing the results to the formula of Reference (a).

-4-
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f W) c,, + 2 o lco s (2rft+ arg QP

C018)
0+ 2 IcpIf sin 2'RPfm(t +4,

p=l

Then (16) becomes1 for positive p,

A(S, +P) =.±21jcpI I wsof I sin C2wn(sfo ±Pfm)t +~Tf~~+r ~~f,(9
which for s = 0 (p positive) reduces to

A(O,p) =2 1ci,1 lWpfm sin C'-irpfmt +2nrffm + argw,) . a
For q 0,(16) reduces as follows:

A4s,O) 21%olI kf 0 1Cos C2wsfo t + arg c + argw 8f)
2 co 1W s ICos (2wsfot .+ arg w sf) (a0)

-2'co Iu sfo I sin C27rsf 0t +f7r /2 +arg w f )

12. By (18) the factor 21e j1= 21 Ic in the above formulas is the ampiitudeof the frequency pfm =IqI±'m in t~e modulating function f(t), except for q = 0,when it is twice that amplitude. However, for q =0 and a = 0, only half of A(sjq.)is used in (13). Thus by (13) and (i6) , for any particularsa and q, 1wtq the rqt4o of the amplitude of the term in (13) for that a and q, whiS mhds Th~e ±ýrequency sf + qfm, to the amplitude of the f requency pf = [q4Jfm in f (t),,except for q = 0 Lind s X 0 when it isa half that ratio. 7  The quant!i-ty, Iw a f0+q~fmwill accordingly be called the re~lative 2MR1jtude of the output frequen .cysf0 + Pf for that s and q.8

13. The angle arg 0q is the phase of the f re'quency pf 1I:.inftconsidered as a cosine, taken'with the algebraic sign of q. Hence by (.16),arg WB£+q isa the rýelq ative phaýse of the freunyso fmithotpterfor th~fa snd qi. oqeya 0 +q ithoupter
A SPECIAL CASE

14. Snecialization is now made of the pulse function g(t) tol1 th0a following,where OZfl $1:-

Us xception willbe clarified in-connection with the graphi~cal: treatment,Paragraph 24.
8MWen the same frequency s f0 + qfm I is given by more that one ternss of the Fourierexpansion (is), phase relationships have to be taken into account to get the totalamplitude of this frequency in the output ( see Paragraph 26 if).

-~5 
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0-Ct when 0Oe-tcfl/f .0 :w(t ) -n.f../ 0 hen Plfo< tzi 4l:L (21)

The pulse is shown in Figure 2 (a), Plate 1.

15. For purposes of illustration, the modulating function f(t)• may be taken
as follows, rhere SO. E"1•O:

f(t) = So(l + E sin 2vfm(t +8)).6'. (C22)

In this case the only frequencies pfm present in the modulating.finction are thosefor p = 0 and p = 1; cO = S0 , 2 c1 T -- So, S3 =S -, and (13) retuc.s to.

F( t) = 00 0 400) + T. A(s O 1) + A(O'l ) +) A ve1-l2J
s1 1 23

However, the discussion will be carried out so that its applLoatio,,.when there aremore frequencies present in the modulating function will be eviW&i. With themodulating function chosen for illustration, the modulating f.ietioin and output
are as shown in Figure 2 (b), Plate 1.

Using (21) in (10), the interval of integration can. be•.::I- en .as (0, g/fo),
intkegrand is 0 in the remainder of the indicated intoranl Integrating,
f are not both 0 , ... ......::"/f.

Then, as may be verifiei

and

wf -=P1 a I . . .S~+Mp flfo"..

d by substituting in (14),9

lwf I + _+-2r1 l}/fo - 2e-" 4 3/f Cos •..•.f ,•.f/f .lwf = (o9/fo)2 +,(27rf/fo. : -

(24)

(25)

arg wf = sin-l
I + -•sin 2r of If ;i(1. + e-4-P/,o -20-ý'g,: 0 co.8... 7r,ý

(26)

-tan-I (zf1 f/fo)l f))
where forc-- > 0 the principal values of the inverse functions..are.it:.ot be used.

The formulas are easily discovered and verified by using the repr#sentation of
(24) in the complex plane, applying in the case of the nu:..era• . (2••f(4):the lawof cosines and law of sines for a triangle with sides 1 and eP 4 O and.irciudnd
angle 2rp f/f0 . ..... . " I..

-6-
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Integrating when cK and f are both 0,

wf =Iwf = ad arg wf 0

When Z =0, but f /O, the formulas simplify as follobws!...

rf0/fo

(27)

eri 0 f If 0 -e-nrisf/f -..
2i.A.f f

sin ir•f/fo e-7i//f0
(28)

arg wf irgf/If 0 + r

18. Substituting from (25) and (26) (or from
(19a) and (20),'and from (?7) into (16a), and using
values of co, 21cll and l given thete, the Fourier
obtained explicitly; and it is easily verified that
the formula of Reference (a) for thb case thatC =
ideal box car pulse. In the unsimplified case when
term A(s,q) of (23) is:

(28) if ,ýp 0). .rinto (19),
the results in, (,iS) with the
expansion of r(t) can be
the terms simpJicy to those of
0 and =1 w•l ..hgives the
3.4 <1 and•4•'>'. the general

A(s, q) = 2 Icq I

cosý2in(sfo + qfm) t +

r+
1- +0 -2e/ o -e /fo cos 2 f + £4

S+ qf °2
0r . . .

(29)

arg q + sin-1

-1 Sfo + qfm
- tan- ---

fo

e--slosin 2ýrrS+1W

+ 82A/i0 26 ~ cs __f_

co 1 co I = so
Icl 1 6 So

2

arg co= 0 ,

arg c + 2
±1 - m 2

Use of this special case is made in the study of a practical pulse: lengthener in
Reference (b). However, at least in the unsimplified case, a grapb:.c.. presentation
of the results is more illuminating than the rather unwieldy foxmulas'

a -7-

17.
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where

... ..; &T I i -1;" 'Ný I , 11 : , , . -

F fo J



THE FREQUENCY NOMGRAPH

19. A nomographic method of etibiting the output frequencies .I ± + pf.m wasgiven in Reference (a). Thus in Plate 2, corresponding to each of. tte .frequenciesPfm for p =, 0 , . . . which is present in the modulating functiqn, let a horizon-tal line be drawn (shown dotted for p = 1) with the ordinate pfA. The abscissasof the intersections of this line with the lines of the frequencydiag"ram then giveall the possible output frequencies associated with the modulati.g fr .quency Pfm"This is clear, since the equations of the lines of the diagram areIfl =If sf H + pfMI,if If lis considered as a continuously varying abscissa and Pfm as ••continuouslyvarying ordinate. In this connection it is helpful to think of the linesIf I = |sfo ± pfm I as coming from lines f = sfo + qf_ where p = •j ' [by..two reflections,first in the axis of abscissas .when absolute value signs are applied to q, and thenin the axis of ordinates when absolute value signs are further applied to f. Thesmall figure at the upper right in Plate 2 identifies the signs of q•'and f alongthe three parts into which the line f =sf0 +qfm is broken by the:•.r•eflections.
20. To illustrate with the modulating function of Paragraph 15, pffm is thenrestricted to the two values O,fm. and 1.fm. For p 0 , the horizontal line is thebase line, and the corresponding output frequencies are 0 and afo (s = 1, 2, ... ).For p = 1, the horizontal line is as shown in Plate 2, and gives the'iadditionaloutput frequencies f., sfo + fro, Isfo - fml. (Dotted lines are drawn to help Inrecognizing where these frequencies fall on the base scale, but th-eyare labeledonly at the intersections where they originate, omitting absolute value signs when
superfluous.)

THE RELATIVE A)WLITurE CURVE

21. It is next proposed to draw a curve which will give the amplitudes of eachof these frequencies in their terms A(s,q) in the Fourier expansion, (13)110 inrelation to the amplitudes of the modulating frequencies from which-they originate.From the discussion of Paragraph 12, only one curve is required foz, any particularpulse function g(t), and this curve is simply jw.j as a function of in, where Wfis defined from g(t) by the integral (10). The family of these curves. is nowpresented for the family of pulse functions depending on parametesnt*.and $ whichwas introduced in Paragraph 14.
22. In the computation, a number of fixed values of>' were chosen, and
Jwfj in multiples of Pwas calculated as a function of IfI in multiples Of f/"...by(25). The resulting curves' are plotted in Plate 3. The scales6would becomenumerical if the values of P and fo were specified.

10 For s = q = 0, the term is not A(s,q) but AA(s,q). This term and:any :otherswith f = sfo + qfm-= 0 may be considered exceptions to the main disciission, and theirtreatment is postponed to Paragraph 28.
l The labor of computation is not great, as for each a.c /f 0 , the nierator of (25)requires to be calculated only for one half cycle of 27Trt/fo; thereattr values ofthe numerator can be used over. The calculation becomes especially simple if donegraphically from the triangle mentioned in the footnote to Paragraph 16. For
V f-/V = 0, I w Ip/is taken from (sin x)/x tables, by (28). ......

-8-



23. . These curves may be used in conjunction with the frecuen-cynomograph toassociate the relative amplitudes with the frequencies pictorially. Suppose forillustration that z= 0.75 andcK•/fo = 0.5, and let the modulatiiiýgfunction bethe one of Paragraph 15. Using the value P= 0.75 to locate fo at .0.75 of the
distance from the origin to the point labeled fo/p on Plate 3, ••t a:frequencynomograph (Plate 2) be made up to this scale. Then selecting proper curve of Plate3 for ><P/fo = 0.5, imagine Plate 3 positioned over the nomograph#in a plane per-pendicular to the nomograph, first along the base line for the output frequenciesassociated with the modulating frequency Pfm = O'f (p r 0), and then along the
horizontal line at the modulating frequency Pfm ¶"f¶ (p = 1)for the outputfrequencies associated with the modulating frequency ifm, as shoyn, in Plate 4.Lines erected to the relative amplitude curve at the nomographpointes previouslyfound as representing the output frequencies (Paragraph 20) repre~sent the relativeamplitudes associated with those frequencies in the terms A(s,q):.:of the Fourierexpansion obtained for the output. The absolute amplitudes are obtained bymultiplying the heights of the lines on the p ' 0 panel by So and those on the p = 1
panel by E So .

24. On the p 0 panel, the relative amplitudes are shown twice (by a doubleline), except for 0 £ 0, indicating that in each of these cases. :the absoluteamplitude is twice the height of the line times S . This is necaes'sary from the.nrmulas (compare Paragraph 12). It becomes inteiligible why this1i.s so, if it issupposed that the panel had been positioned for a very small ordinate pfm. Therew-vuld then be, for each sf (s = 1, 2, ... ) two lines erected at .nearby frequencieswhich would come together at the frequency sfo when Pfm approaches 0..

25. It is to be emphasized that what has been obtained are the;.amplitudes ofparticular terms A(s,q) in the Fourier Expansion obtained for F(t). It can,however happen that more than one of these terms have the same frequencyi~e., fsf° +qfmI= IS're +q'fm where s Xs' or q /q'), and in.. such a case thetotal amplitude of the frequency in F(t) will depend on the phases w:..:with which theseveral terms combine. Also, the terms for frequency Isfo + qf i:.il;: 0: constitutesomething of an exception, and somz remarks are called for to prevbmentmisinterpret-ation of the relative amplitude lines in their case. These detail:s* are treatedn.-xt (Paragraphs 26 - 28).

COINCIDENT OUTPUT FREQUENCIES

26. When the modulating function f(t) contains a frequency pfm with p>Owhich is an exact multiple of fo/2, the horizontal line for this p iWill pass throughdouble points of the frequency nomograph where the lines forming the nomograph cross.As in the case of Paragraph 24, double lines may be erected; but unlike that case,the two lines of a pair belong to distinct terms A(s,q) of (13) which wig ordin-arily have different phases.12 Two or more terms of (13) with the same 1sf0 4 •qfmay also occur with different values of p ig Iq ; that is, when the: horizont . al linescorresponding to two or more modulating frequencies intersect the lin'nes of thenomograph in points having the same abscissas.

12 In the case of Paragraph 24, the two nearby frequencies have a phase differencewhich vanishes as they come together, as is to be expected since they are represent-
ed by nearby points of the line f = sf' + qf before the double re'.flection (Para,
r-raph 19). In the case of the present paragraph, the points of the. two intersectingnomograph lines are distant points of Lhe line f t sf 0 + qf,' which have been
brought into superposition by the double reflection.

-9-



27. By Paragraph 13, the phase of any term A(s,q) may be found. from the phaseof the modulating frequency Pf, = 1Iqfm to which it corresponds bya:Adding the rel-ative phase angle arg wsf+Qf . For this purpose the algebraic algas:.of q andif -sf +qf cannot be m'disregarded, as they were in the case of amplitude(compare (155'). The signs of q and f for any point of a line of !the frequencynomograph can be read off the supplementary diagram in Plate 2 (Paragraph 19).The relative phase arg w is arg wIjI with the sign of f. It a need: to determinethe phases of the terms (s,q) for the pulse functions of Paragraph 14 should arise,the family of the curves for arg wI I as a function of Ifl couldý -b'•sobtained from(26) in the same manner as the famtly for 1w4 = 1w Ifnl as a function of Il. wasobtained from (25) (Paragraph 22), and could be plot ed to accompany Plate 3.
CONSTANT (0LUAEC)TEIVS

28. The relative amplitude line erected at the origin represents 1w• 1.Multiplying it bj the constant term co of f(t) and applying the agbraic sign olfwo gives the term iA(0,0) of F(t) (compare (16a)).13 If any one:: of the modulatingfrequencies Pfm with p >0 is an exact multiple of fo, it gives rise .4to an additionalconstant term. The relative amplitude line erected for this term multiplied by theamplitude of the modulating frequency gives a quantity which is a .maimum possibleabsolute value of the term, which may not actually be realized. Such a constanttorm may be thought of as oriminating from a sinusoidal fluctuations with thatrelative amplitude, which as fl went to 0 has been frozen in some-particular phase
(compare (17)).

AMPLI TUDE NULLS

29. It is noted that for=L.= 0 and 1i, the frequencies sf.. (.s 1, 2,are absent. This appears since the curve of Plate 3 for4 - O0 has nulls atthe frequencies sfo/,-.(compare (28)), -..d with P = 1, the sf freqsaency pointsfrom which the curve is entered coincide with these nulls. Ke amunt by. whichthese frequencies reappear if P decreases from 1, so that the poin.. s s. f no longercoincide with the nulls, is indicated by the steepness of the curveat • thoseooints. 14  If-/ 0 so thatz4./fo /O, the curves no longer have nulls, but forsmall values of kcIthey have pronounced minima occurrp ap' r mate4.at thepoints sf0/p with approximately the values 1 - 2 + (Žw8)2)j(compare (25)). These considerations are of interest for designing-::pulse length-eners in the effort to eliminate pulse repetition frequencies.
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.13 For any g(t) of Paragraph 14, w. is positive.

14 For special values of s and the other quantities, a frequency.At. mi-•ght beabsent because of coincidence with Sfo/: for a different value of sa;iCor conceivablydue to complete phase cancellatten among terms of the same frequency. for severalvalues of p (Paratraph 26).
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