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ABSTRACT

The spherical lens first investigated by Luneberg, for
which scanning throughout space without distortion is pos-
sible, has been generalized to permit the source to lie within
the lens, thereby reducing the size of the path followed by
the source in scanning. This, and other spherical lenses
"with complete spherical symmetry that simulate line sources
and infinite plane reflectors, appear as special cases of an
extension of the class of circularly symmetric circular lenses
due to Luneberg. In general, a point source located within or
on the boundary of a circular lens with variable index of
refraction appears either as a virtual point source located
at an arbitrary point within the lens or as a source whose
energy is perfectly collimated in an arbitrary direction.
Luneberg considered only the case in which the real and
apparent sources were located at diametrically opposite
points outside the lens.
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AN EXTENSION OF THE LUNEBERG-TYPE LENSES

INTRODUCTION

A new catagory of lens types has become feasible in the microwave region through
the development of dielectrics whose indices of refraction vary through the medium in an
orderly fashion. The variation in the index has been obtained by controlling the density
of the dielectric material or by loading a low-dielectric -constant material with suitably
placed bits of a substance having a high dielectric constant. Two other techniques, appli-
cable to the region between a pair of conducting plates, achieve a variation in the effective
index of refraction by either altering the spacing between an essentially flat pair of plates
or changing the curvature of the mean surface between a curved pair of parallel plates.

Basic theoretical work of Luneberg 1 on the optics in a variable medium has thus
acquired realizations as microwave antennas. These antennas all stem from a perfectly
focusing lens whose existence Luneberg exhibited. He showed that if a dielectric sphere
has an index of refraction n that satisfies the relation

n2 = 2- p2  (1)

p being the distance from the center of the sphere normalized so that the radius is one,
then all the energy entering the sphere at a point on its surface is focused in a diametrically
opposite direction. Perfect scanning is then possible, for as the source moves on the sur-
face of the sphere the resulting diffraction pattern undergoes a corresponding rotation with-
out distortion.

The behavior of these "perfect" lenses is diagrammatized in Figure 1. Notable
success has been obtained with two-dimensional lenses that couple the radiation character-
istics of a line source and scanning throughout a plane without deterioration. Figure 2 is
a schematic of one lens of this type designed by Peeler.2 The plate spacing is varied with
position in order to achieve the proper variation of n. Another lens (Figure 3) was first
investigated by Rinehart. 3 Although two-dimensional in performance, it requires three
dimensions for its construction. The surface is chosen to provide the proper path lengths
for the optical rays which follow geodesics of the surface.

I Luneberg, R. K., "Mathematical Theory of Optics," Brown Univ. Lecture Notes,

Providence, 1944

2 Peeler, G. D. M., Archer, D. H., "A Two-Dimensional Microwave Luneberg Lens,"

NRL Report 4115 (to be published)

3 Rinehart, R. F., "A Solution of the Rapid Scanning Problem for Radar Antennae,"

Journal Applied Physics, 19:860-862 (1948)
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Figure I - The spherical lens of Luneberg

DIELECTRIC
"METAL PLATES

Figure 2 - A flat two-dimensional lens
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Figure 3 - A two-dimensional curved-surface lens

Mechanical complexities, however, attend any rapid scanning by such lenses due to
the relatively large path the feed must follow, restricted as it is to the surface of the
lens. Rinehart 4 has recognized the advantages of a reduction in size of the feed circle
and has obtained that reduction by a virtual-image technique for his double-plate curved-
surface version of Luneberg's lens. Although Rinehart's lens acts as a two-dimensional
lens, energy in one plane only being collimated, a third dimension is essential for its
construction and in particular for the technique he uses to reduce the radius of the feed
circle.

A method for achieving a similar reduction in size, applicable to the general class
of Luneberg-type lenses, may be of some interest and will be presented in the following
pages. A formula will be obtained for the proper index of refraction of a spherical lens
that focuses energy from a source inside the lens in a diametrically opposite direction.
Although this result will appear as a special case of the solution of a more general problem,
it is the result of greatest practical interest contained in this report. Of course, only a
portion of space may be scanned since part of the lens must be removed to provide the
source with freedom of motion (Figure 4). There is no such restriction for two-dimensional
lenses, however, as the source may pierce the top or bottom surface of the plates.

4' Rinehart, R. F., "A Family of Designs for Rapid Scanning Radar Antennas," Proc. I.R.E.,
40:686-688 (1952)

C--
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Figure 4 - Spherical lens with interior source

The problem was framed in greater generality to complement the formulation origi-
nally considered by Luneberg. It may be recalled that Luneberg showed that in any
spherically symmetric medium the path followed by any optical ray lies in a plane. Thus
the study of a spherical lens excited by a point source reduces to a two-dimensional prob-
lem provided that the index of refraction depends only on the distance from the center.
A plare section of the sphere containing both the point of excitation and the center determines
a circular lens with radial-varying index whose performance as an optical system in two-
dimensional space completely describes the spatial performance of the spherical lens.
The line through the center and the source is an axis of symmetry of each lens and a phase
front formed by the spherical lens is generated by the corresponding phase front of the
circular lens under rotation about the axis. The problem considered by Luneberg was the
characterization of a circular lens such that rays from a point outside the lens,or on its
circumference, would form contracting circular or linear phase fronts. The center of the
phase front was to lie outside the lens, on the opposite side from the source, and on the
line passing through the center of the lens and the source. The linear phase front was
obtained as a limiting case of circular phase fronts. (Luneberg's description was not
phrased it terms of phase fronts.)

The extensions to be made in the present paper permit the source to lie within the lens
for the generation of linear phase fronts or the center of circular phase fronts to lie within
the lens when excited by a source on the boundary of the lens. The center of the circular
phase fronts is not required to lie on the line through the source and the center of the lens,
nor is there a similar restriction on the orientation of the linear phase front. This implies
"that unless a suitably directive source is used, there is a second set of phase fronts present
for the two-dimensional lens so placed to preserve the symmetry of the lens-source system.
The corresponding three-dimensional lens would generate toroidal phase fronts of little
physical interest save for the special cases of planes, spheres, and cylinders.

The methods used to obtain a solution are somewhat different from those of Luneberg.
Attention is directed to the phase fronts desired rather than to the paths followed by optical
rays. An integral equation expresses the condition that the optical path length from the

4
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source to the desired phase front is the same for all rays. A solution of the integral equation
yields the proper index of refraction to insure that the desired phase front is indeed a true
phase front. The orientation of the phase front is determined by the path followed by a
particular ray. The three special cases noted above are then examined in greater detail.

THE INTEGRAL EQUATION

Suppose, for convenience, that the circular lens to be examined has unit radius. Let
a polar coordinate system be imposed with the pole at the center of the circle and the
source lying on the negative polar axis at P, a distance po from the pole (Figure 5). In
the general discussion po will not exceed one and, for circular phase fronts, only the
case P, = 1 will be considered fully. The index of refraction n is a function of p alone,
being independent of the angular coordinate 9. It is assumed that n is continuous at all
points except for isolated singularities and has the value one outside the circle. Let P3
be the point where an optical ray from P0 emerges from the lens and denote by T the acute
angle between the ray and the radial line at P, .

Figure 5 - The geometry of the

circular lens

If circular phase fronts are to be generated, let P (,be their center with 5 •< 1
(Figure 6). Consider the particular phase front that lies on a portion of the circle that is
an exterior tangent to the lens at, say, T. Let Q be the point on it pierced by the ray from
P 3 . Simple trigonometry shows the distance PP 3 to be cos T ± y/oS2 T -- 1 + P2 . The
ambiguity in sign may be resolved by specifying the portion Gf the circle on which the
phase front is to lie. If it is on part of the semicircle RTS, whose midpoint is T, the positive
sign is chosen, while the complementary semicircle RT'S corresponds to the negative sign
before the radical. The distance P3 Q, that is, the optical length from P 3 to Q, since in this
region n = 1, is

P3 Q= 1 + j - cos T T Vcos 2 T -1 + 2

C-

C-.

P�fl..:

C::

(2)
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The optical length from P, to P3 may be expressed as

P3

PP5 n(p) ds,

0

the line integral being evaluated along an extremal.

(3)

Figure 6 - Circular phase fronts

The optical length from Po to the desired phase front must be the same for all permis-
sible rays and if it is the same, the desired phase front will be the true phase front for those
rays. An interpretation of this requirement in terms of the path lengths given in Equations
(2) and (3) leads to the integral equation

P n(p) ds = cosk r + COT COS2 +
p

(4)

The constant k u/2 (written in that form for later convenience) has absorbed both the con-
stant value of the total path length and the constant 1 + 5 of Equation (2).

A similar integral equation may be developed for the circular lens generating linear
phase fronts (Figure 7). In this case, Equation (2) becomes

P, Q = 1- cosT (5)

6
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while Equation (3) is formally the same. The integral equation is then

n(p) ds =-+ cosT (6)

0

The same methods may be used for solving Equations (4) and (6) and so, for simplicity,
they will be treated simultaneously as

n(o) ds =7 + cosT +7 Gcos r-1+ 2 . (7)

0

The number 17 may have the value +1, -1, or 0, the first two corresponding to circular
phase fronts and the last to linear phase fronts.

INVERSION OF THE INTEGRAL EQUATION

It is well known in the calculus of variations that an extremal of the integral of
Equation (7) (whose integrand is without explicit dependence on r)) is a solution of

no =- sin-r +(8)

that passes through P, . The appearance of sinr in Equation (8) insures that one of the
two solutions through P0 also passes through P, in the proper direction, the other solution
being its symmetrical image with respect to the line 0 = 0. Of course, implicit in the
derivation of Equation (8) is the assumption that p and p' are well-behaved functions of 6,
the prime denoting differentiation with respect to t . At an extremum of p, p' = 0 and
the ray is perpendicular to a radial line. From the continuity of n and the circular sym -
metry of the lens, it is immediately apparent that the path of the ray and its extension
through P0 is symmetric with respect to this radial line. If the path had more than one
extremum and hence more than one line of symmetry, it would be impossible for the ray
to leave the lens.

Only those rays will be considered along which p assumes an extreme, necessarily
minimum value at, say, P, (Figure 5). Let P, be the image of P, in the line OP, . Since
OP, is a line of symmetry of the ray,

f n(p) ds =fP2n(p) ds. (9)

0 1P
Equation (7) may then be written as

2 f n(p) ds + n(p) ds = - + cosr+ r -I + ?. (10)

If only those lenses are sought for which p n(p) is a properly monotonic function of p,
then Equation (10) may be converted to an integral equation of the type considered by
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Abel, naimiely,

t
f (v) + g(v) dv 7T + ,(11)

f tv- --v -V2 +n 1t-+ 2  (11)

through the transformations

t = cos 2  , (12)

v 2= - n2p, (13)

f(v) dv + n2 p dp= 0, (14)

g(v) f f(v), 0< p< P0  (15)g0v P <1.

Gne way to invert Equation (11) is to regard it as a convolution. The Laplace trans-
form of each member yields

7T L:[f(v) + g(v)] =k7- + ii * e- (''3 2 )S (16)

The inverse transform then shows

k 1 j
f(v) + g(v) = + 2 +-S(v) (17)

where S(v) is the step function

S (v) = 0, V< 1- 2 (18)
1, v> 1 2

THE INDEX OF REFRACTION

The discontinuities of Equations (15) and (17) introduce some complexities for circular
phase fronts. For this reason and also to achieve some simplification in identifying k with
the orientation of the phase front, a solution will be carried through when 17 X 0 only if
Po = 1. This implies that for circular phase fronts the source is to lie on the circumference
of the lens. With this restriction, Equations (15), (17), and (18) may be combined to give
for circular phase fronts (i / 0)

k kk + 1 +77 0< n p,<p•

f(17) 4 Y-4 (19)k I+

• +, <np;

and for linear phase fronts (1 = 0)

Fk I4I +- 0 '< o-.<o ;

f(v) = (20)
{k 1

+-2 VT
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Equation (14) may be rewritten as

f(v) dv + dp 0. (21)
1-v p

Its solutions for the various forms of f(v) given in Equations (19) and (20) are

f(v) =k al = p2 [F(np)lk. (22)
4WV

f(v) 1 + a 2 n=p[F(np)Jk (23)

4fVT

f =(v) k+I-, an2= EF(np)] (24)
4V

k 1 kf(v)=- + , a4 n = [F(np)]k (25)

where 12 / -nZ 2
F(np) 1 + n - (26)

np

The constants ai must be chosen to insure the continity of n.

A convenient parameterization of n and p may be introduced by

np = sin 0 (27)

for with 0 so defined

F(np) cot2 (28)

The indices of refraction then take the forms discussed below. For convenience there
is also noted the relation between k and 3, the angular orientation of the phase front. The
derivation of this relation appears in the following section.

Case 1. 77 = 1. A phase front forms part of the semicircle RTS (Figure 6) whose
center is at ( 0 ,, <1. The source is at (1,u).

k;-

p = s in 0 -.a nr si ( ./( 2 9

n = lp cotk (0/2) I, <0<r i p(9

p = Vsin 0 tank (0/2)

ksarc sin j < 7T/2; (30)
n = sin 0 cotk ((/2),

k = 2-2 (31)
7T

Case 2. 77 = -1. A phase front forms part of the semicircle RT'S (Figure 6) whose
center is at (p, j, 0 <p < 1. The source is at (1,7T).
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p = /p c tank (•b2)

n = sin b° (•2)

p = Vsin 0 tank (/2)

n = sin 0 cotk ((A/2),

1
J
I

0.< . arc sin p;

arc sin p < 0 < 7T/2;

k 2-2 .k = 2- -3

7T

Case 3. 17 = 0. A phase front forms part of the line tangent
(Figure 7). The source lies at (po,IT), O<p < 1.

P= p0 sin• tan (k /2),

sin ' cotk (0/2) I0'<P'n: P0 I

p = sin 0 tan (k(/2),

n = cotk (0/2), 0pI < P ;

k= 2-2
7T

to the lens at (1, t)

(35)

(36)

(37)

F_ igure- 7 - T.inen r phas-e-fronts

In each case, not all the rays leaving the source generate the phase front stated. If
the region about the source be divided into quadrants as indicated in Figure 8 with
V/ = arc sindfor Cases I and 2 andp= 7/2 for Case 3, only those rays leaving the source

(32)

(33)

(34)

10
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in the first quadrant contribute to the particular phase front considered unless 3 is 0 or7 when rays from the fourth quadrant also are effective. Fourth quadrant rays form aphase front symmetrically placed with respect to the axis of the lens-source system (theline 0 = 0). Along rays emerging in the other two quadrants, either Equations (2) and (8)are incompatible in the real field or p does not reach a minimum value as required in
Equation (9); hence the preceding analysis does not predict their behavior.

Figure 8 - Division of the rays into four quadrants

DETERMINATION OF THE CONSTANT

The value of k is most readily determined by an examination of a marginal ray. ForCase 3, this is a ray leaving the source in a direction perpendicular to the polar axis. Forthe first two cases, it is a ray tangent to the circular interface between the two regions ofthe lens. When the parameter 0 is introduced into Equation (8), the differential equationfor the rays, there are slight differences that separate the circular and linear phase,-front
cases and it may be clearer to consider the two instances separately.

Cases 1 and 2. The ray lies entirely in the outer region where n is determined by
Equations (30) or (33). Equation (8) becomes

2d,) sin7(cot +kcsc 0) do.
Y/sin 2 O - sin2 r

(38)

The minus sign selects the marginal ray that leaves the source in the first quadrant. Atthe point of tangency of the interface, p, = 0 and Equation (8) implies that t0 = 7 at thatpoint. But the point of tangency is the midpoint of the ray (Figure 9), and there 15 = 7T/2 +U0/2.

c�.

4-.

r-r
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At Ps, = and 0 = 7T/2. An integration of Equation (38) between these pairs of limits shows

(39)

Since p = sin 7, it follws that ts = 153 + 7r/2 - r and Equations (31) and (34) are thus immediate

consequences of Equation (39).

S•npnp= I

Figure 9 - The marginal ray for
circular phase fronts

Case 3. Here again the ray lies entirely in the outer region where n is determined
by Equation (36). Equation (8) is transformed into a differential equation identical with

Equation (38) if the number 2 on the left side is replaced by a unit multiplier. When

j = 7r, p'= 0 and hence from Equation (8), tk = -r. AtPs,1ý, = 0. andi 7Ti/2. An integration
of the modified differential equation shows

"7-1% = (k - 1) 7r/2 - T . (40)

The inclinaition of the normal to the phase front is 7 - r (Figure 7), and Equation (37)

follows directly from Equation (40).

PLANE, CYLINDRICAL, AND SPHERICAL PHASE FRONTS

As has been previously observed, the performance of a spherical lens may be

determined from its circular analogue. The three-dimensional phase fronts in general

lie on toroidal surfaces whose axis passes through the source and the center of the lens,

and whose generators are the two-dimensional phase fronts already considered. There

are three spherical lenses whose phase fronts are of especial physical interest and for

which n may be expressed in simple algebraic terms.

In Case 3 if k = 1, then j = 0 and the linear phase front is perpendicular to the axis

of symmetry (Figure 10). The phase front of the corresponding spherical lens lies on a

"ir-1ý = (k + 1) 7T/2 - T.



NAVAL RESEARCH LABORATORY 13

c::

4 ...

plane. Equations (35) and (36) may be replaced by

2Po- p2
n P=

.2-P
p

0< p < Po

po. p< P .

(41)

(42)

This reduces to Equation (1), the limiting case considered by Luneberg, when po = 1, An
integration of Equation (8) using these values of n shows that the paths followed by the rays
lie on the ellipses

p2

= 1- Cosr cos (20"- ,)

sin 2 T
P= 1- cos t cosi '

(43)

(44)po <, p < 1.

The value of 02 is chosen to insure continuity at p = po and is given by

po- sin2 r
cos0 2 - PoCOST

The circular aperture of the lens is determined by the points
pierce the plane phase front. Its diameter is

D=2 2p 0 - p

Figure 10 - Perfectly focusing, spheri-
cally symmetric lens capable of scan-
ningone-seventhof space (±450). The

radius of the feed path is one-third
the diameter of the aperture.

(45)

where the marginal rays

(46)

and
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A cylindrical phase front (Figure 11) may be obtained from Case 3 if k = 0, for then
f= /2. There is no loss in generality in taking po = lfor Equations (36) reduce to n = 1.

Equations (35) become

n = p.

rhe paths followed by the rays lie on the equilateral hyperbolas

p2 = sin rcsc (T± 2-).

(47)

(48)

Figure 11 - Spherical lens that converts a
point source into an apparent line source

A lens that essentially reverses the direction of the rays from a point source while
maintaining spherical phase fronts (Figure 12) may be obtained from Case 1 withT = 0.
If, for simplicity, ý = 1 then from Equations (29)

(49)

[cf. Equation (42)]. The paths followed by the rays lie on the ellipses

sin2 
T-

= 1+cos rcos ± ( T) (50)

14
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f
Figure 12 - Spherical lens that acts as an

infinite reflecting plane

CONCLUSION

The methods developed in the preceding discussion may be applied to arbitrary normal
congruences if a suitable phase front of the congruence is selected and the phase front is
properly identified. For such generality, however, the determination of the orientation of
the phase front is accomplished differently.

�'�1"�,
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