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Design Considerations for Two-Dimensional
Symmetric Bootlace Lenses

M. L. KaLes aNnp R. M. BRowN

Microwave Antennas and Components Branch
Electronics Division

It is generally known that a symmetrical bootlace lens having two pairs of conjugate foci can be
designed. Additionally, there is a bootlace lens, the R-2R, which focuses perfectly at infinitely many
points. It is shown in this report that the R-2R is unique: there are no other perfect bootlace lenses,
and in fact, no others with more than two pairs of conjugate off-axis foci.

INTRODUCTION

Because many of the newer radar systems require true time-delay scanning antennas, there has
recently been appreciable interest in the bootlace lens,!234 a variation of the metal-plate waveguide
lens. In one type of waveguide lens (Fig. 1), rays from the feed incident on the first lens contour C;
do not obey Snell's Law but are constrained to follow the path provided by the waveguide so that the
ray exits at the same distance from the lens axis as it enters (i.e., 2 = y). The bootlace lens offers
another degree of freedom by using flexible waveguide (usually coaxial cable) as the delay path so that
y1 need not equal y».

The usual waveguide lens has three independent parameters: the two lens contours C; and C.
and the variation in index of refraction n(y). Ruze® showed that for the waveguide lens lying in the
xy plane and symmetric about the x axis, there could be at most three focal points, namely, two con-
Jugate off-axis points F; and Fy’ and an on-axis point F, (Fig. 2).

The flexible transmission lines of the bootlace lens provide an additional parameter which permits
the imposition of one more constraint. Gent? showed that the bootlace lens (Fig. 3) could have two
pairs of conjugate foci, Fy, F\', and Fs, F,'. Gent noticed that if the foci lay on a circle of radius R with
its center at the vertex of contour Cy, then (a) all the path delays £ are equal, (b) C: is a circle of radius
2R, and (c¢) C: is a circle of radius R coincident with the circle on which the focal points lay. He rec-
ognized that his lens was equivalent to the R-2R lens® which is known to provide perfect focusing for
all points on the focal arc. It would be valuable to find other such perfect lenses, but unfortunately
the R-2R is unique. It is the purpose of this paper to show that there are no other perfect bootlace
lenses and, in fact, no others with more than two pairs of conjugate off-axis foci.

DERIVATION OF THE EQUATIONS OF THE LENS CONTOURS

Let F; and F/ (with i = 1,2,3) denote a pair of symmetrically placed focal points, p; and p/ are
the distances from F; and Fy to any point (x,y) on the first lens contour, w is the electrical length
of the line joining the point (x,y) of the first lens contour to the corresponding point (z,v) of the
second lens contour, and w the electrical length of the line joining the vertices of the two lens contours
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Fig. 1 — Schematic of one type of waveguide lens.
The waveguides are arranged parallel to the lens
axis so that the rays enter and emerge at the same
distance from the lens axis.
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Fig. 3 — Bootlace lens with conjugate foci

points. A lens of the type shown in this figure has
only three focal points.
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Fig. 4 — Ray-tracing diagram for symmetric bootlace lens

(Fig. 4). Let (pi,a;) be the polar coordinates of the focal point F;, and let 8; denote the angle between
the lens axis and the normal to the phase front of the beam which emerges when the lens is energized
by a point source located at F;. (Note that we do not assume, as has generally been done, that the direc-
tion of the radiated beam makes the same angle with the axis as does the focal radius.)

In order to reduce the considerable amount of detail in the treatment that follows, some mathe-
matical generality, which is not physically significant, will be sacrificed. Thus we shall exclude the
relation ¥ = 0 or the relation » = 0, which correspond, individuz{lly, to the case where one of the lens
contours degenerates into a straight line segmentlalong the axis of symmetry. We shall also assume that
none of the focal points are on the axis of the lens and that, for the focal points Fi, the angles «; are
in the second quadrant and the angles 8; are in the fourth quadrant. ‘

The requirementjthat the path length from the focal point F; to the emergent phase front is con-
stant yields the equation

pi+w—ucosBi —vsinB; = p; + w. (1)

The same requirement applied to the focal point Fy, together with the requirement of symmetry,
leads to the equation

pi’ +w—ucosBi+ vsinB; = p; + w. (2)
From Egs. (I) and (2) we get

(p)2— (pi')?*=4(p; —w+ w+ u cosBi) vsing,. (3)

In addition,

pi=V(x — pi cosa;)? + (¥ — pi sina;)?
and 4)
pi' =V (x— p;cosa))?+ (y + pisina;)?,
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4 KALES AND BROWN

from which
(pi)z"“ (pi')2=—4-ypi sina;. (5)

And since by hypothesis p; sina; # 0, y # 0, and v ¥ 0, it follows from (3) and (5) that, for the ray paths
pi, pi and p;, p/ drawn from two pairs of conjugate foci,

i sina; i —w+w+ ucosBi) sinf; . . .,
pisiney _ (p: Wt ucosB) s ;g5 )). (6)
pjsina; (pj— w+ w+ u cosBy) sin;
Since (6) must be true for all corresponding points of the two lens contours, it must be true in par-
ticular when the corresponding points are the two vertices, ie., when u =0 and w —w = 0. Substituting
these values in (6) we get

sina; _ sinf;

= (7

sina; sinf;’

Thus we see that although the directions of the emerging beams need not be the same as the directions
of the focal radii, the corresponding directions are nevertheless constrained in accordance with (7).
For later use we will derive some additional relations. Substituting (7) into (6), we get the relation

(pi— p;) (w—w) = u(p; cosB; — pj cosBi). (8)
Subtracting (2) from (1) gives
pi — pi’ = 2v sinf;. 9)
Hence
Pi— pi' - sinBi . sina;
p;i—p; sinf; sing;
or
pi—pi _pi— D/
sina;  sina; ° (10)
From (5) we obtain
(p)?— (p)* _ (p)*— (p))*
pi sina; pj sina;
Combining this result with (10) gives
i+ pi i + pj’
pitpi _pitp an

pi pj
Squaring (10) and (11) and rearranging terms gives
sina;{ (pi)? + (pi')?} —sinai{(p;)? + (p;')?} = 2{(sin%q;) pipi" — (sin*a;) p;p;'}
and
pi{(p)* + (pi)2} — p2{(p)? + (p;')?} = 2{—p;* pipi' + p* pipJ'}.
Eliminating p;p;’ from these two equations yields
(pi®sin%a; + ps?sinai){(pi)? +(pi")?} — 2pisin’ai {(p;)? + (p;")*}

= 2(pi®sinZa; — p;2sinia;) pipi'. (12)
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Substituting from (4) into the left side of (12) gives
(2% + y2) {pi?sinta; + p;®sinZa; — 2p;fsinla;}
+ x{4p;(cosa;) pi? (sina; ) — 2p;i(cosa;) (pi®sinZa; + p;2sin2a;) }
+ pi2(pidsina; — p2sin2a;) = (pisinZa; — p;2sina;) pip;’. (13)

By squaring both sides of (13), the equation of the first lens contour is obtained in a form free of radicals.
If we now let i =1 and j = 2, Eq. (13) can be written as follows:

agy?! + (2a0x? + 2a:x + a3)v2 + (aox* + 2a:x3 + azx? + asx) =0, (14)

where
ap = (p:22 — p1?) (sin2a2 — sinay)
a; = (picosa; + p2cosas) (pi2sinZas + pe?sinZa;) — 2p.p2(picosazsina; + prcosaisinay)
az = 4p1p2 (prcosa; — picosar) (pr2sin?azcosa; — pa?sinfa;cosasz) + (po? — pi2) (pi2sinZas — po2sinZa;)
as; = (pi%sin®as — p2%sin2a;) (p22cos?a; — pi2cosias)
as = 2pi1ps(picosaz — pacosa;) (pi¥sinZas — py2sina;). (15)

It is interesting to note that Eq. (14) for the first lens contour depends on the coordinates of the

foci, but not on the directions of the emerging beams.
By adding (1) and (2) we find that

o _ P + pi’
w—w— ucosBi = p; ——2Pi . (16)
Equations (8), (9), and (16) can now be solved for w — w, u, and v giving, respectively,
_— _{, _pitpi'\ (picosB; — pjcospi
vmw= (1) (M=) a7
u:<1_Pi+Pi'>< Pi— Pj ) (17b)
2p; cosfB; — cosB;
__pi—pi
V= ena, sinB;” (17¢)

If (14) is solved for y in terms of x and the result is substituted in (17), the lengths of the bootlaces
and the coordinates of the points on the second lens contour are then expressed in terms of x as a
parameter. (Note that by virtue of (11), the factor (p; + pi')/2p; which appears in (16) is independent
of the index i.)

Equations (14) and (17) show that the lens is uniquely determined when two pairs of off-axis focal
points are prescribed. Before continuing with the principal objective of this paper, it may be of in-
terest to consider the special case where one of the focal ‘pairs coalesces to a single focal point on the
axis of symmetry. Let the coordinates of this focal point be (p;,7) and the coordinates of the other
focal point which lies in the second quadrant be (ps,a). The system of four equations that we get

A3 II&S0UTIAMN




6 KALES AND BROWN

from (1) and (2) by letting i = 1 and 2 then reduces to a system of three equations. Since p = p:’ for a
focal point on the axis, it follows from (9) that sin8, = 0. The threc equations for determining the
lens contour thus become

pro+rwtu=p +w
p:+w—ucosB:—vsinB,=prt+w (1a)
p2 +w—ucosBs+ vsinB: = p: + w. (2a)

This system has an infinite number of solutions. However, subject to the requirements of symmetry,
either of the lens contours may be prescribed arbitrarily, and the other contour, together with the
_connecting path lengths, may then be determined. Alternatively, the path differences w —w can be
prescribed as a function of one of the variables x, y*, u, or v?, and the two lens contours are then de-
termined. It is not immediately obvious that the solutions will satisfy the symmetry requirements.
That the symmetry requirements are met can be seen by noting that if the transformations:

XX,y >y, U U, V>, w>w

are made, then p; = pi, and p: © p,'. These transformations transform the system of Eqs. (1a) and (2a)
into itself, and thus the symmetry requirements are satisfied.

DEMONSTRATION THAT THE R-2R BOOTLACE
LENS IS THE ONLY ONE HAVING THREE OR
MORE PAIRS OF OFF-AXIS FOCAL POINTS

We return now to the general case where none of the focal points lie on the axis of the lens. As
we have secn, the lens is uniquely determined when two pairs of foci, together with the directions
of the emerging beams, are prescribed. We shall now show that if the lens possesses a third pair of
foci not on the axis, it must be the so-called R-2R lens.

If there exist three pairs of foci, any two pairs may be used to determine the lens. Thus two addi-
tional equations similar to (14) may be obtained for the first lens contour. These three equations,
including (14) which is repeated here for convenience, are:

aoy? + (2a0x2 + 2a1x +.a3)y? + (aox? + 2a:x% + axx? + asx) =0 (18a)
b0y4 + (2b0x2 + 2b1x + b:;):yz + (b0x4 + 2b1x3 + b2x2 -+ b4x) =0 (18b)
coyt + (2cox? + 2¢1x + c3)y? + (cox* + 2¢1x3 + cax? + cax) = 0. (18c)

The coefficients b, can be obtained by replacing the ax in Eq. (15) by b1, and changing the subscripts.
1 and 2 on the right to 2 and 3, respectively. Similarly, the ¢ can be defined by replacing as by cu,
and changing the subscripts 1 and 2 to 3 and 1, respectively.

We now impose the requirement that Eqs. (18a), (18b), and (18¢) define the same curve. We shall
show first that the leading coeflicient in each of these equations is different from zero. Because of
the similarity of the equations, it will clearly suffice to show that ao # 0.

Since ag = (p22— pi?) (sinZas — sin2a ), it follows that ag= 0 only if (a) p» = p, or (b) sina; = sina,.
Suppose first that case (a) is valid, z.e., p» = p;. Substituting this relation in (8) gives u p1 {cosfB2—cos 1) =0.
This is possible only if cosB: = cospi or if u = 0. If cosB. = cosB;, then sinB; = sinBi, and it then fol-
lows from (7) than sina; = sina;. This would require that the two distinct foci F; and F; be coincident.
On the other hand, suppose that & = 0. Then it follows from (8) that either w —w = 0 or p1 = p>=ps.
If w — w = 0, then by adding (1) and (2) we find that, for i=1 and 2, p, + p\'=2pi, and p2 +p»'=2p.=
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2p1. The first of these equations represents an ellipse with foci at Fy, Fy', and the second represents
an ellipse with foci at F», F,'. However, since each of these equations also represents the first lens con-
tour, both equations must represent the same ellipse. Therefore the focal pair Fy, F," must coincide
with the focal pair F,, Fy', which is again a contradiction. If u = 0 but w—w # 0, then p, = p2=psand,
consequently, ao = 0 and by = 0. From (18a) and (18b) we then obtain

s — —(2a1%% + axx® + aax) _ —(2b:1x3 + bax? + byx)
Y 2a1x + as - 2b1x + b:; ’

(19)

Since the foci Fy, F», and F; are all distinct, and p, = p2 = ps, it follows that no two of the angles a;,
az, and a; can be equal. Hence a3 # 0 and by % 0. It follows then from (19) that as/as = b4/bs. Upon
substitutirig the defining relations for as, a4, bs, and b4 and using the fact that p, = p, = p3, the last
equation reduces to

2p1 _ 291
cosas + cosa;  cosas + cosas’

Hence cosa; = cosa or a; = ay, which leads to the contradiction that F; = Fs. Thus we see, finally,
that the initial assumption that p, = p. leads to a contradiction.

Suppose next that case (b) is valid, i.e., sina; = sinas. From (7) it follows that B1 = B.. If we sub-
stitute this result in (1) for the case where i = 1 and 2 and subtract the two resulting equations, we
find that p» — pi = p» — p1. It is clear from Fig. 4 that if F, and F, lie on the same ray through 0 (as
they must if a; = a), then the preceding relation can be satisfied only by points on this ray. Such a
solution for the first lens contour is unacceptable since it violates the symmetry requirement. We have
thus shown that cases (a) and (b) are not valid, and hence a, # 0. For future reference we note that
(7) and the fact that sina; # sine; imply that cos8; # cosB; (i # j).

In passing, it might be interesting to note that the preceding discussion has shown that if there
are more than two pairs of focal points, the focal radii cannot be equal. On the other hand, the proof
that two foci cannot lie on the same focal ray is valid even if there are only two pairs of foci.

We return now to the set of Egs. (18). Since the leading coeflicients are not zero, each of the equa-
tions has two solutions for y2 as a function of x. Since each equation of the set must determine the
same lens contour, any two of the equations must have at least one common solution. Suppose first
that two of the equations have only one solution in common. There is clearly no loss of generality
if we assume that the two equations are (18a) and (18b). If we eliminate y* from these two equations,
we find for the common solution

y2 = 2(aby — aehi)x3 + (asxby — aoby)x? + (asbo — aoby)x
(a0b1 - a,bo)x + (aob:; - a:ibO) )

Thus we see that ¥ is a rational function of x. On the other hand, solving (18a) for y2 we get

_ _(2a¢)x2 + 201x + ll:;) =+ \/4((112 + aoas — a()(lz)x2 -+ 4(&10,3 - aoa4)x -+ a;;2
2ay )

y2

Since ¥* must be rational in x and, moreover, y = 0 when x = 0, we see from the last equation that the
solution must have the form

y2=—x2+ kx, where L # 0.
Substituting this solution in (18a) gives

(Ll()k2 + 2(1]](7 + as — a:;)xz + (ka;; + a4)x =0.
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Hence

ka;; + as — 0
Similarly,

kC;} + Cy — 0

These relations between the coefficients result from the hypothesis that any two of the set of Eqs. (18)
have just one solution in common. If this is not the case, then all three of the Eqs. (18) must have both
solutions in common. In this case, the coefficients in any one of the equations differ from those in anv
other by a constant factor. Hence, constants ki, k2, and & exist such that

b:;zkla:x, b4:kla4
C3 = kza:;, Cq= koas (20,)
¢z = kyby, ca = kybs.

These relations imply that all two-rowed minors of the matrix
as bs C3
as by C4
are zero. Hence, constants m; and m2, not both zero, exist such that
mas + mxay = 0
m1b3 =+ m2b4 = 0
micCs + moCy =— 0
If we assume that m. # 0 and let m = m,/m., then the preceding equations become
mas + ay = 0
mcs -+ Cq4 = O
(We note that since k in Eq. (20) is not zero, it is clear that if the assumption m» # 0 is replaced by the
assumption m; # 0, the relations obtained remain valid if we interchangc the subscripts 3 and 4 and
replace k by k-1 It will be apparent that this results in a trivial modification to the remainder of the
discussion.)
Equations (20) and (20") show that whether the equations of the set (18) have onc or two solutions

in common, the same relationships among the coeflicients a3, as, etc. are obtained. If we now sub-
stitute the defining relations for these coefhicients in (20), we obtain the set of cquations

(pi2sintas — pa2sinZay) (picosas — pacosay) [k(picosar + pacosay) — 2pip2] =0 (21a)
(pa22sintay — ps?sinZaw) {p2cosay — pacosaz) [k(p2cosay + pycosan) — 2paps] =0 (21b)

(ps?sina; — pi2sinZay) (pacosa; — picosay) [k(pscosar + picosay) — 2pzpr] = 0. (21¢)
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We shall now show that
COSQ; _ COS&s _ COsay

p1 P2 Ps

(22)

This means that all of the factors lying in the second column of the set of Equations (21) must be zero.
Since only one factor in each equation needs be zero, it is possible to satisfy the system of equations
by letting various combinations of the factors be zero. Suppose, first of all that, two of the factors in

the first column are zero. Then the remaining factors in the first column must also be zero. Hence
we have

p1isinay — paisinia; = (23a)
pzZSinza;g —_ p;;ZSiHZC(z = O (23b)
psZsinfa; — py2sinZay = 0. (23¢)

With the aid of (13) the first of these equations leads to the following equation for the first lens contour:

(2picosay 2p,2sina; — 4pscosas pi2sina; ) x
x2+ y2= P 2
2(p22sin?a, — p,2sina;,)

_ 2pipz(pacosar — picosaz)x
(p22 — pi?)

_ 2pipa(pacosa; — pi2cosiaz)x
~ (p2cosa; + picosan) (pa? — p1?)

_ 2pipa(p2? — pi? — pu¥sinZa; + pilsinZas)x
(p2cosa; + prcosas) (p2? — pi2)

2 .
~ e, cosar 242
Losay | CoSa
P P2
Similarly, (13) and (23b) lead to the equation
2x
2 2 = 7 @
rty Cosaz , COSas (24b)
_ + —_—
P2 P3
Equating the right-hand members of (24a) and (24b) we find that
P3COSQA = P1COSay. (25)

Squaring (25) and combining the result with (23c) we find that ps? = p,2, a result which has previously
been shown to be impossible.

Thus we see that, at most, one of the factors in the first column of the system of Egs. (21) can be
zero. If so, there is clearly no loss in generality in assuming that it is the first factor in (21a), i.e., that
(23a) 1s valid. It follows that either the second factor of (21b) or (21¢) is zero, or that the third factor
of both (21b) and (21c¢) is zero. Let us assume the latter to be true. Then

k(pacosas + pscosaz) — 2psps =0 (26b)

k(pscosay + picosas) — 2pips = 0. (26¢)

AETIELCUTIANN



10 KALES AND BROWN

[Equation (26a) is not written yet. When it is referred to in the pages that follow, it will be of the same
form as (26b) and (26¢).] Eliminating k& between these two equations leads to the result

PICOSU2 = P2COSA,
Squaring both sides and combining with (23a) leads to the contradictory result that p, = p».

We thus conclude that at least one of the second factors in (21b) or (21¢) must be zero. Without
loss of gencrality we may assume, then that

p2eosay — picosaz = 0. ) (27)

If this relation is substituted in the formulas for the coefficients in (18b), the following expressions
for the coeflicients are obtained:

b —p:? (cos? 20r,)2 b p2* (cos? 20,)2
= ——— (cos?ay — cos?ay)?; =——— (cos2ay — cos?az)?;
"7 cosar 3 2 '™ cosBas ; 2/
—pat ‘
by =——— (cos®ay — cos2an)?; bs =0; b, =0.
costan

If we substitute thesc expressions for the coefficients in (18b) and then solve, we find that the equation

of the first lens contour is

Kty = (28)

(&)SO@)
P2

Comparing this equation with (24a), which follows from the assumption that (23a) 1s valid, we sce
that

2 cosay _ COSQ; 4 Cosa

P2 P P2

k]

or
cosay _ COSQa;
P2 pr

Combining this result with (27) gives the relation (22), which we wish to prove.

Finally, let us assume that none of the factors in the first column of the set of Egs. (21) is zero. If two
of the factors in the second column of this set are zero, then (22) follows directly. Suppose then that,
at most, one of the factors in the second column of the set is zero. Then at least two of the factors in
the third column are zero. If all three factors are zero, designate as (26a) the equation obtained by
cquating the third factor of (21a) to zero. As we have already seen, eliminating k& between (26b) and
(26¢) leads to the relation

P1COSay = P200SA. : (29)

Similarly, eliminating k£ between (26a) and (26b) leads to the relation
PICOSAy = PrCOS;.
Together, the preceding two equations lead directly to (292), the desired result.

If only two of the factors of the last column of the system of Eqs. (21) are zero, we may then, with-
out loss of generality, assumc that Eqs. (26h) and (26¢) are satisfied. Then (29) will also be satisficel.
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In discussing the system of Eqs. (18) earlier, two cases were considered. In the first case, it was assumed
that one pair of equations, regarded as quadratic in y2, had just one solution in common. For the other
case it was assumed that all three equations had two solutions in common. On the basis of the first
assumption it was shown that the equation of the first lens contour took the form

22+ y? = kx. (30)

A review of the derivation of the set of Egs. (21) shows that, in this case, the constant k& appearing
in the preceding equation and the constant & appearing in Eqgs. (21) are the same. From (26b) we find
that

2
" Cosas cosay’ 2V
—_ + _
P2 Ps3
Substituting this value of k in (30) we get
2x

2 2 = -
Tty COSaz  COSay (32)

— + —_—

P2 Ps3

In precisely the same way that Eqgs. (27) and (18b) led to Eq. (28), so Egs. (29) and (18a) lead to Eq. (28).
Comparing (28) and (32) we see that

COSay _ COSa

P2 P3s

" Combining this last result with (29) we obtain (22) once again.

Finally we assume that all of the equations of the set (18) have two solutions in common. If (29)
is substituted in the formula for a4, we see that ay = 0. From (20°), then, it follows that by = 0, or what
is the same thing,

2p2ps (p2cosas — pscosay) (p22sinZaz — pa?sinZa,) = 0.

The last tactor in this equation appears in the first column in the set (21) and, therefore, cannot be
zero by hypothesis. Hence

p2Cosay = pycosay = 0.

This equation combined with (29) again yields (22).

We have seen that in order for Egs. (18a), (18b), and (18¢) to have a common solution, it is neces-
sary that Eqs. (21) be satished. We have now exhausted all possible ways of satisfying Eqs. (21) for-
mally, and have seen that in each case either a contradiction is obtained or (22) 1s satished. Hence
we conclude that a common solution to (18a), (18b), and (18¢) is possible only if (22) is true.

Now let —1/d be the common value of (cosa;)/p; in (22). Then from (22) it follows that each
of the focal points with polar coordinates (p;,a;) lies on the circle

p =—d cosa. (33)
We have seen that (27), which is included in (22), leads to (28), namely,

ITrrUIANA
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Combining this result with (33) gives
x2+ y2+ dx = 0. (34)

Since Eqgs. (33) and (34) both represent the same circle, we conclude that if a symmetric bootlace
lens has three or more pairs of focal points not on the axis, these focal points must lie on a circle which
is also the first lens contour. These results are consistent with the R-2R bootlace lens design. Since
the second lens contour is uniquely determined when the first is given, the solution would be complete
were it not for the fact that, by hypothesis, the directions of the incident and emergent beams are
not required to be the same, as they are in the R-2R case. We are now in a position to prove that these
directions must be the same, and that, therefore, the R-2R lens provides the only solution.

Returning to the set of Egs. (17) we recall that the factor [1 — (pi + pi')/2p:] is independent of
the index i. Furthermore, because of the way the bootlace lens is constructed, each point (u,v) on
the second lens contour corresponds to just one point (x,y) on the first contour. Hence the coordi-
nate u depends only on (x,y) and not on the indices i and j of the pair of foci used in determining

the lens contours. If we substitute p; = —d cosa; in (17b), we find that
cosaj — COsQ; pi+ pi *
cosB; — cosB; —u/|:d (1 2p; )] (35)

Since the right side of (35) is independent of both i and j, we may equate the left side to a constant
K, independent of i and j. It at the same time we let j =1, we get

COSi — COSOy.

cosB; — cospB =K#0 (36)

or
cosa; = K cosB; + cosa; — K cospBy. (37)

From Eq. (7) it follows that there is a constant M such that
sina; = M sinf;. (38)
Squaring (37) and (38) and combining the results leads to the equation
(K2 — M?) cos?B; + 2K (cosa; — K cosBi) cosBi + (cosay — K cosBi)2+ M2 —1=0. (39)
If we rewrite (39) in the form
acos?Bi+bcosBi+c=0(:=1,23), (40)
we see that we have a system of three linear homogeneous equations in the quantities a, b, and c.
If the determinant of the coeflicients is different from zero, then a, &, and ¢ must all be zero. The
determinant of the coefficients is the well-known Vandermonde determinant
cos?f3, cosBi 1
cos?B, cosB 1 =T1] (cosBi — cosB;) # 0.
i<j
cos?B; cosfBs 1

#* 1t was shown earlier that cosB; # cosB;if i # j.
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Hence

K2—M2=0
2K (cosa; — K cosB;) =0
(cosa; — K cosB)2+ M2 —1=0. (4D

Since K # 0, it follows that M2 = 1. Substituting this result in (38) and recalling that a; is in the second
quadrant and B; is in the fourth, we get

sina; = —sing; (42a)
and therefore

cosa; = —cospB;. (42b)

Thus we see that the incident and transmitted beams are in the same direction.
For the sake of completeness we show that the second lens contour is the second circle of the
R-2R system. Substituting (42b) into (35) and (42a) into (17¢) we find that

_d . pit+pi
(u+d) = 2 (pi+pi') = 2 cose, (43a)
and
(pi — pi')
- 2 sina; (43b)
Squaring the last two equations and adding we get
(p)* + (p/)*+2pipi’ (sin2a; — cos?a;) ()2 + (pi)2 — 2pipi’costa;
2 2 = =
(u+d)?+o 4 sin?q;cos?a; 4 sin?a;cos?o; : (44)
Referring to Fig. 5 we see that
(pi)*+ (pi')2 — 2pipi'cos2a; = (2h)2 = (2d cosaisina;)?. (45)
p

Yr
_T
y _ /p, ~ (x,y)
—T?/' 2w~ 2aj
v/
J / pll aj
Fig. 5 — Diagram for case where first lens contour Jl

is an arc of a circle on which the fodi lie

N
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Substituting (45) in (44) we get the equation of the circle
(u+ d)2+ 2= d?

which we recognize as the second lens contour of the R-2R system with 2R = d. Finally (17a) and (22)
yield the result

w=uw. (46)

In other words, the path lengths joining corresponding points of the two lens contours are all equal.

CONCLUSION

It is well known that the two-dimensional symmetric bootlace lens, commonly referred o as the
R-2R lens, has the property that perfect focusing can be achieved for infinitely many positions of
the point source. This report shows that it is the only such lens having this property; indced, that
it is the only one for which perfect focusing can be achieved for three or more pairs of focal points
not on the axis of the lens.

In the coursc of this demonstration, equations were obtained for the lens contours determined
by two pairs of off-axis focal points. It was seen that the directions of the emerging beam could be
different from those of the focal radii of the sources, provided the constraint given by Eq. (7) was
satisfied. Finally, it was also shown that infinitely many lenses are possible for which a pair of conjugate
off-axis focal points and a single on-axis focal point are prescribed.




