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ABSTRACT

Title of Thesis: The Computation of Optimum Orbital Elements Derived

from a Single Coincident Observation by Two Receiving

Stations of the Naval Space Surveillance System

Howard G. deVezin, Jr., Master of Science, 1964

Thesis directed by: Dr. Herbert A. Hauptman

This thesis is concerned with an investigation into a method of

determining the orbital elements of a passive artificial earth satellite

using information obtained from a single coincident satellite observa-

tion of short time duration. This information is obtained from two

receiving stations of the U.S. Naval Space Surveillance System, a C.W.

radar network of three transmitting stations and four receiving stations

which sets up an electronic "fence" stretching across the southern

United States.

A list of the information given by two receiving stations is as

follows: two east-west angles (angles measured in the plane of the

detection "fence'), two north-south angles (angles measured normal to

the plane of the detection "fence'), rate of change of east-west di-

rection cosine measured by both stations, and rate of change of north-

south direction cosine measured by both stations. In addition the

system can be adapted to measure the doppler frequency shift from one of

the three transmitters to the receiver station and the distance from one

of the three transmitters to the satellite to the receiver station (bi-

static range).
ii-



All of this information results in redundant data (i.e. more data

than are needed to determine the orbit of the satellite). In addition,

owing to inaccuracies of the system and owing to noise, different group-

ings of the information will produce different values of orbital para-

meters; hence in general the information is inconsistent.

The purpose of this thesis is to arrive at a method of computing

orbital elements using all of the information that the system does

measure or can be adapted to measure. This method would introduce

weighting factors determined, for example, by the accuracy with which

the system can measure the parameter in question. This method is then

used to study the effect that the addition of doppler shift and bi-

static range measurements have on the accuracy of the resulting orbital

elements.

PROBLEM STATUS

This is an interim report on a continuing problem.
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CHAPTER I

THE SPACE SURVEILLANCE SYSTEM

Historical Background

The U. S. Naval Space Surveillance System consists of a network of

CW transmitting stations and receiving stations stretching across the

Southern portion of the United States. In addition the system includes

data transmission lines, a data reduction center located at the Naval

Weapons Laboratory at Dahlgren, Virginia, and a high speed computer used

for the calculation of satellite orbits and predictions, making the

system a complete one for satellite detection, identification,and pre-

diction.

The major purpose of the system is to detect and maintain a

surveillance on passive, non-radiating satellites. It was for this

reason that the Advanced Research Projects Agency, on June 20, 1958,

authorized the Naval Research Laboratory to develop, installand

operate such a system. Six weeks later a two-station facility was in

operation with a transmitter at Jordan Lake, Alabama, and a receiver at

Ft. Stewart, Georgia.

The first signal to be received simultaneously by two receiver

stations was transmitted on December 22, 1958. The second receiver was

located at Silver Lake, Mississippijwhich lies about 250 miles west of

the Jordan Lake transmitter. Although, owing to calibration errors,

these early data were not entirely correct, the calibration problems

were eventually overcome and by February, 1959, the network had grown

1
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to include four receiver stations and two 50-KW transmitting stations

and was operating on a twenty-four-hour-per-day basis. In June, 1961,

the range and coverage of the system were significantly increased by

the installation of the 560-KW CW transmitter located at Lake Kickapoo,

Texas. The other two receiver stations are located at San Diego,

Californiaand Elephant Butte, Arizona, and the other transmitter is

located at Gila River, New Mexico.

Theory of Detection

A typical transmitting antenna in the system consists of a long

linear array of dipole antennas which produce illumination in a narrow

fan beam which is coplanar with the similar antenna patterns of the

receiver stations. 2 As a satellite passes through this electro-

magnetic "fence", whose thickness is about 0.3 degrees, the signal from

the transmitter is reflected to one or more of the receiving stations.

Two angles, one in the plane of the fence and one normal to the plane

of the fence, are measured at a receiving station by means of interfer-

ometers. These data from two receiving stations provide a triangu-

lation which defines the satellite position in space at the time of

observation. The station complex of the system together with a coinci-

dent passive satellite observation is shown in Figure 1, where R and T

indicate receiving stations and transmitting stations respectively.

The method of obtaining angle using an interferometer can be seen

from Figure 2 together with the following equation:

cos b = (1)

where bX is the baseline length expressed in wavelengths, and Al is the

phase difference in wavelengths. The accuracy of measured angle
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increases with baseline length. However, for long baselines Al is of

the form n + AO where n is an integral number of wavelengths and AO is

the phase difference in fractions of a wavelength. AO can be measured

directly but n cannot be measured by one long baseline and shorter

baselines are needed so that the ambiguity can be eliminated. Hence an

interferometer system will in general contain several baselines of

varying length. In the Space Surveillance system they vary from a 16-

foot baseline to a 5200-foot baseline. We can therefore think of the

system as measuring the direction cosine of the incoming signal relative

to a vector from antenna A to antenna B both located at the same re-

ceiver. Each receiver station is set up with two such interferometers.

One is shown in Figure 2 with its vector lying in the plane of the

detection "fence" from antenna A to antenna B and measuring the angle

between this vector and the line from antenna A to the satellite. This

angle is measured in an east-west direction, and is called "east-west"

angle. The second interferometer has its vector lying normal to the

detection fence, along antenna A and measuring angle in a north-south

direction. For a given satellite observation these two measurements

define the direction of the position vector from the station to the

satellite. The vector from antenna to antenna will be designated as

vector u, and the vector along the antenna will be designated as v.

These vectors along with the position of the station expressed in a

given coordinate system comprise all of the required station infor-

mation for the calculations in this paper. The coordinate system chosen

is a right-handed rectangular one fixed in the earth with the origin at

the center of the earth, the x-axis going through 00 longitude, the

z-axis going through the north pole, and the y-axis through 900 east
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longitude. The station parameters are illustrated in Figure 3, with

two stations denoted by subscripts 1 and 2, a transmitter at T and a

satellite located at point (xy,z). The vector from the center of the

earth to the satellite is R, and RI, R2 and RT are the vectors from the

center of the earth to receiver stations I and 2 and the transmitter

respectively.

In addition to direction cosines measured in an east-west and

north-south direction, the system also measures rate of change of these

direction cosines. From the output information received from the

interferometer, rate of change of phase can be computed by measuring

the phase at two times and dividing by the time difference. This gives

dus an approximation to - Al which can be inserted into the derivative

of equation (1)

d (cos 9) (2)
d= bx tdt

to obtain the rate of change of direction cosine.

With additional equipment, the system can be adapted to measure

the doppler frequency shift which is defined as the difference between

transmitted and received signal frequency. This frequency shift is due

to the fact that the path of the signal from transmitter to satellite

to receiver is changing with time. The doppler shift can be obtained

by measuring the frequency of the incoming signal and subtracting from

this value the frequency of the transmitted signal (108.015 Mc).

However, because of the thinness of the fence beam, a 1000-mile-high

satellite having a high inclination will be in the beam for approximately

one second. This narrow beamwidth reduces the accuracy of the measured

doppler shift because of the short time period of observation. Since

the present operational system is not equipped to measure doppler shift,

additional electronic equipment had to be installed at the receiving
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stations to acquire the doppler data for the experimental results de- C

scribed below. The system can also be adapted to measure bi-static

range. This is defined as the difference between the distance from the

transmitter to the satellite to the receiver, and the distance from the

transmitter to the receiver along the surface of the earth. In Figure 3

the bi-static range measured at station 1 would be

- T/ + R - RTRl

Owing to the high cost involved, it was not possible to set up a range

measuring experiment as was done with doppler. However, range is in-

cluded in the analysis below and its influence on the accuracy of re-

sulting orbital elements is studied.

Single Pass Orbits

In the Space Surveillance System there are two objectives which

dictate the method to be used in obtaining the orbital elements from

observed data. In the first case very accurate elements are derived

from a large amount of data for the purpose of making accurate pre-

dictions for a relatively long period of time (i.e. weeks). This

method is particularly useful for obtaining predictions of geodetic and

communication satellites where the position of the satellite in a given

coordinate system must be known precisely. However, a considerable

amount of time is needed to acquire the data employed by this method.

For example, the system uses data observed over a one-week period in

its calculation of differentially corrected elements.

The second of the objectives referred to above is that the elements

be obtained in as short a time as possible after the system's first

observation of the satellite. An application of this method is to pre-

dict future system observations of new objects appearing for the first
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time. There are three methods of orbit computation falling into this

category and each sacrifices accuracy, to a greater or lesser degree,

for speed of element acquisition after observation. The first of these

uses as input, two points, each a result of two-station triangulation,

which are widely separated on the ellipse. For example in Figure 4, the

satellite is detected at point A, then, several revolutions later, the

earth has rotated beneath the orbit and the satellite is observed at

point B on the orbit. The exact number of revolutions between these

observations depends on the period of the satellite in question. These

are the two points on the orbit whose projections on the earth are at

33.40 N latitude, the latitude of the detection fence. When the incli-

nation of the orbit with the equatorial plane equals 33.40 these two

points degenerate into one, and when the inclination is 900 the angle

subtended at the center of the earth between the two points is a

maximum.

The elapsed time between these observations is the time required

for the earth to rotate the detection fence from point A to point B.

This time, for a nominal circular orbit, 1000 miles high and inclined

at 500 with the equator, is approximately 6 to 9 hours, This method is

called the "two-point" method 3 and is considerably more accurate in

predicting satellite position than the remaining two methods; however

the elapsed time mentioned above is the largest of the three cases and

for certain applications this difference can be significant.

A second method is similar to the above mentioned "two-point" orbit,

except that the two points are measured on consecutive revolutions of

the satellite crossing the detection fence. This results in two points

along the orbit which are very close together. The time span from
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observation to element acquisition is approximately equal to the period

of the satellite, which, for the above nominal orbit, is approximately

two hours.

The third method, and the one that we will concern ourselves with

below, uses the information obtained from one coincident satellite

observation, i.e. a single pass observed by two receiving stations. Un-

like the above mentioned methods, velocity must be calculated directly

from the observed data. Hence angle information alone is not suf-

ficient, and parameters from which velocity can be directly obtained,

e.g. phase-rate and doppler shift, must be introduced.

The detection system was originally designed to measure position

accurately. For this reason the angular width of the beam was made as

small as possible. This design, however, makes accurate measurement of

velocity more difficult. Nevertheless, since velocity information is

present, it was decided that a study be made to see if these data could

yield useful orbital elements.

The value of such elements can readily be seen from the fact that

only with this method could any predictions be made prior to two obser-

vations of the satellite. Or, considering our nominal set, we could

reduce the time interval needed to obtain predictions from two hours to

a matter of seconds. Hence such a method would be particularly useful

for purposes of rendezvous as soon as possible after launch.

A method of computing elements from a single satellite pass through

the fence was devised by the author and James A. Buisson III, under the

supervision of Donald W. Lynch. This method uses a minimum of data

consisting of angles and phase-rate from the two receiving stations.

However, there exist some applications which require more accurate

elements than those produced by this method.
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It is the purpose of this study to devise a new method of satellite

orbit computation which best uses all available information obtained

from one coincident satellite observation, and to determine the useful-

ness of such a set of elements. This study will also determine to what

extent the accuracy of the resulting elements is improved by the intro-

duction of doppler shift and range. This would then serve as a guide

to determine whether or not these improvements warrant the expenditures

involved in their installation.

It should be pointed out that the measurements involved in t-.s

work are derived from experimental runs involving minimum data, and

that they do not represent operational system accuracies.



CHAPTER II

METHOD OF ELEMENT COMPUTATION

Use of Redundant Data

A value of satellite position relative to coordinate axes fixed on

the earth can be obtained from three independent measurements. Hence a

combination of any three values of the two ranges, two east-west angles

and one north-south angle observed by two stations during a given satel-

lite pass, can be used to obtain an approximate value for position. Since

the observations are made when the satellite is approximately in the de-

tection fence (east-west direction), two measurements of north-south

angle (each approximately 900) would be essentially redundant, and small

errors in these measurements would lead to large errors in position. It

is for this reason that two of the three input parameters cannot be north-

south angles. Similarly a value of velocity in this same earth-fixed

coordinate set can be obtained from three measurements. In this case

one value of north-south angle rate must be included since, if the

measurement is made in the plane of the fence, east-west angle rates and

values of doppler frequency measure components of velocity only in the

plane of the detection "fence". The north-south angle rate is needed in

this case to produce a component of velocity normal to the "fence".

Owing to inaccuracies in the system and to noise, different subsets

of the total redundant data will in general yield different values of

position and velocity. It is therefore desirable to make use of all the

information received and arrive at statistically optimum values of position



and velocity. Such an approach must take into account the accuracy with

which individual parameters can be measured. A Gaussian distribution of

errors in all measured parameters is assumed. The errors both in the

case of position and in the case of velocity are independent of one

another and are assumed to be random rather than systematic.

Position Determination

From a given station, the data employed in the determination of

satellite position are east-west angle, north-south angle, and bi-static

range. These measurements have been discussed in Chapter I. This in-

formation received from two receiver stations during a coincident observa-

tio-i results in six input parameters from which the three coordinates are

to be computed.

An expression relating east-west angle and satellite position

coordinates can be obtained by dotting the vector ui (Chapter I, Figure

3) with the vector from the receiving station to the satellite (R - Ri):

--i - R- ) - cos

where i - 1 for the east receiver station and i - 2 for the west receiver

station. Putting this into component form we have

cos Oi Uix (x - xi) + uiy (y - yi) + uiz (z - zi) (3)

V(x - xi) 2 + (y - yi) 2 + (z - zi) 2

Similarly by using the vector vi we can obtain the following ex-

pression relating north-south angle and position coordinates:

cos v ix (x - xi) + viy (y - YO + Viz (z - zi) (4)

V(x - xi) 2 + (y - yi)2 + (z - zi) 2

The expression relating bi-static range and satellite coordinates

follows from the equation in Chapter I:

13
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"R i R-RT- .R.iRTRi

Upon expanding the vectors into their components we obtain

Roi =•(x - XT) 2 + (y - YT) 2 + (z _ ZT)2

+V(x - xi) 2 + (y - yi) 2 + (z _ zi)2 - Ci (5)

where: Roi is the calculated bi-static range (i = 1, 2); x, y, z are

satellite coordinates; xT, YT, zT are transmitter coordinates; xi, Yi, zi

are receiver station coordinates; and Ci is an approximate value of the

distance along the arc from transmitter to receiver:

T~ 1+i R +ITIj L[ý RT t

Equations (3), (4), and (5) represent six equations which can be

employed in a least squares sense to obtain the values of satellite

position best fitting the measured data.

From the stand-point of ease of solution, it is desirable that

these six equations be reduced to six linear equations. To obtain these

linear equations one must first obtain approximate expressions for the

satellite position coordinates (x', y', z'). These can be found through

the use of east-west and north-south angles from both receiver stations.

From Figure 5

R' = Rl + SI = RI + Sl cos Gul ul + Sl cos Ov1 vI

+ Sl cos @wl wI,

where Gui is the angle from ui to Si, Gvl is the angle from vi to Si,

and Gwi is the angle from wi to Si. Putting the above equation into

component form we have

x'i + y'j + z'k = x1 i + ylj + zlk + Sl cos Gul (ulx i + Uly j + ulz k)

+ Sl cos Gvl (Vlx i + Vly j + vlz k)



+ S1 Cos owl

and equating coefficients,

xF = xI + SI (cos Gul Ulx +

But R' R2 + S 2 ; therefore

x1 , x2 + S2 (cos eu2 U2x +

Let axi = COS 0ui Uix + COS

then we have

xv = xI + axl Sl = x2 + ax2

Let ayi COS Oui Uiy + Cos

and azi = Cos ui Uiz + Cos

and similarly by equating c(

Y' = Yl + ayl S 1 = Y2 + ay2

and

Z' - zI + azl S1 = z 2 + az2

From equation (7)

and using eq.

(wix i + Wly j + Wlz k)

COs evl Vlx + cos owl wlx).

Cos Qv2 V2x + Cos @w2 W2 x)"

Ovi Vix + Cos Qwl wix;

(6)

r,

S 2 . (7)

Ovi Viy + Cos Gwi Wiy

Qvi Viz + Cos Gwi Wiz,

)efficients of y and z in eq. (6) we obtain:

s2, (8)

(9)

x' - xI xI - xSI = and S 2 - X2

(8), we have

Y'= Y + ay [a l] = Y2 + ay 2 [x'aI-x2]

ay, -y] x ayl x, _ ay2 x 2

axl ax2 - (Y2 - Yl) +a- 2

(Y2 " Yl) + ay, x, - ay 2 x 2

axI ax2

axI ax2

15

or

x IM (10)

I .....

S2•



(x', y', z')

0

Figure 5 - Approximate Satellite Position
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Similarly we have the expressions

a+ zl Yl az2 Y2(z2 - Zl)+

ayl ay2

y' = (11)
azl az2

ayI ay2

(x 2 - xl) + axl zI - ax2 z 2
azI az2

'I = (12)
axi ax2
azl az2

Let the relation between the first and second order approximations

be x" = x' + (Y

Y = y' + 0 (13)

Z1 = ZI + Y

where x", y", z" represent the second order approximations to satellite

position and cv, $,and y are small corrective terms. Since our first

approximation is fairly accurate, oi, 0, and y will be small, and terms

of the order of C12 or less can be neglected. Hence, in the second order

approximation, equation (5) becomes

Roi =k(x' - xT + a')2 + (y' - yT + 0)2 + (z' - zT + y) 2

+-V(x' - xi + a) 2+(y, - Yi + 5)2 + (z' - z, + y)2

- Ci. (14)

Making a Maclaurin series expansion of Roi(v, $, y) about a = 0 = Y = 0

and neglecting higher order terms of a, 5, y, i.e.



Roi - Roi(O,OO) + [2iR i] 0,100
-+ [+iN ] 0,0,0

+ 02) Yo,0,0 y +..

we obtain an expression of the form

Roi = Ei 1 + Fi $ + Gi y + Di

where

Ei= XT + X' - xi

T Ki

Fi = YT +KY - Yi
Ki

z' ZT+ z' - zii T Ki

Di = T + Ki - Ci ,

- ZT)
2

Ki =•(x' -x)2 + (y' _ yi)2 + (z, _ zi)2

Performing a similar procedure for equations (3) and (4) the follow-

ing relations are obtained:

(16)cos Gi =i a + Ni O + Pi y + Hi

where

Uix Li (x' - xi)
Ji=Ki Ki 3

Ni =u__y - Li (y' - Yi)
SKi 

Ki 3

18

(15)

T - (x' -XT) 2 + (y' _ yT) 2 + (z•
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Pi Uiz Li (z' - z i )

Ki Ki3

Hi Li
Hi = F"i

Li Uix (x' - xi) + Uiy (y' - yi) + uiz (z' - zi)

and cos 0i =Si + Ui 8 + Wi +Qi (17)

where

S Vix Mi (x' - xi)
1 K-- K1

3

Ui Viy . Mi (Y' - yi)

Ki Ki 3

Wi viz -M (z' - zi)
Ki Ki3

Mi

Ki

and Mi vix (x' - xi) + viy (y' - yi) + viz (z' - zi). The coefficients

of a, B, and y, and the constants are determined quantities since x', y',

and z' can be obtained from equations (10), (11), and (12) respectively.

Now the standard least squares technique is applied to equations (15),

(16), and (17). This approach maximizes the combined probability associated

with the measurements actually made of range, and the east-west and north-

south direction cosines of two receiver stations. The probability is of the

form P = ke-0 and it is maximized by minimizing the exponent

This expression is of the form:



20

1 2
=212 (E1 1 Fl + G y + DI - Rml)2 +1 2- (E 2 oe

+ F2  + G2 Y + D2- Rm2 ) 2 +1 (JIa+N 1 +P 1 Y

+ -22(J 1 21 P

+ H1 - cos •m) + I__ (J 2 Qt + N2 S + P2 •' + H2 - cos 8m2)2
20"22

+ + UI S + WI y( + QI cos 0ml)2+ (S2 U +2 (3 2 2Cr32

U2 $ + W2 Y + Q2 - COS Om2) 2
, (18)

where Rml and Rm2 are the measured values of range from stations I and 2,

cos eml and cos @m2 are the measured values of east-west direction cosine,

and cos 0ml and COS Om2 are the measured values of north-south direction

cosine.

The standard deviation of measured range, a12, reflects the accuracy

with which range can be measured. The same is true for 022 and a3
2 which

represent the standard deviation of the east-west direction cosine and

north-south direction cosine measurements respectively.

To minimize 0 (ot, 0, y), the expressions

n - . 0,

~0$

and 0~a
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are formed. By taking the derivative with respect to i, combining terms

and setting the result equal to zero, we obtain

a l C + bl 0 + cI Y = dl (19)

where

E1
2 + E22

I12

Jl 2 + J22
+ 2

S1 2 + S 2
2

cv 32

b EIFI + E2 F 2

a12

JIN1 + J 2 N2  SIU1 + S 2 U2+ 22 032

EIGI + E2 G2

[ [El (Dl -
dI [

JlPI + J2P2+ a2
SIWI + S2W2

+ 032

Rml) + E2 (D2 - Rm2)

a12

+ Jl (H1 - cos 9ml) + J 2 (H2 - coS Qm2) Sl (QI - cos Oml) + S2 (Q2 - cos (62)

a22 032

By taking the derivative with respect to 0, combining terms and setting

the result equal to zero, we obtain

a 2 (Y + b 2 0 + c 2 Y - d2 , (20)

EIFI + E2 F 2
a2 12

J I N1 + J 2N2

0722

S l UI + S2U2

032

r,

where



b 2 =F 2 + F2
2

a12

+ N1
2 + N2

2 + U12 + U2 2

72 2 C.3 2

C2 = FIG1 + F2G2

U12

Fl (DI -
d2 .

NIPI + N2 P2
+ 2

Rml) + F 2 (D2 - Rm2)

a12

UIWI + U2W2
+ 20'32

+
NI (HI - Cos 9ml) + N2 (H2 - Cos @m2)

022

+
UI (QI - Cos Oml) + U2 (Q2 - COS Om2)

032 I
Similarly by taking the derivative of 0 with respect to y, we obtain the

expression

a 3 t + b 3 $ + C3 Y = d 3 ,

where

EIGI + E2 G2  J1 P1 + J 2 P2  SlW1 + S 2 W2
a3=+ +,

oa2 0"22 a32

FIGI + F2 G2
b3 = l2

NI P 1 + N2 P2
S 022

U1WI + U2W2
a032

G1 2 + G22

c3 [a1l2

d3 G
and

P 1
2 + P 2

2

+ +
022

W02 + W22

a3 2

- Rml) + G2 (D 2 - Rm2)

o12

22

and

(21)
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+P(HI - COS Gml) + P2(H2 COS Gm2) WI(QI - COS dml) + W2 (Q 2 - COS 0,2)

2 232

By solving equations (19), (20), and (21) simultaneously, the values

of i, 0, and y can be obtained which make 0 in eq. (18) a minimum:

1Zijk Eijk di bj ck

Zijk ijk ai bj ck

Zijk Cijk ai dj ck

Zijk Eijk ai bj ck

1ijk a i bidk

Eijk 1ijk ai b ck

The second order approximation to satellite position can now be

obtained from equations (13).

At this point a check is made to see whether or not cl, O,and y are

all within a specified tolerance. If they are not, the approximate

position coordinates obtained in equations (10), (11), and (12) are re-

placed by the coordinates obtained in equations (13), i.e., (x", y", zI).

Then the expansion and the least squares fit are repeated producing a new

set of corrective terms. This iterative process is repeated until all of

the corrective terms (a, 0, and y) are within the specified tolerance.

Velocity Determination

From a single satellite pass at a given receiver stations three

parameters are measured which can be used to determine the velocity of
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the satellite. These are east-west and north-south phase rate and the

doppler frequency shift. These measurements are discussed in Chapter I.

This information received from each of two receiver stations re-

sults in six input parameters from which the three velocity components

are to be computed. The coordinate system to be used is the same as

that discussed in Chapter I.

An expression relating doppler shift and velocity components can be

obtained as follows:

dRoi 6Roi dx +Roi dy 6Roi dz

dt 6x dt 6y dt 5z dtt

where Roi in the bistatic range and is defined in eq. (5), or

dRoi r (x
dt (x - XT)Z

F

- xT)

+ (Y-YT)
2 +(Z-ZT)

2 + -V(x-xi)2

(y - YT)

' LV(-X.XT;) _2+ (y'yT) + +V(x-x2

(x - xi)

+ (Y-Yi)
2 + (z-zi)

(y - yi)

+ (y-yi) 2 + (z-zi)2j

F (Z - Zn)

[!(XXT)2 +
+ _

(y-yT) 2+ (Z-ZT) 2 'Vx i2

(z - zj) dz

+ (Y-yi)2 + (z-zi)2] dt

Inserting the optimum position coordinates into the above expressions for

T and Ki, the above equation can be written

dtdt T ti

[zz]z+ Z- zT +z - zi] dz
I T Ki d

dx
dt

dy

dt
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Now D If d Roj
oi c dt

where Doi is the calculated doppler

of the transmitted signal, and c is

we have

frequency shift, f is the frequency

the velocity of light. Therefore

Doi ( - a) + x - ] - + ( - )Yi dy

[. ZT z - zi] dz (22)
+T"i J dt

A relationship between east-west rate and the velocity components

can be obtained from the relationship

d dxos 91) - (Cs d dzd'-• (Co (Cos l)' + acse)m - cs•)d
ýXd ydt ' z T "

Using eq. (3) and inserting the optimum position coordinates into the

above expressions for Li and Mi we obtain

d- Ki Uix - Li (x-_xi)

Ki 2  dt

Ki Uiy - Li (Y - Yi)
+ Ki dy

KI2 dt
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+ Ki Uiz - Li (z - zi)

Ki dz

or

dt (Cos GO) -U Li (x -xi) dx +[ui.± Li (y - Yj)T i K1j3  t [Ki K13  Jdt

+ [uiz Li (z - zi)] dz (3L Ki K5 • .(23)
IKi K13  J dt

The expression relating north-south rate and velocity components can be

derived in a manner similar to eq. (23) and is

d (cos ) [vix Mi (x - xi) dx

dt j~i K13  I dt

Mi(y-yi) dy viz Mi(zZi) dz (24)
KKi 3  J dt Ki Ki 3  dt

Using the results of the position determination section for x, y,

and z, the coefficients of equations (22), (23), and (24) can be deter-

mined. Hence, we have six linear equations containing three unknowns.

These equations can be combined in a least squares sense to determine

the values of velocity components best fitting the data.

The 0 equation can be formed as was done above, in the determina-

tion of optimum position coordinates. Then the expressions
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ývx

__=0,

bvy

20= 0,
ývz

where

dx
'Vx dt

Vy dt

and

dz
1z dt

can be formed to yield three linear equations in three unknowns. The

values of vx, Vyland vz can then be determined which best fit -he data

In the velocity development no expansion is necessary since equa-

tions (22), (23), and (24) are linear.

Determination of Classical Elements

At this point in the development we have determined the position

and velocity of the satellite in an earth-fixed coordinate set (R and R).

By a series of transformations these six elements can be reduced to the

six classical elliptical elements: inclination (i), semi-major axis (a),

eccentricity (e), argument of perigee (w), right ascension of the ascend-

ing node (CO, and true anomaly (v). These elements are defined in the
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5literature . Eccentricity is dimensionless, a is measured in statute

miles, and the remaining four elements are measured in degrees. The

elements are given for an instant in time which is called epoch time. In

this thesis the epoch time will be the time of the satellite observation.

The orbit model chosen considers only the first order secular pertur-

bations, the motion of the node, n, and the motion of perigee, w. 6

First a transformation is made from the earth fixed system to one in

which the orbit plane is fixed (x, y', z'). This transformation is dis-

cussed in Appendix A. In this system inclination and right ascension can

be computed. Inclination is computed by finding the angle between the

normals to the orbital and equatorial planes-

i k O"

Before right ascension can be computed the position of the node must

be found. The west longitude of the ascending node (XN) is obtained by

first forming a vector (d) along the line of nodes pointing towards the

ascending node:

-R' X R'

The direction of R' X R' is normal to the orbital plane; hence c• must be

both in the orbital plane and in the x, y plane (normal to k). But the

intersection of these two planes is the line of nodes; hence 0 lies along

the line of nodes. The angle (less than 1800) formed by the x-axis (00

longitude) and - is obtained from the expression

X °co-1
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and from this angle the longitude of the ascending node can be computed.

The right ascension of the ascending node can then be obtained from the

longitude of the node and the west longitude (Greenwich Hour Angle) of

the first point of Aries at epoch time. These angles are illustrated in

Figure 6, where y is the first point of Aries.

At this point in the development, a series of transformations are

made transforming the position and velocity vectors from the coordinate

set in which the orbit plane is fixed (x', y', z') to one which the

ellipse is fixed and lies in the x, y plane (R, R). These transformations

are discussed in Appendix A.

The purpose of all the transformations discussed in this chapter and

in appendix A is to transform out the perturbations due to the oblateness

terms in the earth's potential and to reduce the problem to the undisturb-

ed two-body one.

The law of conservation of energy yields the formula 7,8

t2 Y (M + mn) [2- (25)

where y is the gravitational constant, M is the mass of the earth, m is

the mass of the satellite, and R and R are the magnitudes of 1 and-R

respectively. We can neglect m since M >> m and, upon solving for a,

equation (25) becomes

- i

a R2

or
ýM (26)

a -R2

T
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Since sM is a known constant, the semi-major axis of the orbit is there-

fore determined. The area integral for the two body problem is 9 ' 1 0

RX- R - h, (27)
dt

where h is a constant vector, normal to the orbit plane, having magnitude

2

h =-Vy (M + m) a (I - e2) (28)

From eqs. (27) and (28), it follows that

"I•xj~ = z.•,Ia (1- e2)

or

e 1- a (29)
yMa

where again m is neglected and a is obtained from equation (26). Eq.

(29) gives us an expression for the eccentricity of the orbit.

Once a and e have been determined, it is then possible to compute

true anomaly (v) using the equation of a conic section in polar co-

ordinates:
r = P

1 + e cos v

For an ellipse 11

p = a(l - e 2 ).

Hence we have, in the (K, y, z) reference frame,

- a(l - e2)
R =

1 + e cos v

Solving for v we obtain c 1 [a ( - e2  ]v - Cos-i ( 2

TRe e
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where O < v < 7 if T > O

and TT < v < 2 if R R < O.

From the definitions of the classical elements, it can be seen that

the angle (5) along the orbit, from the ascending node to the satellite

equals the sum of anomaly and argument of perigee. Figure 7 shows angle

9 along with the satellite position in the 7, 7 plane. Now the nature of

the transformations is such that $ increases in a counterclockwise sense.

Hence if 7 is positive or zero, 0 < $ < rr and

Cos'[~

and if -y is negative, T < • < 2TT and

2TT - cos li

In either case the argument of perigee is computed from

W - V

The computational scheme is as follows. First the transformation is

made that fixes the orbit plane in space. A value of 0 must be assumed

since no elements have been computed. Then inclination and the longitude

of the ascending node are computed in this system. With the assumptions

that e = o and a = radius of the earth, w is calculated and the rest of

the transformations discussed in Appendix A are made, fixing the ellipse

in the x, y plane.

In this system (3, 7, 1), a, e, and v are computed, and the values

of i, a and e are used to calculate new values of w and L. All of the

transformations are repeated using the new w and 6 values, and i, XN, a,

e,and v are recalculated. At this point a check is made to see if both the

eccentricity and the anomaly of two successive iterations are within a
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x

Figure 7 - Sum of Anomaly and Argument of Perigee in X, Y Plane
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specified tolerance. The process is repeated until both tolerances are

satisfied, at which time the argument of perigee and right ascension are

computed from the results of the last iteration and the problem is solved.



CHAPTER III

ERROR ANALYSIS

Method of Error Determination

Errors existing in the measured parameters will produce correspond-

ing errors in the orbital elements derived from these measurements.

Once the elements have been obtained, the corresponding path of the

satellite can be computed. The true path of the satellite can be ob-

tained in a similar manner by starting with parameters which contain no

errors. The errors in the measured parameters can then be analyzed by

studying the resulting deviation of the satellite's path from its true

path. This, in general, is the method used for the error analyses in

this development. It was used for two purposes: to determine experi-

mentally the advantages of using all available input in the computation

of "single-pass" elements, and to study theoretically the degree of

error reduction caused by the addition of certain parameters.

The input of the method consists of two sets of orbital elements.

The first set is the reference set. It has no errors associated with

it and is called the unperturbed set. The second set has errors associ-

ated with it and is called the perturbed set. In Figure 8 at time to

the unperturbed satellite is at P0 and the perturbed satellite is at

Po'. These positions are calculated directly from the elements and are

in the earth fixed coordinate system discussed in Chapter I. The anomaly

of the unperturbed orbit is then increased by a specified amount, moving

the unperturbed satellite to Pl. The time (tI - to) required for this

anomaly change is then computed and the unperturbed elements are updated

35
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to time tI. The coordinates of PI are then computed from the updated

elements and an error plane normal to the unperturbed orbit plane at PI,

and passing through the center of the earth, is set up. In this plane R

is a unit vector pointing in the direction of the radius vector to point

PI, and A is a unit vector normal to the plane of the reference orbit.

Now in a similar fashion the anomaly of the perturbed orbit is increased

by the above increment, moving the perturbed satellite to P2 . The point

P3. which is the intersection of the perturbed orbit with the error

plane is then obtained. At this point three errors are computed; the

time error in seconds, which is the time that the perturbed satellite

passes through the error plane minus the time that the unperturbed

satellite passes through the error plane (At), the height error along

R (Ah), and the cross-track error along A (Ax), both in statute miles.

The mathematical expressions for these errors are given below. The un-

perturbed anomaly is again advanced and the process is repeated, again

producing three errors. This process is repeated for as many anomaly

increments as desired. At each point the unperturbed central angle

from Po to the error plane is computed, e.g. e in Figure 8, and a plot

is made of error versus central angle.

The computation of the vectors R and A, for example at tl, is as

follows. Let Rl be the position vector to PI; then, since we have ob-

tained xl, yl, and zl, we can compute R from

-A-• RI

Since the unperturbed elements are updated to time tl, we know the longi-

tude of the ascending node (XN) at this time and we can construct a
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vector (B) lying along the line of nodes and pointing towards the

ascending node:

B = i cos XN - j sin XN.

We can therefore obtain a unit vector normal to the orbit plane from the

express ion
-• BXRI
A

[x" I

The unit vector normal to the error plane is given by

-11 -- b -51N=AXR.,

The normal distance from P 2 to the error plane is given by

-A. -- %

d = N. (P 2 - PI) (30)

(see Fig. 9), and the approximate correction of central angle to find

point P 3 is

N •(e2 "PI)A N = ( -.a, )(31)

where R2 is the vector from the center of the earth to point P2 .

From A@ the perturbed elements can be corrected and an approximation to

point P 3 (P3') can be computed. In equation (30) P 2 is replaced by P 3 '

and d is again computed. If d is less than a specified tolerance, P3 '

is used as the intersection of the perturbed orbit with the error plane

(i.e. P 3 ' = P3 ). If d is not within the tolerance, the central angle

correction is repeated [eq. (31) ] using P 3 ' and R3 ' in place of P2 and

R2, and this is used to produce a second approximation to P3 (i.e. P3 ').
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This iterative process is repeated until d is within the tolerance.

Once the coordinates of P 3 are found the errors in the error plane are

computed from the following formulae [Fig. 10]:

Ax aA • (P 3 - PI),

and Ah - R (P3 - )-

The error out of the error plane (At) is expressed in seconds and is the

time required for the satellite to go from P 3 to P 2 . If desired, the

distance between the points P1 and P 3 can be computed from the ex-

pression

AR -'(x
2 + (Ah)2

and AR can be plotted versus central angle.

This method of error analysis was devised and adapted for use on

the NAREC electronic computer by the author and James A Buisson III

under the supervision of Donald W. Lynch.

Dependence of Errors on Accuracy of Measured Doppler Shift

We will now discuss the analytical method of studying system

accuracy. This method makes use of the above mentioned method of error

analysis. First a nominal set of orbital elements is selected. In this

analysis a one-thousand-mile-high circular orbit, inclined at 50° with

the equator, was used. This orbit is then employed together with a

prediction scheme to predict a "fence" crossing. This prediction pro-

gram gives the time of fence crossing together with satellite direction,

east-west and north-south angles and direction cosine rates, range, and

doppler shift. This information is used as input to the scheme dis-

cussed in Chapter II to produce the unperturbed (reference) orbit. This

is actually nothing more than the above mentioned nominal set of



Figure 10 - Representation of Errors Ax and Ah
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elements updated to the time of "fence" crossing. Then one of the input

parameters is varied by an amount equivalent to the errors involved in

the measurement of that parameter. The rest of the parameters are not

changed and are used with this varied parameter to produce the perturbed

orbit. The unperturbed and perturbed orbits are then used in the error

scheme discussed above to generate Ax, Ah, and At error curves. This

gives us a measure of the effect that the accuracy of a measured para-

meter has on the resulting orbital elements. If the effect of more than

one parameter is desired, errors are computed for each parameter as des-

cribed above, and are combined by summing the squares of the individual

errors and taking the square root. This is done for each value of

central angleand the errors are called Ax]RSS, AhRss, and AtRss. For

example we have for AxRSS

AxRSs = V(Axl) 2 + (Ax 2 ) 2 + . + (AxN) 2

The error ARRSS appears in the curves below. The defining equation for

this error is

ARRSS - V(AXRSS) 2 + (AhRS S) 2

The following is an example of how the addition of doppler shift measure-

ment reduces AxRSS , AhRSS, AtRSS,and ARRSS when measurements are made on

a satellite having the above mentioned nominal orbital elements. Since

range is not part of the present system, it was eliminated by making the

standard deviation (al) associated with its measurement a very large

number (1020 miles). This has the effect of making the terms associated

with range in equation (18) negligible compared with the other terms.

The errors AxRss, AhRSS, AtRSS, and ARRSS are computed by individually

perturbing east-west angle, north-south angle, doppler shift, rate of
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change of east-west direction cosine, and rate of change of north-south

direction cosine from both receiving stations. All parameters are per- r

turbed by their corresponding sigma values. These errors are produced

for several values of doppler shift standard deviation (i.e. aD = 10,

102, 103, 104, 105, 1020). For each case, a set of error curves is ob-

tained and the dependence of a given error (e.g. AxRSS) on 0D for this

particular case can be studied. In Figure 11, the AXRsS curves for the

six above values of aD are plotted. Similarly in Figures 12, 13, and

14 the AhRss, AtgSS, and ARRSS error curves, respectively, are plotted

for the six values of aD" In the figures, curves A, B, C, D, E, and F

refer to errors computed with aD = 10, 102, 103, 104, 10 5 and 1020

respectively, and curve T is a plot of time after epoch versus central

angle. In the figures the central angle varies from 00 to 3600 and the

errors vary from 0 to 1. To normalize the errors, AxRSS values were

divided by 100, and AhRss, AtRSS, and ARRSS values were divided by 1000.

Also, for normalization purposes, the values of time used in the T

curves were divided by 100. It should be pointed out that these error

curves apply only to the nominal orbit mentioned above and to satellites

whose orbital elements are very similar to these nominal elements.

General conclusions concerning the effect of doppler shift on the re-

duction of errors in any satellite orbit cannot be drawn until the in-

dividual results of a large cross section of different nominal sets are

studied.

In Figure 11 curves C, D, Eand F are identical. Curve F (aD = 1020)

corresponds to errors that exist when doppler shift is not used.

Therefore in this case, for doppler shift to produce a reduction in

cross track error (Ax), it must be measured to an accuracy of better
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than 1000 cps. In the case of cross track error, the most significant

error reduction occurs for values of central angle of 900 and 2700. And

the reduction of aD from 100 to 10 cps produces the most pronounced

error reduction at these values of central angle.

In Figure 12 the most significant reduction in height error (AhRss)

occurs when 0D is reduced from 103 to 102, and the values of central

angle at which the addition of doppler shift measurement produces the

largest error reduction are 600 and 2800o

In Figure 13, even for accurately measured doppler shift, the time

error (AtRSS) curves are not symmetrical and for values of central angle

greater than 1800 the errors are considerably larger than for small

central angle. The time error in seconds is the same order of magnitude

as the height error in miles, But since the velocity of the satellite

is approximately 5 miles per second, the time error represents an error

in distance which is larger than Ah. Therefore, in the case of our

nominal set, it can be seen from Figure 13 that, in the first revolution

after observation, the addition of accurately measured doppler results

in an improvement mainly in the first 1800 of central angle. In this

region the largest error reduction occurs at a central angle of 1300.

The most significant reduction in time error in this case occurs when

cD is reduced from 103 to 102 cps.

The curve of ARRsS vs. 0 in Figure 14 is very similar to the AhRsS

vs. 9 curves (Figure 12), and everything said above concerning Figure 12

applies also to Figure 14.

Dependence of Errors on Accuracy of Measured Range

The above error analysis was also run for several values of standard

deviation associated with measured range (al). The values of a1 used
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were 0.1, 1.0, 10.0, and 1020 miles. The errors AxRSs, AhRSs, AtSS,.

and ARRSS are again computed by individually perturbing east-west angle,

north-south angle, doppler shift, rate of change of east-west direction

cosine, and rate of change of north-south direction cosine from both re-

ceiver stations. All parameters are again perturbed by their operational

sigma values with a a of 10.0 cps being assumed for doppler shift. For

each value of 01, error curves are generated and, for the nominal orbit

chosen, the dependence of R.S.S. errors on 0l is obtained.

It was found that the error curves were the same for each value of
aI and were identical to curves A in figures 11, 12, 13,and 14. Since

the curves generated for a1 = 1020 represent the errors in the system

when range is not included it was concluded for the particular case

chosen, that the addition of a range measurement, even to the accuracy

of 0.1 miles, resulted in no appreciable reduction of error. This

results from the fact that the errors in the paraireters measuring the

initial velocity components (i.e. doppler shift and phase-rate) produce

errors in subsequent predicted positions of the satellite which are much

larger than the errors in predicted satellite position owing to errors

in the parameters measuring the initial position components (i.e. direc-

tion cosine). Hence, even though the introduction of a range measure-

ment reduces the error in the initial position of the satellite, the

errors in subsequent positions of the satellite are essentially not

affected.
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CHAPTER IV

EXPERIMENTAL RESULTS

Equipment was installed at the Fort Stewart, Georgiaand Silver

Lake, MississippiSpace Surveillance receiving stations to measure

doppler shift. The satellite used in this study was Echo I. Measure-

ments were taken for approximately 200 separate passes of this satellite

through the detection fence over three periods of time: July 31, 1963, to

September 3, 1963, November 9, 1963, to November 15, 1963, and December

11, 1963, to February 5, 1964. The differentially corrected orbital

elements discussed in Chapter I were used together with a fence crossing

prediction program to calculate values of east-west and north-south

angles, the rate of change of these direction cosines, and doppler fre-

quency shift corresponding to the above mentioned observations. Because

of the simplified model used in the prediction scheme, the predicted

values of doppler shift were only approximate (+30 cps). However, this

model did serve as a check on the equipment, and, because of faulty

digital counters and other frequency measuring devices, the percent of

total observations which could be used was low. Of the 200 observations

only 10 were used, This low percentage was also due to inadequate in-

formation sent from the receiver stations to NRL in several data ship-

ments.

The basic problem of determining what effect the addition of doppler

shift, measured to a given accuracy, has on the accuracy of the resulting

orbital elements is primarily a theoretical one. This is true since the

50
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present system is not equipped to measure doppler shift. The experi-
r

mental "set-up" at the receiving stations was not intended to be a

prototype of future doppler shift measuring equipment, but was installed

solely to produce results from "raw data" which could be used to back up

the theoretical results discussed in Chapter III.

Because of the large errors which exist in the measurement of rate

of change of direction cosine, the errors which are generated because of

the simplified prediction model can be neglected and the standard devia-

tion (a) of these parameters can be computed by comparing predicted and

observed data. The standard deviations for all of the angle measurements

have been computed by comparing system measurements with optical measure-

12,13
ments.

The resolution of the experimental set-up is 10 c.p.s. in doppler

shift. Hence a doppler shift sigma value of 10 c.p.s. is assumed.

For each of the 10 observations, two sets of orbital elements are

generated using the method discussed in Chapter II. In one set the

terms dependent on doppler shift are eliminated by using a large a value

for doppler shift. This results in a set of elements derived only from

angles and rate of change of direction cosines. In the second set the

doppler shift measurements are included by using a a value of 10 c.p.s.

In all runs range measurements are eliminated by using large a values.

The improvement that the addition of doppler shift has on the orbital

elements can be seen by comparing both sets with the above mentioned

differentially corrected set computed at the same epoch. These results

are tabulated in Table I where ad is the standard deviation associated

with doppler shift measurement. It should be pointed out that, owing to

the small percent of cases with correct doppler shift measurement, the



Comparison Between Classical Orbital Elements Derived from
Data Runs 1-10, Computed for Doppler Shift Sigma Values of 10
and 1021 c.p.so, and Differentially Corrected Elements

a i
(Mi.) (Deg.)

Run 1

ad = 1021
Crd = 10
Diff Cor

Run 2

•d= 1021
ad = 10
Diff Cor

Run 3
7d = 1021

ad = 10
Diff Cor

Run 4
ad = 1021

(7d - 10
Diff Cor

Run 5
•d = 1021
ad -10
Diff Cor

Run 6
Cd . 1021
ad - 10
Diff Cor

Run 7
Cd - 1021
Cad = 0
Diff Cor

Run 8
ad . 1021

ad = 10
Diff Cor

Run 9
ad . 1021
rd= 10

Diff Cor

Epoch
G.M.T.
(h.m.s.)

7/31/63
125014.2

8/25/63
063854.9

9/1/63
011719.2

8/28/63
033158.4

8/30/63
032340.8

8/31/63
022038.1

1/3/64
161353.9

2/1/64
143632.4

2/11/64
114059.0

e v W
(Deg.) (Deg.) (Deg.)

4973.4
4896.5
4869.5

7112.9
4545.1
4866.5

4580.9
4353.3
4865.7

6266.2
5745.1
4866.0

4694.8
4939.0
4865.7

3869.6
4163.4
4865.7

5342.3
5305.3
4861.8

5270.6
5195.0
4861.7

5242.0
5118.2
4861.7

47.956
48.107
47.235

43.292
46.708
47.284

76.509
46.789
47.288

66.750
51.723
47.298

49.173
47.263
47.288

60.298
46.977
47.288

48.330
48.357
47.243

47.802
47.940
47.178

47.383
47.575
47.171

0.10430
0.05864
0.05641

0.36625
0.12501
0.06071

0.55404
0.15935
0.06177

0.55107
0.10277
0.06155

0.16819
0.03976
0.06177

0.49290
0.20061
0.06177

0.13012
0.10954
0.03102

0.08792
0.07458
0.01587

0.08663
0.04803
0.01154

282.600
284.330
280.436

304.122
186.166
183.012

228.293
168.614
148.092

251.752
40.656

167.338

229.049
164.029
161.221

213.050
174.030
155.058

31.844
8.395

22.574

2.658
358.568
346.953

321.081
352.861
301.975
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124.567
122.690
131.290

109.308
223.001
225.532

159.980
230.582
250.119

141.598
359.391
236.220

174.569
241.264
244.007

181.837
228.780
247.063

15.316
38.739
25.595

130.512
134.735
145.789

172.058
140.465
190.921

14.156
14.375
13.064

284.559
290.582
291.056

288.469
266.445
268.558

300.306
287.365
281.549

277.300
274.788
274.933

283.152
269.919
271.745

216. 123
216. 162
214.475

117.643
117.445
118. 556

85.695
85.418
85.873
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TABLE I - (Continued)

Epoch

G.M.T. a i e v w
(h.m.s.) (Mi.) (Deg.) (Deg.) (Deg.) (Deg.)

Run 10 2/11/64
ad = 1021 052949.0 4185.3 48.824 0.21964 147.233 259.760 89.173
Cd = 10 4658.0 460532 0.04891 181.688 227.635 85.713
Diff Cor 4861.7 47.171 0.01154 218.223 190.095 86.731

author was forced to use some cases in which the satellite was in an un-

favorable position relative to the two receiver stations. For example,

observations were used which were far east or far west of both receiver

stations. In these cases the resolution of the velocity vector is more

critical than for an over-head observation, and the error in rate of

change of direction cosine has a greater influence on the corresponding

error in velocity. The number of these cases could be reduced by ex-

tending ground coverage through the use of the two additional receiver

stations mentioned in Chapter I.

It can be seen from Table I that the addition of doppler results

in a marked improvement in the resulting elements. As a better means

of studying this error reduction, the errors Ax, Ah, and At, discussed

in Chapter III, are calculated from the 10 groups of data runs. For

each data group two sets of the above errors are generated, one by com-

paring the differentially corrected elements with the elements obtained

without using doppler shift data and one comparing the differentially

corrected set with the elements obtained including doppler shift. There

are, therefore, twenty error runs, ten producing errors when doppler

shift is not considered (Case I) and ten producing errors when doppler

shift is considered (Case II). These errors as mentioned above are

given as a function of central angle. For a given value of central
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angle, a root-mean-square value is calculated for all of the errors in

Case I (AxRMSI, AhRMSl, and AtRMSI). A similar calculation is made for

Case II, producing AxRMS2, AhRMS2, and AtRMS 2 . The values of central

angle used in these calculations are: 00, 100, 200, 300, 600, and 900.

These results are tabulated in Tables II through VII. The reduction of

these errors owing to the addition of doppler shift measurements is

shown in Figures 15, 16, and 17. The relationship between error

reduction and central angle is also seen in these figures.

In these figures the R.M.S. errors are plotted versus central

angle. The curves Axl, Ah1 and At1 refer to the errors computed in

Case I (doppler shift not considered); and Ax2 , Ah2 , and At 2 refer to

the errors computed in Case II (doppler shift included in computations).

TABLE II - Cross Track Error in Miles Computed from Data Runs 1-10 with
Doppler Shift Measurement Not Included in the Computations
(Case I), and R.M. S. Values Computed for Indicated Central
Angles

Central Angle

00 100 200 300 600 900

Data Run

1 -1.08 14.45 29.08 42.48 72.75 84.59
2 -15.7 -106.1 -187.5 -259.7 -421.8 -499.2
3 105.0 592.0 923.0 1131.0 1332.0 1253.0
4 -43.0 340.0 631.0 845.0 1167.0 1207.0
5 5.30 44.2 79.6 110.5 171.0 182.5
6 81.5 297.9 461.8 575.7 696.2 629.3
7 -1.70 22.0 45.8 69.0 129.6 161.5
8 -0,29 -13,61 -26.6 -38.96 -69.28 -83.44
9 5.62 2.06 -1.49 -4.95 -14.05 -19.95

10 -0.70 36.8 74.1 109.2 182.6 190.8
R.M.S. 44.53 238.8 389.1 492.4 623.6 615.0
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TABLE III - Height Error in Miles Computed From Data Runs 1-10 with
Doppler Shift Measurement Not Included in the Computations
(Case I), and R.M.S. Values Computed for Indicated Central

Angles

Central Angle

Data Run
1
2
3
4
5
6
7
8
9
10

R.M.S.

TABLE IV -

10o

-12.8
-46.0
-119.0

134.0
-21.4
-166.0

7.0
21.2
43.1

-24.0
80.83

-47.2
-243.0
-832.0
-473.0
-169.1
-626.0
54.0
32.3
12.5
93.0
375.6

200

-76.9
-387.0
-1460.0
-982.0
-313.7
-1080.0

112.0
52.7

-8.4
176.0
675.5

300

-101.3
-482.0
-1972.0
-1394.0
-449.3
-1492.0

180.0
82.2

-19.4
219.0
927.0

600

-141.7
-495.0
-2877.0
-2127.0
-762.8
-2370.0
434.0
219.3
7.6
97.0
1397.0

90g

-132.4
-138.0
-3146.0
-2316.0
-902.0
-2760.0

720.0
409.0
119.5

-304.0
1566.0

Time Error in Seconds Computed From Data Runs 1-10 with
Doppler Shift Measurement Not Included in the Computations
(Case I), and R.M.S. Values Computed for Indicated Central
Angles

Central Angle

0 00 0
Data Run

1
2
3
4
5
6
7
8
9
10

R.M.S.

0.3
3.6

-14.0
8.0

-0.8
-15.0

1.7
-3.4

2.3
6.6
7.62

3.8
39.8

-62.0
-11.0

0.5
-45.0

6.4
1.3
6.5

-17.2
28.23

200

9.8
85.8

-40.0
20.0
14.0

-31.0
7.2
4.8
12.7

-50.0
36.54

300

17.6
139.8
33.0
88.0
38.9
22.0
3.2
6.4
20.1

-88.3
62.40

600

48.9
314.9
420.0
414.0
168.0
337.0

-45.5
-6.7
41.8

-199.3
251.9

900

83.0
4491.2
897.0
808.0
343.7
761.0

-163.3
-59.2
47.5

-236.9
495.2

Ci

C.

r•
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TABLE V - Cross Track Error in Miles Computed From Data Runs 1-10 with
Doppler Shift Measurement Included in the Computations
(Case II), and R.M.S. Values Computed for Indicated Central
Angles

Central Angle

00o 100

Data Run
1
2
3
4
5
6
7
8
9

10
R.M.S.

-1.1
-18.21

78.1
-33.8
5.119
67.31

-1.7
-0.4
5.68
0.9
34.88

17.8
-27.63
56.6
67.6
3.573
49.37
22.4

-16.6
-2.04
-13.57
35.03

200

35.8
-36.04

32.9
169.6
1.922
29.56
46.1

-32.4
-9.69
-27.58

61.10

300

52.4
-43.1
8.20
269.7
0.225
8.91
69.0

-47.4
-17.07
-40.65

92.97

600

90.5
-54.33
-61.0
528.7

-4.569
-47.88

126.9
-83.8
-35.73
-70.21

180.6

90g

105.2
-50.14
-105.2

663.9
-7.899
-82.79

156.4
-100.2
-45.66
-79.86
227.0

TABLE VI - Height Error in Miles Computed From Data Runs 1-10 with
Doppler Shift Measurement Included in .he Computations
(Case II), and R.M.S. Values Computed from Indicated Central
Angles

Central Angle

00 100

-12.83 -12.46
-52.0 -67.8
-86.3 -95.3

114.0 170.0
-21.0 -28.0
-142.0 -160.0

7.20 14.5
21.1 26.7
42.6 48.8

-19.7 -17.8
68.28 85.29

Data Run
1
2
3
4
5
6
7
8
9

10
R.M.S.

20°

-11.08
-94.5
-124.0
245.0

-31.3
-206.0

31.8
40. 1
60.6

-22.2
116.0

0
30

-8.76
-130.4
-171.0
339.0

-30.7
-277.0

59.1
61.0
77.7

-32.7
159.1

600

2.91
-271.1
-389.6

711.0
-7.10
-584.0

198.5
164.6
156.3

-95.2
342.3

90g

19.68
-415.7
-637.0

1140.0
40.2

-904.0
408.0
313.7
261.4

-185.8
553.6



TABLE VII -

Data Run
1
2
3
4
5
6

7
8
9

10
R.M.S.

Time Error in Seconds Computed From Data Runs 1-10 with
Doppler Shift Measurement Included in the Computations
(Case II), and R.M.S. Values Computed for Indicated
Central Angles

Central Angle

00

0.28
6.6

-9.7
6.0

-0.7
-12.1

1.7
-3.4

2.3
6.1
6.15

100

1.7
2.8

-16.6
10.0
3.19

-20,4
7.7
0.3
3.4
3.1
9.45

200

3.04
1.0

-21.9
9.0
7.52

-25.9
12.7
3.4
3.8
0.3
12.2

300

4.22
1.80

-24.0
1.0
11.96

-26.2
16.1
5.1
3.1

-2.0
13.1

600

6.24
25.9
2.5

-79.0
22.72
19.9
9.0

-2.9
-9.6
-0.6

28.4

9g0

4.99
84.5
88.0

-264.0
24.28
144.0

-40.1
-41.3
-44.4

19.4
105.6
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Figure 15 - Relation Between Experimental R.M.S. Cross Track Error
and Central Angle for Case I and Case II
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Figure 16 - Relation Between Experimental R.M.S. Height Error
and Central Angle for Case I and Case II
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Figure 17 - Relation Between Experimental R.M.S. Time Error
and Central Angle for Case I and Case II
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APPENDIX A

COORDINATE TRANSFOIMATIONS

The first transformation performed in the development is a time de-

pendent rotation which transforms the coordinate system from the earth-

fixed system discussed in Chapter I (x, y, z) to one in which the orbital

plane is fixed (x', y', z'). This new set is an inertial set in fixed

star space. This transformation, therefore, must consider the rotation

of the earth in fixed star space, that is, a rotation about the earth's

polar axis of 15.04106861 degrees per hour. In addition the motion of

the orbital plane in fixed star space must be considered. Because of

the model chosen in this work, the motion of the orbital plane in fixed

star space is the rate of change of right ascension of the ascending

node (T). This rotation is also about the earth's polar axis; hence the

two rotations can be combined into one transformation. The transforma-

tion equations are given by

x' = x cos at - y sin at

y' = x sin at + y cos at (32)

EY =• z

where t is time measured after epoch time and

17 (15.04106861 + • rad/hr.

The first order secular teim in the 0 expansion is used in the

evaluation of 6 and is given by the expression

61
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0.41498 [e 7/2 Cos iI a I (I - e2 )2 deg•/hr.

where re is the radius of the earth and the remaining elements are found

in Chapter II.

The velocity transformation equations can be obtained by differenti-

ating equations (32) and are given by

x cos at - Ox sin at - y sin at

- 1 y cos at

y x sin at + ax cos at + y cos at - C1 y sin Ot (33)

In the development in Chapter II, the transformation is made at

epoch time. Hence t = o and equations (32) and (33) become

Xf = X,
y' =y,

yr = Z,

and C' x-ry,

' y +ax,

oZr = Z

After the above transformation is performed inclination (i) and

longitude of the ascending node (XN) are computed in the inertial frame

and the two following coordinate rotations are made which transform the

orbital plane into the x, y plane. The first of these is a rotation

about z' producing a set (xN, YN, ZN) whose positive x axis lies along

the line of nodes and points in the direction of the ascending node,

The transformation equations for the position vector to the satellite are



63

xN = x' Cos XN - y' sin XN,

YN - x' sin XN + Y' Cos XN,

ZN -Z

I (34)

The transformation equations for the velocity vector are obtained by

taking the derivatives of equations (34) with respect to time and are

S Cos XN - y' sin XN,

YN s i' si XN + Y' Cos XN,

ZN '

The set (x", y",

the orbital plane, is

(inclination angle).

for this rotation are

x11 = x"

z'), which has its x", y" plane coinniding with

obtained by rotating about xN through the angle i

The position and velocity transformation equations

y" = YN cos i + ZN Sin i,

Zn

and

xggl=

- sin i + zN COS i,

xN

Y i YN Cos i + zN sin i,

zh" =-YNsin i+zN cosi

The final transformation is a time dependent rotation from the

(x", y", z') set to a set in which the ellipse is fixed in the x, y

plane (x, y, z). The rate of change of argument of perigee (W) is the
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angular rotation of the ellipse in the orbital plane. Hence this trans-

formation is a rotation about the z" axis having the transformation

equations

S- x" cos Ut - y" sin wt,

y M x" sin It + y" cos t, (35)

T a ZVI

x x" COs - " sin si n" ;A

- Cy" os

y" - x" sin kt + Wx" cos Ut +y" cos U (36)

- Wy" sin it,

z -

The first order secular term in the argument of perigee (W) expan-

sion is used in the evaluation of ý and is given by the expression

w .21370 9[r2747/2 (5 cos 2 j__ 1) rad/hr.
la- 180 (1 - e2)2

As was the case with the first transformation discussed above, this

transformation is made at epoch time. Hence t - o and equations (35)

and (36) become

x -X'l

y zy",

z mzV
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