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ABSTRACT

Based on the studies of S. Lie and E. Cartan in the theory

of continuous groups of transformations, M. Moshinsky has refor-

mulated the nuclear shell many-body problem in second-quantization

language. The methods due to J.P. Elliott for simplifying the

basis set of state functions by classification according to the

group SU(3) are recast into the above-mentioned reformulation.

The purpose is to make low-energy nuclear calculations feasible

for nuclei with 4 and more particles in the 2s-ld shell and thus

render the possibility of probing for SU(3) symmetries in these

nuclei. A hamiltonian model consisting of pairing and quadrupole-

quadrupole terms is known to approximate respectively the short-

and long-ranged correlations between nucleons given by an arbi-

trary, reasonably shaped two-nucleon central interaction potential.

The former model is generalized to include exchange effects at the

long range as well as spin-orbit coupling, and is studied in detail

from the viewpoint of its various group symmetries. It is then

employed to calculate the low-lying levels of Fluorine-20 which

show reasonable accord with the empirical level-scheme.

PROBLEM STATUS

This is an interim report on this problem; work is continuing.
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I. INTRODUCTION

Angular momentum techniques have proven extremely useful in

simplifying the treatment of numerous quantum-mechanical problems in

atomic, molecular, nuclear and solid state physics. These techniques,

first developed in the early 1930's, involve such concepts as rotation

matrices, spherical harmonics, vector-coupling, recoupling by Racah

cofficients, 9-j coefficients transforming an L-S to a j-j scheme,

irreducible tensor operators and state functions, etc. The validity

of such techniques rests of course on the rotational invariance of

many physical situations. Group theoretically speaking, the hamiltonian

of a spherically symmetric problem commutes with the generators of the

group of rotations in a 3-dimensions, R3 .

The fact that a large class of problems in addition possess

symmetry groups larger than R3 can be exploited by studying techniques

similar to angular momentum methods but generalized to definite groups

containing R3 as a subgroup. Solving the Schr~dinger equation of a

many-body problem, even approximately, is a formidable if not impos-

sible task. The matrix mechanical approach consisting essentially in

setting up and diagonalizing the hamiltonian matrix is more promising

and adaptable to the utilization of these higher symmetries as then

the original matrix is decomposed into smaller sub-matrices. Even

considering the capacity of modern electronic computors to diagonalize

large matrices, the labor involved in calculating the elements of the

sub-matrices is still monstrous due to the very large number of N-

particle states present. It thus becomes desirable to formulate the

problem in terms more easily adapted to computor languages so that the

machine can do more than merely diagonalize matrices.

Consider the asymmetric top hamiltonian

Liz+ / (1)
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where L1 , L2 , L3 are the operator angular momentum components in a

system fixed in the body, and thei's the three Cartesian moments of

inertia. Solving the problem for the allowable energies entails

construction of the matrix /IlAdI in some adequate basis, e. g.,

the set Itfitof eigenfunctions of operators L2 and La. Thus, since

0ad):: W••Iand fl I-Yl while L2 = 14 + L2 + L2, our

hamiltonian simplifies to

-2 A 1ý + (2)

the first two terms being diagonal in thej.21ý basis set; we notice

that A is quadratic in the non-diagonal operator LI. Our matrix

AIITII whose rows and columns are given by all the allowed values of

Sand IM is

2 I <i'ftI /4,l ( =ln

where, since matrix elements between different I -values vanish, the

complete matrix is now decomposed into as many blocks of elements as

there are different t-values in the problem: the rows and columns

within each block being labelled byjf , where-i4)¶<I andi designates

the whole block, Moreover, the complete solution of this exact

calculation of energies requires only knowledge of the matrix elements

< t ff 1 1 412 R i ý >,(4 )

But these are definitely obtainable in closed algebraic form by simple

angular momentum techniques based solely on the commutation relations

LLIJ - (and cyclically) (5)

The solution is well known, but no recurrance to its explicit form

is necessary -- only the simple relations (5) are needed to obtain

______41_ + Sc-i I") g A,,1- (6)
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and thus solve (3) exactly.

In group theoretic language, the generators of infinitesimal r

rotations around the 1, 2 and 3 axes are LI , L2 and L3 -- called simply

the R3 group generators. Commutation relations between them (5) form

a Lie algebra. The Operator L2 -- formed out of the group generators

as the sum of their squares, commutes with all three generators LI,

L2 , L3 and its eigenvaluege4PI) sufficing to characterize the R3 trans-

formation properties of I>-- is the Casimir operator of R3 whose

eigenvalue provides the classification label t . The rows of each

irreducible representation designated by t are specified by another label

Swhich proceeds from the R2 (subgroup of R3 ) Casimir operator L3.

The set of functions t1lH is thus said to transform irreducibly under

R3 and explicitly also under its subgroup R2 .

Moshinsky's group-theoretic interpretation of second-

quantization techniques applied to the many-body problem lead to

straightforward generalizations of these simple R. group results to

the case of physical problems involving larger symmetries associated

with permutations, the harmonic oscillator common potential, r-

dimensional rotations and spin-isospin. The nuclear shell model

problem with a spherical (inert closed-shell) core of nucleons is

given by the N- extra-shell nucleon hamiltonianN p4

where Tc l is the kinetic energy, Tj a central or non-central

(or both) single-body interaction andrV4a central two-body interaction.

In the Moshinsky formulation, a single-body interaction operator is

expressible as a linear combination, and a two-body interaction operator

as a bilinear combination, of the generators belonging to groups of
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symmetries higher than R3 . But these generators form a known

commutator Lie algebra. Therefore, in principle, closed expressions

for the matrix elements of any single- and two-body interaction

could be obtained.

In practice, however, another approach was found both

simpler and physically more meaningful: to consider the problem

of allowable energies associated with a mixture of pairing and

quadrupole-quadrupole interactions as a model for central two-body

interaction, plus a spin-orbit single-body interaction. Contrary

to the concept of a potential, these model interaction operators

have a clear group-theoretic meaning in that they can be written

in terms of operators which commute with the generators of various

related groups and whose eigenvalues serve as irreducible representa-

tion labels. These operators are none other than the Casimir

operators of the group involved. Thus the irreducible basis sets

diagonalizing separately the three interactions mentioned above

could be constructed by elementary algebraic techniques based on

simple notions from group theory. Having chosen one of the three

sets, the nondiagonal matrices of the other two interaction

operators can be constructed in this base.

We chose the quadrupole-quadrupole (resembling the long-

ranged part of a central two-body residual interaction) scheme for

three reasons: (1) it is invariant under the group Us, the

algebraic techniques of which have been studied extensively by
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Elliott, Biedenharn, Moshinsky and others; (2) there is a close

resemblance between the Us or SU3 scheme and the states of the

collective rotational nuclear model. There seems also to be some

connection between this interaction operator and quadrupolar

nuclear vibrations; and (3) classification of states by SU3

offers the possibility suggested by Elliott of restricting, as

a first approximation, the basis to the single SU, representation

which lies lowest in energy.

These methods should be extremely powerful to carry out,

within a feasible length of time, calculations on families of

nuclei with the aim of making global studies of their diverse

properties. The isotope Fluorine-20 is merely a "pilot nucleus"

for our work; the fact that it is odd-odd makes it a more

difficult shell model problem as such, in spite of having only
16

four nucleons outside the doubly-magic sOs core. Little is

known empirically about the low-lying spins of this nucleus

unambiguously, but our results on the whole are not inconsistent

with known experiments to date.
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II. NUCLEAR MODELS & LOW-ENERGY NUCLEAR STRUCTURE.

The nuclear shell model of Mayer & Jensen, with residual

interactions between extra-closed-shell nucleons has been widely

appliedl, 2) to account for such low-energy nuclear properties as

level energies, spins and parities, moments, electromagnetic and

p-decay transition rates and even binding energies. Its successes

have been encouraging but glaring failures are evident in some

respects, viz., large quadrupole moments are left unexplained.

A second approach to the problem has grown from evidence

of cooperative nucleonic behavior seen in the fission process and

the partial success of the liquid-drop model which seems to be the

antithesis of shell structure. The liquid-drop and shell-model

viewpoints were combined by Bohr & Mottelson and the Copenhagen

school to propose a nuclear model allowing more generalized motion

within the nucleus by the introduction of collective vibrational

and rotational degrees of motion.

A third trend has been to return to the shell model but

with specific residual interaction models that simulate those collective

aspects to a certain extent. So much the better if these model

residual interaction possess group symmetries which can be

systematically exploited to reduce calculational labor.

1. Heavy Nuclei

la. Collective Behavior. In 1950 Rainwater3'4) suggested

the possibility of nuclei between magic proton and neutron numbers

of acquiring equilibrium non-spherical shapes to account for observed

large quadrupole moments and transition rates ---- as much as a

single nucleon outside a closed-shell core having the power to

polarize or deform the core by centrifugal forces. Bohr and

Mottelson5' 6 proposed (1952-3) a unified description whereby
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shell structure due to the particles was maintained alongside
rv

collective structure consisting of permanent deformations resulting

in observed rotation-like spectra as well as vibrations in size and

shape. They put forward a total hamiltonian

j~/p+S H94t (8)

with particle-like , surface effects 1S arising from deviations

from perfect sphericity and an interaction/HAt between particle

and surface effects. For a small number of extra-closed-shell

nucleons one had weak-coupling since departure from sphericity was

small enough that one could treatHt Wt in a perturbation method

with shell model particle states X as zero-order functions. For

many particles strong-coupling prevailed, that is, spheroidal shapes

occurred permitting a reasonable description in terms of well-known

rotating-top eigenfunctions ro , with perturbative effects due to

vibration, vibration-rotation and surface-particle couplings. The

Unified Model enjoyed great successTin certain definite regions of

the nuclide table, failing seriously in others mainly because of the

difficult intermediate coupling situations.

Nilsson8) (1955), using the model of a single-particle in an

anisotropic harmonic oscillator common potential with axial symmetry

plus a single-body spin-orbit term and a term in Z
2 to simulate the

partial effect of a square-well, calculated for every nuclear

ocillator shell the single-particle energy levels as functions of

a parameter proportional directly to quadrupolar oscillator deforma-

tion and inversely to spin-orbit strength. Many applications of

this simple model have been made to odd-mass nuclei, where the even
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number outside closed-shells are presumed to pair off according

to the shell model, leaving the one odd particle to deal with.

Numerous properties were predicted approximately 9 ' 10) in those

regions of strong or extremely weak deformation where the model is

expected to apply but again, failing for intermediate cases.

Both the Bohr-Mottelson and Nilsson models have succeeded

in explaining, within certain limits, the rotational band-like level

structure of many strongly deformed nuclei beyond A =/0 . These

bands are designated by a quantum number K which represents the

projection on the nuclear symmetry axis of the total angular

momentum J composed of individual-particle and collective

angular momenta, as shown in figure 1.
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For low energies, rotations are about axes perpendicular to the

nuclear symmetry axis 3 so that the total individual-particle an-

gular momentum vector p coincides with the 3-axis, _A becoming

equal to K, and one has the situation in Figure 2. The nuclear

wave function referred to this axis is then

%r L- f.f .L
or the antisymmetrized product of N individual-particle wave functions.

Perhaps with the intention of having a model capable of

covering a wider range of cases than the rotational models discussed

above and the original Mayer-Jensen shell model, a new approach

has become very popular since 1957. Elliott'5m) Bohr and Mottelson

discussed the use of long-and short-range interactions approximated

respectively by a quadrupole-quadrupole (Q2- ) and a pairing P force.

The Q 1 force to be distinguished from a single-particle Q force of

the form

- (90)
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used by Nilsson to deform the common oscillator well ---- it is a

two-body interaction between extra-closed shell nucleons giving rise

to what Mottelson called the "aligned coupling scheme" whereby the

extra-shell nucleon orbits tend to align themselves along a given

axis fixed in the core thus acting, effectively, as if the core

itself were deformed into a (quadrupolar) ellipsoidal shape.

Mottelson12) shows that E gives rise to binding energies depending

on N, while Q2 produces effects dependent on N2 and therefore for

many particles outside the closed shells Q2 is expected to predominate.

lb. PairIng Effects. Bohr, Mottelson & Pinesl3)(1958)

emphasized that the large spacing (gap) between the ground and first

excited states of even-even nuclei as well as the mass difference

between even-even and odd A nuclei may be indicative of nucleonic

pairing.

The first formal use of the ? plus Q2 model seems to be

due Belyaev14) (1959) who reached very interesting conclusions

regarding the effect of pairing in heavy nuclei: 1) pairing

reduces the heretofore too-large predicted nuclear moments of

inertia by magnitudes in much better accord with experiment.

(Griffin & Rich15) (1960) Nilsson & Prior16) (196o) verified this

admirably for 26 even-even rare earth nuclei with an average theory-

to-experiment difference of only 6%). 2) Near closed shells,

pairing gives rise to spherical equilibrium shapes while the Q2

interaction low-energy vibrational modes is responsible with

frequencies within observed trends. 3) The even-even nuclei gap

is explained, as well as the increased level density above it. A

disadvantage of Belyaev's 2nd - quantization treatment of pairing is



that the number of particles N is not constant so that results apply

to average properties in a given isotope region.

The Belyaev model was used by Kisslinger & Sorensenl7) (1960)

in an extensive application to single-closed-shell heavy nuclei, for

cases where P predominates over Q2 , and obtained generally encouraging

results of level energies, moments and transition rates. A recent work

by these authors18) (1963) shows use of the same model with the

additional treatment of quadrupolar vibrations via introduction of

the phonon formalism. Reasonable agreement with empirical low-energy

systematics is obtained for numerous heavy nuclei outside well-

established regions of nuclear deformation.

2. Light Nuclei.

Experimental work by Litherlandetal19) (1956) on Mg2 4

strongly suggested the presence of rotational (collective) structure

in the A=24,25 mass region of light nuclei. Subsequent experiments

corroborated this suggestion for other nuclei in the 2S-ld shell,

e.g., FI9 and Ne°.

The theoretical structure of F19 presented a curious

situation: two apparently very different models yielded very

similar results20). The results obtained by Elliott & Flowers2l)

(1955) with a central Yukawa interaction and spin-orbit force acting

on mixed shell model configurations and those of Paul22) (1957) using

the Nilsson model showed that, at least for this nucleus, the two

models could not be very distinct. This embarked Elliott on a series

11)of key researches leading to his classic 1958 papersI. He found

that collective deformation with its associated rotational spectra

is obtainable by considering particles in a harmonic oscillator



- 12 -

common potential and interacting with a two-body force of angular

dependence P2 (cos e), i.e., the Q2 force, which is diagonal in an

SU, basis of mixed-configurational states ---- SU, refers to the

group of unimodular unitary transformations in three dimensions.

The SU3 states referred to laboratory axes are characterized by

definite orbital angular momentum L and projection M, as well as

by an approximate quantum number K (appearing to be related to the

rotational band quantum number K of Figure 2), the SU3 irreducible

representation (I) and orbital premutation symmetry J-fJ . These

?_ (tA)i) KLM) are projected out of intrinsic functions

rf(c1 ( XM) K) referred to a nuclear axis. The X functions are

classified by the subgroup U2 in addition to SU 3 and are

eigenfunctions of an anisotropic axially symmetric harmonic oscillator

potential. For N=2,3,4 particles in the 2s-ld unfilled shell he found

good overlaps between L-S coupled shell model wave functions and his

SU3 basis set of states corresponding to the leading (lowest-energy)

representation of SU3.

For nuclei with a few particles in the 1-p shell Kurath

& Picman23) (1959) found strong overlaps between wave functions con-

structed by the Elliott SU, technique applied to Nilsson intrinsic

states and shell model intermediate coupling (j and LS) wave

functions from calculations24) with a two-body central force in the

limit of zero spin-orbit force. Similar results for nuclei at the
25)

beginning of the 2s-ld shell were found by Redlich.

The Elliott SU, technique was applied extensively to

nuclei in the lp shell ---- with. the inclusion of spin-orbit

interaction ---- by Koltun26 ) (1961) with results comparing favorably

with earlier intermediate coupling calculations by Kurath25) (i956).
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These techniques were extended to the 2s-ld shell by Banerjee & r

Levinson 27) (1963). Calculations on Mg4 (N=8 in 2s-ld shell) were

carried out by Elliott & Harvey78) who found a small (10 to 20%)

mixing of other SU3 representations into the leading one for this

nucleus. Chac6n & Moshinsky29) (1962) calculated the low-lying

levels of Ne2o using a competitive mixture of P and Q2 forces and,

separately, under a gaussian central potential. A remarkable

resemblance between the two predicted level-schemes emerged, as

well as excellent agreement for the very lowest excited levels.

The Ne20 E2 transition lifetimes were calculated on this model by the

author and co-workers30) (1963) showing the tendency of Q2 to deform

states (decrease lifetimes) and P to produce more spherical states

(increase lifetimes).

The method to be used in our work will be within the

third approach mentioned in the beginning of this chapter. Thus,

our model will comprise P, Q2 and spin-orbit interactions whose

group symmetries shall be employed to advantage. There seems to

be no "a priori" reason why this interaction hamiltonian model

(involving a very small number of parameters) should be restricted

to certain regions of the table of nuclides.
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III.- THE MOSHINSKY GROUP THEORETICAL REFOIULM![ON OF THE NUCLEAR

SHELL MANY - BODY PROBLEMI.1)

1. Creation and Annihilation Fermi Operators.

A single particle in a state e is defined by a crea-

tion operator acting on a vacuum state, namely

beIoŽ

which corresponds to Vot). An annihilation operator is given sim-

ply by the contravariant operator 6 where

0•I> 0-- . (,

They obey the Fermi anti-commutation relations

and hence, expanding the left-hand side of the second relation

[b[l•, --6e 6r, + •'oe •
~b$~f Luh,- - o;

it becomes obvious that if C)e .90 i.e.,

the Pauli princpile is satisfied: one and only one particle can be

in the state ? • For particles in a common central potential the
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state • is given by the assembly

where ) is the principal quantum number, I the orbital angular

momentum, m the magnetic quantum number, 6- the spin projection

along an arbitrary axis and T the isotopic spin projection.

The allowed values of e thus label the dimensions of a

single-particle total space composed of a coordinate (or orbital)

subspace (AI1M) and a spin-isospin subspace (TV ). The C-dimensio

nal vector defining this space is . An equivalent assembly of

quantum numbers for the single-particle state could be

where i results from coupling g with and 7XI is its projection.

This choice is more appropriate for H coupling and here the

single-particle space is decomposed into "spin-orbital" (0.4M i ) and

"isotopic spin" sub-spaces.

2. State of M-nointeracting fermions.

A state of H non-interacting fermions is usually given by

the normalised Slater determinant of single particle functions which

is totally anti-symmetric under particle exchange:

I •

'4g (4)
ý... :.A

(z lem()= -
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where P is a permutation of two variables from the set 1,2,....,N.

Taking another function

and considering the scalar product between and tone obtains

the well-known result

which is called a "generalized delta function".

Now, since IVcorresponds to in second-quan-

tization formulation it is natural to assume as the equivalent of

the expression

fPt 1-

id ea:. > =- '-rbe* b- 10>'(

e, o6r, 6to

which from the anti-commutation relation (12b) is clearly anti-sym-

metric under particle exchange and therefore also satisfies the ex-

clusion principle. The scalar product of (19) with another state

If I f,> can easily be shown to give
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using the relations (12) and the fact that o; /)•Op and this is

identical with the result (18) for ( 1,9! ).

3. Sing~le-and Two-rBody ..Operators as Linear and Bilinear

Combinations of Group Generators.

An N-particle state wit__h interactions, specifiable by a

set of N-particle quantum numbers A• .can always be given as a

superposition of linearly independent states of N-noninteracting-

particles

f = ,X+ C..)o
f lf..r e,.-...N Jf' O

Z 14

with arbitrary coefficients ( h

be determined by the operator Bet & representing a complete set

commuting
of/observables required to characterize the polynomial base (21)

exhaustively via the eigenvalue equations

It is desireable therefore to obtain general operators

which depend on the creation and annihilation operators s and

w h The most common of operators are symmetric one-and two-body
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scalar operators defined as

( and

where I stands for all the coordinates of the It particle and

r=I*-'I .Let us call an =j)EV

and their matrix elements in the usual form are

Operators in the second-quantization formulation are usually

postulated as

Jill'

( •being the complete set of quantum numbers needed to specify

the Lth single -particle state, i.e., states of the type el of the

previous section). These postulates are considered valid if matrix
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elements in the second-quantization scheme are identical with the
rr

corresponding onesin the usual Born-Heisenberg-JOrdan scheme of

matrix mechanics. Calculating the elements of rbetween non-in-,

teracting states we have

having used the relations (12a) in the last step, so that

I I

f,?•.." 4Iv ,e,... E>> --0

32) pp. 169-74

which is indeed the usual result (see Condon & Shortley/)of matrix

mechanics for the matrix elements of a single-body operator between

two Slater determinant states and . Carrying ont a similar

calculation for 'I one obtains

<?,eh<..2)dl? 1eZ..eP'> =-,
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10>

ed L;t'3'1:f5'

x "°". I N 0 (Z 7)

where the last step is arrived at by applying the anti-commutation

relations (12 a,b,c) to the expression

such as to push the creation operators to the right and the annihi-

lation ones to the left. Noting in (27) that the terms

I I'g
7:,07'

7;,'

7i7�= I

and utilizing the scalar product formula (20) one arrives at the

-

ar +r ýj OZ b;x,<01

+ •

J , it

oil toafL
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final result that

C2,=

I I I

�/2.
� a �

-� �y7itc;i...e;4'

whose proper+ies are identical with those given in Condon &

Shortley,32) pp.-tIGem&trix elements of a two-body operator in the

usual formulation. In conclusion, therefore, one has the required

identities
, / (-

(30)

I..

(4Z9

< el 6A
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and Ibeing the Slater determinental states (16) and (17),

thus justifying postulates (24) and (25)

Operators in the second-quantization form are used ex-

tensively in current theoretical physics. When states I ...

are given in terms of creation operators as in (19), the

usually difficulty and tedious problem of calculating matrix elem-

ents between superposed states of this type is reduced to the still

tedious but intrinsically simpler task of anti-commuting

operators. In effect, however even this is avoided as quicker and

simpler techniques have been found for evaluating matrix elements.

It may also be mentioned in passing that the second-quantization

formulation is not necessarily restricted to the treatment of N
fermions: a similar formulation can be derived replacing the

relations (12 a,b,c) between fermi operators by commutation rela-

tions between boson operators for the treatment of such problems as

phonon excitations in the vibrational nuclear model. Finally, we

should anticipate the fact that contrary to second-quantization

formulisms of the field-theory type, the total number of particles

(nucleons, here) is always conserved as physical situations in low-

energy nuclear physics demand.

Let us call the creation-annihilation pair

by another name, for example

where it is understood that this operator when acting on an arbitrary
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state destroys a single-particle state given by the quantum numbers

and creates one given by explicitly,
I

=0 (q{ ft Ls -Aot prese'nt)e
We can find the commutation relations between the Is by using

the relations (12 a,b,c):

-c;• L•L~ LbJ ["L;Li~

*,~, [ I rbj-,(3,
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As Moshinsky realized3J, this result is extremely important,. the

commutator of two -Is is expressible as other 's. Exactly

the same thing occurs with the angular momentum operators, namely,

11 ~ La (and cyclically)

are the generators for infinitesimal transformations (rotations) of

the group R.. (A better insight into the reason for calling

LY PL, the R, generators for infinitesimal rotations is given

in Appendix C ) Moshinsky's argument (see Appendix) concludes that

relations (32) indicate that the set of operators ý C, 1:forms

the generators of a group of unitary transformations. The dimension

of this group is the dimension of the space wherin the transforma-

tions take place, i.e., the possible values of the quantum number

set f=•,O . Let the orbital sub-space VPeV be r-dimen-

sional, the spin-isospin sub-space is 4-dimensional since

h 4 1A.II.A. Thus the set of (4r) operators cgf

form the generators of a 4y-dimensional unitary group VW4r whose

Lie Algebra ) is given by (32).

Now, the single-body operator rof (24) is obviously the

linear combination of tl4ygroup generators

l~~f~P 1•1;I':' C (3-3)
ell(

with relatively simple coefficients as only one-particle states are

involved. For the two-body operator 2lof (25) we use (12 a,b,c) to

convert
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+ - ,, e, "j b".

- " I4
- 15 t~f

= Ce'� Ceze / /,

so that ?is the bilinear combination of U@Igroup generators

IG /

F,2eTel"G,

I ! !CýI, 61;•

with coefficients depending only on two-particle states.

A large class of problems involve one-and two-body operators

which are independent of spin and isospin. Considering this restric

tion, and since

where A4 refers to the configuration (orbital) space quantum num-

bers of the •t particle and 61 to spin and isospin, the coeffi-

cients in (33) and (34) will be

R�R 1 -V
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SI

<f• 2j c,' e: > = < /LA,,Z, S31 //A VI',/4" s> 2

-- '/4/A2 )/1y2Ž,J<
because of the imposed independence of VWi and

ing these expressions in (33) and (34) one gets

where the new operators are simply a con

ones over spin-isospin indices, that is

/

V on S Insert-

:3 @(

traction of the old

cs 
Sl65 Ce =2

S

0(It )

Writing in (32) )AS for e and contracting over S we obtain the

commutator algebra

)

i S/ //S/
s C S

7

/ = /, Z, ---, r)
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which, by the argument upon (32) reveals that the Y7 operators

are the generators of an r -dimensional unitary group, P

of unitary transformations within the orbital sub-space of r dimen-

sions.

From the analysis of this section, an analogy with the

asymmetric top and its allowable energies of the Introduction is

thus evident: the hamiltonian Ar in (1) is quadratic in the R4

generators while here a nuclear hamiltonian ? with group symmetry

greater than R3 , composed of both 9 and r types of interactions,

is expressible as linear and bilinear combinations of the generators

of a larger group, in general, L.T To evaluate the//r //matrix

of (3) in the PIM1 basis for an irreducible representation of

)?;> R2. only the matrix elements <24l / LIIt tl> were needed. In

our nuclear problem, to obtain the//i//matrix we would need the

matrix elements of the symmetry group generators. Although these

are known for a unitary group of arbitrary dimension75) other

approaches will be necessary as solving the problem via the top

analogy imposes great difficulties.

Our approach will be to construct a (truncated) basis

which transforms irreducibly according to the various symmetry

groups of a chosen portion of the model hamiltonian. To accomplish

this, one begins with the problem of classifying the pertinent

N-particle states with appropriate quantum numbers. However, a

brief sketch of the treatment of this problem in R will be most

useful.
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4.- Spherical Symmetry and the R. Group.

Consider first how one obtains in group theoretic lan-
an

guage a basis forAirreducible representation of the group of

three-dimensional rotations R and the labelling of these states.

The generators of infinitesimal rotations around the xy and z

axes are respectively L., LI and Let where

LX= ( ih4)r

L� (�f')&�

In spherical components one has the three generators

L o • I.,•(4o)

which byELaJ 1 3 " (and cyclically) obey the Lie algebra

LKo, ±_}- tu , [L ) -L - 2Wo (4i)

of which only L0 is hermitean since

(L+J f • = t* o

40 ax

-It. - a P,

X P-1 - 09
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L,% LI, Lp being hermitean. Rotations are linear transformations

and therefore the basis functions should be linearly independent

homogeneous polynomials in the spherical space-components %+, XO

and%,_ of fixed degree, say h, which are solutions of the Euler

equation

?.V ?0C+, -) = i P(+,%,•,•-). (43)

These solutions however form a basis for a reducible representation.

To decompose this set into irreducible sub-sets a further restric-

tion on P must be imposed, namely

(44-)

using the hermitean operator L. which commutes with the previous

operator VV so that it can be employed simultaneously with

to further caracterize the polynomial by the integer

m. The weight of the polynomial P is defined by m. Since L+

and L_ also commute with V.• the polynomials P LP and

P" -L_P both satisfy (43). What weights do P' and P" have? Using

the relations (41) one has

I. P' L.• = [1•,, Lj] f + L, L. F
'L 0 P= KL = P#o++

L+P +mt-
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The operator L tthus raises the weight of an irreducible basis P

by one unit and L- lowers the weight by one unit. Lt and L_ are

therefore called the raising and lowering operators of the group R3,

while Lois the weight operator.

Among the solutions of (43) there are some polynomials

of highest weight given by the three equations

and t.4P o. (C+7)
From (45) we take the general form
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I.,

-C - X0'(

in spherical components which, like (40), are X+ = X ±o -9

Applying the restriction (46) with + •/d -x-/x-

gives the relation -=and (47) with -

gives a recurrence relation between the remaining coefficients so

that A))

with A• an arbitrary constant and (j) the binomial coefficients

finally yields the solution to (45,46,47) as

=A 0 4 Y07- 2?-~ (4g)

with k =Qe, Nk + .*,P (9

But the term ((X-2)(4-) is simply Y-= so that one

has

IP4 =A0
k-Cr S(•)

which (apart from an invariant r and a numerical constant) is

the familiar solid spherical harmonic of maximum projection

h(6Za6A-)

(Cý +p4r= 0,
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To summarize, the three equations

ensure solutions (51), or (52) which for the simplest case h-4 '

(maximum representation) then • • (e,) is the maximum weight

polynomial of the basis for the irreducible representation labeled

by . The full basis can be generated by successive application of

the lowering operator L_ , giving us the rows m of the represention

thusly:

(.e--m
where the radical in front of the lowering operation (L_) is

for normalization) and m takes the ( ZeI+ ) allowed values

which are unique for a given t-values, i.e., the set of numbers m

labellfng the rows is multiplicity free. The polynomial basis t

is clearly an eigenfunction of the commuting operators L and L. ,

36, 37, 38)
and the operator L is referred to as the Casimir operator / of R3

as 1) it is constructed from the R, generators by



2) it commutes with them, namely LL5' 0and 3). it suffices
to characterize each irreducible representation of R, by the label

2. The Le operator generates rotations around the Z-axis and is

thus the single generator of the group RZ of axial rotations.

Hence, the polynomial basis & is said to be explicitly reduced

with respect to the chaim of groups

the 1 in the lower-right hand corner coming from the fact that axial

rotations here are about the g-axis.

Exactly analogous techniques have been developed for

unitary group irreducible bases which are needed to construct wave

functions for problems with symmetries larger than rotational.

5.- Supermultiplet Classification of States by Unitary Groups.

Permutational Symmetry.

The group of unitary transformations within the total

orbital-spin-isospin space of 4r dimensions is L whose (4r)2

generators are ggCt l , • designatingthe components, which

obey the Lie commutator algebra (32). Our transformations are

linear, so the polynomial basis must be a set of linearly independent

homogeneous polynomials P of degree N in the • The set more-
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over corresponds to the completely antisymmetric representation

[1, 04r'-3 of -T4 . The scalar product between two such poly-

nomials is defined as

.(FPj) < P. Jo>
all an thu) evlainI

where in ,

(58) depends

creation and

all -V are replaced by b" and thus evaluation of

only on the properties (12 a,b,c) and (ii). The

annihilation operators themselves transform as

(69)

f

the ,j being elements of a unitary matrix.

As already seen in (37), contraction of $

over the index s gives an operator set with Lie al-

gebra (38) and therefore constitute the generators of a group U

of unitary transformations in the orbital space of r dimensions,

i.e .,

I+-

Aýs

- 2 (�4A'5� Ljus

Moreover, we can form the 4 =16 operators

P4)

(e = 1, 2,...., 4r)

ýA w 1., 2, - -.., r

S = 1) 2-.,S/+)
I'U, :
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C5 l - 2
/4/'~C,

by contraction over the index,4. , and see inmediately from (32),

contracted in the same manner, that

(62-z)SC S//I

is a Lie algebra identical with (38) and (32) so that the operator

set form the generators of a group of transformations

L i-�(4S

TJ 04.
I s oS

S

The generators of 2 commute with those of T-. :

q ~ '44S2~~
C;9 g

-~~ 21IA
VC

(61)

; •',

ICS• I s,, _ s
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4 £4;4/

As

(4P)

recalling that ,. Hence, the group

i of matrices I /L 5/ contains the product sub-group

X 4- of matrices // 1dl uff and this contains separate

ly the sub-groups rwith sand 4 with //4 ($//

In shorthand:

(orbital-spin-isospin)

the names in parentheses

mation space.

)
IL 4-- (orbital)

U4,_ (spin-isospin)

referring to the single-particle transfor-

Let us now define the irreducible representations con-

nected with this chain of groups. The Y operators and

4 operators C are hermitean since

(is�)

-C " "-A

-=0,
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SS

""4

while and S O( S-S) have the hermiticity

properties

In analogy with the R hermitean operator Lo one can define, as

in (44), in V. and simultaneously in U4  , the weight of the set

of homogeneous polynomials P of degree N by

S (S7

since the operator sets commute mutually, so that the weight of P

in 'L is the set of numbers f$II*" 'rJ , and in L it is

[ .Uj•3 0 .From (67), the integer WA is the degree of P in

6 with respect to the index/& while, from (68), the integer

W5 gives the degree with respect to Is. Example:

has V weight 4.. % = [2"111 and C weight



[WI ),L(.3W4P I =['3o17J 0 The sum of individual degrees

4

zws
s�I

- N

is the total number of particles, whi

of the number operator

,tA=I

ch in turn is the eigenvalue

C(S -'

SI/

Xp=NP

A polynomial P of weight •fIV ... W4fr

higher weight than P/ of weight

set of differences

in 'r is of

in if in the

(72-)

the first non-zero number is positive. Likewise,

for higher and lower weights in _U4_ applies.

Consider now the remaining operators of

•b 9€6#,') and of L , i.e., Cý ('.

polynomial classes P1 and PO as

(/A </)
2"--A

the same criterion

S, i.e.,

Take the two

- •8

Y,
'57

x =

EN-W11,
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Using (ii), (12 a,b,c) and (67), one can find their weights:

e*_I /4/4 e 
P +/t

- +A'P ; r (

K",eWp
At' -d// (•.*i) F"

I $" ,A ... -4 ' and P"
so that P' has weight f'ItW,* ')Atf 11 W anYF

weighs .01,W, 1' J which are respectively

higher and lower than the weight ,X I"), 1•41 .. -" ,r 3

of P. Thus in analogy to L+ and L of R3 , 01'.u <) are

the raising and the lowering operators of the group

V " In the same manner, one can see that Cf$S (s5<) and

C• (sTsl) are the raising and lowering operators of (.4
Thus

I-�.

4.-
4-.

rv
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QAt.iIICi

OPezRo 3 r

* ** (7z)

I)~'- ,,7...., ,,e) '

pr

er

and a similar array for Csffof Lclearly show the three categories
of raising, lowering and weight operators present in unitary groups

which is the generalization for these groups of the similar result

obtained previously for R .

Among the set of linearly independent polynomials P which

satisfy equations (67) and (68) thus being characterized by both

S.v... )B and fLO W 3 w4t , there are some, say , of

highest weight in both ? and V4 given by

A AIM

and simultaneously by

I
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C],1L- VSU /

the highest weight polynomial set now being characterized by

•,i...li I4V. 3V4• , which is the representation label of the

direct product group IUrXTJ4 * The set of equations (73) and (74)

for itA-V. is analogous to the set (46) and (47) for R 3 : they

select the maximum weight functions T out of a larger set P.

Should one further insist on an analogy here of the Euler equation

(45) treated in the discussion of R3 . we can cite

e

which like (45) gives the total degree of F

We recall from (53) of our discussion of the rotation

group that the complete base R , corresponding to irreducible re-

presentation ý of R3 , where the row index m is given by -

-•H<M '< I , can be generated from the maximum weight and h=

polynomial P of (51) by successive applications of the R,

lowering generator L •

In the case of , it is possible also to genera,

te the full basis labeled by the appropriate rows to be

discussed further on via application of operators which are

functions of the lowering generators of this group. The representa

tion LIz "" ]X•jViVzV/i of ArXU is thus definitely

irreducible. Moreover, this irreducible representation is unique

(See Appendix ]- ).

The direct product group 'RXL contains a) and 74
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as subroups. The highest weight term of an irreducible basis for

ir and + , labelled respectively by hl"°h3 and VV 3 4qf ,

obey restrictions analogous to (49) for the irreducible representa-

tions of R. . We recall that (49) followed simply from the fact

that T was a homogeneous polynomial in 4, %X and X.. In the,

present case, if one considers the non-negative scalar product

o <o r

where in step Z we used (73b), in 3 (73a) and in the last step the

fact (0?, P ) • 0 • Similar results are obtained from the

scalar product (C1E C5 I1 ) for S>S'. Furthermore, from (71)

one obtains 2 -1A . In conclusion, we have the

following conditions:
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V,• V2.7 v!" v (o
1.4: Vf - '- ± V, V V-5 N (77)

which are precisely the requirements on the well-known Young diagrams

(or partitions, or patterns) giving the permutation symmetry of an

N-particle function.

The uiq highes weight function of an arbitrary orbital

permutation syametry and the corresponding (con ugate)spin-isospin

permutation symmetry can be constructed at once. For instance, take

the 13 particle orbital symmetry given by the partition

[4-3 ZZ1 (7s)

where obviously 4+3+2+2+1+1 = 13. A polynomial function ( s

with this ?W irreducible representation and of maximum weight in

y. is simply
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St +

4-i 4- (79)

X g

which is clearly totally anti-symmetric with respect to interchange

of any pair of orbital-spin-isospin states. Note that the arrange-

ment of btIs purposively follows the Young diagram (78). The degrees

'ýL of F with respect to the components in is = 4 so that

four states withA = f are constructed; h12 = 3 and three states with

= 2 are constructed, and so forth. The second index of each

operator denoting the spin-isospin state ---- is placed in

numerical order in each row. (If two of these indices coincide the

whole expression vanishes as from (12b) any b/s b$s=0, i.e., the

Pauli principle). Naturally therefore as I•S \`4 , there are

four blocks in any given row. By the same taken, there are "< r
(-number of single nucleon orbital states available) rows in the

whole expression.

Mental application of 1,2,.*6) shows that
,s4
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indeed [, , 6- k5 4 •4 2- 23 - 1 3 . The effect of any

(4( ( ) is zero as in some column a factor b"= O C.:
would then occur, thus (78) is of maximum weight in &,.

Again, mental application of (s= 1,2,3,4) shows

that [YV ,V43 , the degrees of I? in S=1,2,3,4, is

[v,'4.• 3 = t?-,3 , which satisfy (77), and furthermore is

the conjugate representation of Eul,' hz i , i 4 L.bcias

M 213 V, VL 3 V4.3

as can be seen by reflecting the diagram (78) about its principal

diagonal. (This was to be expected since the irreducible represen-

tation [h,, '"1XIwXV'VzV3V4j of U•UX is contained in the irredu-

cible representation L 1• 0 4""3 of T4h ). Moreover, (79) satisfies

C6IPr -0 , for S<S' , since the effect of any of these C$S

would create pairs of the form 10+ 5 =O.

The state (79) is the analogue for the CTXU. group

of (51). Extremely powerful andlimple is the technique of construct-

ing any F h of maximum weight. Lowering operations

as in (53) for obtaining the complete bases 94, irreducible under

R - , with-tem•- and of dimension (2e+J), also have

their analogue in unitary group theory.

The polynomial set Bt transforms irreducibly under R31 40)

according to the well-known "rotation matrices")

Theowo the Ir2le )eei o

The row of the irreducible representation sb of dimension
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(2f{I ) by ( QttI ) is given by m which, apart from being the

polynomial weight in R_, is also the irreducible representation of

B which is contained in R as a subgroup, i.e., M transforms

irreducibly under the chain of group transformations designated as

R5 D("- 0)0 1

Similarly, the rows (and columns) that would specify the

full basis of a polynomial set ( s ) transforming

irreducibly under q1y could come from sub-groups of l . Not any

chain of sub-groups, however, would provide a compe classification

of the polynomial set. For example, the chains

L 7xL4, g3

37,41i)
among other physically important cases are known as "non-simply

reducible" because for a given irreducible representation of the

large group there may be repeated sub-group irreducible representations
39)

thus requiring additional labels (quantum numbers, physical or not)

to distinguish these multiplicities. However, the so-called "canonical

chain" 39)
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0

i
0

0I

0 I.
0\

1.

unequivocally specifies the rows of a Vr irreducible representation.

The "canonical chain" for the spin-isospin group LT. would

hence be

)O 0 0o0 0 C 0
0 o

C)o

and as this is smaller than 2y in general, let us illustrate the

sub-group generators. The 42 generators of U, are
4.

(8(0

F

(84)

N 10

I

SU(eo

91•I -

0
U, 

0
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I sill s"/ 5s1 So 1'] s -J ')

with Lie algebra C, CS $ -- S , namely

the commutator of any two generators never gives other than L&

generators. The -93 generators can be chosen as the 3 operators

in the upper-left hand corner above the solid lines. They satisfy

the same Lie algebra as TA , but with S,9'=1,2,3 as can be

quickly verified. The FJZ generators CifCz C 2- also obey

the same algebra, but with sS1=1,2. Finally, C,' is the sole gene-

rator of and the commutator EC,, C,'1] = 0 also gives nothing

outside * An illustrative diagram showing the group chain (85)

in sofar as the 42 generators ($,S' 1,2,3,4) are concerned is:

1J4jC 1c:

Generalizing, g . will from (84) have ( Y- ) sub-groups

2A1  (p=l,2,...,Y-1) each with pz generators -- ... )

Moreover, the equations

O .. i) (P 0 (7)

define the irreducible representation label [J1 p hzp '.. hr]J of

the sub-group 7 C 4 • Likewise,

I
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C..,

cssP vs P c:'r=o

(5 ,<sQ

define the irreducible repzesentation V V, .

group VC
Hence, the generic state forming a complete

irreducible representations of the groups in the chain

0 i

of the sub-

basis for

j4)

(•"1 b+)

42)
could be designated with a notation used by Gel'fand & Zetlin as:

F~ktV~i(+VS)-=I ýkp

(gg)
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krly ý2'i.r• . . . . . ) 6 "

Y Ov I h2 • * *bv S *N r- I

h2, ýZ?,

Vii V24  V2)4  V44

V, 2. VZiý V3 Z

VIS VI's

(50)

V' 4

with t =,2,...,r pana<f =19,9,3,4,

which, for the chain (89), is the anelogue of (53) for the simple

chain (57). In the latter, one had the restriction that

- R•-< t I . An analogous restriction holds in (89), for both

/ and V. chains: Let 'Fn be the symmetric (or perirutation)

group of N objects. AsT[,">lTN .I , the former having irreducible

representations (Young patterns) 1tf°fz...fM] and the latter

t'>* f-3 , then

(see Weyl, ref. 4 ). Because of the intimate relation between
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the and lr groups namely, that they possess' the same

irreducible representation labels, one deduces from (91) the follow-

ing inequalities for ? and its canonical chain subgroups:

hl, '7 ýijr-i ?' r k? w- Kr- ~'I r -gr I k)rr 0

, o s t ai

h,,. +• h,, .• 2••

or, to use the same arrangement as in the generic state(9o),

kh7.

h rI-i

9

41

Iih '-
4./I

1-

0

kit Z2+ h 1. h+

4/+-

. Kr- Ir _o,

(qz)
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For 'J4 and its sub-groups, the same reasoning in (91) gives the

requirements

V, 4  V, V 4  V44 4 o

Vi; V33~aC

12 -

VII

"The polynomial of highest

weight in both lu and U4 must satisfy both (73) and (74). Now,

the conditions (73b) and (74b), i.e.,C)' ): o • , , I P'•= 0 c•S<9

ensure that l is automatically of highest weight in all the

canonical chain subgroups of ?4r nd a1

Concretely, if the representation Lhkr3 (k=l,2,...,r)

of % is of highest weight, the sub-group representations

Ikker (ktp=l,2,..,Y-l) take the maximum value compatible with

(92) and if the 1J4. representation I41 (f=1,2,3,4) is of

highest weight, its sub-group representations Vt (f,<g=1,2,3)

acquire themaxb&= values allowed by (93). This result will be very

significant in future developments, but for the moment we note that

in the explicit Gelfand-Zetlin notation the solution of (73) and (74) (a)
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can consequently be symbolized in the simple form

S F~ hor 62.rjr' . V2 4, V4. =

wy hýr. h , . .. h.r-

1kIIr k ,5 h-I

V,4 V24 V5 4

V14  .q V3+

V14 V2-4

where the h's along any diagonal parallel to the lowest one are

equal among themselves. The same holds for the v's.

Equations (67) and (68) define the weights in Ur and

of a given polynomial state such as (90) ---- weights being

nothing more than the eigenvalues of , (/=l,2,...,Y) in the

case of and, of Cý (S=1,2,3,4) for U 4  . From relations

(38) it is easy to see that the sum of operators

'ThdC& (of lip weight generators)

conmutes with all the generators of Ap and its subgroups

"'APp ,VWZP_. ,..., '21, . Thus the eigenvalue of this sum is the

V4,
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same for arbitrary state (90.) as for state (94) of maximun weight

in For the latter, the eigenvalues of = (,--l,2,...,p)

are simply 1 so thpt

has eigenvalue (Afr p +Apr)

for any dimension p. Hence, OP has eigenvalue

42 1bý -k - (qfa)
Nagel & Moshinsky5)have recently constructed operators

polynomial in the lowering generators ( =l,2,..)

of a unitary group Vr for any Y. These lowering operators

decrease by one unit the k _ representation label h -I of the

subgroup ,-I . keeping the representation of in maximum

weight. Now, an N-particle totally antisymmetric 1 r representak

tion [1i1 C'4r-f' will contain several, say x, representations

of highest weight. (See examples in Appendix A ). Neglect for

the moment the spin-isospin part of (94).----- which is irrelevant

for spin-isospin independent interactions and which is equivalent to

assuming maximum spin and isospin projections M,=S, Mr=T, for any

S and T, in the calculation of matrix elements of a function only of

coordinates. Successive application of (for k=l,2,..., V-l)

on each of the x inmediately constructible states, like (79),
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I I I¸

will give the x sets of kets with all the representations of 2...
in maximum weight contained in the x original,ý representations

of the type , J and which satisfy the inequalities

of the first two linesin (92). Next, by similar applications of

IlL ~ (for k=l,2,...,r-2) one could generate all the states

associated with all 'Ar.-2 representation contained. under each

"U~y..- representation of maximum weight generated in the previous

step, and which satisfied the inequalities of the 2nd and 3rd rows

of (92). Continuing this process until one obtained all the

representations contain in the jU 2 representations, according now

to the inequalities of the last two rows of (92), the full set of

linearly independent polynomial functions transforming irreducibly

with respect to the canonical 24. chain of subgroups(89a) would

be derived.

.Removing now the restriction of spin-isospin independence,

the complete basis with regard to the chain (89b) can also be

withmorephyscal 46)constructed, though with more physical operators, as will be seen

later.

One would therefore have all the N-particle totally anti-
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symmetric states compatible with [I Q41-J but in a "canonical"

(or "mathematical") chain beginning with , i.e.,

bLA' " 6.. ýJ~ ... ~ LL - h2. 1 ;)hi ~V,4V24V4VIK S As TMT> (a
where 46P) stands for a pair of hermitean operator eigenvalues

needed to fully distinguish multiple occurances of (ST) contained in

the 14 representation I / VV4 4 t/. h-, -, . I.l.. However,

this basis (still non-physical in the orbital part) could be trans-

formed to a scheme with definite total orbital angular momentum L

and projection M. with the aid of the matrix IIV LII calculated in

the"canonical chain" basis (89a). The resulting complete set of

totally antisynmetric N-particle states after this transformation

would be:

I~ ~~~~ir rf(LMLEoJSSTT> (7

ý1 Z4V 4 V443 E; or=bz,r krr

provided the operator L?, were diagonal in the original basis (96),

and this can be chosen to be so. Here, Vr designates the set of

quantum numbers required to distinguish multiple L-values contained

in a given ff3 representation. The (physical) chain of groups

under which the complete set (97) transforms irreducibly is thus
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lb lbR

f-E (i) L

4

�T)�xt
$

11 (P) S

ML

:>"'

2 (s-i)) MT~p~i

where the quantum number labels of the ket (97) are given under-

neath the chain; those with arrows pointing to a specific group are

the labels for the irreducible representations of that group. The

subchain R2Ra- represents the special case of spherical and axial

symmetries discussed in Section 4. The group "U+ of transformations

in spin-isospin space contains the subgroup U7)( V2 of separate

unitary transformations in 2 -dimensional spinor and isospinor

spaces. EachS•i sub-group, as is well-known ), is homomorphic to

a group R (spin or isospin) of' rotations in the (spin or isospin)

space of three-dimensions spanned by the components

(\.
or ,which in turn contains the subgroup or5

of rotations around the (or) axis. Example:
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SM5

The label comes from hermitean operators formed from

the generators of the Ut group which are to completely 6hara6terize

the rows in Ti >) TJ2j( TJ2  . The label T stands for irreducible

representation labels associated with subgroups contained between

ýAr and Ra and also with hermitean operators which may be neces-

sary to completely characterize the rows between two succeeding

subgroups of the chain.

The problem of deducing the irreducible representations

of R contained in a given one of 2W is a simple one. The same

is true of the irreducible representations of [J)(TX contained in
4

a given Til representation. In the former, one obtains the L-struc

ture of a given N-particle Young diagram and in the latter, the S

and T values contained in the conjugate N-particle young diagram are

derived. For a given L , the different terms

Q2S*I, %TtH L_

arising from a representation PVzV V54V are called "supermultiplets".

Jahn) discusses the p and d orbits (4.•and , respectively) and

the (S,T)-structure for up to N=lO particles. For some illustrative

examples, see Appendix A.
The generic state (97) can be L-S coupled to total angular
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momentum J by the usual Clebsch-Gordan coefficient to give states

(r.fvL; EpSTM-1; J MT->

~<L.SML MS IJMj> I tJj ML. S•{, Ms., TAMT> (d)

Now, the total number of linearly independent anti-sym-

met•ric ortibal-spin-isospin N-particle states is given by the simple

result from statistical theory

(4r) (401

N(4y-)1 N

where 4Y is the number of single-particle states available. In the

nuclear 2.-ld shell, for instance, ir = z ( 22 ktI ) = I + (2.2+1) = 6

orbital states. The number of orbital-spin-isospin single-particle

states in this shell is 6X4 = 24. Then, for • = 1,2,3,4,5 particles

there are
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s 4250 4 eflc!

TABLe E. 5E1,

Obviously, one cannot hope to solve an N-body nuclear shell problem

even with a model hamiltonian ---- without making drastic re-

ductions on the number of states to be considered as pertinent. One

)47)
such criterion, first used by Wigner , is based on the fact that

the attractivity of nuclear forces will favor the most symmetrical

orbital configurations as lowest in energy. (This being the exact

opposite of Hund's rule in atomic structure where forces are repul-

sive). For example, restricting 3-particle states in the 2s-ld shell
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fl'I-1 ~ 224 (03)

fz123x~zlj1 400

7orft*Q02 s-tsfes

to the symmetric C~1 partition of % would reduce the original

number of states 2,024 to only 224. The 14 representation tii1j

is equivalent to C' with (S,T) = (4,')(see Appendix --A so
that 2T+J. = 2, corresponding to M T= +1/2. For light nuclei

coulomb effects are negligible so that one need only deal with half

the 224 states, leaving 112. Moreover, our hamiltoni~.n would certain

ly commute with L± so that instead of dealing with

(.25 +1) values of M. for a given J one could limit the calculation

to M =J. The 112 states are thus reduced to 17 states. This is

still a large number resulting in still large matrices to be calcu-

lated and even further restrictions will be warranted. For this we

turn to the simple harmonic oscillator well as a model for the

nuclear common potential*

I
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6.- Harmonic Oscillator Symmetry and the V3 group.

6a. Single Particle.

High-energy electron scattering from nuclei 48 indicate

that while the nuclear common potential of heavy nuclei resemble a

flat bottom shape with tapering edges of the Saxon-Woods well, that

of light nuclei up to the Mg region resemble a harmonic oscillator

parabolic well shape. The harmonic oscillator is simple to deal

with analytically because of its group-symmetry properties. Let

us therefore assume a hamiltontian

including any miscellaneous single-body interactions H.Mt e. that

may arise, viz. spin-orbit coupling, as well as residual inter-

nucleon interactions 2 V(r y-- The allowed energies and angular

momenta a single particle are known to be given by

H s, =- CV÷ tA) W (
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2- - (-)= I f

IV

(1o6 4)4 )C.)

t",w)= f (rA t+ ~

,C?-(R 2) r/y

and with • 2 + L being the principal quantum number, n the

radial quantum number in the laguerre polynomial L9 ( Z),

and m the angular momentum and its projection. Since n is a

non-negative integer

0
(107)rf.

and in general several orbitals (given ý ) appear degenerate in a

given shell (specified by Y ). The energy difference between shells

is t14 The number of single-particle orbital states available

within a given shell is

1 (itog
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so that neutrons or protons fill a given shell. Thus for rv

i =0, one has 2. For V = 1, there are 6; for V =2, there are 12;

for i =3, 20, for k =4, 30, etc. Hence, this model based solely on

the harmonic oscillator well predicts the following neutron (or

proton) numbers at each closure:

M V ~ 00 
1/207

But, the empirical "magic numbers" at which nuclei show special

stability in many regards are rather 2,8,(14),20,(28),50,82 and

126 ---- numbers in parenthesis referring to less pronounced sta-

bilities. Thus only the first three fully-magic numbers 2,8 and 20

are predicted in the scheme (109). By introducing a strong,

attractive spin-orbit term to the oscillator hamiltonian Goeppert-

Mayer 9)and independently Haxel, Jensen & Suess0) predicted the

magic and semi-magic numbers correctly, thanks to the ensuing

doublet splitting (See Figure 111.6.1).

The single-particle oscillator hamiltonian (105) and

solutions (106) can, as is well-known, be formulated in terms of

creation and annihilation boson operators.

Taking Mt- . , then

where +±~ %~ I (n

T -L(3 Y-?kA -oP
.ff%
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are the spherical components of vectors r and /, the scalar

products -P and Y° in (110) being given with the usual

metric, namely

Furthermore, one defines the creation

operators as the linear combinations

4 X

and since

£Ep,x•'3 • C•,•,J -

4-

+ and annihilation

II')

(t -i)

[f;P4i= :7x I=

one obtains the relations

tcZ� &4 g� �.

(1/2)

(//3)

U6~ [a4 ar'J= a,4J= 0~
(us%�, �1-)
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indeed the commutation relations for boson operators. Raising and

lowering of the indices is governed by the metric in (112) so that

Suppressing the particle index i in (110), it follows from (112)

and (113) that

H+ (a+/7)

Similary, it can be sown that

¼ = =2 c ,,' '~~-

the Eq.4 ,i,, being the completely antisymmetric tensor, E•i•'i =i

if r• are cyclic in order ITO , .. ,, - if not cyclic

and =: -- if any two indices repeat. In thestpreiu

to the last in (118) the index q' was lowered according to rules

(116).
51)

As early as 1940, it was noted that a harmonic oscillator

potential remained invariant under the transformations of the three-

dimensional unitary group *• In (117) and (118) we defined the

single-particle operators
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which, upon using relations (115a, b), can be seen to obey the

commutation relations

Ecq', c•7'j ' C•'c' (2

which by the same arguments associated with (32) stand

for the Lie commutator algebra of the 3 7generators for infinite-

simal transformations of the group *S That this is the

symmetry group of Ho" of (117) follows from the fact that H

commutes with all the generators of (1, , that is

OSC. C"_ j

= 0.
Again, as in (72) the set • Ci' of UO generators can be sub-

____ CoT ,•;wegt
divided into three classes: lowering! C weight-

giving C,', C o, C (in that order), and raising C, C~and

C, Moreover, R. being a subgroup of U3  , the generators of

the former ( L$ with = /J, ,0) should be expressible as linear

combinations of those of and from (118) this is indeed the case.

Operators k; and t= o can be simultaneously diagonalized

along with H SC since
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E H 0SC : 2 o

L o.

Now, an arbitrary single-particle harmonic oscillator state can be

written as

1Af)o 1,- 'ar Ig O

in terms of the numbers of oscillator quanta along the three

spherical,,,"directions" =/ - O- The state is the

oscillator ground state (no excitation) and the radical provides

normalization. There being + = ( ii ) (V)f2) different pssibi-

lities for the triplet ( fl, 01' 7 o7) where 77f14 M = j always,

the vector (123) spans the r-dimensional orbital subspace of our

problem. From (115a) one notices that the effect of $ acting

on any homogeneous polynomial P( at) is equivalent to a partial

derivative:



- 70 -

a4 kq)

The effect of H"'4 and •oupon /17, 1r ?o> is thus immediate:

a,• . OWr!, -. 16

'w,+

1,. Im, q,'r1)lb>

M I- I MTram,' (Cz(,)

These results a&r 'identical with (106a,c) in the sense that the

energy and the angular momentum projection are diagonal. In the
present caset is not diagonal•as it was in the old sets

74g'( r) which ýforms a basis for an irreducible representation
0 'to 1e-td t ,,,,r ', .-!' ý ý

according tp the chain of single-particle transformation groups

with representation labels ) , and m, respectively. Dealing

with this physical chain is more difficult at present than working

(A.z f)

I

S(•, - Vr) IAT, en.•>
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with the canonical (or mathematical) chain

for which the basis ITl•>?1.> is most appropiate. Specifically,

the group, its weight-giving operators and the corresponding

representation labels are simply

T9 ,C, C 01

and, in the Gel'fand notation, a general state forming the basis

transforming irreducibly according to (128) is

6b. M.hy Particles.

The operators C defined in (119) are single-particle

operators. We are now interested in dealing with the N-particle

operator

Being spin and isospin independent we can use formula (35) to cast

(130) into second-quantization formulism:
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recalling from (37) that

c4W9S4> '�4'

d/

(1,31)

f/IA2Y 1QQ')

are the group generators of Vr, the group of transformations in

orbital spaee, and where/" stood for the single-particle quantum

numbers d , to be replaced here by the new set 'W '

The coefficients in this expansion are very easily found from

definitions (119) and (124) whose effect on the normalized oscil-

lator state (123) is seen to give the simple result (see Appendix

G for details):

In Mi I-n

"-f,'f7/fl,'

These 9 operators, from (131) and

tation relations

!7C�, c�"'1

t "" f 'A

relations (120), obey the comxu-

~3)

~~jK/WI Tc c:,IJ 9' Ž

,SAZLW
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[C�, c�"'i�
which compose the Lie algebra of jJU3 . For the particular case

of the 2s-ld shell

VI-

Expansion (134) of the generators of the subgroup in terms

of those of the group 74 can be explicitly given if we first

take the convention of enumerating the 6 statesM - (17,17T%)

in order of decreasing weights (in the sense of 72) and calling

) - for convenience:

oil -�

•, ~I o '&<0 1 c3.flj
020

Therefore, we have the set of TT3

COI

(17-7)

g e3

generators~ 6 j expressed as:

c�.

4.-
4.-.

-V

rv-

101 q 1 41 j 4. /it

clý 3ý to - Cq, )I

10-11T + no= 9 = 2- qu6m-ta ;
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can likewise be obtained, from (35), in second-quantization language

as

I6 0SC21 2
$

4 I2. "4" 
4

0i31)

\/Y being the number operator defined in (71). Similarly, the

N-particle momentum operator in (118)

GI L�
Id IL

= 4� Iz '�-)�
L�, �

6.••, • • (140)

now becomes

A 64,Df.= 2 (-P

��ji C-
� I�'I

A

so that explicitly, the spherical components

OQ, (d{+ C,),
are easily seen to obey the commutation relations

U0Q ,] 1= +CQ_, 10C,- a=-0C

V (p'>

0~I,~) (14-1)

(/#2 ý)

14

Ci H
1/114

+ MO +

t 512- ) VV

j2q

A _

+
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of the group R5 C V5

In the many-particle case, the group T with generators

I1$,• 0 _p, 1,2,3) obviously continues to be the symmetry

group of the harmonic oscillator as its hamiltonian (136) is a T7 3

group invariant, namely,

f/ Ose 11J _ O

Hence, just as L(in section 4) commuting with the R3 generators

L1$ (•=,j 0,-) lead to its diagonality (55a) in a base F•

transforming irreducibly under R., we here have that AO$e will be

diagonal in a base irreducible under U (See Appendix ). As

in (73 a,b) for the group , the maximum weight polynomial

belonging to the U basis set is defined by

I? 1ýJhnhsh) (h= h1~3 2
I i . ^, I 1iIr 41 /

where and wo are respectively the weight-giving and

raising operators and the second index on the h's refers to U3

The raising operators (144b) of U3 are linear in V raising

operators according to (138). IfF is choosen with maximum weight

in V4as in prescription (79), it will thus also be of maximum

weight in 1 • The full irreducible basis in V3 could be obtained
k

using lowering operators of C}5 (the £r) as was mentioned in the

previous section for '24.* This would give the basis in the

f))L• • chain, later to be transformed to one in the physical

chain ,U3 R D R, i

I )

(/It3a)
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The second-quantization version of the N-particle

hamiltonian (104) will thus be

with including both single-and two-body interaotions to be

dealt with later.

Conclusion: in the P3 section of the chain of

groups (99) with respect to which our many-particle nuclear states

are to transform irreducibly, one can insert the extra (oscillator)

symmetry group so that

I A f b )

will provide the additional classification quantum numbers

( h1'3 kz3 b33 ) of Vj, needed to further distinguish multiple

L -values appearing under a given f-J partition of & . Labels

04 and ) , not proceeding from any particular group, serve res-

pectively to distinguish multiple ( h13 h2S A-33 ) values under a

given CYJ and multiple /I -values under a given ( /7/3 423 633 )"

The basis state irreducible under (145) is thus designated as:

W oL(~K ) M L M> QI-c

PERMUTATIwNAL HRRMOft OsCIuATOR VH~(.ICAL AXIAL
IMMI"eT1 SYMMETRY S-4MMe-rIZI CYMMETRM
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CHAPTER

IV. MODEL RESIDUAL INT•RACTIONS AND THEIR GROUP SYMMETRIES.

In the shell model one is dealing with a hamiltonian of

the type

L 2K (147

+ P RE d)

wherej, and are the Wigner, Majorana, Heisenberg

and Bartlett exchange operators defined by

- ( +. ) ( t ) ('F~a,,& c
++

and W,M,H and B indicate the magnitudes of those components in the

exchange mixture.

We shall assume that T j ) is a harmonic oscillator

common potential

T9Yv)

and furthermore restrict ourselves to particles interacting within

a single shell of this harmonic oscillator. Under this assumption
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the two-body interaction can be analyzed as a mixture of long- and

short-range correlations with definite group theoretical properties.

1. Long Range Central Interaction: The •force.

Let us take an arbitrary (say, Gaussian) from of the central

potential function in (147):

VT( ) = - V) e:- l- =s,

having variable well-depth Vo and range 6parameters. In addition

to short-ranged forces ("-l to 2 fermis) within the nucleus there

are longer-ranged correlations ( ..- nuclear radius) responsible for

collective behaviour of the rotational and vibrational types. 6 ' 7)

Assuming a gaussian well, rather flat throughout most of the nuclear

volume (large ),we can expand the exponential in (151) retaining

only the first few terms, namely

'C"

where the relative distance r = + 2c

above, and upon convenient rearrangements obtain

V%)= _• .t- + Y;.+ +
VO I -I W.+

3e1•

dan be inserted

+%-Y 2 Y4 S)- V(y'+1r,&) t 21

C7

I

,++ +
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the energy spectrum is determined by matrix elements of the type

,, V M I ) IM, • L,•'Ž,'or excitations within a

single oscillator shell 1) . But, from (105) and (106) one deduces

that the set. 2nd. and 5th. terms of (152) contribute only as

functions of i- fi Terms linear in ( , )-3rd. and

6th ------- give zero because states & "&(> and k have the

same parity while )Ahave odd parity. The 4th. term is separated

in the particle coordinates and thus contributes not as an interaction

but as a correction to the common potential. Therefore, the only

pertinent term remaining for large C is the 7th:

T/ r) oV -2 o ) iY2 /3

This term is related to the harmonic oscillator symmetry group LI3
as we shall see.

The creation a+ and annihilation a boson operators

defined in (113) for harmonic oscillator states (123) transform like

contravariant vector components, i.e., like a wave function of

orbital angular momentum I . Let us vector-couple them together

to form the k-rank, q-projection tensors

IMkW
+

T . 118 t¶6D~

,-•" (/5•
si- e + )KC1• •"I~Q

since C 1 1 a# with •$st I, 1,0 are the 9 single-particle

generators of 13 defined in (119) and which obey the Lie algebra
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(120). In linear combinations (154) only k=O,l,2 and q=-k,-k+l,...,k :j

can occur so that there are

linearly independent operators which can equivalently be

considered the 9 generators of . (It can easily be seen that

the commutators between these 9 operators also form a closed algebra.)

In particular,

k2J W1��

k~.o

<11 Ti" I2�J? C�"

= _ _ OC ) ,' ._) C ," -

I ¥~~I0>C

r2-g
CO).
= -5 11,0>

where (156) follows from definitions (118), and (157) save a scaling

constant is the single-particle oscillator hamiltonian of (117).

Considering the 5 operators for k=2 we have from (113) giving the

o e in terms of coordinates and momenta,
I)#~~ Itomenta* 01,

(,55.)

(iS56)

0(Eg7)

- 81

- I
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~~~~W Y"zYr~'

given as solid spherical harmonics in coordinate and memontum

spaces. The matrix element, between oscillator states of a given

shell, of a momentum function is identical with that of the same

function of coordinates ----- thus

The mass quadrupole moment induced by a single particle is conven-

tionally 5)taken as the expectation value of the operator

so that the 5 . operators

can be thought of as representing generators of infinitesimal

quadrupole distortions. A quadrupole-juadrupole interaction between

the and -particles is simply the scalar product

the~ 
2-an



- 83

From (158) taken separately for particles 4 and 3, and the addition

theorem for spherical harmonics,54)

which is identical in form to (153)----the only significant

portion of a long-ranged central potential.

The expressibility of (162) in terms of 124 generators is

the crux of this whole section. The Casimir operator of R3 defined

in (56) as

was particularly useful in solving the asymmetric top problem

discussed in the Introduction: its eigenvalue was simply •P(tf- ),
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dependent only on the irreducible representation label and irregard-

less of its row. A contraction analogous to (163) yields

Then,

is the (second degree) Casimir operator of tT; which should and

does commute with all the many-particle U3  operators jC, () .

Employing the orthonormality relations between Clebsch-Gordan

coefficients35)one can reverse expansions (154) so that

and which is valid separately for L and j. Using this expression,

the Casimir operator (164b) will contain

(z)

H 7 M +L?()2L,~ -2f Q) 1lL a)U '(J

having recalled (156), (157) and (160). Finally
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Jr H1

('I44a,4)

2. Gcý I _ -Qq 2-- HOL

Clearly, since the interaction operator is given solely

in terms of the Casimir operators of U and R , and in terms of

HO' ' it will be diagonal in a basis for irreducible representa-

tions of the groups t ) R?,

To cast the N-particle mass quadrupole moment operator

Q (o) into second-quantization formulism we again use formula

(35) to give the linear combination

,,�- ,• r J'r7Y2 () P)

whose expectation value, for q=o, between appropriate states is the

quadrupole moment induced by N particles. (More detail concerning

quadrupole moments and transition rates are given in Appendix J ).

Result (166b) in the new many-particle formulism will be

~/IJ2 ~2-

C -

C

�t-.

rv-
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where the many-body Casimir operator 9 is constructed as in (164)

but now in terms of the many-body 3 generators defined in (131):

Moreover, we shall have

R osr- 3 VfP(/72)

in accordance with results (139), (141) and (167).

Our model long-range interaction (168) is diagonal under

V3 3, R3  as argued above. To find its spectrum is a simple matter

precisely because of its group symmetry. The eigenvalues of oaand

-t are simply 1L.4JI) and A, respectively, L being the total

orbital angular momentum of a given state. Now, e commutes with

all the TL7 generatorsi the lowering ones can be used successively

to generate the full irreducible UT. basis starting from the function

of maximum weight in U defined in (144) as J ,*h I Hence,

the eigenvalue g of is independent of the row of the irreducible

basis and it suffices to find g in the equation
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But, expanding one has

~+ + 22qYt-- ±2 <q)• IdZ:C?,U -2ZC5_c2',•L

where the effect of the last term, involving a raising operator on

the right, vanishes because of (144b) and the second term upon use

of relations (135) gives

- c,+ d2 +~ 3  1-. (174)

.'. 3 = •'~-+ + ,,+ z6 13- .53 ) (,75)

depending only on the representation (hr, h h). ThisL15

representation can alternatively be characterized by only two

numbers (k k,) S (hI-h 33, h 1 •-h 3 3 ) since (172) gives

ýIs + h,% + Jh, = v) N constant for a given problem. (The

relation between (k k ) and the labels (A'p ) used by Elliott in his
wr } e -z 2.

work are: kik and =k 2. Hence, the eigenvalue nf Q is
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(ktý'- I I,(L + ) -- 1(v N)
E 2-

E 22

manifesting a rotational band-like structure due to the L(L+l) term.

States (145c) are eigenfunctions of

fI _ [-f3oL(kak2j)W1L L (177)

2. Exchange Dependent On Spin and Isopin. The Group .

We shall now include the effect of exchange forces of the

Wigner, Mayorana, Bartlett and Heisenberg types for the prticularly

simple extreme of long range. It will be recalled from (147) that a

central two-body interaction with exchange can be taken as

The operator of exchange between the and it_ particles is Ii

(for interchange) and is defined as the linear combination within

the parenthesis of (178a)of the operators

Bartlett: +4& )
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Heisenberg: P 4- (1j 0I~~

Majorana: - t( i• 4 )(1±4-b"•)

in accordance with (148), I and t being the spin and isospin operators

of a single particle with possible eigenvalues each of 1/2 and -1/2.

Now, by formula (34) our two-body operator (178a) in

second-quantization language will become

where t (f VL), iJI=) Since I4Z depends only on spin-isospin

and V only on the orbital part, then

d., l -C 81 d'V I'C 0!> <W

Assuming iV2.)•) V= 1 equal to say - to be of

lobg range then we can approximate

Y,- V. (constant)

so that 4,1, T4/, > 0 "A and thus,s.Lnce

In this case - 7, ,
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dt I I IsII

A Cd61C' Cyi 6-2, X Z. C

where from (61) the 4Z operators C6- , which obey the 14 com-

mutation relations (62), are the generators of (4-- the group of

transformations in spin-isospin space.

The problem of the complete classification of states of

supermultiplet theory, i.e., according to the 7 chain given in
46)

(99), has been solved recently by Moshinsky and Nagel. To completely

characterize the rows of the bases for the irreducible representations

of , Racah in his Lecture Notes 55p roves that -"n (n-l)

commuting operators that are functions of the group generators are

required. This for six such operators are needed. Explicit

reduction of U4 representations according to (99) provides four

of the six needed: S', T , S$, T, with eigenvalues S(S+l), T(T+l)

MS and MT • (The other two, whose eigenvalues constitute the addition-

al label P in the chain (99), are derived by Moshinsky & Nagel in

the paper referred to above.) The cited authors redefine the U10

group generators as the following more physical operators, totaling

41 in number,
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s k ( M•)r, {N,)V, Ca'•
0-"80 a, 00

Ti
TI d- T

where kt=l,2,3 refer to cartesian components and0 0) '),(, MI= (0 0 / 3
are the unit matrix and the well-known Pauli spin-matrices whose

rows and columns are given by O'd =1/2,-1/2. Similarly, 4,

I (1=1,2,3) refer to the unit and Pauli matrices in isospin with

rows and columns given by V, V =i/2,-1/2. Among the commutation

relations between the operators (180), the relations

LSL,&rI= L26tk Sk ; (T jJLeT V;

hold ----- thus Sk (k=1,2,3) and TA (1=12,3) are the generators

of S•4(spin) and,5 T (isospin) which in turn are homomorphic to
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R• (spin) and R3 (isopin), respectively. Now, a tensor operator

(similar to(154)for TJ) can here be defined as

a- ta, 0,1,2,3

,CT . Aj-(M*'i)(Air)V Corr,

such that

%o= 2Sk , To,= 2T, Tkj= 4 R:kt,

and whose scalar product

0(&2)

On the other hand, from definition (181)

d' 0.1V 8ý c

- 2 Ir Q.5 C c a _ •

Oerr, a-oci
d't 'S-

T�

_ ft- 4S2-t 4T'+ /+ p.

t TO, TkIzT, T,
Ir

.=2
cro'l-VI

5, Tj-V-
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where ( is the (second degree) Casimir operator of ..

Therefore,

QJU4) #wf~t 2i-Tt-Vt 4,9zj

So much for the formal properties of the group

Turning our attention to the exchange operator t of (179), and in

view of definition (178a) for II, one concludes that

VT + MI 8. (• H P ;_ 0•'-

W,M,B and H being arbitrary constants as before; the script cP,4
referring to the second-quantization formulation of the various

exchange operators. For example, the isopin independent Bartlett

operator is now

• -± . <Z ,•I P,•I ,'c'>2rC"•'.'C '.., -,+ - _'. •,j'•"

But from (178b), the coefficient

so that from (180a,b) the operator becomes simply

if one recalls that, for example <d- I Ak IT'> is one-half the



- 94

( •d • )-element of the kt- component Pauli spin matrix. In,

exactly the same manner, the spin-independent Heisenberg operator

reduces to

(p,=-• -T +• T.•

The Majorana operator (178d) is more general than these; it can be

written as

PI .' = -t2- 
- 4 )h- 4 *'2)&tt <

Thus, using formula (179) one has

4 c < •,0 I ki 1,'>'<t, I +,,,I Ca-.t•
hk C

~~ X"+,,--,,. VJ
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CIC

-~ ~ 2-1\/ 4 \ ~ '1

where the scalar product of (180d) with itself is used in evaluating

the expression before the last and the last expression is simply

4..¥ •. so that
4 4

= .. V2-- Vf +' ( •+ Sz+ T?-_

Py 2 2-

having used here the previous 1U3 result (184). To deal with

G (U) instead of G (, ) ----- future developments will make

this more convenient ------ one can derive a relation between these

two Casimir operators which is very simply due to the fact that the

{)4 representations must be conjugate to those of U (see example

in 80). From the last two steps in (183) and from (61) and (31) one

can write

sS= , ' , -- ,. ,
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which by using anticommutation relations (12) becomes

GhC1+)~(4+r)\J'-G~2~

the latter being the 'LrCasimir operator. Thus

Y,== ' ( 2,( U -) -r A P J .2-

Combining the results just obtained for 0,T and

P• into (185) we arrive finally at the long-range exchange

operator

J -- Wv'+ ¼ 3-N)&(WA-4) , i s - H Ta

which is an eigenoperator of a basis set transforming irreducibly

according to the S?3VjXEtZj segment of the chain in (99), that

is, when acting on the kets

Jv~V2V 5V+ JSMsTA4-rT> 0a&)

where V.V,,V•4i 6,.r..3 =- of (97). The Casimir oper-

ator (9{uQl, is the operator T to be used in the section on

pairing and whose eigenvalue is there derived to give (226).
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Finally, one has the algebraic eigenvalue equation

'91L.
P 'i: '0 "" '8 6)

H) N(N-4 +?>Sý HT~f) +-L M~M~h 39+

where I is the contribution to the energy at long-range due to exchange.

Conclusion: the simple eigenvalue I given above depends

only on S and T for a given £{3 partition of N particles. One

must multiply the diagonal z matrix elements of (177) in a base

extended to include total spin S and isospin T quantum numbers. Thus

< IwkJO& 6) o M;Ef.IPSMSTIT I ~ Lk~ oL ML; LMJjS Ms TAM>.

< f~ (ýk,~) w L M, I Z2-1 Ef 3tkiii) L ML> X

X<(fA yS MJ M-if JP q'1 ,S MsTMT>
((1 7)

is diagonal and accounts for the long-range part of a central inter-

action with exchange.

One final remark regarding different exchange mixtures

is in order; for this end we give several of the more popular ones

in Table ]X 2. i,

.•,1



- 98 -

-r6LCVE. 2..1

Note: mI\A+tAHi+I j

3. The Pairing Force. Short-Range Character.

The general interaction operator • is

equivalent under second-quantization formulation to the operator

(25):

e,e.
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being the single-particle state labels referring to brbital quantum

numbers d i arising within a single given shell 1) and spin-

isospin quantum numbers S° As before, if V V r,,) is spin-

isospin independent then

r I

holds. Furthermore, letting A be the resultant orbital angular

momentum eigenvalue and Al its projection, one has the coupled or

paired state

17, A M > <iIA M> If 1 Y ' >, (qoa)

the Clebsch-Gordan coefficients obeying the usual orthonormality

relations

< PIfz r,e2'*m I A M ><e 1 ý2 'mm- I A'M',> =6A A' SM' (~b)

Let us rewrite (188) such that particles I and 2 are paired to give

net angular momentum A o Obviously

"7, Yh,' IM
S2,Sl'I1~1~1S1% .
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is equivalent to (188) with restriction (189). Using (190) and (191)

there results

AMA'MA
A M AlQl

SO•Ix ~ ~~1Y~'t A> f Imj'qn 2 I A' M >

the 63A' &AA'appearing because of spherical (and of course, also

axial) symmetry, i.e., and commute with V The

coefficient matrix element, moreover, is independent of the row M=

A , A -,...,-/A (see Appendix F ) so that suppressing

the redundant label M in that coefficient, one has that

f.f= -I A0~ 1102f, ,A> 003',- 1  2, A4 A) (jqla)

where

(J~OQ2  P7, ~, A) 0,I $IfY-JAM'S I~ m 1

~~ ml IAAM> U) ,'tIS JjP%
can be considered a "generalized pairing force'•7) ..... it acts on

a many-particle state of the type (21) destroying a particle-pair

in the orbitals and of total angular momentum A and then

creates another pair in the orbitals A P2 having the same resultant A.
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A pairing force with A considered in the case of ,2

superconductivity directly predicts the experimental energy gap •:'

between Fermi surface and conduction band. A similar interaction

between nucleons was considered by Bohr, Mottelson & Pines14) which

among other things accounts for the well-defined large energy spacing

between the ground and excited levels in even-even nuclei 14, As

early as 1943 Racah 60)calculated interaction matrix elements of a

pairing force of this type in some complex atoms using the expression

< A IVf- A> =(2t10XJAo
for a pair of "equivalent" electrons in an orbital state s. For

non-equivalent ones (mixed orbitals ) this can be generalized

to

2 aA ITI4 A> =(41(~#)A

Inserting this value for the coefficients in (191) one obtains

Moshinsky's form of the pairing operator

_- 

6

where use is made of the well-known result that

Tne operator O clearly displays the required pairing property. A
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more convenient form in terms of X4 group generators follows

from anticommutation relations (12) and definitions (31) and (37):

IM +Y')701 ,M 0 /J j' - / -_

Ia

V-2,', ,loI o)

where Vr is the particle-number operator defined previously.

3a. Single-Orbital Pairing and the GroupR.fr l.

The special case of pairing between nucleons in a single

orbital state I is given by the operator

2-9-M - ± K2

11 �E

which follows immediately from (192) if

(,- f+/) operators

I= P / The set of

(/iq 2

(I r-)

61

VT =
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are the generators of' The ( ft1Ydimensiornaj space

is spanned by the (2e6+) vector components 9,70 which under

rotations in this space transform like the spherical harmonic

components Y• (v ) " The scalar product

tI• t+= mist t•• +
JIM OM

must remain. invariant under (Zf) 1)-dimensional rotations. The

space metric ""t is thus seen to be

which also gives the rule for raising and lowering indices since,

for instance =

1= <_y7'_ ("I

The W2'f generators, in doubly-covariant form, thus obey the

Lie algebra

Defining the antisymmetric operator set33)
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one can see that these obey the commutation relations

which from Appendix I are seen to be the generators for infini-

tesimal rotations in Pe0+)-dimensions, i.e., of the group )21+1

From (197b) it follows that there are _&2i)linearly independent

generators of this kind. The operator set •AIM is contained

in tie set of "12e.f , so that 21af+i - f +1  as a

subgroup. Using (196) we can express the set (197) more conveniently

as

A> ~A A'm'~~~~ ( ),mq

the latter symmetry rule again confirming that one has _.j(2 1f)

independent generators. From (38) can be derived the relations



[A M A
'Ml M

.(200):

-A;:l J,, ( +- A~,i S"tI' A 7

equivalent to the algebra (198) but now in a form more convenient

for us as will be seen presently.

The contraction of "21ff generators

2-m e': 'M v (201)

is seen to be a •2ý21 invariant since

The equivalent contraction over k)Zffl generators

S' A .' 11 A.IA

is an I? invariant as

L, A/'=I (2o4)

Thus, 17 and f satisfy the first two Racah conditions 6 1)for

Casimir operators (given on page 30 in relation to the group R3 ).

Introducing a numb-ring convention/4=•-f+ f (Ainteger) such

that there is a one-to-one correspondence b~tween in i'-i, °"* -(

and / =1,2, .... ,21+1 we have, first of all,

(2-o)
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1 AA' ,- +4 , 22 ,,#
where, from (73b), the effect of the last term when acting on a

maximum weight state is zero. The equation

will have an eigenvalue '' (valid for any row of the U irreducible

basis, since f is a group invariant) that is evaluated identically

as in (173-175) to give the result:

(V'= 2-1 1).%+r+

Regarding tile group the') linearly independent (hermitean)

operators, which from (200) mutually commute, can be used to define

weight in R2.1+1 by

A"(P

P being a polynomial of weight (0 ). The set of operators

^ ' is divisible as before into three clases

of which class 2 are the weight operators. Let two new polynomials

f and be defined as

(20S)

(zOa)
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AP

C

r

(zos) :�

A" ' AA$•", P + A f,, A

A +m+,,•.,, A P

-2, vQ,--n.

shows that class I consists of raising generators and a similar

analysis of proves class 3 to be the low'ering generators. Hence,

maximum weight polynomials F in R.I will satisfy

A"nP = A ip A. F0n)(

with maximum weight being given by the set of K numbers

AK) = I~ (Y- 1

In a way identical with (75) one can deduce that

), - • ". ?AK• o.

(2-1o)

(211)

/--

Then,

[ z6rmo
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Finally, since

where 9 is the Casimir eigenvalue 1 which, after a short

wheirei eYvau of Z I+I ft

deriviation along the lines arriving at (205), results explicitly

in33) K

j .2,, 2A) ++ (212)

A special case of (201) was used to great advantage in the

oscillator symmetry group D to determine the interaction

eigenvalues. The single-orbital pairing force (193) can also be

expressed as a linear combination of Casirnir operators (second degree

ones-and all further reference to Casinir operators will entail only

this type) since, an expanding (203) using definition (199) we have,

putting ) ?71+71+ 1,

A'A 4 (�6) ÷e
S- /12 • ! + ,Z ? l4 m , ,i'•• 'L •

emlvI4

which upon change of some dummy indices and signs becomes
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�n' �2

-mm'

I
-mm'

J

R21+ a

from (201) and (193). Therefore,

in
will be diagonal in a base transforming irreducibly under

The resulting states can be classified• in additionr by

total orbital angular momentum L , i.e., with respect to R3

generators o are expressible as the linear combinations

(219)-

which, through (200) can be seen to satisfy the Lie algebra

(9,= •' TO)

coinciding with (142b). Thus, single-orbital pairing is diagonal in

a scheme irreducible according to the Croup chain

P2.f+4 D R3 :-)R ,.

where by R3 is meant the (L) )representation of dimcnsioin P .

C

C

rv

(213)

(214-)

whc se

(2i�)

(2-17)

T- F

e 4-41141Xý

'Xm D

fcý; 4 j =
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The corresponding ket state is denoted by

1 E62. but, I C),I AZ.At) WILMC- > (2,)

where, again, sand I are additional labels that may be needed to

distinguish multiplicities, if they occur.

3b. Mixed-orbital pairing and the & grou.

If the particles paired to total angular momentum A -O
have available more than one orbital then in (192). In the

chapter on harmonic oscillator symrnetry we decided to classify our one-

particle oscillator states by /) ('C1,'Vr4o) instead of N ),

where the former are "partitions" along spherical •inOdes

(+,-,o) of oscillator quanta V =-,-011-#o. The single-particle

orbital state (creation) operator bt• transforms like the spherical

harmonics Yj• (89 which in turn have the phase convention

of Condon & Shortley.ý) Thus, following this convention

On the other hand, the state 1,To 6 > where 10> is a

vacumn (no-particle) state, should transform exactly like the oscilla-

tor state I1j'A, V1•0 > of (123) given in terms of boson creations

operators acting on a ground state 10>. Now, since

( •= -- • according to (116), then the aforementioned state



- 111 - :

I'I'i1IT II,> has the property

177 rAi'na "I lnO>

and since + , T0transform like I1),17V1>we have

But in (192) are involved the operators

and their respective annihilation counterparts. To the complete

set there corresponds the complete set

there being in each case Y' D(VP) components. Likewise, to
the set I() •" Z•v •Yr coponnts Lieie to•

t st there corresponds the set ic- ' 6t74l;4 .
The same holds for annihilation operators. Thus with 17, 171 0

indices (192) becomes our (working) pairing operator for mixed-

orbitals:

V, I14I I !

The generators defined in (199) now become

Seneral formulas and tables for the 2s-ld shell of the

transformation coefficients from one scheme to the other have

been published by Chacon and the author, o)



- 112

1/ / • !o

= ± )i~,;2:
e I nV

(12 2O4,a b)
I I I

IA 'Ylil1"Yo )11+T1 , + )1, + +
H-)

where the former (symmetry) relation shows that one has I y(v-i)

linearly independent such operators.

Let us adopt the shorthand notation

(14rIn, %o)

(i-•)

there being r= •(.V+1)(V+2-) possibilities for each 1A. It then

becomes simpler to prove that

,Aj A,,4 I =
In

S~I I

having put 'Al +1 011 1

one deduces that, indeed, the

* From the results of Appendix

-Lrý-I) independent operators A;z

are the generators of 'r- dimensional rotations namely, of the group °r.

A~;I

(2 ZZ)

-I

A -f A I 'A'allmllnlIni 1 0

IM ! I I
41,0

410
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The Casimir operator of R. is defined similarly to (203)

for R as

Y,: ... =•,',2.. 2) (;-:23)
/

where

and keeping in mind

in a manner exactly

arrives at

DýAm = 0
that ? stands for (9n, n r r,) . Expanding this

analogous with the steps leading to (213) one

(224)

where

refer, respectively, to the CasiALir operator of R. and the (invariant)

particle operator; Pis now the mixed-orbital pairing operator

(219) which, being the linear combination of invariants.

is itself an invariant in the chain U1 )Rr-

The eigenvalue of the operator in a irreducible

basis is, as in (205),

/,e- 0_)

4.,

J •

(1)= L- F-'- (P --' X•
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' now referring to the V -shell orbital degeneracy. The eigen-

value Y of ! in an R. irreducible basiswill be (212), i.e.,

92=r I. z
-IA

(227)

K =Qv-- ) {o r odd for Y' Tell

The various shell orbital-degeneracies r are given in Table

TABLE 1$. ,

For any shell, the mixed-orbital pairing force has

eigenvalue , - •.N) ; hence

(2z2)
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Er= - ýý , %

Sj"Wetry)

taking care to follow the correct Kvalues involved in (228).

Finally, as each R. irreducible representation (A,Az --- AK) will

contain one or more Rb irreducible representations, namely L-values,

one can label the spectrum (229) by total orbital angular momentum

values which however will be degenerate. The basis is irreducible

under transformations of the chain

and is denoted by the set of kets

I Ef3c)" oI(AX2-*AK)W)'LML>
(.229c)

where [f3 =_ j 2." l1and (oLLWY) are distinguishing labels as

in (218).

The effect of an attractive pairing force between two

particles in a single orbital I will be to lower the level A 0

from the degenerate group of levels A =0,1,2,...,gZX , thus

producing a "gap", as can be seen from the Racah matrix element on

page " which we have used in our second-quantization formulation

of the operator c • But more importantly, its resemblance with a

short-range central interaction as well as its group invariance

properties warrants its use as a model interaction. The latter

rr-
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characteristics we have just seen. Its short-range character is

well displayed in some calculations of wave function overlaps, energy

levels and quadrupole moments carried out parallelly between a

gaussian central interaction and a "model" central interaction

consisting of a variable mixture of O and forces. The cases

covered by Mell 4)were for 2,3 and 4 particles in the ZS-1icnuclear

shell using ?@ partitions il-{ £3,143, E33)12, DIE1 and L4.

Energy level and quadrupole moment diagrams for both gaussian and

model interactions show marked resemblances at intermediate ranges.

In particular, overlaps calculated between wave functions of pure

pairing against those of zero-range gaussian (which with proper

normalization reduces to a i-force) are extremely good for the

low-lying levels arising from the partiti6ns Lf3 mentioned above.

Good overlaps are also found in the comparison of pure and

long range gaussian.

One undesirable though not very serious feature of the

pairing force is its inability to break degeneracies as well as an

ordinary 5-force. One can see this, eg., in the comparison for
65)

N= 21 given by Biedenharn.

4a. A Word About Exchange at Short-Ranges.

At short range, ideally a J-force, the Majorana

exchange operator (178d) becomes the Wigner operator 1 1) and

consequently the Bartlett and Heisenberg operators (178b,c)

coincide.

Treatnent of the Bartlett operator has proven difficult for
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short ranges, we shall thus make the not unreasonable assumption

that at short ranges the Wigner part predominates over the Bartlett

such as to justify neglecting the latter. Consequently, the effect

of exchange at this extreme reduces to a constant factor to be

ignored, as only energy differences arising from the pairing force

malter.

5. Model Central Interaction Composed of and

Combining the interaction operators discussed in the

previous sections one could therefore adopt the model central inter-

action (apart from an overall intensity factor Vo)

with the variable parameter x determining the percentage of finvolved

in the mixture.

To re-stress the group theoretic simplicity of the model

interaction constitaents 62 and we recall from (168) and (225)

that, apart from the invariant number operator

& --- Casimir operators of 5 and

F Casimir operators of "U.and Rk .

Consequently,

X is diagonal in the scheme U 1$3

Sis 
diagonal in the scheme R4-p )

The first scheme can be extended to 2, U D to include

permutational and axial symmetries; the second can be enlarged

to Vr rDR 3 ) Kz to include spherical and axial symmetries.

(These "enlargements" of the group chains will allow us to reduce
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the number of states to be dealt with in the calculation of matrix

elements.) If one decides upon one of the two schemes, the operator

corresponding to it will be diagonal with eigenvalues for which

simple algebraic formulas hold, i.e., (176) or (229). The remaining

operator is not diagonal of course9 and its matrix elements in the

chosen basis must be evaluated. For reasons already stated in the

Introduction we will here choosethe L -scheme.

All interactions dealt with thus far are spin-independent.

In the following section we introduce spin-orbit coupling and shall

consider the evaluation of its matrix elements in the U 3 scheme.

6. The Spin-Orbit Force.

We are interested in the matrix elements of the single-body

spin-orbit operator for N-particles

Ws. 0.

calculated in the U, scheme. In second-qcuantized language this

operator becomes, by (24),

ViT~0. ~~ ~* i~e>l~e(232)
recalling that F9V=d)refer to orbital-spin-isopin single-particle

quantum numbers and (C 1 are the U4,group generators.

The transformation properties of under j3 will

be specified and fully exploited. Accordingly, instead of using a

basis set irreducible under transformations according to the chain

(99) with -V, inserted between 7Urand R1 as in (145), we shall
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use the segment 21

(canonical) (233)

replacing the segment

":> (physical) (234)

in chain (99). The irreducible representations of IJ3DTYUI
are characterized by (k 1  , kI pj k•i •)42z,1 iu) • On the

other hand, the weight ( i W ) in U, is given by

KV =T, 0-> IJ. 2-)

in accordance with definition (67) and numbering convention in

of Section 6. By (94a) one has explicitly the eigenvalues of
OiI C and C respectively as

3

) 4
141bý4 +h1  j ý33)-(titda.)

Now, from the many-particle angular momentum operators ($bio

expressed in terms of U generators relations (142a)
3
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-- -- we see that 7  will therefore have

an eigenvalue

/M - ,- • = h4,/- (, +2-2.)

so that classification by iZ,) U with , , is equivalent

to classification by UT,) Rj with (hR .), i• being the

group of rotations about the d-axis. For convenience, let us call

(h, 2 . ~)(237)

so that our general state would be given by the set of kets

I Ef3 6kj)j, ML; MS TMT> (238)

where jVj has been suppressed as IVI= fI makes it redundant.

Writing the operator (232) in more detail

- ,,f-, (/a- r
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where If designate the spherical component indices (i,rO) and

the unnecessary particle index is suppressed. Introducing expansion

(118) for 1-'#one gets

generators of a subgroup J X Jj(spin) X UJ(isospin) of

and U3. being the subgroup of discussed in Chapter 111,6. The

set q. Ct2J , from the above equations, is hereby expressed

as linear combinations of the 1 generators , namely

If one now defines a tensor (traceless with respect to indices •9I= #, iO)

(C41
O.Ot

then from (239) and the fact that - ) ",

vanishes we have simply that

( ) 1
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Labelling (21i; i on tensor OT refers to its transformation

P-"operties under•Sv and Tz(spin), respectively, and will now be

explained. This can be seen from the commutators between the

generators and the operators (240). From (131), (240), (37)

(32) and (120) they are found to be

- ~ ~ j1 W, \/, C. IA, > ..r'•"/:'X f C ,,A./ AA' S1AS

LC I- 'Ld t -
(243)

since * Since (243) is similar to relations (135) comprising

the Lie algebra of Tia, operators (U transform under U3

like the generators . But these in turn transform exactly

like the single-particle generators 6 aor, as

E + (2 +(IIt

where jfl represents a quanta from OL +and 9 a hole _ from ati, the

"0 representing the outer product of two representations which is
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calculated by Little wood's rules for unitary groups (see Hammermesh

ref. , p. 249). Hence C-t--- )& Il trans

forms under UJ like (h h h )=(210) since the trace/•• _.- )

transforms like (hi hlh3 )=(000). Therefore ,¶((z-)l'; I )

transforms irreducibly under•LJ like (k k )=(21) with indices

which determine the row of that representation. The coefficients

in (241) can be written, by the Wigner-Eckhart theorem, as

0K) 1 _ 1 (i)

=(5~~~ Y2 >', ><alJ' 1, (2
44)

W)
the superscript i indicating it to be a tensor of rank 1

(a vector) and of projection •" =iT O so that, under lJ(spin),

(241) transforms irreducibly like a vector with projection index q11.

Before proceeding to the evaluation of "S.o in matrix

from between states (238), we require an important result to be

sketched below.

Theorem. Recall first of all that any vector operator

X, obeys with R generators 4.Z J, F O•

commutation relations [oX +I]---- XI a IXl)XT]=--X

similar to relations (142b) between themselves. Consequently,

the X, transform irreducibly under R. like the The

Wigner-Eckhart theorem thus tells us that <L M'I/X /'L M>

Al<LIWIIX4 /L>0> where the proportionality constant AL is
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independent of the row of R3 , namelyANand 44 This constant is

furthermore easy to evaluate as for M-M'= L and 4 =0 we have

A&= ±<LLIXoI, L . Vetorially, we have added L +

to give L which appears ony on..

For the case of U3 , consider the operator set

ý2f' which obeys the commutation relations

LGJ�
so that

(hshzh
sincee

Z14# "i = 9N
4 

.I
1o)

(04&

transformslike C specifically like

or (k,~z)--2 i) under SU3 . It is easily seen that

Tr ]z =:

then the traceless operators

��' (: 44

satisfy the same commutation relations C('-4) and transform

like (21) of5o__ If one is interested in the matrix elements of
2 'in the chain VI3 D -U••,between the same

representation, that is,

1 , ,h 3 (247)

one must consider the fact that, by Littlewood's rules, the outer

product

,n !ý'q Tr

<
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(•,• 1,, 3) ® (2,o) = .- C, , ,)*+ .

involved in (247) gives, among other representations, the

(h,• aL, 43) twice except when 4;13ý-"z.3, or 4 h/3.

Thus, (247) is expandable as the matrix elements of two inde-

pendent operator sets which must transform under Ulike (21•).
We saw that the traceless generators

I (T;r C~)4

form one such set. The traceless operator set independent from

the above, namely,

(2,09)44N "!I//)eIq

also transforms like (21) unders&C as it is easily shown that

-~ •, -

Hence, one can write (247) as

h15 ±,

5�:.

112A. 2Z

h1it

-V.

(.24-)C!C Vi _
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h, / 4 A$3
4M~ K2-

the A and B coefficients being independent of the

These are evaluated by taking • and maximum

both bras and kets, i.e., for

row of U3}.
weight in

J1I 2 ~It - 1~ /13

I

from which considerations three inhomogeneous

result, one of which is dependent as

Tr Tr(C)=

linear equations

It is simpler, therefore, to evaluate A and B

pendent equations involving matrix elements of

= �II� 2� 2

via the 2 inde-

�b
These results are generalizable to the al group,

should they be required for a given problem.

Tr (0) = O.
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Returning to our specific problem, the matrix elements

of (241) between states (238) with the same Ev 3 t ý.
in bra and ket will be, in accordance with result (251),

~ ;~ 'M~ I MEc.~;'~) ~3 L>'1 ~k M;AS 5

+ L

where the Wigner - Eckhart theorem has been used in the spin

part to give on the right hand side

<S~ ~~~~- I #e" ~ r•c'"
< S1M~ 1S'M>KYi I =K f~ J~~

the factor < V2. 1 .z '1,/> -. 'i ) ý= 4 being
incorporated into the coefficients As$, and which depend

neither on 41,4 /AL . (the row of T-j ) nor on Ms (the row
of Li) , but do depend on L3 •L(4 ) of ' Ur- 7-

Coefficients A$'Sand BSS can now be evaluated by

constructing the two linearly independent ihhomogeneous equations
corresponding io the matrix elements of the two differences

(a (.'
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(as before: ' JIT,O- - 1,2,3) between states of the

same U3 representation ( K, k, h_) on both bra and ket, of

max. wt. in UT _U2fDj and max. proj. of spin, namely for:

k =• = ,= , ,

IL (21,54)

: = M-M =S'- S.

The calculation is simple and will be given in Chapter VIII

for the case LEfjN4ij 5) -- E313(710) corres-

ponding to the lowest levels of F20 in the LT scheme.

From (242) and (252) the spini-orbit operator 3t..

for N particles will thus have matrix elements between states

(238) of the same f'fjtL (4t,.I<) given by

.,. "I'S.,••' •1 .
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But, from (141) we have that the operator

the trace term of 4 = q;", contributing

with zero as before, where of course 4t)transforms like a vector

(superscript 1). Calling the second operator on the right -

hand side of (255)

it is easily seen that it too transforms like a vector since the

commutator

is precisely t e condition that be an irreducible Racah

"tensor under K3 (compare with Rose, Angular Momentum p.84,

ref. ( 35 )). One is thus left with the problem of evaluating

matrix elements

in the basis irreducible under LT3  Ill)I . The similarity

transformation passing from this basis to the basis irreducible

under U, > R,. R, with respective quantum labels (145 b)
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and given by the kets

(as in eqns. 176 and 177) can be applied to both sides of (255).

This transformation will be discussed in detail later. For the

moment, if one imagined it applied to (255),the result would evidently

be

<L ,•IM/)L , M T ? I (k,)L ) wL M

+ L'L I 3k~ I41 (k, z. wLLMt4>j& S1 hsf /'1>

LO/.) having the same significance as in chain (145). The
matrix elements of •- and it can now be reduced by

the Wigner-Eckhart theorem in j• thusly:

mi., ) 1'1.1 I i(k Ik , (k, L W L>

<LI,4 k2,) I L 'ML>(,~w I/ W4)/ ,
<thw th same ,le' bscGI•k coefficien as, r op i Lit o

with the same Clebsch-Gordon coefficient as proportionality coonstant.
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the reduced matrix elements are:

/tl1 ,0. ) i) 1("I L¢ L.#-L k1U '

<L f I (fL 'LL)

and, fort, arbitrarily choosing M=� ML=1

<(fc~k~>J'L' II f~i"II (kd~ £4)L -
(4)kLL, 1 A 1~~(,LL>

- <L~ioIL.'•> ,.
<LIIO<LIl1X

where the bracket symbols 6 6 ) L'o ( k k A-) ; (> stand for

the elements of the similarity transformation matrix that passes

abasis from U, tl TTD
from the "canonical" to the "physical" chain. One therefore

needs first to evaluate (for0 M=M,= f) the matrix with elements

one has
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where by (256) G2 G' and by def in-

ition (249)

so that matrix elements (259) can be found if one has the matrix

elements of V, generators dt (%,'=),1,O-* 1,2,3) in the

chain T5• 1TJ -'JI1  since, for instance, suppressing labels

(241)

§MA1 Cc 2.

is a typical term. The elements 49r, L c" it'lL>

% 4! T, -IP 1,Z,,3)are listed in Appendix H. Using these

results, after a brief calculation (259) becomes: (see next

page)
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which despite its formidable aspect is quite simple to evaluate

for particular values of (k,kL) .The inequality conditions listed

below are the equivalent of (92) for -- U)T2 )T-

Combining these results---except for the last one re-

garding the vector 0) which will be illustrated in appliýation---

and coupling j+ 5 to give J in the bra and ket of

by Clebsch - Gordon coefficients, one obtains

w, J M 5 T 1211,.0 J (6 , LMPs T >M

MLA4SI M> <L'5'MlM 15M3T> <k, IA~-i'IL/'/

+ 'IM' _r~)'L ,( A16( kL.)wL J

(-2363)
= (2-jtX2Si+1) A(L'S LS;JI)X

? As .(tt ) ~, Y +LL E)S5K(k1k2) 'Lot f 11 (((k k2)

after a slight rearrangement of <SfM5q "lS'IIý'> with the

aid of Clebsch - Gordan coefficient symnetry rules. V(T.S'LS;,Jr)

is the well-known Racah coefficient which can be defined as a

sum over four Clebsch -Gordan coefficients (c.f. Hose, page 110).

Matrix elerzent formula (263) can be considered a generalization

of Racah's formula60) for the same operator acting for N particles

1
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all in the same orbital level 1.

In conclusion: evaluation of the spin - orbit interaction

matrices in the STJ3 scheme is reduced to:

1) evaluation of coefficients As's and $s
2) evaluation of the quantities -`1L h) •k I./f(kk,) L

forming a matrix of rows and columns given by(L!L)

with only the principal diagonal and the diagonals

immediately above and below it differing from zero

from the selection rule L'=L , f asX

is a vector.

3) Use of tabulated Racah coefficients W(L'S'LSJ .

Points (1) and (2) will be seen in detail in application (Chap. VIII).

For particular representations (41 4) in

which k. =0 O IO I),= the second term within the brackets

of (263) vanishes thus leaving the problem of evaluating spin-

orbit effects an extremely simple one (e.g., F't wif =•2
in the ZS- 4SJ,, shell, (kk,)•-(, is such a case

Finally, the casef different values of (kzk)
between bra Rnd ket of $VS.O --- which is outside our present

scope ... is a problem involving actual use of S wigner

coupling coefficients and is being studied.
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7. The Complete Model Interaction.

The full hamiltonian in second-quantization form (143b)

for N particles in an unfilled shell is now explicitly

0& t4 LIZ 2( (264 a, b, c)

and since does not affect the relative spacing between levels

it is thus neglected. Only A is pertinent. Factoring out(+Y+O)

one has

where the sum of the three coefficients is obviously unity. Letting

then

-f a

and since a,1 and (1-oa-P) must be positive or zero for x, y ana z

positive or zero one obtains

(265 a,b)

Coefficient parameters a and 6 will be varied in compliance with

(265 b) and parameter determined by a least-mean-squares fit to
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the empirical spectrum of the eigenvalues from the matrix

I1Ii~(~~iW S J T It~o~l)L3o~ezc) S JA>id (266)
MorIE: d~s~ita$s 11 r6 eVSc4PA -Ow* c4A'tUi4i MO$.t

having taken M13 = J and-M T = T because of invariance under

rotations in the spin-orbital space and neglect of Coulomb effects.

"Each predicted level is labelled by I Tand of

course-7T , the parity, which is positive for excitations within

the QS -f shell. It is expected that for F the lowest levels

are of - 1, the lowest 7.2 levels being above of fei.

We know that the term in Rif. of (264 c) is dia onal

in the SV scheme states of (266). The matrix elements of ý, and

must then be compuwed in this scheme, should it be chosen.

For the spin-orbit matrix elements one only requires the maximum

weight component of the 'V )7•j•base. The whole base is

needed to evaluate //F//but fortunately one only needs the

diagonal elements for the case of PO These details will

be discussed in application.

Alternatively, one could in principal choose the

"pairing scheme" associated with the ,roup Rr under which

7If"l diagonal but not f/Q1fand iF.01*.Thirdly, a
N - particle coupling scheme" which diagonalizesI /fr./#

could be decided upon and under which the matri x elements

of It and If O pfwould have to be calculated.

All three coupling schemes will be discussed in the

following chapter even though only theSU3 scheme will be

adopted for our present calculations and these are relegated to

Chapter IX.
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V. POSSIBLE CLISSIFICATI(-N SCHEMES FOR IVANY - PARTICLE

STATES IN AN OSCILLATOR 'sHELL, IN PARTICULAR

THE SHELL.

1. The ( & S2 go Scheme.

The problem of finding the irreducible representa-

tions of V contained under a given one of Ur is simi-

lar to the chain caldulation illustrated in Appendix A

for the reduction Z.r -" R 3  (r--) . Further details,

as well as an exteisive t-ble for the ZS - shell, are

found in Elliott. Finding the L-values contained

in a given ( h, kL ).representation of U 3 ,i.e., the re-

duction V3> R3 , are easily gotten by simple inequalities

derived rigorously by Bargmann & Yloshinsky 6 7) and tabulated

elsewhere 68) by the same authors for some particular cases.

The inequal~ities involved are simply

(2-47)

wherelý is a non-negative integer. Using Elliott's and

Bargnann - ,oshinsky's tables 9nd inequalities (267) we give

The L-structure of a given (ktkz) representation further

breaks down into classes of levels, each class labelled by a

humber Ký 0O and which for quanta ( /P h 2kL) is simply

K- k?- 2ý while for quanta - holes 24 k,.) it is
Kk,-•- 2•. Ellio?2 identifies this K with the rotational -

band quantum number K of the collective model (Figure 2).
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Table•r.j covering Y= to 12 particles for the more,

symmetrical orbital partitions 13 and the lower (energywise) n

5 representations (k, k,.). For N , I SY repre- n::

sentations present are given.

Some observations regarding these results are in order:

1) The maximum number of allowed nucleons in the -

shell being 4r= 21, only N< /2 are included in Table

since any number above that can be treated as N4/2 "holes".

Interaction matrix elements for N holes differ from those

for N particles by simple phases.69)• 2) Always 0<,k,
which is obvious from (267). 3) Multiple L- values for a

given (,Y.) occur only when kL > 2 in which case the ad-

ditional label 4) in (177) mue4 be used to distinguish them.

Bargmann & Moshinsky found the operator corresponding to

this label. 4) For tV 4,q (k, ka)- values appear only once

under a given [ . To distinguish multiplicities occurring

elsewhere, eg., N•If Nki) = 5 t3-3(40)2  additional

label o4 of (177) must be made available. 5) For further

cnnvenience, the eigenvalues

E + 2 k ) (

of the interaction, save for the term L (4LH),

are given in the last column. The S LT, representations are

listed in order of increasing energy recalling that larger

-l')lie lower in energy because is attractive. The base

truncation suggested by Elliot consists in taking that (kk,.)
lying lowest in energy and limiting calculation to this repre-

sentation. 6) Finally, some ZS-fet shell nuclides are written

in parenthesis under that DO partition which will presumably

explain its lowest states. More details are given later on

this point.

The representation falling lowest in energy (having
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maximum Casimir eigenvalue

k = -3 2

5(k"k) )seem always to be given

(a 4q)

where refer to the Young parti-

tion. These relations follow direetly from the T weight
operators C ,d and C (with eigenvalues and

listed in (138). The construction of polynomials transforming

irreducibly according to this SLT3 representation will be a

simple matter if one uses the prescription of which (79) served

as an example and will be illustrated in detail for F2 and

other nuclei.

Shell)

7JI6
(kg (Ct)
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V 13 (20)

(oil, t7)
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I

o,z W,• 7 0-,11,
JZ,!~~ 4547t , /q, s; ,, &,0

o, -%•S , 7 2, 7, it) 76%~

7oY07o•Li, 52- t/ //0/1
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__________________________________________________ I

12.. 4441 (2,o) 0,2,.,,, (, /0, /Z- /20

62 12 /02.

C44 513 (12,/ /, 4', io , /z 102-S

(A121) (12A i,-3/z 5' 4~ z7,z 9 2 q z/0,z/~ //,2 /0OZ(12 01 21- 4 9' /07 /29

2. The Pairing ( Rk group ) Scheme.

It was shown in (IV, 3. b. ) that the mixed-orbital

pairing operator 6 given in (219) and (225) -.-. which ap-

proximates the short-range character of our central two - body

interaction ... is invariant in the chain Z i f,

where as usual r' is the V- shell orbital degeneracy

r• (+i)z). The spectrum of in a base transforming

irreducibly according to Rr is given by (229 a) and

is a function only of irreducible representations RJ3

kh, h'... - -I3 and (A, A• ' AK) Of 3 and y

respectively. The number K of labels required to specify

an irreducible representation of Rw is given in terms of I

by (228). One can further label the states by orbital angular

momentum L and projection ML by reducing R explicitly

according to •3•Z as in chain (229 b) corresponding to kets

(229c.) Additional symmetries (Pauli exclusion, spin and isopin)

can be incorporated into the base which transforms irreducibly
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according to the chain

"J:U R, xr~ RrT71 >~ t RxT~ - R3, U AT~ AT)z RCO)x J(s,)x RJO
4'1 f1 l

(270)

Si(,-1 Y'Id K- -y reire

where and 10' respectively designate eigenvalues of

operators required to distinguish multiplicities in the re-

ductions. 24.2 IR, 14 .) L T X ta and R - R -
when and if they are needed. (This chain of groups under which

P is diagonal should be compared withchains (99) and (4ISa)

under which is diagonal.

Calculations in this scheme would thus require the cons-

truction of the set of totally anti-symmetric states

Of 3Ol(A) L ST, MiMSMT> (271)

The irreducible representations (21, ° K ) of

RY contained in a given one CfJ A x A2 "" 3 of a
can be derived by a technique given by Jahn4 1) (1950). The L-

structure of each Rr representation is in turn found by

chain calculations of the type illustrated before. Elliot 1n)

provides a table for the more symmetric Young partitions in

the S -'I6 shell (V= 4) for N4, particles and we here

reproduced that table with the pairing force eigenvalues (229 a).
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More pronounced degeneracy in the L-structure is

present here than in the case rr - ) , •:

Typical example: The 3 particle partition £Zi) contains
L o 1 1Z Z+ *3 %4 , which in the scheme

is broken into three levels (see Table V.1.1 ) while only two

levels result under the scheme (Table V. 2.1.).

Multiple (A, A1  of a given H) occur only

for i • (o-othe label c! is then needed.

The problem of constructing pairing scheme states (271)

is being studied by Chac6n at the University of Mexico.
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3. The i4 Many - Particle Coupling Scheme Using

Unitary Groups.

If the single-particle quantum numbers -were to be .

given as (V O,'0 of (15) instead of (Y M," v) -V

of (14) or, with more explicit reference to the oscillator, by

(7?,11iAoi , TV) as we have dmne in our work, then our N -

particle functions of the type (79) would be eigenfunctions of

the single - body spin - orbit operator for N particles

with eigenvalues given by

£Z[~i+~~A~(~i) -(272.)

What would be the chain of groups under which the corresponding

set of eigenfunctions transform irreducibly?

The largest group of transformations is of course

'U%' T +being the orbital degeneracy involved and 4 denoting

the spin - isopin degeneracy. If the major oscillator shell

contains but one sub-shell, i.e., a single t value, then one

may certainly consider the whole space as broken up into spin-

orbital and isospin subspaces (of dimensions 2.i+1

and 2, respectively) leading to the chain

This chain is easily generalized to the case of /< sub-shells

within our given mayor shell by considering the "direct sum"

of unitary groups WZ,;* where i-,, ... , K :
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0 dr 
IKou

where our notation means the direct product

i1
"2L'k+ Iu,-- .I

r(,

(2r7!i•)

i
S

and R refers to rotations in the full spin - orbital sub-
space, i.e., in representation language,to

0(ý')

0

(
(2 7')

dbQ1�)
while UZ refers to isospinorial space. The told spin - orbital

degeneracy, is simply 2 where

L=I

In the 2• 0 141 shell there are 3 sub-shells, namely,

eh,, . and A (see Figure V.III.6.1) and the chain involved
is thus:

0

R'S >

U,19

( 0&(o
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UU 4. .) 2kia-XI 
,

2_+ 0 2t 4 11
I 1 I

I¶' [ I o l

R3 x U,

T

in accordance with (273a, b, c,) the irreducible representation

labels (quantum numbers) of the various groups being given

below them. Notice that, as desired, our totally antisymmetric

N - particle states would be of definite T and T.

Consider a single particle in the ZS -Id shell.

The WIZ Young diagram [ý3 is simply LiJ and its dual repre-

sentation ET] = Ei] is the corresponding diagram for U.

(isospin) required by the exclusion principle----.thus, T=y2.
The particle can be in either of the three sub-shells dc/,

o id 3/2 so that there are three irreducible repre-

sentations, each given by [11lt3 [, •f"j- 11' " of the

subgroup

0 '2¼ (27S-)

contained in the

namely,

[p = t13 representation of i7.±

(z76)
Io, Ij o) > - " '/1z

1 O, , ij 2 Y 3z2

(2-74)

I[ ý el E51 -r
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The first, second and third numbers in the brackets refer to

the Young diagrams, respectively, of Z4 Z and &it.

The irreducible representations of R3 (J-structure)

are shown to the right of each bracket.

Which are the irreducible representations of subgroup

(275) contained in a representation c7 = E N OI--N/I

that is, totally antisymmetric, of ? The 12 single

particle states (,V 1'Y"t ) referring to spin - orbital co-

ordinates for the 2s shell can be labelled with /4

by,say,

I z S 4 6' (

2Z 512-2 _Z 2.

/0 II /2

312. / a 3

-3/Z Vl 2 3/Z

so that the generators of a are / , 2)

and obey commutation relations like (35). An - particle

basis irreducible under uIZ and also explicitly under sub-

group (275) is the general polynomial

111 1 >E .

of degree N. In accordance with ( 7 ), to find the

SS','�', -"•?'" contained in ] -3- £IHOIZ-.] one

must require the conditions on P that
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C? 11 i.
- ;,,,J= $- 5,, -3

7/,I ' 277/ ýy ; • f; ý7 71, J11 ;P•, 2 .,

'�-P=O

so that F is of maximum

A polynomial of arbitrary

labelled by say

I ý <,,m I, 12

weight in U)iand in subgroup (275).

weight for, say N = 5, would be

% I10100, I 0, 0 100

but to be of maximum weight it would have to be designated by

I 1000o, 1o, wooo

in accordance with (1) above. Our polynomial would then have

to contain the factors + L) b_ ad ; in fact theit 2- 3) 7 an
polynomial is simply

up to a multiplicative constant for normalization. A similar

analysis would give us the other, l % rey"'f forbed.
C', 1 13 apart from, the l1(,IIý already obtained.

2)

N=s-
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For N=2 consider the /ll/jpartition of

which has the dual partition r( 3-Czi of

that 7"= I . The possible representations of

(275) involved here are then:

,�v.

implying

subgroups

DO u) 111i,0,03 j I, eGoj IA 1110,1 Io j 0, 1.,' If 10,Il

each possessing a definite J - structure. To find the

I 'bI, 5 ", '1 contained in the 153 =L231•3• 1 ==LII3

"r=- ( case, we take the external product of fijwith )13
in UI. so that

according to Littlewood's rules. Taking all the possible

external products of (276) among themselves we find that

�L1� ( 10
I 2- 7 k 4

1D13= M~ +62)D 2'O' 01 1.,oj 0) L 7,161

and subtracting (278) from this, one is left with:

in 2 I.,O ijojI~O OZO~,OI q ,' L

(2 rg)
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Now, f2,OOI means 2 particles arranged symmetrically in the

C/, sub-shell, the possible J - values are thus J= I3o
Representation J1,10 means a configuration (dS.)' 1 "S

so that, J being ý,+J, veOtorially, we have J-=2V .S.

Then jO,21OJ contains simply J 1, and so fortb. Tabulating

these typical results for rp r iJ we have

T A B L E V.3.1.

[23 T=o ,,,.s 2

S3,1) r (

0 if 1,,2,31,4 24

a, oZ , / 0 2 z7
where the numbers in the last column refer to the dimensionality

(c.f., Hammermesh, p. 387, ref. 34) of the representations in-

volved. The D's are given in each case in terms of the Young

partition numbers of the tnitary group involved (Weyl dimensio-

nality formula) and are the analogne of ( 2 3+1 ) for an J?

representation given by J. Their use provides a good check on

the of , ý"t3 's obtained from a given Eý3 . For

example, in the above Table: for f 2, O, O f J-- i g

and for which D = 21, one must have (recalling definition (273b))

21x x I = 31-7+ 1t

21 = 2-1.
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Again, the grand total of 78 must result from

DNI m)2L D Q6) D(90~ D MR,) = (2 m PS 79
allIJ

for the 1=E.2.3 representation of VIZ.

To continue our chain calculation, the ZaI represen-
tation Ei3 , with conjugate representation • -' t=3]_ 7T--3 Z,
contains the following .', f. '• P",'A of subgroup( 275):

1,,,,o1o3 ?,1,, ,0, ,1 1,,,1,0o. 1.,,,J 0,,o Il,

10,11,11 I o, ,,, i - c. ýo, o, if .
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By a process identical to the one for deriving the structure

of C3 in the previous example we can find the structure

of 3 =z13 with T = 1/2 from the structure of 0 - ff'if

g and of 1 IIf13 a-bove.

The process is repeated for any desired number N of

particles and results like TablVe}l 4 ulated for any wanted •]

representation. In partioular, we shall give the complete

table for the case of F`0 (N = 4) whose lowest levels are

given by T 1 l, where one has F,= ý2.I13 and Lp 3I3

which implies T,= 1. Wfe included the triplet of numbers (f'1lta)

giving the distribution of N particles among the 25--0d

shell according tothe configuration (d (5 1 ,)fl cd3/?):
Also, the eigenvalues (272) corresponding to each such confi-

guration and normalized with respect to the single - particle

oxygen- 17 spectrum (c.f., Preston, p. 184, ref. 53)

are given in the last column.

TABLE V.3.2. ,•II: •Czi 1 ('T=0 FP

'Aj4-SOF

0°

"~2-

0

0)

/

I

'I

2.

0

__________ I - - - --

0

0

0

0

I

4.-.-

40 0 lx2•-•z S, 4,74.$-l0- 421

310o I, 2J ,4,S5

301

2 11

0,12$4SVG`7

40
q .... 71

4S
I�-I

8o

,,, . 3 5IV

I 0.I�2�3!4�S� t 7

280

140

sulwes

______, 3" '1S 67.. - -

I

I,

12-1
12.1

112.

1. 2.5.€~.
-' ,-,, - -- 1 - I -

-I

o0f2-. 3 33 4-1 S
4 I � I /1 i�2 U

2. 112-

If 0
0,. S~ 42- 3;

o4 •2 '5z 1, 3.57

72-
I laG. U ,,.v, ,

1o 10.'4

211

III

2.1

'I

ill

2I

'I

2

I

-k-i

8g71

I. 74Z

508
S.og

,%. 9sf

11.031

0 1- 2-1- S54-2 S,

0 .0,•,r1

I 911

2,4

/' 02 1031.•

14-0

i I .

0~ 1-Z3, 3'4,S"

.971I @O
I
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fl __ _ z 2o/. 0I*- f,3, 4 1,s'; h,7 .s /./q,

2I 0II 2t1oz • 124 0.6/c
1 22 0 /03 O_ /2Z3l - I. o 32

o z ozzo t1,3 / 3 hI.'

,2o2 Iiz, 3!, I - , 7 12(0 tc.4o 0 /l o, .0 .. ,0

0 / 1l oz. / 3 ý /8o Ir. 2f_" ~ ~ ~ , ,z.., ¢,f ?24,

// 0, /!2/ 172 etc.

2-I If I z O-M 1, -,1

I_ _ _

III
10g, 2*.

/oil -I

0/5 I �
I,;?, Is-

212= I2p�S

Z I 013 8 - " • • .

Conclusion: One would naturally only be interested

in the first few lowest configurations (see Tableo,5.7_)

to carry out calculations in the " i-i N - particle coupling

scheme" described here. Notice that even these lowest states

are very degenerate in J, but it is presumably removed by the
nd 2- interactions. Construction of the lowest states of

the basis irreducible under the chain of groups(274) has not

bEen attempted as we have decided upon the U3 classification

scheme for which the construction of states we turn to the

following chapter.

C:

rv

I

0

0

I

0 I 2/i 00'�
I

P

40I
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VI. CONSTRUCTION OF MANY - PARTICLE WAVE FUNCTIONS IN

THE S1/ SCHEME.

From elementary angular momentum theory we recall that

there are two basic methods involved in the construction of an

N - particle basis set of definite total angular momentum L

out of single - particle functions of definite I . One is a

lowering - (or step - ) operator technique and the other utilizes

Clebsch - Gordon vector - coupling coefficients. Both will be

illustrated briefly as a prelude to their generalization for5YU,

The lowering operator technique is essentially contained

in (53), from which one can easily see that

'~~LM-/, 1 ____C~. ~~L ('2 )

The operator lowers the value of index M in steps of one

and is given from (279) by

N

L Z LJL=ixW 6 Z .

so that if one possessed all the gL functions of maximum weight

for a given N - particle configuration (.ee 2, *".<)

one could by (279) generate the full (2L÷-I)-dimensional
bases according to the row index M where -L < M -< L.
In particular, for maximum 1, namely, L Ati, "+ .+N

one has simply 'LL =1,4, Vt.., 1, where from

(51) and (52) "i..- A~~~ . )

For non - maximum L-values the •LL 'S could be obtained,

e.g., by the following procedure for 2 particles:
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The weight operation

- M � $eZ�

gives that , Mw - ,I as Ko 1%- + A maximum

weight (i.e., M = L ) two-particle function transforming

irreducibly as L •,+z, •+z-i, ' It, -? is then

the linear combination

A"

where 1 PE m z.1 L - *7.

A., are easily found through the fact that

L+ �LL

The coefficients

=0

and 1et Tn heti re 'mit

One gets tilen the result

AI?"-

A/M

allowing us to determine AM up to a constant AO

-I Z& tnit 14M

= 4ýýIM

that is:

qIO
61 42L-9m.LL

Lo V, 1*1 11 21"t
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By (279) one could then generate all the RLf functions for

L• •&P,-4-,,..., b- and -- L &'M 4 L
in other words: the full basis for irreducible representations

L of the groult RS

Alternatively, to build [ I for N- particles one
could vector couple the first two particles to definite Xlby

1461: 2<ýI PZ "~Ie'L I t"i'> 'IMIf 12 4*42.

and couple this to particle 3 to give

= 2>M

and so on, up to the --th particle . thus obtaining the
complete set V:• for each )t irreducible representation ,
(Note: we disregard the problem of antisymmetrization in our
example.)

Both techniques -- of lowering operators and Clebsch -

Gordan coefficients ---- are relatively simple. Coefficients

<1, zl IM, I ý¢'1> which refer to the coupuing of two P
irreducible representations 1 and IZ to give a third one
have been tabulated extensively. Using the three lowering

generators of 73 and the Wigner coefficients for V.

which have also been tabulated to some extent, one can generalize

for U, the above well - known methods.

1. Lowering Operator Functions.

From the introductory discussion of (IV,d) we recall that
the irreducible representations of TJ3 D V, D If are charac-
terized by (k- kL•• ,) through the general bra
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rr

RzANALO(WU:

fA> E 1

koaz -

the superscript on the polynomial P referring to the irredu-

cible representation of S , the subscript denoting the

row indices of that representation. From (235) and (236)

moreover, the weight of (280) is given by the three eigen-

values of a-net C' 3

'W, = r
,)R,• ANALOWIE:

•=~~~~ 0,-, ,-I
(2g1)0

and the polynomial of maximum weight in 57 is designated by

R,)?, ANALOVC-r0C:

IVQ> t
' k, >•kk,

and satisfying (144 a,b), remembering that 1 , = 3,33

and k.=ha,- h53 "

The operation in

from the maximum weight

An arbitrary state (280)

from (282) by

(53) yields

Ijtj, =

in 5 can

an arbitrary UiM)> -

e teneratedin R5.
be generated 39)

�ktc)£

,,, ( I O> (20o)

,wz =(I I + qz) - r.

WS = (61 t ý2-) - (4, + %) .9

k (d $-I T (k, ks.)
d' ) k, ki; k,
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where (dr) must be polynomial in the 3 lowering

generators of T , namely,

~07 (Cý-A3 d'

Analogously with (279), it is desirable to have lowering ope-

rators which reduce the representation label of a given sub-

group in steps of one, keeping the representation in maximum

weight with regard to that subgroup. The rows of (ko ka)
being characterized by three indices (1, 10s)V there

will be three such operators obtainable directly from (284)

by imposing on it the appropriate restrictions: The first such

operator 0T is to lower by one the first index if of

maintaining maximum weight in it , i.e.,

R~rPA21% P3

having suppressed the unneeded (k,k.)superscripts.

Now, from (144) and (281) one can write

where P that is, of maximum weight in

TJ1 , These three equations can be rewritten as

cC k': IP~ Ft 4. Q: ( ' Q P (c
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.0. CC)

V~rrr

Carrying out these simple commutations using (284) and the

fact that from (135), e.g.,

Ei,', ( 5kJ=- T' ;)

then equation (a) gives condition C A-o and (b) gives

at @ so that

Q3 , O t

with the requirement that it stay polynomial (@-O, becomes

~=A 0 d' *Ale d3 ~ 2.

Equation (c) then eliminatesl of the constants so that

having used commutation relations (135). Our second operator

must lower the second index .

Exactly the same reasoning as before leads to conditions

0,/= ^-O and A=-I on (284) leaving
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A'd.z

The third operator

by one
L,1.T is to lower the third index 1

and one similarly obtains that .-- /4 I, th=i-
(284) here becomes

Cm A-A"

so

o�e

The operators QI , and Viz are precisely the

V>13 2 23 equivalent of the normalized operators k.

mentioned on page 43 in relation to the canonicabhain pv -I
Doi a'U . They have been discussed thoroughly b*Y N~gel &

Moshinsk'o who aleL obtained the normalization constants

for the general case of Up, by an elegant method relying

only on the group and subgroup generator commutation rela-

tions. The normalization constants here are A IAand A,"
and are given in

0T7IcI

the above reference allowing us to write

I-+1 =d-V•c

~~~11J ~~' 4Q-r.i k,- 2 (

cr1

in normalized form. As before, the upper index on Lr

(1294)

L I
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refers to the representation label of the subgroup; the

lower index designates the unitary group order immediately

before that subgroup.

In conclusion, the full base of the lowest - energy
Sirreducible 

representation (k ink .) within a Viven Young

pattern f can be generated by operators .L ,L, and

of (287) in the chain V) IT. The desired ff3 symmetry

function of maximu:,.m weight is constructed by prescription

(79). The (k1,) representation corresponding to it is given

by (269) which is the one lying lowest in energy and of

maximum weight in •3 One then applies (287) to build the

full base but with the V3 lowering generators d"

replaced by linear combinations (138) of Ur lowering gene-

rators e" which acting on a bs4 convert it

into a Thus, making that replacement one has the

normalized _owering operators

,' - (4 ×
+ 1,.

(eZ (28%aj 6 )+ +

2+
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which by definition accomplish the following:

"PtI p(k,~
•,- I •,•- AI

= ., %-.I, I

I. E,,Ik ) - p (k k.)

the row r r,) of U?,•) from (92)

conditions

being subject to the

61';''4 ?`k.;-

analogous to for R5 a'. Just as the

latter gives a dimensionality of (2i) for the PS

irreducible representation to one can deduce 45) from (291)

the dimensionality of a given (•kok) ofSVl

1�U)

this being a special case of the Weyl formula
70)

for Vr•

2. Alternative: SV 3 Wigner Coupling Coefficients.

We recall from (237) that classification by the cano-

(2qo a., b c)

(2 1)

(7- 9 )
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nical chain with a basis set

was equirvalent to classifying by J)IJ)J% with basis set
k 1 11) where M •, is the projection

of the total orbital angular momentum along a given Z-axis.

Taking the generators CI1 % Z and I of in the

three linear combinations

1 2.3

-T'j, VF . _

2-q•

one can directly verify them to be the normalized generators of

STJ, (hom-omorphic t6 K) since, upon using relations (135)

is a Lie algebra identical to (142b) of R . Thus, the irre-

ducible basis of kLz) R can be characterized by the eigen-

values of T - and TO, say t(t+i) and V or by the kets

in analogy to the Ii of R.,') R.

One can immediately find that

-v &••
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so that our base can be designated by P(kt•)

(.e) The outer product of two irreducible representations

and of R3I gives the well known Clebsch -

Gordan equation

•(%ff•fa ,0 '÷ .-,c"'° '' , j•-,

where + means that the resulting irreducible representations are

of the form

0

0 D9

The basis of a given irreducible representation P= 4- .,

e,+e2.-•, '"* .-/4 is then simply

For unitary groups, the outer product of two irreducible re-

presentations labelled by Cf' and C-" isrf " , ÷•••• .



- 169-

where the resulting Cf LTf',3,C{j3, &.U are determined by

littlewood's rules (See Appendix A ) and the basis transform-

ing irreducibly according to a given resulting -f 3 is in prin-

ciple obtainable by generalized (Clebsch - Gordan, or ) Wigner

coefficients for the unitary group in question.

In particular, for ST, one has Cf'3-(k/')and £fm3J
Wk," k'•) whose rows are respectively given by 'WV and

•- m Is •, so that the full base corresponding to a given

(k .) resulting from(kk D(knk I' shall be$

• ___<• ,~ ~ 4 ,.,Z+,'• 01, i,;: q,+ ..,.t

in analogy to (295)f or R-6. The Wigner 45U. coupling coefficient66)

factorizes into parts referring to 5TJ ,- and •LU •z"

< (k , I k 2) 1# .9II

(2-9'7)

-2 #-It€,) _t =. i, "4-z)2

the latter factor being the ordinary Clebsch Gordan coe-

fficient widely tabulated. The first factor in (297), called

the reduced Wigner S coefficient, was obtained by Moshinsky

in closed algebraic form 66) and extensive tables for them

are being prepared by T. A. Brody 71) at the University of

Mexico.

To construct a given N - particle basis transforming

irreducibly under 'V'-) U. ;P'U one could use (296) and (297)
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to couple two particles, then a third, and so on up to N

particles. The one - particle Young partition EI1 of !4.
contains one and only one 4U irreducible representation

(kIe) =(V0), where r ( fI(1)(V +Z). (The dimensionality

of this SU 3 representation is, by (292),simply r.

The dimensionality of 1:13 of V is, by the Weyl formula

for Ur. also r. ) For the 26 -1i shell r- states,

those given in (137) single-particle quantum numbers/(-

11,711, Conditions (291) tell us that, since

then a0 and

$,= 2 1 0

r= 2. 1 0

1 0

0

will define the 6 states /-+ a4L orA -0%4

recalling that (4,f 3,- ¶1i ), The correspondence between

set (7, 7ir 1•,) and set , is one - to - one and is

given in TableM,2.t.

T A B L E VI.2.1
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In the last row of our table are given the single-particle

functions: Using prescriptions (79) for r13 of U one

gets F 9+11 , which by (138) and (144) is of maximum

weight in TJU5 so that

the remaining states labeled from 2 to 6 in order of decreasing

weight (,o 1 will thus correspond respectively to ýks

1(4,CI) I). (These could also be obtained by

successive application of lowering operators (289) on maximum

weight state (298) . ) As in Appendix A, we shall use

the simplified notation

,kSi%~."jLSr /ASS + 4 2 +

where is a permutation of the indices So 5 2. ' Sr

so that A is antisyminetric with regards to
spin - isospin indices $ and,since the anti

commute, symmetric with respect to permutation of orbital

indices /. In short, a for A So S&SS a say,

transforms under Ur like IfJ= f3 and under

like V113. Thus of course, A
?4 /EýS
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To couple two 45-10 shell particles one has, by

Littlewood's rules, instT:

2Zo)()zo) - (40)f- zz) + (51)

of which (40) and (22) are contained in E23 and (31) c 1i13
(see Table V.1.1 ). Representation (40) is the lowest - energy

St9. representation of both OQand F/$. Should we then

construct the base in (,k.)-= (40),by the Wigner coefficient

method (296), our states a,) would be linear combinations

of j - which terms would have to be regrouped to give

terms of the type N , that is, of symmetry 14J•

under U&,. If the permutation symmetry is maintained

throughout the whole construction however, great labor will be

saved. Thus, to construct R it is preferable to use the

lowering operator method beginning with

(40) +2

4142

which is of maximum weight in TJ),) VU T1v . The symmetry

C-f J CZ3 shall then be maintained throughout as operations

(289) affect only the lower indices of )2 without altering

the form . ,

Efficient construction of an N - particle V 3 )3T7,V

base for a definite (k k) contained in a given fO

partition requires an adequate combination of both methods

discussed above. By expressing N - particle states in terms

of determinants of the type (299) one avoids destroying the

permutation symmetry of the desired partition Ef .

Consider the N = 8 particle partition(+IJ= f-"?,1.

MMMMi
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According to formula (269), the lowest - energy STS repre-
sentation contained here is (k,k,) To construct ourP0,,Z)
8 particle base $ we proceed as follows:

1) Construct by prescription (79) the maximum weight
polynomial for (k4 Jcz) = (8o), this being the lowest-
energyv representation contained in EffI= £'7.
Applying lowering operators (289), proceed to generate
the full base This is simple since here
k--. Each of the DT;,)= 34 polynomials (see

formula (294) of the full base will be simple linear
combinations of terms A z 5 with symmetry t{=>fj.

2) Repeat the process for (i•)'(60)which is the
lowest - energy JSU5 representation contained in

3•]-*3 3, i.e., construct the D(U.) . 28 polyno-
mials p(&o)

3) The lowest ( 0!) of £J3=. 143 is b(269) equal to

(11 3) so that we then couple and

R obtained in (1) and (2) by (296) to give
us ,These will result as linear combinations

4 A1r3, Z3of ,,, with

obvious symmetry /- 'C4••

4) Finally, couple j, with of Table to
"g i v e b me) 4s agive ,• by mlethýod (296). These are linear

A I2~ z I231combinations of ri,, _" ,-' ,, ,,A

and of symuretry C3 _ 2@r3 as "deired./

Notice that permutational syminetry has been maintained in each
step. There will be lXU)= 195 polynomials for (A, h2)

(11,2) but one need only construct those P with ' non-
negative as negative values of A, 2? are unnecessary to
calculate matrix elements of a central interation like pairing.
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3. ExPlicit Construction of the Base for Lowest

(k, W ,_,)rV
In F" one has 4 nucleons (1 proton and 3 neutrons)

in the 2- I1-4 shell. Lowest levels are thus given by T=-.-.

The most symmetric Young partition of N = 4 with conjugate

representation containing 7-T1 is, according to Appendix A,

V{z3 C•1i3. The lowest energy (kikz) value contained

in f*3I3 from Table TAA is (71). Contributions to the wave

function proceeding from higher-energy (kk )values of

will be neglected (Elliott hypothesis) in our calculations.

The polynomial basis I (bS) is composed of

D(V: (71)) = 63 polynomial components of which only 35 possess

T non - negative. This set of 35 polynomials was constructed

separately by both lowering - operator -and the combined technique

explained in the last section. Identical results were obtained

but the combined technique involved much less labor and time.

Since the chain of representations E31"("7I) is desired, one

starts by using lowering operators (289) on the maximum weight

= (60) function of symmetry r33 :

in accordance with (79) and definition (299). A set of IXU :(,O))
= 28 normalized polynomials is generated, each of which is a,

linear combination of terms . The longest polynomial of

this set was, for example,

( =l, + 2. - (A2  At + + A12 3

-~~~~ ± z X+L

(Incidentally, this (Jil,) = (60) base corresponds to the lowest

energy SU. representation of FM ).

MOMMEM11i
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Next, we add the 4th particle to our 3 - particle

using 51J Wigner coefficients. The fourth particle

,is ( k?,.) = (20) so that

Vzo) =-(-- ) t (7•) + (GZ)

where the first, second and third resulting (k, z values corres-

pond to the lowest energyslJ representations of fie•zo F-

and O respectively (see Table V.1.1). We take the (71), and

thus require the J reduced Wigner coefficients

< (o,) ,' o; C• ) ,) (7,1) 4,,j.,>

which are available in Brody's tables7l) One also requires the

ordinary Clebsch - Gordan coefficients

which are also tabulated in various sources. Then by (296) and

(297) the Fo lowest - energy base is gotten by

evaluating, for V1 O,

(7) 1 I

( LAI Aj A, )

4~~(4)~; 20)j.") (71) 4I~~•~ z 'v C -)~
ori-cot
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,0) A" pCo),.t CF''* A 1) (300

where single-particle functions are those of Table•.., 1,
The 35 polynommals of Z7_Oare linear combinations of terms

A-' 2  A> 4 (Which have symmetry 313). Let us abbreviate

Ar~ -(30))

as the upper (spin- isospin) indices are identical to every term.

The polynomial resulting from (300) is however

0,)
(ii __ L(,11) (302)

A, A 7-3 1 A' "'2

since (as is easily shown) 42 1 1  4."=, . Prescription

(79) allows us, on the other hand, to construct this polynomial

immediately as it is of maximum weight in5E~nameSy:

F 1< ]+" E 1= -_-- c ,,111)

which is moreover nornialimed. Thus, in view of (302), we must

multiply by a/2 all polynomials resulting from (300) in order

to obtain a normalized set. Lloreover, the number of terms^1 I 2. ! (r

resulting in each from (300) can be
reduced by use of the following easily derived identities:
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(Cytc) + Z( 4, a tc) + (ct 4) =o

.,1,• +) + (,&,aC +) ± c.,ajr-) + (a, J-C) = o.

The complete list of 1Vfor is given in Table

TAwhereBLE 3.

T A B L PE VI.3.1

'1-L (21

, ® • 3(•,5Ii) + c+,,,i)

712 ( ~I(,1)--(,)

51.(~ ~jI(2~)+ 7ua(s,:5 t 4 (50z)) + 4(411) i-F 420r 5

4n02 AI [Z2Y(3,4a 21)+ 2i4,331) +-(3i (,nj

+ Z(4.,Z')+ (2,41). I

rv'

(303')

2(2j22-1)
-j- 

1

I
4, ,. 17, 0>
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511
I I+r (-. 5 ?)± i4, 321) + 4 1(r2l 4 aI-)) f ý26 (6,22zI) +4(ý,92)

+ Ei(4,~3) 2V2-(5,431) + 3112(4411) + f2-,1) i

+n)

(21&Gf) - +43a (,3).-(,41j

+ 1 ~~~s 3 ) (~~)+ 5~S)+

() 2 (3,322)+ 2(22-I 2VF(s 3 21) + 2- •( .

2to (,2

O 6(-54,2zl-) t±V 23 ( 4,532. + (3,,2) -4 (,36)+ f (3, M )f2(4,0

5f(g ZO (9,,0) + r ,2-(3 .-1 i(4 -06z
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(�.

FD00 @ J-} V2 Gt~31) + lr.34'- t22 46-2)*(63 -3
+(4441) +-4sr (4s-F )

200 (B) I~ z(. 3 [ ~ Ii44~)

~- 2-13i r2 (2,311) +t8 S(9,111) 1-3Ca (5,2 11)]

7oS svi: -[(3,,,) + (5,m)]

4I-~ I
L (2,,)t •(2,-) + 2(4,31))

+7• 2(41 +,---2,Yl)

+2-( 5s-1)) + (S,0")_

S+ 2) --(2,4-31 + IS-(6;,M) + 2-1(,S-11)

41iI'(g••) !•(g<9)
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211z
-4

701®
S~iI ~ -(3,44z)] +I- [3,43 4-2( S,461i) -u(;5s33)÷2(ý4si)J

-L P + (S; 22-1) trz3,421) + 3( 45; 1 )]

(2 2 + (-2-
60 V-z (2),r3s)+2r2-(ý

OZ 2

2-(6,431

(-3/ 64 216,431)
+ r14 rz (44 + 4

4 rz (4 0 Z) +r2- (4442)+ 4A P) 2(6,23) -f

.............

16
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S(7)The base fqriven in terms of, ,I.. i,t, 2"__),is convenient as

any interaction operator is expressible, from (35) and (36), in

terms of operators 4 /h which replace 2. /.4 that is

"" -- (304)

To construct the base for any number of particles N in

2s-ld shell with orbital symmetry Ili and associated lowest-energy

SUa representation (k. k,), one can proceed in the following

systematic fashion. If one has the bases for N=1,2,3 and 4

particles with jLf (k, k2 ) = [1] (20), [2](40), [3](60) and [4](80),

respectively, any L@j (k, k2 ) for any N can then be built by

appropriately combining these "elemental bases" with the aid of

SU, Wigner coupling coefficients in accord with equation (296).

The [1](20) base (017 and F1 7 ) is simply given in Table VI.2.1. Base

[2](4.0) (018 and F1s) could easily be generated from 4 ---- b', b' 2

(of orbital symmetry [2]) by the lowering operator method (290).

The [3](60) base (F1 9 and Ne' 9 ) can likewise be gotten from

"= b+ b+ b+, of orbital symmetry [3] (See VI. 3). Finally,

the base [4](80) (Ne 2
1 ) follows (80) = b+1 b+2 bl+ b+4 , with orbital

symmetry [4]. By formula (292) the respective dimensionalities

are 6, 15, 28 and 40 but, as mentioned before, one may restrict

oneself to components of the base having positive ML row-index

values. A few schematic examples follow:
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,=, V * fom (,a 2%).

C43CSO)OINYT(O - .

• (41• (wO)•L45I3]I,,) = • •

[43(10)0[41(80)-

4LI [o)f44](12,4)= •

C13r4o)® C44J3024)

13 (2-o) [444z C it,,) )=

0 0 A•e tcd

i- E,13(71 f(F, N2c;tqzo)

+. +c,÷(i,,2) + NO.. A•
. + [443(12,3) +... (A t-)

+ [4 4-2- C •1, 1) +.. (Ala 2S)
• •.0 1- E442,3C2,-) + .. (AeV2 7,5 2 r)

* * .... . * *...

Global studies using the SU, classification scheme can

thus be carried out for several nuclei at a time, leaving as much

as possible to the computer.
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CHAP TER

VII. PAIRING FORCE MIATRICES 6 ..

The many - orbital pairing force matrices in the

physical (angular mor.ientum) scheme Zr _> ) 3 •) -Q•

for a single st;representation kkl)for N particles in an

oscillator shell are designated by

where pis the pairing force operator (219). Since lwas

assumed a central spin - isosp.•n - independent operator, then

[X2 fJ = • J 0 so that (Appendix F ) it cannot con-

nect different L•-v.lues in (305) and is moreover independent

of the row label

In the canonical scheme r4)Y3-) 2 )T1our matrices would

be denoted by

~ Efii~ ~ 2.%q, A4 1,c 1f .( 1  1,) M.> (( (366)LT \("/i k2 I 1

whose elements can be evaluated readily if states I If 3a(k,.z
qqz. ML> are constructed as shown in the previous Chapter

since the effect of operator (219) on these states, as well as

the resulting scalar products, is straightforward. This will

be illustrated shortly.

In view of transformation (1.1) of Appendix I, the

passage from matrices (306) to (305) would then involve the

similarity transformation

i1 &'(I = II ~lix It 31J 11/1.xI go(307)
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the a ned tT subscripts referring respectively to (305)

and (306), and /fil standing for orthogonal transformation

matrices of the type (i.') of Appendix I.

If, however, dO--- in (305).---which is the case

for the (kkz.) = (71) of our present interest--- the matrix

is diagonal and of dimension equal to as many L - values as

are contained in (kikz). Hence, in view of (307), the sum of

the eigenvaluesof P, which are labeled by L , is simply

T, I<f1() iL M, d I Cf3 d-(k~k2)O L L>j (30?)

so that y the diagonal elemzents of (306) need be calculated

to obtain the eigenvalues of (305) that will figure in the cal-

culation of energy levels. Mdatrix (306) is explicitly reduced

into submatrices labeled by ML.= Lm, Lowy- 1, #., 1, 0
(where bmax = k, ) and of dimensions equal to the multiplicity

of each AL involved. Yatrix (305), whicli is diagohal, can be ima-

gined to be ordered into groups of diagonal elements labeled also

by the M1P4 Then, according to (308), the eigenvalues A of

associated with a definite L can readily be found through

We now turn to the evaluation of the diagonal elements

of (306). Applying the numbering convention of Table YEdj,

for,(',f to pairing operator (219), which is bilinear in
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14 group generators I defined in (37), one obtains

q4.efel _ý Y 3
+ 616

C4 es

3 e3e 
ere4 2 42, Z eb

(31q)

Recalling (304), the effect of this operator 0 on states of

the type given in Table VI.3.1 is clear; one must be careful

to use the same numbering convention regardingf for both ope-

rator and single - particle states 4 as in Table VI.2.1.

For (kkz) = (71), operator (310) must be applied to all 35

polynomials given in Table VI.3.1 to get

d:Uf 3"L MAll- A,,M.v) 10> (:311

for all 35 cases. A typical result of (311) for the polynomial
with •1 4i is, having usedsimplifying relations (303)

and regrouping terms,

?') = 1 '10(2U9~'30f 7(51,33')- 7( z,321)- (Uz2i) - '7(4, I)
2.

where as in notation (301), e.g.,

C'....

4.,,.

r-"

(312)

6 6
-C3 ~2.ýý

ý ý2,

+ 4 
4 4

e2(e2_1) 4-1 4 Z



- 186 -

(3,~I>- A' Z$

lower indices referring to orbital and upper to spin - isospin

quantum numbers. Multiplication of (311) on 1 ft by

will result in only a few different elemental scalar products

of the type (A' I A 4 a . / /4

which are simpLe to evaluate with the aid of anticommutation

relations (12) and definition (299). Calculation of diagonal

elements of (306) for (kj•)= (71) required only those

- .f /,, ,, given in the following list:

(OL,J C~/aOtcc, ( (Orcrc/ 10 CO 4- (O.)cdf/tiOAI&fr=4

(~ 1~Ur~r1-c c/ c,( , arc tco. )= -4- (0,aJ0io 4-/ cz, aa 4
(o.,krd I1rcd)= -

If in I, ", / • •P. the set of indices

differs from the set/4 /in ýa--

order, the elemental scalar product vanises because of (11).

To finish our example for - 4f 3/i with Q•,•)

= (71) and E+43 -['51i, ( %/L being unneeded):

Ib~ %:-9?)II,5 ) 4~ 47 65,31/6, 33 1) *i-.29(, 3/ ,31)3
20. IO),Z L

-4 /2 4.

+ ;2-7(3 6-31/6i313/

-4
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-- --I -b•÷b7.5• ,9 = -__ __- ' 7..,...
5I02.122 612 2Sv

Calculating the other 34 diagonal elements of (306) in a simi-

lar way and then using (309), one obtains the following eigen-

values • for L=12..- 7 of (305):

Eigenvalues of II <'C'3(i1) LM1(•13(7/) •MIL1!

v , -I z 5 4 S I J

A- 5 - 1 1~L I-~ - - I - ~ ~ L)~ TS s •*I'

const-ituting five different levels the highest of which is

degenerate in L = 5, 6, 7.

In cases of certain (h, k?) values where V#AW'in (305),
the trace technique (309) would not suffice to obtain all the

eigenvalues as then matrix (305) is not entirely diagonal

and would contain small submatrices along the diagonal for those

L- values which occur multiply under the given (41k?.), These

submatrices would be of dimension equal to the number of W A

that occur for the given L and to obtain the corresponding

eigenvalues AL Of I1P 1R3  the similarity transformation

(307) would be applied explicitly upon #)lII'i for those ML-

labeled submatrices of 1 II RJI, containing non-diagonal terms.

The resulting Hl are then diagonalized and the •L

obtained. A typical instance of this W#LJJ' situation is found

in Table forVM 24 with Cf= C44-3)(,k•) (12 4)
which contains up to three - fold multiplicity in the L-
structure, that is, W:j W, #* W•o

Result (314), after coupling each /-value with the

associated total spin S - values of each level to give total

I , will provide(diagonal) matrices with elements

L"; I -f)
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< f3(hi)W' L S T(LMTTj ~I f) (k,ýz)WLSf-M T>=

Z /jL SA1 /t4M I Th5-><L S ML MS V4>

MAM x<[f3(k,4)to'LML; tf"SMN (& LtJ~kjkjwLMt.; IT]A1sT

where the latter matrix element is identical with those of

(305) as (P is spin - isospin independent. This element

moves outside the sum since it is independent of row labels

/V�,L[,•I , MS so that by Clebsch - Gordan Coeffi-

cient orthogonality

-4/ E-3(k, Owl L 3S T [f i-(k,kL) wL S S T> = (

<ýýt(, 62}.)(A; Eý3STl dI(FI 3(kj6.)wL; L?3ST>

being independent of row label MT . Matrices (315) with

rows labeled by L and S shall form part of the total in-

teraction hamiltonian matrices whose eigenvalues are the ener-

gies of definite J and T values.
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CHAPTER

VIII. SPIN-ORBIT FORCE MATRICES FOR F 2 0

To permit evaluation of the spin-orbit interaction matrix

elements (263) in the SU3. scheme one must.evaluate coefficients ASS

B S!5 and the simple matrix of elements (k•k•)dJII(ll(I&a z)WL>

This will be illustrated here for F20 ; extension to other nuclei will

t•n be quite straightforward.

,Coefficients ASPS and 1$t being independent of U. row

indices and of U2 (spin) row index , conditions (254) may

be imposed on the two linearly independent inhomogeneois equations

resulting from the application of (252) to both operators (253 a,b).

Typically,

42. hT SS T>(316)
<E- oLhik.j,) h•,k,,h,-ul);,M '-s 'T/,E(, i):;,fh -s 0 E(2): s..)>

4. ,-, I •.s'sSs

and similarly for (253 b)' the (h, h2 hs:) labeling of U3 is here

suppressed for brevity on the right hand side. The operator on the

left is by definition (241)

cit(,)',; i.i-,..s)-IE("8 , -

- 2 9 t" (317)
u,• 4• . .. .
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and similarly for (253 b); and of course

by the Wigner-Eckhart theorem. Moreover, from expansion (240) we

have

_•0" 9r• , M . UO"V.4A4 I . (319)

while

<)A I %1'f> C; II Yn' lO0> (320)

from Appendix G. Combining these results carefully one arrives at

operators (317) expanded in terms of generators C 4 , (s
4r 75

1,2,3,4) and (p, i = 1,2,'*', 6 for r=6). That is, for S'=S=l

say, (317a) shall be + l , + c4J + (L 4- 3

+ C'. *C;.+ V53+ Lc::*ci +c, c(J c;;J: 44:10 14 41 J
The ket states on the left of (316) being of maximum weight in U3

may be designated briefly as

ASS S S

the first index referring to total intrinsic spin, the second to

projection of same. Now, operators Rkl of (180 d) related to

cartesian components (k, 1 = 1,2,3) can be case in spherical

component form: = L(Mo)$(NoC
+-
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where the Pauli matrices now in spherical components areM1 (;°)( ) °)Q71: .• o Mo = T = rz oo::
(I 0) 0 -

with rows and columns given by d ' = y2 , V 2/2 and

similarly for N ($ -,o,T) with rows and columns given by

It- I/.'._1 I 2 . The operator 2R.,, is then

2Rf= ~'C- CZ)

in terms of U4 lowering generators belonging to the set (61). It

is the lowering operator for total intrinsic spin S, i.e.,

2 R)To •, -• 1PS- -

and moreover keeps the result in maximum projection. Likewise, 2RoT

would be the lowering operator for total isospin T. The case of F2 °

involves (h1 h 2 hl) = (710) and from Table VI.3.1 for S = 1 is simply

Jr, =-' -(2111)= + ,+ , ,
and consequently""P ~ ~= 2-, P,-, 0+, 623, L, ý,• 61z b1-,I +,4).U 00- 6 o ,
Evaluation of the left-hand members of equations (316) now follows

easily. On the right hand side we have, from (144 a),

< 5 ,(,r,-k) IC,'Cz I•, 1 , (,,-jih)> = h,-2,.
and similarly for - •. Furthermore, by definition (249) and

condition (144 b) C- I- )Z) C(C, - c ) ,-c
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and similarly fort - , so that

<hlhL Chi-k1)(: I k, ,-) = ý2- R+h,
and likewise for• -•. Finally, for (h, h2 h.3 ) (710) and

S' = S = 1, say, equations (316) reduce to

)- I '=(All,,2B,,Q'-

from which follow All and B11 numerically. The cases (S', S) =

(1,0) and (0,1) then involve use of operator 2 RTo as indicated before

and the complete results are:

TABLE VIII.1

SS'S II 10 01

Avs5  0-11 -226/

Notice that the case S = S' - 0 does not appear as then matrix

element (263) vanishes, since the factor <(51 Ms'M 51  >

would be zero by violation of triangularity. This reflects the

fact that spin-orbit interaction is zero in first-order for singlet

states.

To compute reduced matrix elements K,,k•frk,)w•L'(J(ll(k,k,)wL>

recall the second expression for it in (258) and algebraic formula

(262). Transformation coefficients < x (k 1 )a)L

form the matrix diagonalizing J2 11f or

•,= I , L... , for (k, k2 ) = (71) the former matrix is (1.9).

Thus, one begins by constructing <(k / k( %v M
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for (k, k,) = (71) and M, = 1 by formula (262) which shows that our

matrix will have many zeros. In accordance with (258), the result

is then transformed by similarity with matrix (1.9) to give

II •<(7')L| JjI. I(7) 0I>I1 which has non-zero elements only along

the principal diagonal and the ones contiguous to this above and

below. This results fromLt = L+l which implies Lf = L, L+l. Each

element is then divided by the appropriate < f1fOIjL!f> coefficient

and the final result is:

Th 5 1-L 6 Y,2-

M (tltX K ,.kkký)co' (I *)II(kihz~t)/J I n, (kk c1 ), to =w,

2- 3 4 " ( 7
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In conclusion, formula (263) can now be used to •construct

the matrix of spin-orbit interaction V .for a given SU, representation,

wherein W=•W automatically, the results for F20 with (k, k,) (71)

are thus: L -If LSI :2

LY 0 0 W

o-Jr J/-•If-3I
Ll71

J2 z.2e U]3 f 3 -'j a I_

II 'I! 3.Z~4II

20 1 LS 3 -0 -+

-= 2 9T=3 /2- 74

T- 15 ..7,5- 0 iý2° • •

_------ 71•- - /

S -L 5M, Jl 7 }••
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IX. PREDICTED LOW-LYING LEVEL STRUCTURE OF F•.

The interaction model to be used was discussed in

Chapter IV with special emphasis on their group theoretical

symmetries. It should be kept in mind that erefers to orbital

pairing as explained in IV. 3., and to orbital quadrupole-

quadrupole ---- extension of the former to include spin might

provide a more realistic type of pairing but would introduce the

symplectic group Spe instead of Re and force us to use a .4A

coupling base. A linear combination of our Qand may be used

as a model for central two-body residual forces between extra-closed-

shell nucleons and evidence in support of this was cited at the end of

IV.3. Regarding exchange effects, an exchange operatorj taking a

simple form at long ranges as discussed in IV.2 is employed with

the portion of the model which approximates long range. Exchange

at short ranges, i.e., in association withP, is neglected under

the assumption of predominance of the Wigner component (into which

the Majorana collapses at zero range) over the Bartlett component

(into which the Heisenberg collapses) ---- for a Rosenfeld mixture

the relative intensities are 80 to 20% respectively. To this is

then added the single-body spin-orbit interaction discussed in iv.6.

Our total interaction hamiltonian is stated by (264) or, parametrically

more convenient, by (265) and is acting amongst the four extra-closed-

shell nucleons only. The doubly magic Ole core is presupposed

spherical and inert though departure from this simple state of

affairs is hopefully expected to be simulated at least approximately

by the long-ranged interaction between extra-closed-shell particles.
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The lowest levels of F 2
1 will be given by Mr = T = 1.

From (A.4) the most antisymmetric spin-isospin Young partition

which by Wigner 4 7) is lowest in energy isff3w E213 to which, for

T = 1, are associated S=O and 1. The corresponding orbital symmetry

is then fi t- C511 whose lowest-energy SU. irreducible representation

by Table V.l.1/ k2 ) = (71). This representation, to which our

set of basis functions is restricted (Elliott hypothesis 12))

contains L-values equal to 1, 2, 3, 4, 5, 6 and 7. The resulting

J-values are thus 0, i3, 2 , 34, 44, 54, 64, 7: and 8 so that our

largest matrix for sur is 4 X 4. The base is designated by

•' " £•1 £z,,

MA= S MT:T

The (diagonal) matrices of• in this base are given by eigenvalues

(176) forjand (186) for exchange., in accordance with (187). The

matrices for P, which are also diagonal in the orbital angular momentum

quantum number L, are composed of pairing eigenvalues (314) in the

manner of (315). Finally, the matrices of24 . are given at the end

of the previous chapter and their construction was discussed there.

The matrices were fed into an IBM 1620 computer for

diagonalization by the Jacobi method, with parameters a and 0 of

(265) varied.



- 197 - C

Scanty and rather ambiguous information on the spins of -V.

low-lying F20 is known to date. The P-decay from its ground state

to the second excited Ne20 level JU = 2' suggests a J- = 2' spin for

the F20 ground state. Considerations80) involving the Nilsson

rotational model corroborate this assignment. The P-decay from

the 020 ground state J' T=O+ to the 1.064 Mev level of F2 ° suggests

a JT=l+ spin81). Mazari and co-workers82) have studied the F'9

(d, pr )F20 stripping reaction measuring gamma-ray energies for 15

excited states as well as angular distributions of proton groups.

Distorted-wave theory fits to the data permitted generally reliable

neutron-capture angular momenta 4assignments (see following

Figure). The same reaction was studied by Chagnon 8 3) who measured

C fj V )-directional correlations85) through four low-lying excited

states. These results were interpreted by him via DWBA computations,

thus providing him further restrictions on possible spin values for

some of these levels. To the 0.66 level he assigns a JP= 3 +, but a

2+ is not inconsistent, and suggests that separate measurement of

the mixing ratio for this transition would suffice to determine the

spin uniquely. (Based on the stripping reduced width, Dazai 8 4 )

previously obtained a JT =3+ for this level.) For the 0.989 level

the angular distribution correlation is isotropic and this a 0'

assignment would not be inconsistent. Chagnon finds a 1+ for the

1.064 level admissible, but was unable to discard 2+ or 3+. The

1.312 level he finds decaying to the ground state with an intensity

ratio of E2/total >0.97 leaving little doubt of a Jfl=2 +. These

results are summarized on the extreme left of the Figure, all levels

have T=1 and T=2 levels are expected to begin appearing in the

neighborhood of as high as 6 Mev.
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Variation of parameters a and 0 by tenths (a+P:l) in the

computor diagonalization program results in a set of 66 predicted

spectra. The non-degenerate ones fall into three groups of level-

order J=2, 3, 1, 0, 2, l," and 2,l,3,O,2,l,'" and 2,l,O,3,2,l,".

The first and second J=2 predicted levels were associated with the

empirical ground and 1.312 levels, respectively, and the second J=l

predicted level related to the 1.064 empirical level. The remaining

predicted levels, i.e., J=3,0 and first 1 were associated with

remaining empirical levels in order of appearance and least-mean-,

squares (involving above J-levels only) calculated for the three

groups. The over-all intensity parameter Vo was found from the

least-mean-squares procedure. These results are displayed in the

Figure to the right of the empirical spectrum. Parameters' x, y,

and z given by x =Voa, y=Vop and z= Vo(l-a-0) denote the relative

intensities, respectively, of pairing (short-range), quadrupole-

quadrupole (long-range) and spin-orbit interactions.

In conclusion we may state the following. The spectrum

in optimum agreement by least-mean-squares (a in Figure) predicts a

J=3 for the first excited level, followed by a J=l and J=O levels.

The first J=4 level is excessively depressed here. However, adding

a slight amount more of pairing (moving from a to b) raises it

considerably. Our most encouraging result is perhaps the reproduction

of the gross characteristics of the empirical spectrum at low

energies, i.e., at some point slightly away from (a) and toward (b)

one obtains a "gap" above the ground state followed by a group of 5

levels, followed in turn by another gap above which is another group

of levels. For all (, 0) parameter values allowed, the second J=2
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y = 0.0963
z = 0.7704

m.s.d.= 0. 236*

-- 1 2

(b)
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(a,/e) = (0. 5, 0. 1)

Vo = 1.659 Mev

x = 0.8295
y = 0.1659
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y = 0.1988
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m. s.d.= 0.267*

2

3
0

2

*EXCLUDING UPPER FOUR LEVELS
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appeared below the second J=l in seeming discrepancy with

experiment. A similar situation arose from this model for the

second J=2 level of F1 8 for a wide range of the parameters86) (with

and without the restriction of the base to the lowest-energy SU,

representation). More definite experimental information on spins

is required, in particular for the first three excited states, to

render a more complete test of these results. Explicit wave

functions for the low-lying states of spectrum (a) will be available

in a forthcoming paper. 8 6 )
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X. SUMMARY AND CONCLUSIONS.

Moshinsky's approach by group theoretical techniques to

the nuclear shell many-body problem is presented in general form

and illustrated with a calculation of the low-lying energy levels

of Fluorine-20. On comparison with experiment, encouraging results

are found but more definitive conclusions regarding detailed agree-

ment must await further empirical spin assignments for this nucleus.

Every low-energy nuclear level structure calculation is

beset by two basic difficulties requiring basic approximations of

one sort or another: uncertainties with regard to the nuclear force

and those regarding the number of nucleon configurations to be

considered.

The customary use of a reasonably shaped two-body residual

interaction potential well is Justified only "a posteriori" on

phenomenological grounds but not on fundamental theory. Therefore,

an equally phenomenological model hamiltonian consisting of a linear

combination of orbital pairing, quadrupole-quadrupole (with exchange

character) and single-body spin-orbit interactions was employed. The

first and second interactions respectfully approximate the short-

and long-ranged correlations of the central two-nucleon residual

interaction. The advantages of this model lie in the fact that its

various portions possess group symmetries of considerable convenience

in the calculation of matrices.

The enormous number of totally antisymmetric states

arising Prom all possible particle configurations was limited to

a smaller, more feasible number by making the following restrictive

assumptions. (1) Only configurations arising from a single mayor
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oscillator shell (the 2s-ld shell) are considered so that only

positive parity states will result. (2) Assuming with Wigner that

the residual two-nucleon forces inside the nucleus are attractive

and to a large extent independent of the nucleon spins and charges,

one may further restrict the number of states remaining in (1) to

those corresponding to the most symmetric partition under permutation

of the space variables, compatible with the total isospin T of the

lowest energy for the given nucleus. (3) Accepting on a tentative

basis the proposal of Elliott's that the lowest-energy SU. (group

of unitary unimodular transformations in 3 dimensions) representation

contained in the partition chosen by (2) will to a reasonable degree

determine the low-lying states for nuclei in the 2s-ld shell, one

further delimits the number of states to be used in calculating the

energy matrix. Whereas the first two restrictive assumptions are

usual in shell model calculations, the third is more group

theoretical in character and is based on Elliott's work showing

that SU3 provides a link between the shell and collective models.

For the simpler nuclear p-shell (lying immediately below our 2s-ld

shell) this group theoretic classification scheme by SU3 collapses

into the ordinary LS coupling scheme. There is moreover no

conclusive evidence that SU3 cannot serve usefully in dealing with

more complex nuclear shells beyond the 2s-ld shell.

The language adopted for operators as well as state-

vectors is the second-quantization formalism involving creation

and annihilation operators for fermions. Thus, a given problem

becomes more transparent to possible group symmetries that may

prevail in a given operator or which are to be "built-into" a

given state-vector. Consequently, the computation of matrix

elements is reduced to simple commutator algebra.
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The construction of N-particle state-vectors possessing

the specific quantum numbers demanded by a given problem was thus

approached group theoretically. These techniques rest on the studies

of S. Lie and E. Cartan in the theory of continuous groups of trans-

formations and are essentially generalizations of angular momentum

theory to symmetries higher than rotational. They are discussed

in as strict analogy as possible to the better-known concepts of

angular momentum and its deduced consequences.

For nuclei with a number of extra-closed-shell nucleons

14 the present methods are felt to be an improvement over

conventional fractional parentage methods which then become

particularly cumbersome. The results obtained thus far in this

work with these methods are considered to justify further work

along these lines for a larger number of nuclei. This program

is being pursued at the University of Mexico where an exhaustive

study of 2s-ld shell nuclei, their energies, moments, transition

rates and other low-energy properties is in progress.
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APPENDIX A

SUPERMULTIPLETS OF A GIVEN SYMETRY PATTERN IN THE 2s-ld SHELL.

Derivation of the irreducible representation labels of

RH contained in a given one of UP has been discussed, among others,

by Jahnx ) who considers N particles in the p shell (r=3) and in the

d shell (r=5). In the2s -ld shell r=6. A single particle within

this shell has only one possible young partition, namely, Eil a

and since s means 1=0 and d means 1=2, one has

For two particles one can form the outer product of two one-particle

"a4 representations and according to Littlewood's rules7 2 , 34) get

SOD 3 - 13 4

i.e., the symmetric f2.l and the antisymmetric L113 irreducible re-

presentations of U . Defining S ,i, and

which is obviously symmetric under interchange of orbital coordinates

(the indices A ); two particles in the 2s-ld shell give rise the

following orbital configurations with associated angular momenta and
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wave functions in second-quantization form:

(S) (s2(a. 
(O)I

0~ 1)• 21 4-• • (M.)
ASI,S

S SS L

00,00 A 0  ~ ~ 0 h~ 22I~IM >~A2iz

where •A a ?flg and as refers always to the same

shell, it is suppressed.

In configuration the function is symmetric for

L--0,2,4 and antisymmetric for L=l,3. Hence, the total L-structures

of the symmetric ( C13 ) and antisymmetric ( • ) partitions are;

Now, the 3-particle antisymmetric partition is 11i11 with

wave function S, SZ SS ,where 14i = •ili (1=1,2,3) and

= 2,1,0,0•,-2. since =0,2. The total (positive) M values

can be formed in the following ways:
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).-1.{- 0 t ,a+ 2*-+ob 2--t" 4---Z =
241- O+O)

2t1-2- 2+0-2

Z+0-t 1z-c09-.2•.20- + 0' - ='• =0
,21+001I I +0-1
I +0+0'J I + O'-IJ

I-e-'ce

M= 00O001 1 1 1

so that L=I", 32 and thus, in the 2s-ld shell

Knowing the L-structure of U(P partitions [II , L2£3,
LI •and EIIII, one may proceed to deduce the rest by a chain

calculation:

0 OD 0 + B

will have an L-structure given by the vectorial sum of L's

f., ,23 t o'ýz
from which, if we subtract the 9 L-structure one obtains

14 2, + 2•, r•
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Continuing,

M O G- = f+ CM

has L-structure

O'4 +4 ± o,P I o-

which leaves, after subtraction of the L-structure,

The partition fi has the same L-structure as , for

Proceeding with the chain calculation sketched here one further

deduces

To find the (S,T)-structure (or multiplet structure) of a

given Young partition I I one must effect the reduction

-TJ4 :>V LTJxU

Prv
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the irreducible representations of U 4 being £•3 , A chain

calculation similar to the previous reduction lko R3 is again

useful; one starts with the following primitive cases:

The [|1111 representation of 1.4 is equivalent-to (0)

which contains (ST) = (0,0). Representation E13 of Ti4 ,

explicitly reduced into those of T 'J is

0) O;(E1
the X symbol standing for the inner product. Thus

oRf T-4a (S, T) U ) 2e).

Representations [23 and [III of TJ4. are formed by

£[]• 13 Y. ZI3
En, BKQ B'.; M X .

that is, the symmetric spin-isospin two-particle function is either

spin symmetric times isospin antisymmetric or spin antisymmetric

times isospin antisymmetric; the antisymmetric spin-isospin function

is either spin symmetric times isospin antisymmetric or spin anti-

symmetric times isospin symmetric. The corresponding (ST) structures

are thus

Saof ( > (S%)-- (I,1 Co, o)

-U-4 ) (5)T�)

Tabulating, one has
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L)4 one uses littlewood's rules for external products to

form

- E g3+ LIM

whose (S,T)-structure is found by vector addition of S and T

separately,

(0,)0
+ -,

Again, in

BO a =- ~+ E

I has (S,T)-structure

(:�i' �)Z

+ (I ,il

which upon subtracting that of C13 leaves

Q ,, c (s,-Q &'-

(o, i")

Ii2-) (1, 1\

== 
(.L 7 1 z

2- i)
,k) (3ý'.L) (.ýt 3-)- , z 2 Z 27- 2- z

since till• -i E13
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Subtracting this from the multiplet structure of [213t 1*6] above

one gets

n13 D (S4 T 20.x

The calculation can be continued nad extensive tables

prepared ----- Jahn and Hammermesh (refs. 34 and 41 ) have rather

complete ones. We extract from those sources the table for N=4

particles as it will concern us directly.

N UT £? (,1
1211L3 0),o 0 o, (0 1) 0

[2- 2- (0o0 (0)o•' 2) ' •, (A.4)
[._.l~j(0, I) (,,0) (1,) (1, 2.) (2.j 1)

(0,0) (j1) (2,iA

If multiple (S,T) values occur for a given- ------ -does

not happen for N< S ----- the additional label in chain (99)

is required.46)
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APPENDIX B.

UNIQUENESS OF TOTALLY ANTISYAMIETRIC MANY-FER•IION POLYNOMIAL OF

MAXIMUlVI WEIGHT.

A general many-particle eigenpolynomial is given by (21),

namely

For a giVen set of values SS,... S, the corresponding term can be

chosen to transform irreducibly according to the permutation group

TS a s V'h I'" l . Likewise, for a given set 1,A,,•IA - 1.4

one can choosethe corresponding result to transform irreducibly as

£V,4•4V8V of the same • group. Due to Weyl's theorem,43)

a function transforming irreducibly under T4 as S a .' 3
will also transform so under 2t (where t is the dimensionality

of the coordinate space), and the irreducible representations of the

latter are characterized by the same label DO '" * ] . Therefore,

the (maximum weight) representations [C, I'.' bj of U and

V •of XU4 , specified by (73) and (74), are irreducible.

The Young pattern of TfN for permutations in the total

space of 4Y' dimensions is i" O4W'M3 ; this is also the

irreducible representation of 17 " And since

~) tt4yU
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then

where, as in example (80), [,' t" I•,7 LV,VýS V+3

Simple examples follow:

N= 1 partice.

N= 2 particles

N= 3 particles

N= 4 particles

[i3> F5 X EII]3[E3 ) £2.3 x LII)l

ý z13 -K [20

Did] [43 K D)113

2 £.2]3 A Ez22-3

N particles

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

In each case, the orbital and spin-isospin permutation symmetries

must be such that a totally antisymmetric orbit-spin-isopin permu-

tation pattern results. In (a), (b), (o) and (e) we have examples of

"Pure symmetries", i.e., symmetric x antisymmetric = antisymmetric.

In all other examples "mixed symmetries" such as [213 are involved,

O* -" X" ' I • hl,. ,. V, V1, V-31VAI

X ff-.777
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but the net result is allowed by the Pauli principle.

We have shown in (79) how to construct the function

which is of maximum weight in the representation of the subgroup'

U ~r X0+4 contained in the E I' C) +r-K3 representation of U l

This polynomial is unique as otherwise it would imply that with

a given representation Ehkt.,, h,3 we can associate besides the

conjugate ~IV, IL . 3V4J other representations of U • and still get

the totally antisymmetric representation of u4V, . However, it

is shown by Bayman7 that this is not possible for representations

of the permutation group 7TM which are closely connected with those

of the unitary groups.

Conclusion. Polynomial as a solution of eqns. (73)

and (74) is unique.



.214-

APPENDIX C.

ANGULAR MOMENTUM COMPONENTS AS GENERATORS OF THE GROUP R

A real infinitesimal orthogonal transformation of the

vartesian components is simply

(c.i)( 'ý1 ) ; R= 1+ 6 A

6 being an infinitesimal real number. Now

I + E-(A+ A) =

.. -- (c.)

shows that matrix A must be antisymmetric so that one can write

3
� � (c13)

using the completely antisymmetric tensor 6k

Now, a function F ( ) W F (

(see page 64 ).

%(, 0% Z , ) will transform to

:5EkE 4

CC.4�
- FL%) + 2. ~ik E

1+ 6 A)=RR= (r+eA)(

6 Ail

F (ý4!) = F :-5' Rij ý1)14 t

F Ok

R ý= :ERLt rkt
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using the Taylor expansion in the last step. But the three cartesian r•

angular momentum operators given explicitly in (39) can be written

collectively as

so that (4) now reads

F C') = F-O L 21 k Lk F(%) (C.~k=1

and an infinitesimal increment in F( ' ) due to an arbitrary rotation

of the axes is

-IN

RFx,) FL~) Foc K i6kLit F (). (C-7)

Conclusion: The angular momentum component operators Lk (k=1,2,3)

which obey the cyclic commutation relations [L1 ,Lz2  = L L can

be considered as the generators of an infinitesimal transformation of

the three-dimensional rotation group R.0 The relations = •

form a Lie algebra of the Lie group R3.
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APPENDIX D.

UNITARY GROUP GENERiATORS.

In similar fashion, consider an infinitesimal unitary

transformation acting in a t-dimensional space vector (',%X ", 9t).

The vector-components will transform as

where by definition

~~IJ~~L ~or ~~ t  b2

and

Sbeing a real, infinitesimal quantity and S+ =S (hermitean) sincelUt•= (j+L6S)(1- ýs+) - T-:r+ Li- s (D .4)

An arbitrary function in this space F( 5 ) F( 9(,, will

transform as

and using Taylor's theorem:

(14') •F .' +b. .)

To first order in 6 , the change in the function

~F RNO FD- R(19) = (s k Fc)Qb7
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is accomplished by t linearly independent operators

where since S is an arbitrary hermitean matrix the tL operators

could be taken as the generators for infinitesimal unitary trans-

formations in the t-dimensional space. Their commutation relations,

following from (D.9), are immediately seen to constitute the commutator

algebra

i i l Cl su r oCe metri6 iC (D,, 1o

identical in structure to (32) since here the metri c so

that -, !
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APPENDIX E.

ROTATIONAL GROUP GENERATORS.

In the same t-dimensional space spanned by the vector

( -t) consider the real orthogonal transformations

where by definition

Ri. R4 - 0 r

with the added condition that det Rj•R -

excluding reflections); moreover

+ i (rotations only,

R = T-t±c-A

6 an infinitesimal real quantity and A=-A since

R R - (1:-Fe-A)(:+ e A)= -T+e(A + T.

An arbitrary function in this space G(,j) Q .X , "..

will then transform like

G (L1) = xe.Ax)

which on Taylor expansion becomes

%.' = 5 Rjj (I't = 1, 2., - - , t)
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~(~)= Q~s')+ E Ajý -CP I

being the operators (D.9) of Appendix D. Then

GT(j) G(Xt) + 2e 2 Ajý AIL CQo +

where we have called the operators

the generators of infinitesimal rotations in t-dimensions, of which

there are .L t(t-1) independent ones as the real antisymmetric
2-

matrix A has, for t<) , .t (t-l) independent elements, In view

of relations (10) of Appendix D one derives the relations

[Ail, Aq-1 I(A et~ + A tl+ Aý. &u + AvL J')

which constitute the Lie algebra of the generators of the group

R.0 The space metric here is again simply -



- 220 -

APPENDIX F.

GROUP INVARIANCE OF AN OPERATOR.

Akain, consider the t-dimensional linear vector space

spanned by the vector %X(%t)-(%,,4;,',t)which transforms

unitarily as:

%T A I (RI•)

An arbitrary function F(% 0-s F(%,.., 9) of the vector components

will transform, let us say, as

. a• F(I) = F (%L') &Tt~It (F.z)

Consider an operator H for which F(%.i) is an eigenfunction, that

is,

H FRXI)

Then, providing that

[& , H1-=o

E F C-cQ.

(F4)
0 'r

one has that the transformed function FR)is also an eigenfunction

of 14 , since

H4 Fock) =

�J�% FCk)i:=

Ova; 14 &a 11%O- E C FtL)

(F3)

E F(.,

a&@ 1 FO(')- (F.S)-

D+ý H bu = II
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from which follows the Theorem: the group of t-dimensional unitary 2.

transformations is the symmetry group of the operator if .

Ration . (common examples from both

atomic and nuclear physics for C!r are the permutation and ro-

tation operations--in which cases the hamiltonian H is an

invariant, respectively, of the permutation group 7IX and the

rotation group . Alternatively, these are the symmetry

groups of H.)

Now, fýor a continuous group it is sufficient for it to

be a symmetry group of H that 6 is an infinitesimal trans-

formation of that group namely, as in Appendix D,

recalling that _,is an arbitrary hermitean matrix and Lthe

generators of infinitesimal transformations of the group TJ .

Hence if (4) is fullfilled it follows that

Conclusion: A necessary and sufficient condition for the invariance

of an operator H under a group U t is that H commute with

the group generators.

Consider two different, complete, linearly independent

sets of functions of XL (L•, I., ... ,t),

W-W
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which are basis for two distinct irreducible representations

labelled by j and 3', with rows by m. and mi', respectively, of a

group Ut. Since is unitary the scalar product

70)
But, by definition of an irreducible basis,

(F i)
kj

•)V

the ' (,. being the irreducible representation 3 with rows

and columns k,m and u refers to the elements of the group Ut-

Likewise)for ,(%)* These obey the well-known orthonormality

relation

h being the number of elements in the group (which is irrelevant

for our present purposes) and from (8) nj is the dimensionality

of t(ý) (U) . Thus (F.1O) becomes

C•I4 c4',$ = 2 h•kwi) ,•,2 Qk) (c(), ch,"•)/ (g./4)k~km

which upon summation over all the elements, h appearing as a factor

on both sides, one obtains

(1~ 2) (1 . g) )7P (F )
Remembering that, by stipulation, the operator H commutes with

&% we have
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wherefrom clearly is an irreducible basis if r 'is

such a one, and thus the result (15) can be applied to give

which is one of the most useful results of the theory of group

representations, it states:

Conclusion: An operator H having U t as a symmetr:

group will have non-zero matrix elements only between states o:

a given irreducible representation j of Ut and furthermore

these elements are independent of the row m of that repre-

sentation.

C:

-V.

(R14)

Y
f
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APPENDIX G.

THE COEFFICIENTS KflTh. I nInTh -no>.

The coefficients appearing in the U3 group generator

expansion ( 133 ) are easily found. The annihilation boson

operator becomes a differential operator ( 124 ). Then,

in view of ( 119 )

C" 1ý,ýTt>=
cta-- , 1651

lo? referring to the ground state in our tri-dimensional harmonic

oscillator. Differentiating and multiplying by one gets

Sa, 00) ... 6z>

Thus

<T' ' ' C'i1, ,>

<M 4 ~ 0 ~ 0 S 0 ~hi~v

= 
14 '

i- ) 0

rA
PP ý-

1. 1 " 1 "! "• t

F

-At
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APPENDIX H.

MATRIX ELET••,!TS OF ; GENERATORS:

Calculation of the matrix elements of the generators of a

unitary group 'Ur in a base characterized by the canonical chain

71,-D l i)".)UU has been discussed by Gelfand & Zetlin ,2)

Biedenharn 5)and Moshinsky.5) We here simply list the results

for the ' L generators in the chain T, ) L L7 ,

in a manner useful for calculations ( C. Section on Spin Orbit

Force for notation). The labels (Sk,k) in the bras and kets, being

redundant, are suppressed.

I I C11)4M 0 -0 2,31

&A ~~kI k2, 41 ~~ -M' z 3

IMId I 'tOM +~~~t M')(11 -,ik -- SM M - Z
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+AI 4 1qZ >

N. 2  CMIM-I

12' MMM+
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APPENDIX I.

TRANSFORMATION BETWEEN TJ,: t11  L7) U AND U:JS >~ BASES.,

Both the basis set I (k,ks) M, .> transforming

irreducibly under T5T I and the set 1(k, k2)wL ML>

irreducible under J,) R .5 R ,constitute complete sets of

normalizable wave functions in second-quantization formulism. Thus

one may expand

where (S,•(kkM)o L> denote (orthogonal) transformation

coefficients. 6 6 ) Calculation of matrix elements in the canonical chain

U3 )1f•) 19, is simpler than directly inL 3 -> R3 : R,. as con-

truction of the base in the former scheme is more direct, as was

seen in Chapter VI. However, the latter chain is the physically

significant one as it provides the quantum number L. Coefficients

(I.1) are thus needed.

We know that

but, in general,

P IN kl) m-A M kL 2 )' LI1I(~)& w>I( h~ L

1i'T.
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Equations (1), (2) and (3) combined give us

Mo)uL> <Ge, kL)%'jI"L1 &I (C , NkIA4) M I'M> I (k kZ) q~j AIL>

%fil L1(L+ ')2j9A2( k, Ie2 &>) LJ> I (ki k2), ML> ( 4

Multiplying'both sides by <(MLL')S ' A/I and summing over

, supposing set I (k, kI,)q ML> to be normalized, one

gets

I~ L)~ ><~,k. %~~!iML (02)111k1 k MI-

k- L,< b>

and multiplying by the (transposed) coefficients ( A) D >

and summing again over we obtain the result:

• <•,•,•, • ><(, k "• II kX M4• 2,• M>O L W (ý,0 1'#>

L (Lt~)~~~<Ef" ~(k, kML) to L> 6<t0, Lk,, M,-Al) if" V!>

-Sow &L)'/! IO I I 11 il
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meaning that the desired coefficients < ý (, Je MO) ki) 14>
are nothing more than the eigenvector components of the matrix

representation of operator oLin the base irreducible under

To obtain them, we can construct the matrix

kL) it, M tI t2 ML>1l , diagonalize it by computor

and obtain at the same time the associated eigenvectors. The cons-

truction is simplified since by ( 1'1 ) is expressible bili-

nearly in terms of group generators whose matrix
elements in the scheme •5 • 1J 4 are known (Appendix H).

We know from (171) that

-- - C S ', J (o10t)
if use is made of R, commutation relations (142b ). Suppressing

labels (k~k,) we have

since So is diagonal in U6>_Uý-U, by (1424.), (236) and

(237). Now, since V§"= --21

<~'M.I'I~ M:>

MjK'E.;+ M LI 4I 4L+L
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K~~~ I P I --,L>

since < j J, I> are real and from (-42 0 - -C"3 "

To evaluate (6) in general form one needs essentially the alegebraic

expressions of matrix elements

K~4MLI ~ M> a'd <% MLId .A.>

which are included in the list of Appendix H. Carrying out the

calculation one obtains the formula in the following page. Only one

of the seven terms with double deltas will contribute to a given

element of the matrix so that it is relatively simple to use.

The matrixl <Nk I' K). IX -zJ/Ak,.) M, • itlL /1 is

formed in blocks or submatrices labeled by ML and with rows and

columns given by 1414 where M refers to the positive projections

of all the L values contained in the given (k kz) representation

of interest (See Table • ). For (kk.) = (71), fQr instance,

L = 1,2,3,4,5,6,7 so that

S0, 
1 , ' •

Our formula is:
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where it is to be noted the the sum of block dimensions equals the
0~, 1)

dimensionality of' fCr MMLO (pagel17), i.e., 35.

Our calculations will however only require one submatrix

(see chapter VIII), that for hI =1, e.g., which is 7 X 7 and is

associated with all seven values L = 1,2,...,7. Using formula on

page 221 one gets

=I I(I I~,M= -z1(1)

/0
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which must fulfill the requirement

the sum on the right extending over all L-values contained in

(klk.). The normalized eigenvector components obtained by computor

diagonalization of above matrix are:

II <J,. ,(7f IML'v) - L> II

3 4_

0. 1 O702-0.261174 O.wg~s"n l Og~~ -0, oý47-10

- 0.3 ) 172 1 -0.47-117 -O. 050 -o0.V1474 -0. 15 19 4-7

0.,2 19oZl• I-0. 31ý100 O. 14 4J27 0, 0•%!• .0-7097 -0, 17-+0(0

O~g~0ol i -1 0.tS• O1l•& 450O 0.4-00"571 -O. OS"T7 70 O. 1572-C

-0 .4270 2 --O .Isl'js•, 0.o9o:0o• O.5go•lgS - l&'371-' io. ý,6 9 7 77

-0.YiO&S 0,I~4•7• -0.4•2z -O.SOO.-7 0.051S037 0. 61 9,,S42

-0.4' 043ý, 0*479MO 0-41Z3"( -0,3'14771 0.34 Z34 0. 19097

The label W is ignored as no multiple L-values appear under

(k/k2) = (71) (See Tabley.i•. ).

C, -

S•..'.-

(IA)

7

0. U0 27.10

0. 712022Z

0. 7-••1•S

,,L
c41 4.ý

21

70

50

3o

I0

11
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APPENDIX J.

QUADRUPOLE MOMENT AND TRANSITION RATE OPERATORS IN SEOOND?,

QUANTIZATION FORMUIISM.

The mass quadrupole moment of a given N-particle

state is defineg)~as the expectation value of the operator

(IT

which is of the single-body type (23a). Being spin-isospin

independent, (J.l) cast into second-quantization language by

(35) becomes

where LA•(?,Mr'N6)denote quantum numbers of a single particle in
f -I

harmonic oscillator common potential and the set of 2 r

generators discussed before. Restriction of states to a

single harmonic oscillator mayor shell means j l77,1-•41 + -141=

+1 *n,' and moreover that

<,tt 5~rI/A ~ 2- ~•'p 3 r2r P~2/

because of definitions (113) and (117). From (12S) we know

that $ ha--,#r vl.> 1 ( =n,(71, fl or I., r 0 so that the

desired matrix elements
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The mass quadrupole operator •, in terms of generators

is thus very simply

S= 3 6() + ( (J.3)

whose effect on states of the type i\ 1,3s clear from (304).

The transition rate for Q uadrupole de-excitations

will involve77)the operator 2E (.+j z which

here becomes

=2l2 KAl Z ,> 4 / '>

Again, restriction to a single oscillator shell J implies

+ <AI C,'+ fl/A',>

(1.4)

and therefore our operator (J.4) is simply

of the same type as c5 of (J.3).

The low-lying states, e.g., of F2 0 are designated

by 11313071)iJMS=J1T-= f> which will be linear combinations

of terms 1of ) 2J of symmetry £fJ(kl)=>51I(7i)-

C

-Y
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Enhancement of calculated quadrupole moments and

transition rates due to collective core effects can be estim-

ated by the addition to each nucleon of a certain fraction of

the proton charge e (,%0o.5e for 017) ' 22)
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