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ABSTRACT

A mathematical model was derived of a 36-element, biplanar
array of variable-reluctance, two-mass, quasi-dipole, acoustic
projectors. It was assumed that mutual interactions and scatter-
ing may be neglected and that all projectors in the same plane
have the same acoustic load. Various projector element proper-
ties and array properties were computed with the aid of an elec-
tronic digital computer as a function of frequency and several
combinations of acoustic radiation loading and "arbitrary" con-
ditions. The arbitrary conditions were (a) the separation of the
two planes, (b) the phase angle by which the input voltage of the
rear plane leads the input voltage of the front plane, and (c) con-
stant and equal input current magnitudes for the two planes. The
projector element properties computed were (a) the radiating
surface velocity magnitude, (b) the phase angle by which the radi-
ating surface velocity leads the input voltage, and (c) the input
impedance; the array properties computed were (a) the acoustic
pressure at a point in front (and in back) of the array, (b) the
acoustic power, (c) the directivity index, and (d) the efficiency.
The model illustratesthe alteration of the unidirectional radiation
of the array as a consequence of unequal radiation loads on the
two planes. The model also indicates a limited improvement in
the unidirectional radiation due to the addition of tuning capacitors
in series with the individual projectors.

PROBLEM STATUS
This is an interim report on one phase of the problem; work
is continuing.
AUTHORIZATION

NRL Problem S02-07
Project RF 001-03-44-4052

Manuscript submitted October 21, 1964,
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THE EFFECTS OF UNEQUAL RADIATION LOADS
ON THE UNIDIRECTIONAL PROPERTIES OF A 36-ELEMENT
BIPLANAR ARRAY OF ACOUSTIC PROJECTORS

INTRODUCTION

Biplanar arrays of projector elements are characterized by the arrangement of the
projectors in two planes perpendicular to a common axis (hereinafter referred to as the
principal axis) and circuitry capable of maintaining different driving signals to the pro-
jector elements in the two planes. These arrays are attractive because unidirectional
beam patterns exist under certain conditions without the use of pressure release mate-
rials or reflectors.

Figure 1 shows a 36-element, biplanar array of XEM-4B projector elements. The
XEM-4B projector element is a variable reluctance, two-mass transducer which has a
resonant frequency of about 1.8 ke. The back-to-front suppression of this array has been
measured experimentally (1) for several combinations of the following "arbitrary" condi-
tions, which are assumed to be constant with respect to frequency: The first condition is
the separation d, of the two planes (Fig. 1). The second condition is arg (Ey/Ep), which
is the phase angle by which E, the input voltage to rear plane, leads E, the input volt-
age to the front plane. The symbol arg is defined by
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Fig. 1 - A 36-element, biplanar array of
XEM-4B transducer elements., The elements
denoted F and R are located in the front and
rear plane respectively. The principal axis
is the normal ray emerging from the center
of the front view. The transducer elements
vibrate in a manner such that their velocity
vectors remain parallel tothe principal axis.
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The third condition is the equality of the magnitudes of the input currents [I;] = |1p].
The measure of unidirectionality is back-to-front suppression S(f) defined (2) by

S(fy = 20 log REEIEODL 0 Ip(f.180%)] "
IR(£,0°) | Ip(£,0%)]

where R(f,v) is the radiation-pattern function of the array and p(f,y) is the acoustic
pressure measured at a constant distance from the center of the array in the horizontal
plane, with f being the driving frequency and 7 the angular deviation of the far-field
point from the principal axis.

The present report gives the derivation of a mathematical model for the 36-element,
biplanar array of XEM-4B projector elements. The model is used to compute the uni-
directional properties of the array for several combinations of the "arbitrary' conditions
and acoustic radiation loading. Finally, the model is used to show the effect of series
tuning capacitors on the unidirectional properties of the array.

DERIVATION OF THE MATHEMATICAL MODEL

The model assumes that mutual interactions and scattering may be neglected. The
usefulness of this particular mathematical model of the biplanar array is diminished by
the arbitrary assumptions about the acoustic radiation load seen by the transducer ele-
ments of an actual biplanar array; however, the model does illustrate the effects of un-
equal radiation loading on the unidirectional properties of a biplanar array.

The equations which comprise the mathematical model of the 36-element biplanar
array are based on the following two ""simplifying'’ conditions: 1. all transducers in a
given plane see the same acoustic radiation load, and 2. the transducers in a given plane
have the same input voltage. These two simplifying conditions and Eq. (9) imply that all
projector elements in a given plane of the biplanar array have the same radiating surface
velocity. It follows (3,4) that the horizontal radiation pattern function R(f,y) of the bi-
planar array is the product of the radiation pattern of the projector H(f,») and two one-
dimensional array pattern functions:

R(f,7) = F(f.,7) G(f,7) H(f,7) . (2)
H(f,y) satisfies the condition
H(f.y) = H(f,~-y) = H(f, 7-7) .
The radiation pattern of either plane is given by
G(f,y) = (1/3) (cos ¢ + cos 3¢ + cos 5¢) (3)
where ¢ = 7(d;/c)(fsiny) and d, is the intra-planar separation of elements (Fig. 1).
F(f,v) is a two-element endfire array pattern function given by

(3/2)(dg) “(3/2)(bdg)

(4)

F(f,») = |uF] e + |uR|e

where ¢ = 2n(d,/c)(f cos ), Y, = arg (ug/ugp), and ug and up are the radiating surface
velocities of the projector elements in the rear and front planes respectively.
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Since

[p(f,7)] ) IR(E,m)] ) [F(f,m)|
Ip(£,0)] IR(£,0)] |F(£,0)]

(5) o

the back-to-front suppression of the biplanar array is uniquely determined as soon as
the plane separation d;, and velocity distribution are specified.

For example, let up/up = v,
becomes

The two-element endfire array pattern function

F(f,7) = cos (1/2)(}-y) (6)

and the back-to-front suppression is given by

m@mﬁggg+@{_
eor e [ %2 6) - ]}

The back-to-front suppression for a biplanar array satisfying the conditions up/up= edm/2
and d, = 8 in. is given in Fig. 2.

(7

S(f) = 10 log
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Fig. 2 - Back-to-front suppression s(f) of the 36-element biplanar
array for the conditions d; = 8 in. and ug/u, = ei7/2, At d;/n=3/4
the direction of the unidirectionality reverses, that is, p(f,0) = 0
and p(f,7) # 0, whereas at d;/r» =1/4and5/4, p(f,m) =0and p(f,0) #0.
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The velocity distribution of a biplanar array satisfying the simplifying conditions is
given by

up up Er up
Yo = arg;;— arga+ arga—argE—F
!UR’
lugl = == [2zgl [1gl 8)
|Egl
gl = 2 ) iy
u = .
F £ FUE
where |I;| = |Ig| = constant and arg (Ep/Ep) = constant are "arbitrary' conditions.

The input impedances (Zp and ZR) as well as the quantities uy/E; and uy/Eg, are
functions of the parameters of the XEM-4B transducer and the radiation load on the front
and rear planes of the biplanar array. These parameters are illustrated by Fig. 3.

ACOUSTIC
EXTERNAL RADIATION
TO ELEMENT XEM- 4B TRANSDUCER ELEMENT | LOAD _
Cy Re Le T: Gm S M, ’- My Gw
I
11
| L]
| I -
s A
| 7 I 1
| | -
| |
M
| l

Fig. 3 - Equivalent circuit of the XEM-4B transducer, which is a
two-mass, variable reluctance, single-air-gap shakerbox. From
left to right, C, is the series tuning capacitor, R, is the clamped
resistance of the element, L_ is the clamped inductance of the ele-
ment, T is the turns ratio of the electromechanical transformer,
G, is the mechanical conductance of the transducer springs, S is
the stiffness of the transducer springs, M_ is the outside or radiat-
ing mass, M, is the inside or nonradiating mass, M, = BpocA/w is the
imaginary part of the acoustic radiation load, and G, = apcA is the
real part of the acoustic radiation load.

The velocity u of the radiating mass and the input voltage E ci an XEM-4B trans-
ducer are related by the expression

u oM T
E T Z(Mt iN) 9)

where j = -1, @ = 2#f (the angular frequency),

M = G G, + S(M +M; + M) - ©*(M_+M)M (10)
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and

w2

N = GLw(M_ +M; +M) + G, (wMi - ;) . (11)

Equation (9) and the expressions for the input impedance are based on the equivalent cir-
cuit of the XEM-4B transducer given in Fig. 3. The input impedance of the transducer
element is given by

2 . 2 H
2= (e g0 )i (- 2B E (12)
where

G=G_+G, (13)
B = oM, - 2 (14)

in which

w?MiG

Oe = (15)

2 2 2
G, + @’ (M +M;+M)

M; [Gy + @M MM+ M+ M)
Me = P ‘ (16)
G2+ (M + M, + M)

The clamped impedance of the projector element is
Z, = R +jol

C

and the impedance of the capacitor which is in series with the individual projector ele-
ments is

where C; = » unless other values are stated explicitly.

The computed phase difference between u and E (i.e., arg (u/E)) is plotted in Fig. 4
for several acoustic radiation loads on the XEM-~4B transducer.

Equation (1), which gives the back-to-front suppression of an array, can be written as

S(f) = 10 log |p(f,m)|" - 10 log |p(f,0)|%. (1

Since |IR| = |IF| = constant (an arbitrary condition), the back-to-front suppression is the
difference of two constant-current transmitting response curves (which will be plotted in
decibels above 1 pbar per amp per plane at 1 meter).

The acoustic pressure produced by the biplanar array at the far-field point on the
(v = 0) portion of the principal axis is given (5) by
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Fig. 4 - Computed phase angle (arg (u/E)) by which the radi-
ating surface velocity of an XEM-4B transducer leads its
input voltage for several acoustic radiation loads. (The sym-
bols o and g are defined in Fig. 3.)

pc P()

2(£,0) =
P ) 47r2 D(E)

(18)

where r is the distance between the array and the far-field point, pc is the specific
acoustic impedance of water, P(f) is the total acoustic power generated by the array at
the frequency f, and. D(f) is the directivity ratio of the biplanar array at the frequency f.

The acoustic power generated by the biplanar array is given by

A |
P(f) = n% (aF IuF12 +oap yuR|2> (19)

where n = 18 is the number of elements in each plane and A is the area of the radiating
surface of the individual transducer element.

The directivity ratio is given approximately by

7/ 2 2

R(f,

D(fy = lj —| ( 7>]2 sin v dy. (20)
2),  IR(f,0)]

since the beam pattern is not an exact body of revolution.
The acoustic pressure for the field point on the == portion of the principal axis is
given by
) IFCE,m]

lpf.mI?* = Ip(f,0)]" —————. (1)
[F(£,0)]
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This completes the derivation of the mathematical model. The remainder of this
report is devoted to the presentation of the computed properties of the array. The com-
parable experimental data is given where available.

NUMERICAL RESULTS

Figure 5 gives the experimental constant-current transmitting response curves for
the arbitrary conditions d, =8 in., arg (Eg/Ep) =70, 90, and 110 degrees, and |Ig} = [14]
= 1 ampere.

Figure 6 gives the constant-current transmitting response curves calculated from
the mathematical model for the arbitrary conditions d, = 8 in., arg (Eg/Ep) = 90 degrees,
and {Ig| = |Ip| =1 ampere and the acoustic radiation load on the projector elements in
the rear and front planes

where the acoustic radiation load on the projector elements is given by Z_, = G, + joM, =
(a+ iB) pcA (see Fig. 3).

Theoretical beam patterns for the biplanar array satisfying the above conditions are
given in Fig. 7 for the frequencies 1600, 1820, 1900, and 5500 cps. The frequencies 1820
and 5500 cps correspond to quarter and three-quarter wavelength spacing of the two
planes of the array.

It follows from Eg. (8) and Eq. (9) that if Zag = Zag, then up/ug = etto , where
Y, = arg (Ep/Ep). In this case the back-to-front suppression in Fig. 6 is the same as the
back-to-front suppression in Fig. 2.

The transmitting response curves in Fig. 8 were chosen to illustrate how the back-
to-front suppression is affected by changing the resistive parts of the acoustic radiation
load on the array. The reactive portion of the acoustic radiation load and the arbitrary
conditions are kept constant.

In Fig. 9 (along with Fig. 13(a)) the reactive part of the acoustic radiation load is
varied while the arbitrary conditions and the resistive part of the acoustic radiation load
are kept constant. In Fig. 9(a) the acoustic radiation loads on the two planes are almost
equal. As a result the back-to-front suppression is near maximum when the two planes

are A4 apart. In contrast, there is no back-to-front suppression at resonance in Fig.
13(a).

The parameter arg (Ex/Ep) is varied in Fig. 10, while the plane spacing d, and the
acoustic radiation load are held constant. This particular illustration has assumed large
values for the radiation load experienced by the elements. The addition of an acoustic
cavity on the transducing element is a potential approach to these assumptions, but a
cavity approach is much more complicated than the above assumption in that the apparent
cavity transformation of radiation load is frequency dependent.

The pair of experimental constant-current transmitting response curves given in
Fig. 11(a) (arbitrary conditions d, = 4 in., arg (Eg/E) = 70 degrees, and |Ig| = 14| =
1.0 ampere) is a typical example of the experimental transmitting response curves for
the biplanar array satisfying d, < 4-1/2 in. Figure 11(b) plots the constant-current
transmitting response curves for the equal acoustic radiation load

Z. = Z, = (0.4+ij0.2)pcA.

ap

[



NAVAL RESEARCH LABORATORY

oe

~sued] I3Y] MOUS S2AIND OowH =

(9p1S 20USISIILIUL SAIONIISSP) IPIS }OBQ 2Y) UO 9suodsar Buriw

4 ay) pue ‘(seurid om] 9y} I0] OPIS ODUSISLISIUL DATIONIFSUOD 3Y3) ABII® 3} JO

op1s juoay oyj uo asuodssr BFurlTWSUBRI) Y MOYS SIAIND 0 = 4 YT *sooa3op QIT PU® ‘06 ‘0L = (g, 8g) s1e pue
‘ur g = 'p suorjipuod Lieijiqie oY) 10y seaind osuodssr JUINIWSUERI) JUSIIND -JUBISUED TRIUSWILIRAXE - G 1%
(3¥) ADN3NO3Y4
02 Qi o¢ ce o) o¢ Q¢ ol
TT T T T T 17 ﬁ_________/_ ov LA T B B ov L I O B B | —— 634
\
I
/ N
/
- / —og - —0¢
\.Q
/
- / _log 09
/
0.2 0L
08 08
4 —06 06
3
o0ll = g3 Buo =93
, _ o 8=
___________ﬂ__ I | 00! ,_________________ 00! ____:__'FL__y____ 00

(4313W 1 1V 3NVd H3d 3¥3dWY Ol 7/ dve 7| 3A08V ap)
3SNOdS3IY ONILLIWSNVYL




TRANSMITTING RESPONSE
(db ABOVE |x BAR/ 1.0 AMPERE PER PLANE AT IMETER)
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Fig. 6 - Computed constant-current transmitting response curves
for the arbitrary conditions d; = 8 in., arg (Ex/Eg) = 90 degrees,
and |IR| = |IF| = 1 ampere and the radiation load Z,; = Z,; =
(0.4 + j0.2) pcA, These curves represent ideal behavior of the array
for the arbitrary conditions specified.
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RESPONSE {db RELATIVE TO MAXIMUM ACOUSTIC PRESSURE)
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Fig. 7 - Computed beam patterns for the arbitrary
conditions d, = 8 in., arg (Eyg/Ep) = 90 degrees, and
|IR\ = \IFI 1 ampere and the radiation load z, =
ZaF = (0.4 + jO.2) pcA R
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TRANSMITTING RESPONSE
(db ABOVE | x BAR 1O AMPERE PER PLANE AT | METER)
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Fig. 11 - Experimental and computed constant-
current transmitting response curves
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Figure 11(c) gives the computed constant current transmitting response curves for the
acoustic radiation load

Z. = (0.4+30.2) pcA
Z. = (0.5+i0.8) pcA.

The velocity distribution on the array is given in Fig. 12.

The effect of tuning capacitors (placed in series with the individual projectors) on
the back-to-front suppression of the biplanar array is demonstrated by an example. Let
the array satisfy the arbitrary conditions d, =8 in. and arg (Eg/Ep) = 90 degrees and the
radiation load

VA = (0.2+30.8) pcA
A = (0.2+30.2) pcA

for the three following values of tuning capacitors: ¢ = » (no tuning), ¢ = 3.0 uf (L.
tuned out at f = 1.8 ke), and € = 1/(«%L,) (L, tuned out at all frequencies).

The constant-current transmitting response curves for these three values of capaci-

tance are given by Fig. 13(a), Fig. 13(b), and Fig. 13(c). The back-to-front suppression
at the resonant frequency (1.8 ke) is:

for € = =, s(f)=0db (Fig. 13(a)),

o
o

T T 1 T T Illl

(DEGREES)
= o
(@] (@)

n
[e]

VELOCITY (CM/SEC)
o

1.0 1.5 2.0 3.0 40 5.0 6.0
FREQUENCY (KC)

Fig. 12 - Computed velocity distribution for the
acoustic radiation load and arbitrary conditions
shown in Fig. 11{c)
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for ¢ = 3.0.4, S(f) = -14 db (Fig. 13()),
for ¢ = ——, s¢f) = -13.5 db (Fig. 13(c)).
szc

Figures 13(d), (e), and (f) are included to illustrate the importance of
lugl = Jugl -
In these cases arg (ug/up) is not changed and is given by Fig. 14(a).
The back-to-front suppression becomes at resonance:
for ¢ = », S(f) =0 db,

for C

3.0uf, S(H)

~17.5 db,

1
for c = o S(fy = -15.5 db.

(o]

1t

Further improvement in the back-to-front suppression can be realized by adjusting

so that

Uugp
arg — = 90 degrees
u
F

at f = 1.8 ke.

CONCLUDING REMARKS

In summary, a mathematical model of a 36-element biplanar array of XEM-4B ele-
ments has been derived. It has been used to illustrate the alteration of the unidirectional
properties of the array by unequal radiation loads on the two planes as compared to the
simple theory which ignores the presence of a resonant transducing element and variable
radiation loading. The model indicates a limited improvement in the unidirectional
properties of the array due to the addition of series tuning capacitors. The model further
indicates that large, "apparent' radiation loads might produce marked improvement.
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Fig. 13 - Computed constant-current transmitting response curves for the arbitrary conditions,
radiation load, and the values of C, shown. Ind, e, and f, |uFl is constrained to be equal t
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