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Simplified Prediction Equations for the
NRL Satellite Position Display

R. J. Orsino anp T. L. FrRANCAVILLA

Data Processing Branch
Applications Research Division

Abstract: A satellite position prediction and display equipment (SPAD) has been conceived and de-
veloped at NRL. Details regarding the operation and performance of the equipment have been de-
scribed previously in NRL Report 6219. The present report concerns itself primarily with the equations
utilized in a digital computer for performing the position prediction computations. With periodically
updated. orbital elements for each satellite stored in the computer memory, these equations provide
position coordinates and height above the earth’s surface for any satellite, at any desired time. Restricted
by the limited computer speed and memory space available, the equations arrived at, in order to both
satisfy the display system requirements and to meet the desired accuracy, are of a degree of complexity
which places them between the basic planetary equations of celestial bodies and the much more sophisti-
cated equations of today’s space computer centers. Although modifications of the basic equations have
previously been developed and reported in NRL Reports 5652 and 5659, they were successful in com-
puting positions of only those satellites whose orbits are relatively stable. The equations of this report,
which are extensions of these modified equations, are able to provide geocentric coordinate positions
for those unstable satellites whose orbits are decaying rapidly. This extension is accomplished by in-
cluding the time rate of change of the semimajor axis as an input orbital element and by the manner in
which the period is computed.

Results obtained from both the modified and the extended equations are compared to those obtained
from NRL'’s Research Computation Center. When computed for nine days into the future, positions
resulting from the extended equations have been obtained with errors ranging from 0.1 degree for
stable satellites, to no greater than 1 degree for those satellites whose semimajor axes are decaying at a
rate of 10-3 earth radii/day. The position coordinates and height of eleven satellites can be computed
every 1.1 sec.

In order to minimize the amount of data transmitted via the communication channels, only seven
orbital elements are required for each satellite. Certain orbit perturbations, namely, the precession of
the node and the rotation of perigee, are computed rather than being obtained from a space computa-
tion center. This permits the updating of the raw orbital message with a minimum of data words.

This report contains a derivation of the simplified equations for computing the azimuth and eleva-
tion angles of a satellite from a ship’s position. Equations for computing the radius of the circle on

the earth’s surface viewed by a satellite are also included.

INTRODUCTION

The U.S. Naval Research Laboratory has de-
veloped a satellite position prediction and display
equipment (SPAD) as proposed in Ref. 1. The
original proposal envisioned an electronic dynamic
display for presenting the predicted positions of
satellites at any prediction time on an appropriate
map background. A computation device, oper-
ating upon the appropriate orbital elements,
would provide subsatellite position coordinates
lying anywhere on the surface of the earth. A
special purpose hybrid computer, i.e., a combina-
tion of digital and analog circuits, was initially
proposed (Ref. 2) as the prediction computation

NRL Problem Y01-01; Project SF 019-01-03 (Task 6168). This is an
interim report; work on the problem is continuing. Manuscript sub-
mitted Feburary 1, 1966.

device. Before actual construction of this hybrid
computer had begun, it became possible to make
use of a general purpose digital computer, the
AN/UYK-1.

This report is concerned with the computer pro-
gram which provides the desired information to
the display, and more specifically, with that portion
of the program which performs the actual predic-
tion computation. For detailed discussions pertain-
ing to the equipment performance, operation, and
hardware, the reader is referred to Refs. 3 and 4.
A simplified treatment of the SPAD equipment
operation can be found in Ref. 5.

The SPAD computer program consists of two
major sections, the executive and the computa-
tional routines. The sequence of instructions com-
prising the executive routine primarily services
the operator-selected requests and also performs
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the necessary data and information transfers and
input/output operations. For example, if a re-
quest is made to display satellites of a certain
category or type, an executive routine will perform
a search through the entire store of satellite data.
Upon locating satellites of this category, the cor-
responding data is then moved to a series of
memory locations where it can be drawn upon as

needed. Further examples of operator requests -

can be found in a discussion of the operation of
the overall equipment (Ref. 3).

The computational routines perform the neces-
sary operations on the data in order to generate
the numerical information required, such as
latitude, longitude, height, etc. The computational
routines can be divided into three main parts:
(a) position and height, (b) azimuth and ele-
vation, and (c) satellite area of view. The equa-
tions and methods comprising these routines
are covered in detail in subsequent sections of
this report.

The position and height routine computes a
subsatellite point and height above the earth’s
surface on the basis of seven stored orbital ele-
ments. A spherical model of the earth is used for
this and the other computational portions of the
program, although several perturbations due to a
nonspherical earth are taken into account.

The azimuth and elevation routines compute as
azimuth the angle formed by the North Pole, the
ship, and the subsatellite point, and as elevation
the angle formed by the line between the satellite
and a ship and a plane tangent to the earth at
the ship’s position.

The satellite area of view routine computes the
radius of a circular area on the earth’s surface.
The radius of this circle is obtained from equa-
tions which make use of the satellite’s distance
above the surface of the earth and its known, or
assumed, look-cone angle.

This report discusses the modifications of the
simplified equations, derived by members of the
Data Processing Branch (Refs. 6 and 7), which
permit position predictions of satellites whose
orbits are rapidly decaying. These modifications
reside chiefly in using a, the time rate of change
of the semimajor axis, and in the particular
method chosen for computing the mean anomaly
M from the data available. While the equations
for computing M are not rigorously derived,

they are shown to be plausible and to provide
predictions well within the required specifications.

CONSIDERATIONS FOR
POSITION COMPUTATION

An earlier study conducted by members of
the Data Processing Branch resulted in a set of
equations which would provide accurate sub-
satellite positions by using the parameters of two-
body dynamics. Two requirements dictated the
degree of sophistication to be employed: The
equations had to be complete enough so that the
error in the positions computed for one week
into the future or past would not exceed 60 naut
mi, and yet they had to be simple enough so that
their solution time would be compatible with the
rate at which position information was to be
updated. These equations were tested for accuracy
and solution time and were found to adequately
satisfy the SPAD requirements. However, since
only two perturbation terms, the rotation of
perigee and the precession of the node, were
taken into account, positions of only those satel-
lites whose orbits are rather stable were accurately
computed. At that time, it was felt that only such
satellites would be of interest. As the project and
the computer program progressed, the decision
was made to look into the problem of augmenting
the original equations in order to provide accurate
positions for any satellite regardless of its orbit
stability. As a result, the prediction equations were
modified to use another orbital element, the time
rate of change of the semimajor axis. Due to the
limited memory space available, the addition of

: this orbital element for each satellite held in store

necessarily decreased the total number of satel-
lites which could be made available to the user.
The resulting increase in accuracy and capability,
however, was believed to provide more than
adequate compensation. Furthermore, the total
number of satellites held in store was not con-
sidered of major concern in demonstrating and
evaluating the SPAD concept.

ORBITAL ELEMENTS

The orbit 'size and orientation of any satellite
(see Fig. 1) can be defined by five orbital param-
eters or elements. A sixth parameter, epoch, is



NRL REPORT 6396 3

GREENWICH
MERIDIAN

VECTOR

LINE OF
ASCENDING NODE

ASCENDING ~ FQUATOR

NODE

Fig. 1 — Illustration of satellite orbit and some of the geometric
quantities used to determine the satellite’s position in its orbit:
i = angle between earth’s equatorial plane and satellite’s orbital

plane, w = angle between line of ascending node and line of -

apsides, ) = angle between line of ascending node and Green-
wich meridian, § = geocentric longitude, and ¢ = geocentric
latitude

the time at which the other five parameters are
measured and is necessary in order to locate the
position of the satellite in its orbit. In order to
simplify the equations used for SPAD, the epoch
value is modified to be that time at which the
satellite is at its perigee point. Hence, all other
time-dependent parameters must be adjusted to
this new time. Details of this modification are
given in Appendix A.

The two parameters which describe the orbit
.size and shape are the eccentricity e and the
semimajor axis a. As a consequence of the gravita-
tional field of the earth being an inverse-square
central force field, any object orbiting this earth
model will trace out a closed conic section. Thus,
these two parameters are used in their purely
geometric sense.

The remaining three parameters are angles
which describe the orientation of the orbit with
respect to the earth (Fig. 1). The angle of inclina-
tion i is the angle measured between the earth’s
equatorial plane and the satellite’s orbital plane.
The intersection of these two planes is the line
of nodes.

The argument of perigee w is the angle formed
by the line of the ascending nodé and the line of
apsides measured in the direction of the satellite

RADIUS

motion. The line of apsides is defined as the line
in the orbital plane which passes through the
apogee and perigee points. The line of the
ascending node is that portion of the line of nodes
from the center of the earth to the point at which
the satellite crosses the equator in a northerly
direction.

The longitude of the ascending node ( is the
angle formed by the line of the ascending node
and Greenwich meridian, measured from Green-
wich along the equator in an eastward direction.

The foregoing orbital elements and the equa-
tions in which they are used are based upon the
assumption that the earth has an inverse-square
central force field. This assumption arises from
the spherically symmetrical model of the earth
chosen in the derivations. Due to this central
force field simplification, no other forces except
a gravitational force directed towards the center
of the earth is considered to be affecting the
orbiting body. It is known, however, that there
are deviations from this spherical symmetry due to
the nonhomogeneous nature of the earth’s
mass distribution as well as that due to the non-
spherical shape of the earth. These cause per-
turbations or disturbances to the regular motion
of an orbiting body and should be taken into ac-
count in order to obtain accurate subsatellite
positions.

A significant source of perturbing forces is the
earth’s equatorial bulge. This bulge gives rise to
an asymmetric gravitational force which is a maxi-
mum at the equator. The effect resulting from this
additional force is a westerly displacement of the
orbital plane for satellites crossing the equator
in a northeasterly direction. (An easterly dis-
placement results from a northwesterly satellite
motion.) This displacement, which can be found
using an available equation, is designated as the
precession of the node . Another effect attributed
to the bulge is the rotation of the line of apsides
in the plane of the orbit. The resulting rotation
of perigee @can also be determined by an available
equation. Since the equations for computing these

- two perturbation effects are expressed in terms

of the basic orbital elements, these effects were
not required as additional input parameters but
were included as part of the computational se-
quence for determining positions. The perturba-
tion due to the nonhomogeneous nature of the
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earth’s mass was assumed to be negligible, and
hence no compensations were attempted.

The previous discussion covered only those
effects which can be ascribed to the earth’s gravita-
tional field. A perturbation effect, which was not
accounted for in the previously mentioned NRL
studies, arises from aerodynamic drag which
causes an orbit degeneration or decay. At perigee,
where the effect of this drag is most pronounced,
the satellite velocity decreases, resulting in a de-
crease in the major and minor axes. Apogee de-
creases more rapidly than perigee, with the sub-
sequent elliptic orbits collapsing into a circle,
eventually entering the earth’s atmosphere where
the satellite burns up. This phenomena can be
adequately described by the time rate of change
of semimajor axis a. Since this quantity is not
readily computed from the basic elements, it was
made part of the set of orbital elements required
for each satellite. It should be noted that while
this rate is not exactly constant, ie., there is a
rate of change d, the latter rate over relatively
short prediction times is considered to be of no
consequence and is neglected.

THE EFFECT OF ORBIT
DEGENERATION ON THE COMPUTATION
OF THE MEAN ANOMALY

The mean motion u per unit of time of a satel-
lite is given (Refs. 8 and 9) as

u=2x|P (1

where P is the anomalistic period defined as the
time from perigee to perigee. From this relation,
@ can be considered as the angle, in radians,
described in a unit of time by an imaginary point
moving with a constant angular velocity, e., as
if the orbit was a circle with radius equal to the
semimajor axis of the true orbit ellipse. It is thus
evident that

M=pup (t—71)=(27/P) (t—7) (2)

is the angle described, in radians, by this imaginary
point measured from its passage of perigee 7 to
some arbitrary time ¢ in its orbit. This angle is
designated as the mean anomaly and is used in a
later section of this report in the solution of

Kepler’s equation. In practice, the time interval
t — 7, or A¢, is the elapsed time from epoch 7=T,
to prediction time ¢ since these are the only times
available. It will be shown later that, for stable
orbits, this interpretation of At is compatible with
the definition of mean anomaly given above. It
should be noted that epoch time Ty as used in these
computations is a passage of perigee time, as
mentioned in a previous section.

The period P, which is required for the solution
of Eq. (2), can be obtained from Kepler’s Third
Law which states that the square of the period is
proportional to the cube of the semimajor axis.
In equation form, the period P, in mean solar
seconds, is given by

P =k ¥ 3)

where k£ =~ 0.020317541460* for satellites with a
mass small compared to that of the earth (which
is obviously true for all artificial earth satellites),
and a is expressed in statute miles.

The foregoing equations for finding M are
adequate to obtain nine-day subsatellite position
predictions with errors no greater than 1 degree,
provided a does not change by more than =~10-°
earth radii (e.r.) in those nine days. This is an
emperical rule of thumb arrived at through the
experience of the present authors with the
equations outlined in this report.

In order to graphically illustrate the effect of
changing a, two rather simple cases will be dis-
cussed with reference to Fig. 2. One-dimensional
time diagrams are shown, with marks on the axis
indicating times corresponding to the passage of
perigee. Thus, the intervals between marks indi-
cate the length of a period. The diagram of Fig.
2(a) illustrates a situation where a is constant;
thus the intervals or periods are constant as is
evident from Eq. (3). The prediction time is in-
dicated by t. The subdivision of the time axis into
equal Peonst increments as shown in the figure is
equivalent to Eq. (2) where P = Peonst, 7= T, and
a complete period is equivalent to 27 radians. The
result obtained by evaluating Eq. (2) is a number
consisting of an integer and a fraction multiplied
by 27 The integer represents the number of
complete periods from epoch Ty to the perigee

*This value of k is taken from p. 4 of Ref. 7.
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(t-To)= At >
T, T t M= 274t
27 RADIANS 27 RADIANS —- 77 RAD -~
(a) | ! .2r(2.5)
PconsT =5 Pconst ~<—2.5—>| PconsT 5
= 57 RADIANS
T T
(b) 27 RADIANS , 27 RADIANS <57 RAD->|
1 L T
Pg=5 Pi= 45 ~—3 —>{P=4
Tl

2w RADIANS 21 RADIANS ~€-|.5567T RAD->»
] ] 1
(c) T T T
Pavg=4.5 Pave ~——35 Pave

Fig. 2 — One-dimensional time diagrams showing the period P for various satellite orbits:
(a) orbit semimajor axis a is constant; (b) satellite orbit is degenerating and a is decreasing; (c) an
average value of the period is used to calculate a more accurate value of the mean anomaly

M = 2w At[Pavy

‘immediately prior to the prediction time #; the
fraction is the portion of the period that the satel-
lite has traversed since its last perigee. These two
quantities can easily be identified from the dia-
gram as two complete periods and one half of a
period. Hence, neglecting the integer, the re-
maining fraction is a value for M which satisfies
the definition and thus is used in subsequent
computations. It has been pointed out that the
mean anomaly M is the angle swept out from the
last perigee by a satellite with constant angular
velocity; thus it should be clear that the fractional
portion of the period which defines the elapsed
time since perigee is directly proportional to the
angle M. Hence, in the example shown in Fig. 2(a),
M is equal to 7 radians, which is the same result
obtained by evaluating Eq. (2) and neglecting the
integer. Since the position computation equations
depend upon knowing M exactly, it is further clear
that the situation just described, which does
permit obtaining this exact value, would provide
accurate position predictions. This assumes, of
course, that all other factors are appropriately
accounted for.

In the event, however, that the satellite orbit is
degenerating, ie., the semimajor axis a is de-
creasing, Eq. (3) shows that the period P is likewise
decreasing. This condition is shown graphically in

Fig. 2(b) where, for illustrative purposes, the
period at epoch is chosen to be the same as the
period for the previous case, namely, Po= Peons,
and subsequent periods are decreasing linearly.
If P = Py = Peonst was used in evaluating Eq. (2),
which would be equivalent to subdividing the axis
in Peonst equal increments, the resulting integer
and fraction would obviously be the same as
obtained in the previous case shown in Fig. 2(a),
i.e, M = 7 radians. Now, however, the integer no
longer necessarily represents the number of
complete periods from epoch to the perigee just
prior to prediction time, and of more consequence,
the fraction no longer necessarily represents that
portion of the period traversed. This is clearly
shown in Fig. 2(b), where there are two complete
periods and three quarters of a period to time ¢.
Thus, the exact value for M should be 3%#/2
radians. So, the resulting error in M is /2
radians.

It is at once evident that large values of @ would
cause correspondingly large errors in the period
P, as well as the value obtained for M, and the
subsequent value for subsatellite positions would
increase in error.

In order to provide a capability for predicting
subsatellite positions for those satellites with
large a terms, a method for evaluating the mean
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anomaly M, which would take into account the
variable nature of the period P, is required.

A METHOD FOR COMPUTING
THE MEAN ANOMALY M

With the value of ¢ available as an orbital ele-
ment, it is possible to determine the value of the
period at any time ¢ in an orbit by using the
" equation

Pi=k (a+ aAr)2 (4)

where At is the time elapsed from epoch Ty to
prediction time ¢.

The purist may argue that since both the period
and the semimajor axis are defined in terms of a
complete orbit, it is meaningless to speak of
these elements as continuous functions of time.
However, continuous functions can be defined as
follows: At a given moment let the perturbing
influence (e.g., atmospheric drag) be suddenly
removed, so that thereafter the orbit is that of
a pure ellipse. The a and P for this orbit may be
thought of as the instantaneous values at the given
moment. Furthermore, if the change in the in-
stantaneous value of P is negligible over one orbit,
as is most generally the case, the value of period
determined by Eq. (4) at time ¢t of an orbit is
essentially equal to the period of the complete
orbit.

From the preceding discussion it can be seen
that the period P of the particular orbit that the
satellite is in at time ¢ can be obtained from
Eq. (4). However, although this value of period
is quite accurate, it in itself, when applied to the
example of Fig. 2(b), does not provide an answer
for M any more accurately than that obtained
when using the value of period obtained at epoch.
This is so due to the fact that in order to obtain
the mean anomaly M, not only must the length of
the period be known, but the relationship of where
the prediction time ¢ falls with respect to the
beginning of the period, i.e., perigee, must also
be known. This latter fact is not provided from
Eq. (4).

It appeared, then, that a value of P inter-
mediate between the period at epoch, where
P = Py, and the value determined at prediction
time, i.e, P = P, would result in a more useful

answer for M. Although it is evident from Eq. (4)
that the period does not change in a linear fashion,
Appendix B shows that over the relatively short
prediction times of interest, the error introduced
into the value of P by assuming a linear variation
is only 0.001 percent. With this in mind, the best
intermediate value of P would be the average
value between the two aforementioned values of
period. Thus the mean anomaly M is computed
from

2w At
M=
Pooy (5)
where
Pov+ P k 32+ (a + alr)??
P(wg= 0 t_ [(a) (a + aAr) ] 6)

2 2

Implementation of these equations in the digital
computer resulted in predicted positions up to
nine days before and after epoch which satisfied
the SPAD specifications for all satellites, including
those whose a terms were on the order of 10-3
e.r./day. The results have been tabulated in Ap-
pendix C where the reference position coordinates
are compared to the coordinates obtained using
the above equations and also to those obtained
when the a was not taken into account.

For an illustration of this approach, reference
is made to Fig. 2(c). The time axis is shown here
to be divided into Pay equal increments. This is
equivalent to evaluating Eq. (5) above. Although
the time interval from the apparent perigee point
7' to prediction time ¢ is longer than the actual
elapsed time from true perigee 7, this time interval
is taken as a portion of a period which is larger
than the actual period. Thus, the resulting frac-
tion can conceivably be quite close to the actual
value of the fraction. In the situation illustrated,
the fraction obtained is only 0.056 rad different
from the actual value. However, in practice, this
difference could be greater for some cases, but
from the good results obtained in position co-
ordinates, it appears safe to assume that the
above method does provide a good approximation
to the true value for M.

A tabulation of the reference values for M cal-
culated from the orbital element releases for two
satellites are shown in Table 1, along with those
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TasLE 1
Comparison of Reference and Calculated Values of Mean Anomaly M
Time Refere.nce MM fI'O{l') Payg ErFor M fl‘OlTl Peonst Error a
(radians) (radians) | (radians) (radians) (radians) | (e.r./day)

Epoch (To) 0 0 0 0 0 —10-3
To+ 7 Days 0.6872 0.7163 0.0291 0.4196 0.2676 —10-3
To+ 10 Days 3.56272 3.6184 0.0912 3.0018 0.5254 —10-3
Epoch (T,) 0 0 0 0 0 —10-5
To+ 7 Days 5.7397 5.7364 0.0033 5.7226 0.0171 —10-5
Ty + 14 Days 0.5444 0.5373 0.0071 0.4819 0.0625 —10-8

obtained by the above method and those obtained
when the variable nature of the period was not
taken into account. The computations for M were
performed for two separate prediction times, and
the differences from the reference values are
listed for both methods.

It is not the intent of this discussion to propose
that the method used in SPAD is the only one, or
even the best one, for finding a good value for the
mean anomaly. The intent is rather to illustrate
and indicate a method which has been used and
which has yielded satisfactory results within the
limits of the original specification. Other tech-
niques have been suggested and investigated to a
certain extent; however, they either were so
lengthy as to not be compatible with the speed
and memory available in the computer, or their
merit could not be defined conclusively. For other
methods, reference can be made to Refs. 10
and 11.

POSITION -COMPUTATION

In order to find the position of a satellite in its
orbit, it is necessary that the angle designated as
the eccentric anomaly E be known. For a geo-
metrical interpretation of this angle, refer to
Fig. 3. Since the construction technique of this
figure and the reasons thereof are beyond the
scope of this report, the reader is referred to
Refs. 8 and 9 for this information. The angle E
can be determined from the equation

E=M-—esinE (7
where M is the value for mean anomaly found
from Egs. (5) and (6), and e is the eccentricity of

CIRCULAR ORBIT

ELLIPTICAL
ORBIT

EARTH'S
SURFACE

Fig. 3 — Illustration of geometrical quantities pertinent
to determination of satellite’s position in its orbit: £ =
eccentric anomaly, v = true anomaly, e = eccentricity,
a = semimajor axis, H = satellite’s height above a perfectly
spherical earth; R, = earth’s mean radius, and r = satel-
lite’s distance from the center of the earth

the elliptical orbit. This transcendental equation
in E is known as Kepler's equation. Although
there are many methods for solving this equation
(Refs. 8 and 9), an iterative procedure seemed best
suited for computer implementation.

As in most iterative processes, a good first
approximation of the answer reduces considerably
the number of iterations to be performed. Thus,
in the SPAD program, the value of E found for
subsatellite position computation at time ¢ is stored

“in the computer memory and is then subsequently
used as a first approximation in the'iterative pro-
cess for the next position computation of the same
satellite at a new time. The new value of E so
obtained is then stored in the memory for use in
the next computation, etc. Now, since updating
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of satellite positions in the computer occurs rather
rapidly, the values of E for any particular satellite
do not change to any large extent from computa-
tion to computation. Thus, the iterative process is
effectively reduced due to the fact that the first
approximation of E is generally quite close to its
correct value at the new time.

The desired accuracy for the value of E is
obtained when two consecutive iterations of
Kepler’s equation yield values of E which differ
from each other by no more than some small
value epsilon. The value of epsilon chosen for
SPAD is approximately 1.19 X 10-7 revolution.
However, in those cases where the iterations do
not converge to the difference value given by
epsilon, a maximum of sixty-four iterations are
performed. For this condition, the accuracy in
the value of E so obtained obviously cannot be
defined. From practical experience this latter
situation has never arisen; nevertheless, since the
possibility for nonconvergence does exist, the
computer, upon encountering such a condition,
would iterate endlessly in a search to satisfy
epsilon unless a limit to the number of iterations
which can be performed was imposed.

With the value for E obtained from Kepler’s
equation, the polar coordinates r and v of a satel-
lite in its orbital plane can be determined. The
radius vector r is given as

=a (1 — e cos E) earth radii (8)
where a is the semimajor axis of the orbit. The
true anomaly v can be found from the following
relationships:

__(cosE) —e
S e cos E )
and
. (1 —e?)¥2sin E
sin v = . (10)

l1—ecos E

Both forms are used in the computer program in
order to determine the proper quadrant of v.

The satellite’s height above a perfectly spherical
earth is determined by the simple relationship
earth radii

H=r—R. (11)

where R, is taken as the earth’s mean radius, in
earth radii. The quantities H, r, and v are shown
in Fig. 3.

The following equations are used to convert
the polar coordinates of a satellite’s position in
its orbit to earth-oriented or geocentric co-
ordinates. Details for the derivations of these
equations are contained in an NRL report written
by G. Hall (Ref. 6).

The equation for determining the earth latitude
¢ of a subsatellite point can be written as

¢ = arcsin [(sini) sin (v +w)] (12)

where w, is the argument of perigee at the predic-
tion time ¢. The quantity @, must be adjusted to
take into account the perturbation mentioned in a
previous section, namely the rotation rate of
perigee @. Considering ® to be constant, w can
be found from

o=w+ ao(t—T,) (13)
where o is the argument of perigee at epoch time
Ty, and the quantity ¢t — T is the time elapsed from
epoch time T, to prediction time ¢. An equation
found in Ref. 7 gives an approximate value for
was

(5cos2i—1)

®=~+5 (Re[a) " (1 —e?)2

degrees/day.
(14)

The subsatellite geocentric longitude 6 can be
found from

0=+ (15)

where €, is the longitude of the ascending node

at time ¢, and B is an intermediate quantity de-
fined by the equation

(cos i) sin (v -+ wt)]. (16)

B = arc sin [ cos &
The longitude of the ascending node, being ex-
pressed as a geocentric coordinate, is affected by
the rotation rate of the earth w. as well as the
precession of the orbital plane Qg, which is a
perturbation quantity. Considering this precession
to be of constant angular velocity and rotating
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about the same axis as the earth’s rotation, €,

is found from the equation

Q=0 — (we—Qg) (¢ — To) an
where Q is the longitude of the ascending node
at epoch time T, and (¢ — To) is the elapsed time
since epoch. From Ref. 7, the precession of the
orbital plane () is given approximately by

ot 5 degrees/day.

Qn,z — 10 (Re/a)7/2 W

(18)

The three quantities H, 8, and ¢ thus uniquely
define a satellite’s position in three-dimensional
space with reference to the earth’s coordinate
system. The AN/UYK-1 digital computer utilized
with the SPAD equipment performed the fore-
going equations for eleven satellites in 1.1 seconds.
This time for computation includes the trans-
ferring of data, preparation and packing of both
the position and the symbol output words, and
readout to the display. The accuracy of the re-
sults, as shown in Appendix C, indicate that
the original specifications were adequately met.

AZIMUTH AND ELEVATION

The azimuth and elevation angles may be used
in pointing a shipboard antenna at the satellite.
Equations for computing these angles are derived
in Appendix D and make use of the following two

~assumptions: The earth is considered as a perfect

sphere, and the point on the earth’s surface from
which the observation is made is located on a stable
platform. These assumptions reduced the problem
to one of rather simple spherical trigonometry.
The assumptions are further justified since the
inclusion of these angles as part of SPAD output
was merely to demonstrate a possible feature, and
not necessarily to provide the most accurate
results for a shipboard environment.

The readout of this information in the SPAD
equipment is accomplished via a page printer.
The azimuth and elevation angles are computed
to several decimal places; however, they are
printed out in only whole numbers of degrees in
order to conserve space on the printout message.
The range of azimuth is from 0 to 359 degrees.
Elevation is given as an angle from 0 to 90 degrees.

If the satellite is below the horizon, three N’s
are printed. Obviously, readout in page printer
form is not optimum in an operational environ-
ment. However, it does not appear too difficult a
task to provide the information electronically to
appropriate servo systems for automatic antenna
pointing when desired.

For shipboard antennas which are platform
stabilized, equations of the type implemented here
could conceivably serve for satellite acquisition,
provided a wide-beam antenna was used. How-
ever, the trend towards larger antennas, in some
cases, has caused platform stabilization techniques
to become prohibitive. The nonstability of the
platform, due to the pitch, roll, and yaw of the
ship, can be compensated for by so-called data
stabilization or by beam steering. In these methods
the coordinate transformations due to pitch, roll,
and yaw are taken into account in the computation
procedures for the pointing angles. Since the
transformations of vector rotations are not com-
mutative unless the rotations are infinitesimally
small, the individual contributions of pitch, roll,
and yaw must be taken in very small increments,
with the subsequent transformations performed
many times in order to determine the true ori-
entations of the platform. It is evident, then,
that a complex set of equations must be solved
in a complex high-speed computer for correct
pointing angles to be obtained in real-time
situations. The memory limit and the speed
of the AN/UYK-1 computer is such that a co-
ordinate transformation procedure could not
be implemented along with all the other computer
tasks for SPAD.

The equations* for determining the azimuth
angle « are as follows:

« = arc sin [(COS s) ssiir?ﬁ()\s — )\0)] (19)
and
_ sin ¢; — (sin ¢o) (cos B)
@ = arc cos [ (cos o) (sin B) ] (20)

where ¢ is the ship’s latitude, Ao is the ship’s
longitude, ¢; is the satellite’s latitude, and A, is

*Both forms of the equations for « are used in the computer in order
to determine the correct quadrant for .
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the satellite’s longitude. The angle 8 is obtained
from the equation

B = arc cos [(sin ¢s) (sin ¢o)
(21)
+ (cos ¢s) (cos o) cos (As — No)]

and is that angle formed by the satellite’s radius
vector r and a line from the ship to the earth’s
center. All the foregoing quantities can be easily
identified from Fig. D1 of Appendix D.

Since, for SPAD, the azimuth « is defined as an
angle measured clockwise from the North Pole
(0 = a < 360 degrees), in certain cases the angle
which is read out to the page printer is obtained
from

360° — « (22)
where « is the quantity found from Egs. (19) and
(20). The diagram of Fig. D1 depicts just such a
situation.

The elevation angle 6 can be obtained from

0=y —90° (23)
where
Y = arc sin (M) (24)
p
The slant range p is given as
"p= (r2+ R% — 2rR.cos B)12 (25)

where r is the satellite’s radius vector, R is the
earth’s mean radius, and B is the angle defined
by Eq. (21). The elevation angle and other per-
tinent quantities are shown in Fig. D2. If the angle
Y is less than 90 degrees, resulting in a negative
angle for elevation as is the case shown in Fig. D3,
three N’s are sent to the page printer indicating
that the satellite is below the horizon. More detailed
treatments, e.g., those that take the earth’s oblate-
ness into account, can be found in Refs. 10 and 11.

SATELLITE AREA OF VIEW

The determination of the area on the earth’s
surface as viewed by a satellite necessarily requires

information concerning the satellite’s sensor. In
view of the fact that SPAD is a research tool
designed for feasibility and desirability studies,
the details of how this sensor information would
or could be obtained, as well as the significance
to be attached to such information, was of no con-
cern to the SPAD project personnel. Thus, given
the appropriate information, SPAD personnel
were required only to provide the ability for
displaying an area, about the subsatellite point,
denoting the area viewed by a satellite.

A special purpose analog computer, which pro-
vides the necessary voltage waveforms for present-
ing an area about the subsatellite point on the
display CRT, requires only the radius d of the
area and the target coordinates (Ref. 12). The
equations which follow, and which were imple-
mented in the digital computer for determining
this radius d, are based upon a known look-cone
angle. This angle is thus required as part of the
orbital element message received for each satel-
lite. When this angle is not known, it is assumed
to be a maximum of 180 degrees. A spherical
earth model is used in the derivation given in
Appendix E.

The radius d of the area viewed by the satel-
lite is obtained from

%} - 7/2} (26)

where r is the satellite’s radius vector, R. is the
earth’s mean radius and v is the look-cone angle.
When

d=R. {arc sin [

rsin (y/2)
R, >1, (27)

the radius d is found from the relation

d=R[(w/2) — arc sin (R./r)]. (28)

The first condition is shown in Fig. El, Ap-
pendix E, and depicts a situation where the look-
cone angle subtends an arc on the earth’s surface.
The second condition, shown in Fig. E2, illustrates
the situation where the look-cone angle is such
that the satellite’s line of sight does not intersect
with the earth. Thus, the angle formed by the
lines from the satellite and tangent to the earth’s
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surface is found, from which the horizon-to-
horizon radius is then computed. It is evident
that with unknown look-cone angles, the assumed
angle of 180 degrees will always present the
latter situation as shown in Fig. E2.

CONCLUSIONS

The mathematical procedure for computing
the subsatellite positions as implemented in the
SPAD digital computer has been presented. Al-
though the equations are similar to those pub-
lished in previous NRL reports, the inclusion of
the time rate of change of the semimajor axis a
and the particular method used for computing
the mean anomaly M permits the computation of
positions accurate to 1 degree for those satel-
lites whose semimajor axis is changing by as much
as 1073 earth radii per day. A tabulation of results
has been given which demonstrates the position
accuracy obtained for four different satellites
whose change in semimajor axes ranged from 10-3
to 107 earth radii per day. Position data was
computed at epoch and over a period of 3, 6, and
9 days from epoch.

During the several months in which the equip-
ment has been used, forty-eight satellites have
been available for display. Whenever ephermeris
data was available on satellites other than those
tabulated in this report, positions obtained from
the SPAD equipment compared favorably and
were consistent with the findings reported here.
It is, therefore, felt that although a rigorous

 theoretical treatment of orbital dynamics was not

performed, the computational procedure followed
by SPAD provides satellite position predictions
adequately for display purposes.
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Appendix A
SPAD RAW DATA CONVERSION

Before the NRL Satellite display SPAD can
predict satellite positions, the computer store
must receive orbital characteristics and other
data in a format compatible with the operational
program of the SPAD computer (see Table Al).
Since the data is not presently available in the
desired format, it is necessary to perform a data
conversion for purposes of test and evaluation.
This conversion process will now be described.

Six quantities are needed to describe the path
of a planet through space. One particular set,
listed in a book by W. M. Smart,* is: @ — semimajor
axis, e — eccentricity, T — epoch time, { — angle of
inclination of the orbital plane, w — longitude of
perihelion, and e — mean longitude at the epoch.
Since an artificial satellite moves in a central force
field about the earth in a manner not unlike the
motion of a planet around the sun, we would
also expect that six quantities should be sufficient
to specify its orbit. Unfortunately, this is not
entirely true. In dealing with planets, we must
realize we are on one planet traveling about the
sun trying to specify the position of another
planet also traveling about the sun. With an arti-
ficial satellite, however, we are trying to specify
position about an earth which, for all practical
purposes, excluding rotational motion, is a
stationary reference system. In addition, we must
consider second-order effects such as extrater-
restial gravitation, the earth’s oblateness, atmo-
spheric drag, and radiation pressure factors which
are either nonexistent or negligible in the case of
planetary motion. The net effect is that the
quantities, or elements as they are sometimes
called, will have some slightly different meanings
when applied to artificial satellites. We will need
at least six elements, possibly more, to specify an
orbit, depending upon the accuracy required.

To enable scientific workers to attain the high
accuracy necessary in experimental work with
artificial satellites, data is available in the form of
orbital element lists containing accurate informa-
tion on the many parameters needed to specify
orbits. The particular elements of the present

*W.M. Smart, “Textbook on Spherical Astronomy,” 4th ed. (rev.),
Cambridge: The University Press, 1956.

study have been chosen to simplify. computational
procedures and yet to provide the accuracy re-
quired. The elements are:

a — semimajor axis of the elliptical or circular
orbit

e — eccentricity of the elliptical or circular orbit

i — inclination of the orbital plane to the earth’s
equatorial plane

a —time rate of change of semimajor axis

o — argument of perigee

Q) - longitude of the ascending node

T - epoch time (time at which the foregoing
values are true).

The first three elements determine the shape and
orientation of the orbit, while the fourth describes
the decay associated with atmospheric drag. The
last three deal more specifically with positioning
of the satellite at some place in the orbit and, for
SPAD, must be modified to the passing of perigee.
This process will be described later in more detail.

Data for each satellite must be recieved in a
format compatible with the SPAD Prediction Com-
puter and Program. This format (Table Al) con-
sists of nine data words, of 30 bits each, containing
the seven orbital elements described above, as
well as additional quantities which enable SPAD
to display ancillary information such as satellite
category, SPADAT number, etc., pertaining to each
satellite.

The first data word carries two parcels of in-
formation: satellite category and look-cone radius
angle. For the present, due to the experimental
nature of SPAD, responsibility for placing a satel-
lite in one category and not in another is assumed
by members of the project. The first data word is
coded and the data word bits are arranged in
the order shown:

30 15 9 1
000 000 000 000 000 000 000 000 000 000.

Category bits are numbered 15 through 30, while
look-cone angle bits are 1 through 9. To designate

-a particular category, a logical ONE is placed in

12

one, and only one, of the category bit positions in
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TABLE Al
Satellite Raw Data
Data Word Use
(30 bits each) s
1 Most significant 16 bits — Satellite category

indicator

Least significant 9 bits— Look-cone angle, scaled 27

2 Least significant 16 bits—SPADAT number in
binary-coded decimal (BCD)

3 Ty, — Epoch modified to passing of perigee, in
seconds from beginning 1960, scaled 229

4 a — Orbit semimajor axis, in earth radii, scaled 24

5 e — Eccentricity, scaled 2°

6 i — Angle of inclination, in radians = 0, scaled 23

7 @ — Argument of perigee, in revolutions = 0,
scaled 2°

8 Q) — Longitude of ascending node, in revolutions

= 0, scaled 2°

9 @ — Time rate of change of semimajor axis, in
earth radii per second, scaled 2-2%

accord with the list shown in Table A2. Thus,
a ONE in bit position 24 would designate a USA
communications satellite, while a ONE in bit
position 20 characterizes a Friendly Navigation
type. The information contained in the first nine
bit positions is used by SPAD to paint a circle
around the particular satellite called up by track
number. This circle will be of different radius
depending upon both the look-cone angle and
the height of the satellite above the earth. It is
assumed that, at a future date, this data will
represent an area which can be viewed or photo-
graphed from a particular satellite. One example
would be the display of an area or cloud formation
photographed by a weather satellite. For the
present, however, artificial data is substituted to
test the equipment and its capabilities.

The second data word is the SPADAT number
in binary-coded decimal (BCD) form, right ad-
justed to conform to the SPAD Program. The
right-most, or low order, 16 bits carry the required

information. The high order bits 17 through 30
are logical ZERO. This process may be best
illustrated by an example. Consider the decimal
number 973. In BCD form this would be

00 0000 0000 0000 0000 1001 0111 0011,

with the binary equivalent word being

000 000 000 000 000 000 100 101 110 O11.

As an additional example, if we consider the
decimal number 441, in BCD form we would have

00 0000 0000 0000 0000 0100 01000001,
with the binary equivalent word being

000 000 000 000 000 000 010 001 000 001.

The third data word is the epoch, modified to
passing of perigee and expressed in seconds from
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TABLE A2
Bit Positions for Data Words
(First Data Word is Illustrated)

Bit Number Information Contained
30 Unknown Category W
29 Other Category
28 Other Communications
27 Friendly Other
26 Friendly Communications
25 USA Other
24 USA Communications
23 Other Weather
22 Other Navigation > Category
21 Friendly Weather
20 Friendly Navigation
19 Friendly Scientific
18 USA Weather
17 USA Navigation
16 USA Scientific
15 Other Scientific J
14 Logical Zero
13 Logical Zero
12 Logical Zero
11 Logical Zero
10 Logical Zero

9 Logical Zero

8 Integer 3

7 Binary fraction

6 Binary fraction

5 Binary fraction

4 Binary fraction > Look-Cone Angle
3 Binary fraction

2 Binary fraction

1 Binary fraction J

the beginning of January 1960. This is an arbitrary
reference date chosen on the basis of its position
in time—early enough to include all satellites of
interest, and yet late enough to keep the number
of elapsed seconds within a reasonable range for
computation. To obtain this number we proceed as
follows. From the orbital element list we obtain
the epoch date in modified Julian days referenced

ORSINO AND FRANCAVILLA

to midnight. To this number we must add
2,400,000.5 days to obtain the Julian date of the
epoch. In “The American Ephemeris and Nautical
Almanac,” Table I, Julian Day Number, the cor-
responding Julian date for noon, January 1, 1960,
is 2,436,934.0 days, to which date one-half day
must be added to advance the time to midnight,
January 1. Therefore, the beginning of January
1960 corresponds to a Julian date of 2,436,934.5
days. To find the elapsed time in seconds since
1960, we subtract 2,436,934.5 from the Julian
date at epoch, the result being the number of
elapsed days. The product of the number of
elapsed days and 86,400 sec/day gives the re-
quired time in seconds. This quantity is designated
by T. It is not necessarily the time of passing of
perigee 7. We are interested in 7 and must pass
through several steps in calculating this quantity.
First, using quantities found on the element sheets,
the mean anomaly M is calculated by means of
the equation

of cos i (AD)

M=I—c— [algebraic sign] Q

where

M = mean anomaly, in degrees, at epoch T
L = mean geocentric longitude '
o = argument of perigee
i = angle of inclination
) = right ascension of the ascending node.

These and other quantities characterizing an orbit
are further defined in many texts on the subject.*}

The mean anomaly found by Eq. (Al) will
represent up to one orbit, will be either positive or
negative depending on the relative magnitudes of
the quantities involved, and will be expressed in
units of degrees. The quantity M can also be
expressed in revolutions within the orbit plane,
with perigee to perigee representing one revolu-
tion. Depending upon its sign, M will be used in
different ways to determine the passing of perigee
T nearest to epoch time T. The procedure outlined
in Figs. Al and A2 is used to determine the
smallest interval of time AT = (T — 7) required to

! *F.R. Moulton, “An Introduction to Celestial Mechanics,” 2nd ed.,

' (rev.) New York:MacMillan, 1935.
tW.M. Smart, op. cit.
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T =

EPOCH TIME OF ORBITAL ELEMENTS
EPOCH TIME (PERIGEE)

POSITIVE AND LESS THAN 180°
NEGATIVE AND GREATER THAN 180°

(a)

M=180°
T<rt

NEGATIVE AND LESS THAN 180°
POSITIVE AND GREATER THAN 180°

(b)

c: M
d: M

Fig. Al — Illustration of two cases encoun-
tered in bringing the satellite from epoch time
T to the epoch 7 of the passing of perigee:
(a) AT'is a positive quantity which is subtracted
from epoch time T to obtain the nearest
passing of perigee; (b) AT is a negative quantity
which is subtracted from epoch time T to
obtain the nearest passing of perigee, and thus
the passing of perigee T occurs later than
epoch

bring the satellite from epoch time T to passing
of perigee 7, using the anomalistic period Pq, a
known element. The value 7 so found is then used
as SPAD epoch time modified to passing of peri-
gee, i.e.,, 7= To.

Before the third data word can be entered into
the machine, it must be scaled and converted to a
form the machine can accept.

Although it was not stated explicitly, the first
two data words were entered as binary fractions.
We must, therefore, convert the third data word,
which is a large integral number, into a fractional
form of predetermined magnitude capable of
fitting into the SPAD operational program. To
provide the desired magnitude we must divide by
some power of two, in this case 229, and then con-
vert this fraction to binary. The process of division

will. henceforth be referred to as scaling. Thus,

the third data word was scaled 22 and converted
to binary.
The fourth data word is the semimajor axis a

given in earth equatorial radii. This information -

is taken directly from the element sheets, scaled

+ 2%, and converted to binary.

The fifth data word is the eccentricity e and may
be converted to binary with no scaling necessary
since the number is a decimal fraction already.

The sixth data word is the inclination angle i
of the satellite’s plane of motion to the earth’s
equator. Given in degrees, it must be converted
to radians and scaled 23. This decimal is then con-
verted to binary for input to the computer.

The seventh data word is the argument of peri-
gee w, modified to passing of perigee, and stored.
The units are in revolutions. The argument of
perigee is measured positive from the line of the
ascending node y' to perigee in the direction of
satellite motion. The elements give the argument
of perigee w™ measured at epoch. The rate of
change of perigee & is given as a positive or
negative quantity. Since we have calculated AT
(time to nearest perigee) for the second data
word, we make use of the equation

0= — @AT (A2)

to calculate the argument of perigee at Tp. We
have seen that AT can be positive or negative, but
since we have set our directions by convention,
all we need do is combine the signs algebraically
to obtain the correct result. This may be seen by
referring to Fig. A3, which has been exaggerated
for clarity.

From the element sheets we find that @is positive
and therefore advancing in the direction shown

- in Fig. A3, case 1. If we are at epoch time T and

this time coincides with passing of perigee 7, or
M = 0, we have a situation described by case I(b).
If we have gone past perigee case I(a), and are at
the position shown in the orbit, we have an argu-
ment of perigee w” greater than @ by an amount
@AT. In other words, our line of apsides has
rotated through an angle @AT since perigee. To
bring it back we must subtract the amount @AT
from o”. If we are at the position given by case
I(c), our epoch time has occurred before perigee
and we must add an amount wAT to the argument
of perigee to bring us to the situation described by
case I(b), which shows passing of perigee.

If we consider negative values of @, we have the
situation pictured in Fig. A3, case II. As before,
case II(b) represents the satellite at perigee. If
the satellite is in the position shown in case 11(a),
having just gone through perigee, we find AT is



16 ORSINO AND FRANCAVILLA

CALCULATE M IN CONVERT TO YES p) CALCULATE
DEGREES N REVOLUTtou?DEG) 02
1w . » i 2
M= L-W-[(SIGN) cos i} M(REV) = 56088 PR
L4
M
syl are (8 )r | areo
: - CALCULATE
M<5?
2 T=T+AT
NO T (M R
» AT=|1-( OR ){P—P AT >0
I+M

Fig. A2 — Step-by-step procedure used to calculate the epoch 7 of the passing of perigee

positive, with the result that ®AT is negative. We
see, therefore, that the line of apsides must be
rotated by an amount wAT in the positive direc-
tion. In similar manner if we are at a position as
described in case II(c), AT is negative and @AT is
positive. Thus we see that to arrive at perigee,
AT must be subtracted from T to find the
argument of perigee at perigee. Since this is in
decimal fractions of a revolution, no scaling is
necessary.

The eighth data word is the longitude of the
ascending node in revolutions modified to passing
of perigee. The longitude of the ascending node
is the angle from Greenwich meridian to the line
of the ascending node measured in the equatorial
plane. This must be calculated from the right
ascension of the ascending node and from the
time rate of change of the right ascension of the
ascending node.

The right ascension of the ascending node
Oy is the point in space where the satellite plane
intercepts the plane of the earth’s equator (the
satellite traveling in a northward direction). This
point, given in degrees and measured for the
epoch time T of the elements, may be converted to
QF, the longitude of the ascending node, by the
equation

QT = Qr — Go (A3)
where () is the right ascension of the ascending
node for epoch time of the elements, and G, is

the right ascension of Greenwich. This relation-
ship is graphically illustrated in Fig. A4(a).

The quantity Go is found from the table of
Universal and Sidereal Times in the “American
Ephemeris and Nautical Almanac.” The value of
G, changes with time because of the rotation of
the earth. However, due to the fact that the orbital
elements are projected to midnight, the tabulated
values may be used directly. Looking under the
column marked Sidereal Time and finding the
value corresponding to epoch in units of hours,
minutes, and seconds of arc, we convert these
units to degrees using the relations

1hr =15°
1 min = 0.25°
1 sec = 0.004167°.

Once we have found G, ' may be calculated
from Eq. (A3). With reference to Fig. A4(a), we
will consider two cases.

Case I: Gy is greater than p and both are
measured eastward from the vernal equinox y.
In this instance, application of the equation will
give a negative value for Q7, which is measured in
a westerly direction. Since we want the angle
measured in a positive or easterly direction, we
must take the 360-degree complement as shown.

Case II: G, is less than Qg and both are measured
eastward from v. In-this case Eq. (A3) applies
directly.

Now that we have calculated 7, we must com-
pute the longitude of the ascending node Q at
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5
/// w
I (a) b T AT (POS)
s 1]
- y
(b) - —O-—- AT (ZERO)
: w? :/
yi
(c) AT (NEG)
Pl \:
7' /
-~w
I (o AT (POS)
(b) AT (ZERO)
(c) AT (NEG)

Fig. A3 — Illustration of positive, negative, and zero values for time
AT to nearest perigee. The argument of perigéee at epoch is denoted
by w7, and ¥’ is the line of ascending node. Cases I and II illustrate
positive and negative rates of change of the argument of perigee,

respectively.

the passing of perigee. Since we know the value
for the rate of change of the right ascension of
the ascending node, Qr,* the most direct course of
action is to convert this rate to the rate of change
of the longitude of the ascending node Q. This
may be visualized by referring to Fig. A4(b) and
to the equation

*This quantity, which is available from the orbital element lists and
which can be obtained by evaluating Eq. (18) of the text, is also con-
* sidered as the precession rate of the orbital plane.

Q=0 — (A4)
where e, is the rotation of the earth. Consider the
two cases where the inclination angle i is greater
or less than 90 degrees.

Case I: When i is greater than 90°, Q¢ increases
in a positive or easterly direction. Since the earth,
and hence the Greenwich meridian, also rotates
in an easterly direction, the rotation rate for the
longitude of the ascending node Q is less than
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GREENWICH
MERIDIAN

360-QT

6o > 2
CASE I

GREENWICH
MERIDIAN

GREENWICH
MERIDIAN

Gp < Qg
CASE I

(a)

GREENWICH
MERIDIAN

i >90°
CASE I

i <90°
CASE IT

(b)

Fig. A4 — Illustration of the relation between the right ascension of the
ascending node (g, the longitude of the ascending node QF, and the right
ascension Go of Greenwich. Qp and G, are measured counterclockwise
(eastward) from the vernal equinox y when viewed from the north pole N.
Equation (A3) and the diagrams in (a) lead to an evaluation of O7; Eq. (A4)
and the diagrams in (b) lead to an evaluation of the time rate of change of
the longitude € of the ascending node at the passing of perigee.

that, Qg, of the right ascension of the ascending
node by an amount we.

Case II: When i is less than, or equal to, 90°,
Qr decreases in a westerly direction. Since the
earth rotates in an easterly direction, the rotation
rate of the longitude of the ascending node Q
is greater than that, Qg, of the right ascension of
the ascending node by an amount we.

Now that we have found both Q7 and , and
since we already know AT, we make use of the
equation

Q=07 — QAT (A5)

and find the longitude () of the ascending node
modified to passing of perigee. As we noted in
the seventh data word, both the time-varying
quantity and the time interval have an algebraic
sign attached to them. Thus, since we have again
defined our coordinate system, all we need to do
is follow the sign which results upon forming the
product QAT and evaluate the equations alge-
braically. This can be seen by the following
example.

If O from Eq. (A4) is positive, the existing
situation is indicated by Fig. A5, case 1. When the
satellite is at perigee, as indicated in case I(b),
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(D—+4
I (a) ) AT (POS)
(b) AT (ZERO)
{c) ’ AT (NEG)

2,

Q) =2
I (a) \ AT (POS)
(b) AT (ZERO)
(c) \ AT (NEG)

>

Fig. A5 — lllustration of positive, negative, and zero values for time AT
to nearest perigee when (a) {) is positive and (b) {} is negative

AT is zero. When the satellite has gone past
perigee, case I(a), AT is positive and the plane of
the orbit has rotated in the direction . shown.
Therefore, QAT must be subtracted from Q7T to
get (L Similarly, when the satellite has not yet

reached perlgee case 1(c), AT is negative and the

value QAT is in effect added to Q7 to obtain the
correct value for ().

On the other hand, should we obtain a negatlve
value for ) from Eq. (A4), the situation is as
indicated in Fig. A5, case II. If the satellite is at
perigee, AT = 0, case II(b). In the event that the

satellite has gone past perigee, as shown in case
Il(a), AT is positive; thus the product’ QAT is
negative. Hence, in order to obtain (), we in effect
add QAT to Q7. If the satellite is before perigee,
the product QAT is positive and therefore is sub-
tracted from Q7, which brings the plane of motion
to that of case I1(b), to obtain Q. ‘

The ninth data word is the time rate of change
a of the semimajor axis. This may be taken directly
from the element sheets and scaled 2-25, where-
upon it will be suitable for conversion to binary
and for usage in the machine.



Appe

In order to justify using an average value P,
of the period in the computation of subsatellite
positions, it was assumed that the actual period
varied in a linear fashion over the relatively short
time intervals of interest. Since the period actually
varies as the 3/2 power of the semimajor axis, as
is evident from Eq. 4 of the text, the following
procedure was followed in order to determine
the maximum deviation between the actual period
variation and that of the linear approximation.

In Fig. Bl, Py, represents the linear approxi-
mation and Py represents the true variation of
period. The slope of the straight line Pu, is
found as

P/ — Py,
t'— To

m=

(BI)

where Pr, is the period at epoch time To, and Py is
the period at time ¢'. The equation for the straight
line, i.e., the linear period Py, at any time ¢, is

Pin=m (¢t —T,) + Pr,. (B2)

The equation for the actual period Pg is given as

Poer=1k [a+a (t—To)P? (B3)
which, by factoring, can be written as
0 3/2
Pie=ka¥? |1 +2(—Ty) | . (B4)
a

The time tpqr at which the maximum deviation
occurs is determined in the usual manner. Thus,
letting To = 0, and Pr, = ka®?, AP is defined as

. " 3/2
APEP{m'—'Paa:PTo'f'mt—PTn(l +a—t) .
(B5)

By differentiating Eq. (B5), setting this equal to
zero, and solving for ¢, there results
ez -
" a L\3Pra ’

(B6)

ndix B
LINEAR APPROXIMATION OF PERIOD P
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Substituting Eq. (B6) into (B5), in order to find
the maximum deviation, yields

) @)

Using the following typical values,

4
APma.r=2_7

(B7)
a = 1.1 earth radii
a=—10"3 earth radii per day
=0
t' =9 days
k= 0.05867447087,
from which the following are found,
Pr,= 0.067 692 134 days

Py = 0.066 863 069,

results in the maximum deviation of

APpaz < 0.001 percent. (B8)
Evaluating Eq. (B6), it was determined that this
maximum deviation occurs approximately 4.7
days from epoch 7To.

PERIOD P
A
P
. "acT
PTO === I
P
LIN
|
N
1
Py [-—-—— : —————— \
! i
i I
L L. > TIME t
To t
Fig. Bl — Actual and linear-approximation

curves for the satellite orbit period P versus
the time ¢. To is epoch time.



Appendix C
TABULATION OF SATELLITE POSITION MEASUREMENTS

This Appendix contains tabulations of typical
satellite latitude, longitude, and height results
obtained from the equations discussed in the text.
These quantities have been compiled from orbital
data taken over a period of several months.
The effect of the modification proposed in this
report is illustrated by listing the differences
between the sophisticated NAREC predictions,
selected as a reference, and the results obtained
from the SPAD-implemented equations as re-
ported in this paper. Also included in the tables
are results obtained without the addition of
the time rate of change a of the semimajor axis
and the associated mean anomaly M and period
P computations.

Table C1 lists the results, taken at the beginning
of each day, for the SPADAT satellite No. 564
over a period of 15 days after epoch. It is to be

noted that after one week for this satellite, whose '
a=-—10"* earth radii (e.r.) per day, position errors

are greater than the 1 degree specified if the a

term is not accounted for in the equations. On

the other hand, when the @ term is used as pro-

posed in the text, errors in position do not exceed

1 degree even after 2 weeks of prediction.

Tables C2, C3, and C4 list the average and
maximum differences between the ephemeris
of NAREC and SPAD position predictions at
epoch and 3, 6, and 9 days after epoch. Three
satellites were chosen for these listings in order
to provide a reasonable spread of @ values ranging
from —10-7 to —10-2 e.r./day. The average dif-
ference value given in these tables is obtained
using position readings taken at 10-minute inter-
vals over one complete orbit. The maximum dif-
ference value is the maximum deviation, from the

TasLE Cl
Differences Between the Ephemeris of NAREC Predicted and SPAD
Predicted Values for Satellite Latitude, Longitude, and Height. The
Effect of Not Including @ in the SPAD Prediction Equations is
Apparent Several Days After Epoch. Data are for SPADAT Satellite
No. 564 with @ = —10~* Earth Radii/Day.

Differences When SPAD Differences When SPAD
Prediction Includes a Does Not Include a
Time
(days) ALat | ALong | A Hgt Alat | ALong | AHgt
(degree) | (degree) | (stat mi) | (degree) | (degree) | (stat mi)
Epoch (Ty) 0.0 0.1 1 0.0 0.1 1
To+1 0.1 0.1 0 0.0 0.0 0
To +2 0.0 0.1 1 0.3 0.2 0
T+3 0.0 0.1 0 0.5 1.0 1
L +4 0.1 0.2 0 0.6 2.1 3
To+5 0.2 0.0 0 1.5 1.6 7
T, +6 0.2 0.1 0 1.8 1.7 8
T +7 0.1 0.0 1 3.1 2.5 5
T +8 0.1 0.2 1 2.6 7.1 3
T, +9 0.2 0.2 1 2.1 10.9 14
T, +10 0.3 0.1 1 6.3 6.8 26
To+11 0.3 0.1 1 l6.7: 6.0 31
T +12 0.4 0.1 1 10.5 9.5 20
To+13 0.0 0.6 0 5.9 25.4 4
To +14 0.4 0.3 0 9.8 23.4 36
T, +15 0.6 0.0 1 16.0 12.6 58

N
P
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reference position, observed during that orbit.
It should be noted in Tables C2 and C3 that it
. would not have been necessary to include the a
term in the position computation in order to
meet the l-degree accuracy requirement. How-
ever, the necessity of including this term is clearly
shown in Table C4, where the error after 9 days

ORSINO AND FRANCAVILLA

reached a maximum of 101 degrees in longitude -
for this satellite.

Tables C5, C6, and C7 list the differences in
height from the reference value, above the earth’s
surface for the same three satellites. The readings
were obtained for the same times as was the posi-
tion information of the preceding tables.

TasrLe C2
Average and Maximum Differences Between the Ephemeris
of NAREC Predicted and SPAD Predicted Values for Satel-
lite Latitude and Longitude. Including the Parameter a in
the SPAD Prediction Equations Does Not Appear to be
Necessary in This Case. Data are for SPADAT Satellite No.
205 with @ =—10-7 Earth Radii/Day.

Differences When SPAD | Differences When SPAD
Includes a Does Not Include a

Prediction
Time Latitude Longitude Latitude | Longitude
(days) (degree) (degree) (degree) (degree)
Avg | Max | Avg | Max| Avg | Max | Avg | Max
Epoch (To) | <0.1 | 0.1 [<0.1 | 0.1 0.1011]0.1]| 0.1
To+3 <0.1| 0.1 0.1/ 01 |<0.11{0.1 (0.1} 02
T, +6 01| 0.8 0.1 05 01} 08 |01 ],05.
To+9 0.1 0.6 0.31} 0.3 0.1 06 {03 ]| 03

TasLE C3

Average and Maximum Differences Between the Ephemeris of
NAREC Predicted and SPAD Predicted Values for Satellite
Latitude and Longitude. Including the Parameter @ in the SPAD
Prediction Equation Does Not Appear to be Necessary in This

Case. Data are for SPADAT Satellite No. 285 with a

Earth Radii/Day.

=—10-5

Differences When SPAD | Differences When SPAD
Includes a Does Not Include a

Prediction
Time Latitude | Longitude Latitude Longitude
(days) (degree) (degree) (degree) (degree)
Avg | Max | Avg | Max | Avg | Max | Avg | Max
Epoch (To) | <0.1| 0.1 |<0.1] 0.1 | <0.1| 0.1 | <0.1| 0.1
To+3 0.1] 0.1 0.1] 0.1 0.1] 0.1 0.1 0.1
T +6 02| 0.2 0.1 0.2 02| 02 ] 02] 0.3
To+9 02| 0.3 0.2( 0.3 02| 04 0.5 0.9




NRL REPORT 6396

TasLE C4
Average and Maximum Differences Between the Ephemeris
of NAREC Predicted and SPAD Predicted Values for Satel-
lite Latitude and Longitude. The Effect of Not Including &
in the SPAD Prediction Equations is Apparent Three Days
After Epoch. Data are for SPADAT Satellite No. 632 with
a =—10"2 Earth Radii/Day.

Differences When Differences When SPAD

SPAD Includes a Does Not Include a

Prediction
Time Latitude [ Longitude | Latitude | Longitude
(days) (degree) (degree) (degree) (degree)

Avg | Max | Avg | Max | Avg | Max | Avg | Max

Epoch (To) | 0.1 | 0.1 | 0.1} 0.1 0.1{ 01| 0.1 0.1
h+3 02| 04 (03] 05 50| 7.3 86| 15.0
I +6 04| 07 (05| 1.1 | 187|299 | 35.4 | 53.6
To+9 06| 1.1 | 0.8 1.9 | 28.9|48.5 [61.3 [101.1

TasLE Cb
Average and Maximum Differences Between the Ephemeris
of NAREC Predicted and SPAD Predicted Values for Satel-
lite Height. Including the Parameter a in the SPAD Predic-
tion Equations Does Not Appear to be Necessary in This

Case. Data are for SPADAT Satellite No. 205 with ¢ =—10-7
Earth Radii/Day.

Height Above Spherical
Earth (stat mi)
Prediction
Time Differences When SPAD | Differences When SPAD
(days) Includes a Does Not Include a
Avg Max Avg Max
Epoch (Ty) 1 1 1 1
To+3 0 1 0 1
T,+6 1 1 1 1
To+9 0 1 1 1

23
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TasLE C6'
Average and Maximum Differences Between the Ephemeris
of NAREC Predicted and SPAD Predicted Values for Satel-
lite Height. The Effect of Not Including @ in the SPAD
Prediction Equations is Apparent Nine Days After Epoch.
Data are for SPADAT Satellite No. 285 with @ = —10-3
Earth Radii/Day.

Height Above Spherical
Earth (stat mi)
Prediction
Time Differences When SPAD | Differences When SPAD
(days) Includes a Does Not Include a
Avg Max Avg Max
Epoch (To) 1 1 1 1
To+3 1 1 1 1
Ty +6 1 1 1 2
To+9 1 1 .2 3
TasLE C7

Average and Maximum Differences Between the Ephemeris
of NAREC Predicted and SPAD Predicted Values for Satel-
lite Height. The Effect of Not Including @ in the SPAD
Prediction Equations is Apparent Six Days After Epoch.
Data are for SPADAT Satellite No. 632 with ¢ = —10-3
Earth Radii/Day.

Height Above Spherical
Earth (stat mi)
Prediction
Time Differences When SPAD | Differences When SPAD
(days) Includes a Does Not Include a
Avg Max Avg Max
Epoch (To) 0 1 1 1
To+3 3 6 4 8
T,+6 6 13 13 24
T, +9 10 19 22 41




App

endix D

AZIMUTH AND ELEVATION DETERMINATIONS

AZIMUTH

The computation of the azimuth angle « is
Basically one of solving the spherical triangle
OPN of Fig. D1. The arc QPN represents the longi-
tude A; of the subsatellite position, and the arc
MON represents the ship’s longitude Ao. The ship
is located at point 0, with its latitude shown as
¢o. The line CPS is the radius vector of the satellite
from the center of the earth, with the subsatellite
point located at point P. The latitude of P is
shown as ¢s. The great-circle arc shown passing
through the points 0 and P subtends an angle 8,
and is thus designated as B8 radians.

From a relationship of spherical triangles,

cos B={(cos ¢;) (cos ¢) + (sin @}) (sin ¢y) (cos AN).

(D1)
It can be seen in the figure that
w
NP= ;=3 — s (D2)
s ’ T
AN= s — Ao (D4)
Thus, using basic trigonometric identities,
T . )
cos ¢, = cos (E -~ qbs) = sin ¢; (D5)
(T
sin ¢; = sin (5 — d)s) = cos ¢, (D6)
and similarly
€Os ¢y = sin ¢h (D7)
and
sin ¢g = cos ¢o. (D8)

Hence, Eq. (D1) can be rewritten in terms of
the ship’s and the satellite’s latitude and longitude
as

25

B = arc cos [(sin ¢s) (sin ¢o)

=+ (cos ¢s) (cos o) (cos AN)]. (D9)

The Law of Sines, as applied to the spherical
triangle OPN, states that

sin & __ sin A\ D10
sing; sinf’ (D10)
Now, substituting the relation of Eq. (D6) into
(D10), the azimuth angle «, expressed in terms of

the ship and satellite coordinates, can be found
from

(sin A\)(cos ¢s)
sin 8

a = arc sin [

], (D11)

which is Eq. (19) of the text.

The method used for locating the proper
quadrant of « required a determination of the
cos a. Thus, applying the same basic spherical
triangle relationship as was used for Eq. (D1),

cos ¢ = (cos ¢g)(cos B) + (sin ¢g)(sin B) (cos ).
(D12)

Using Egs. (D5), (D7), and (D8), cos a can be found
from

sin ¢s — (sin ¢g)(cos B)
(cos ¢o)(sin B)

cos a = s (D13)

which is Eq. (20) of the text.

ELEVATION

The elevation angle 6 is easily found from the
plane triangle of Fig. D2. Figure D3 merely serves
to relate the elevation triangle to Fig. D1, which
was used in the azimuth computation. The line
CPS is the radius vector of the satellite and is
designated as r. The line OC is the line from the
center of the earth to the ship and is obviously
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Fig. D1 — Geometric quantities used to calculate the azimuth angle « of
the subsatellite point P from the ship’s position at 0

Fig. D3 — Illustration of the geometric
to calculate the satellite elevation relationship between Figs. D2 and DI
angle 0 in terms of the angle ¢

Fig. D2 — Geometric quantities used
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the radius of the earth R.. The line OSis the slant
range p which is found from the law of cosines as

p= (R:+r%—2rR, cos B)¥2, (D14)

which is Eq. (25) of the text, and B is the angle
formed by the lines CPS and CO which can be
obtained from Eq. (D9).

Applying the Law of Sines to the plane triangle
CSO0 yields

sin ¥ sin B' (D15)
roop
Equation (D15) can be solved for ¢ to give
Y = arc sin [%@], (D16)

which is Eq. (24) of the text.
It is clear from Fig. D2, then, that the elevation
angle 6 is simply

0=y —m/2 (D17)

which is Eq. (23) of the text. Figure D4 depicts the
special case when  is less than #/2 radians, i.e.,
the satellite position S is below the horizon. Upon
encountering this condition, the SPAD program
does not compute the resulting negative angle for
elevation, but merely sends out a code word which
prints all N’s on the page printer.

Fig. D4 — Iilustration of the elevation angle
0 when ¥ is less than 7/2

27



Appendix E
DERIVATION OF THE SATELLITE AREA OF VIEW RADIUS

The radius d of a circle on a perfectly|spherical
earth is shown in cross section in Fig. El. Inithis
figure, the line CM is designated as x, which in
this case is equal to the earth’s radius R.. The
line CPS is the radius vector r of the satellite
located at S and can be obtained from Eq. (8) of
the text. The angle vy is the satellite’s look-cone
angle and is a quantity which is required as input
data for each satellite. The satellite sensor is also
assumed to be pointing along a line perpendicular
to the earth’s surface.

Fig. E1 — Cross-sectional view
of the circular area (heavy
line) of radius d subtended at
the earth by the satellite look-
cone angle y

Applying the Law of Sines to the plane triangle
CMS,

r__ x El
sin £ sin (y/2)° (ED)
Solving for sin ¢ gives
né= r sin (')//2). (E9)
x
Now since
d+vy2=m—¢&, (E3)

28

then

sin [8 + (y/2)] =sin (7 — &) =sin &.

Substituting Eq. (E2) into Eq. (E4),

sin [6 + (v/2)] = _r;iinx(i.?)’
and solving for 3 gives
8 = arc sin [ﬂx()'_/?.)] — /2.
Finally, since
d=x8

and x = R, the radius d is found from

d=R, {arc sin [L—s—l%] - 7/2},

which is Eq. (26) of the text.

ﬂs
Y2
Yl
{ P/Zd
M
s e
X
\
o

Fig. E2 — Illustration of the case where
the earth’s surface subtends an angle
less than y. The area (of radius d) shown
is the maximum possible amount of the
earth’s surface that can be viewed from
the satellite.

(E4)

(E5)

(E6)

(E7)

(E8)

The situation where, due to particular values

for r and v, the earth’s surface does not subtend
the angle v is depicted in Fig. E2. (This would also
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be the case, regardless of the value of r, when v is
unknown and a maximum angle of 7 is assumed.)
The computer tests for the existence of this con-
dition by the relationship

rsin (y/2)
7> b (E9)
that is, when x > R.. When this inequality is satis-
fied, the only meaningful radius is that which
corresponds to the line of sight to the horizon.
Hence, the line SM is constructed from the satel-
lite point S and tangent to the earth’s surface.
This line and the line CPS form a new angle, y'/2.
Thus, from the right triangle CSM,

v'[2=arc sin (Re/r) (E10)
From the figure it is seen that
8= (m/2) — (y'[2). (E11)

Hence, by substituting Eq. (E10) into (E11), there
results

8= (m/2) — arc sin (R./r). (E12)
Therefore, since
d=R. 38, (E13)
the radius d is obtained from
d=R, t(W/Z) —arcsin (Re/r)], (El14)

which is Eq. (28) of the text.

It can be noted that as the satellite point S
approaches infinity, Re/r — 0. Thus Eq. (E14)
becomes

d=Rem/2=1/4 (27 R.)

= 1/4 (earth’s circumference).
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