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ABSTRACT

Title of Thesis: First Order Oblateness Perturbations and
the U. S. Naval Space Surveillance System

Thomas B. Murtagh, Master of Sbience, 1964

Thesis directed by: Dr. Gart Westerhout

An error analysis is presented involving a comparison of position

errors in the orbital path of an artificial earth satellite produced

either by the inclusion or omission of first order oblateness effects

on all of the orbital elements or by the introduction of theoretical

errors into the system with which the measurements are made.

The reasons for making the above comparison are twofold. First,

if the improved model of the earth's gravitational field produces an

increased accuracy in the orbital elements commensurate with the ac-

curacy of the measuring system, then this more accurate model should be

used in the derivation of any epoch set of orbital elements from raw

data as well as in any scheme for predicting satellite position as a

function of time from epoch. Secondly, if the improved model accuracy

is indeed not comparable to the measuring system accuracy, then the in-

clusion of these first order effects is not necessary and their omission

will reduce expenditures for the use of the high speed digital computer

necessary for orbital element computation and updating.

The system referred to herein is the U. S. Naval Space Surveillance

System which is a detection system comprised of three transmitting and

four receiving sites located on a great circle across the southern por-

tion of the United States.
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The general development of the problem can be divided into three

parts.

The first part involves the computation of the position of the sat-

ellite at two different times from the observed direction cosines at those

times and the subsequent derivation of the orbital elements of the sat-

ellite using an approximate model of the earth's gravitational field.

The second involves the differential correction of the computed

elements at the two times using a more accurate model of the earthts

gravitational field where the force function allows for first order cor-

rections to all of the elements.

Finally, position errors of the satellite in what we shall define

as the error plane are produced by perturbations of system direction

cosine measurements or by the inclusion or omission of first order

perturbation corrections to the elements themselves. A comparison of

these errors will then indicate at what point the accuracy of the model

used and the accuracy of the measuring system are comparable.

PROBLEM STaTUS

This is an interim report on a continuing problem.

AUTHORIZATION

NRL Problem R02-35
Bu'#eps Project RT 8801-O0l/652-1/3434-00-01

Manuscript submitted September 2, 1964.
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CHAPTER I

THE SPACE SURVEILLANCE SYSTEM

Historical Background. The Naval Space Surveillance System (Fig. 1)

is basically an adaptation of the radio interferometer techniques developed

by the U. S. Naval Research Laboratory for tracking Project Vanguard sat-

ellites, known as Minitrack. This surveillance system was developed by

NRL primarily to detect, track, and predict orbital positions of non-

radiating artificial earth satellites passing over the continental United

States. Illumination of the satellite is produced by one or more of the

three transmitting (T) sites and the reflected energy is received by one

or more of the four receiving (R) sites, all of which are located on a

great circle across the southern portion of the United States. The three

transmitters produce a continuous wave of electromagnetic energy in a

pattern narrow in the north-south direction and wide in the east-west

direction. The receiving station antenna patterns are similar to the

transmitter patterns and are co-planar with them.

Direction Cosine Measurement. The position of a satellite in space,

at a given instant of time, is obtained by coincident observations from

two or more receiving stations. These observations produce a measure-

ment of the direction cosines of an imaginary line at each of the re-

ceiving sites, from which the satellite position can be computed in an

earth-centered coordinate set.

Computation of satellite position. The earth centered set used in

the computation of satellite position has the X axis directed along 0°

1



2

longitude (Greenwich), the Y axis 90° east of Greenwich, and the Z axis

normal to the plane formed by the X and I axes, forming a right handed

coordinate set. Latitude is measured upwards from the equatorial plane

and longitude is measured west from Greenwich. Each receiving station

has a set of unit vectors associated with it, A, B, and C. The unit vec-

tor A is oriented parallel to the east-west antenna field and is the unit

vector from which the east-west direction cosine is measured. The unit

vector B is oriented parallel to the north-south antenna field and is the

unit vector from which the north-south direction cosine is measured. The

antenna fields are constructed so that A and B are normal to each other;

therefore the vector set B A C form a right-handed coordinate set. Com-

putation of the satellite coordinates can be effected by knowing the

coordinates of the receiving stations making the observation, the com-

ponents of the unit vectors ABC, at each receiving site, and the

direction cosines measured by the system at the respective receiving

stations (Fig. 2).

From figure 2 we can write

R1 R3 R2 + R4

Xi + Yi + Zk= (Xli + Ylj + Zlk) + (R3A Al+ RB R3 C 1) (1)

where

1 3 1 A1 R3 Cos QA1 = 3 co Al R3A

B1 R3 = B1 R3 Cos iBl = 3 co 8B) 3B

C1 R3 = C1 R3 Cos QC1 = 3 Cos 9C1 3C

and the unit vectors of the first receiving station are defined as

A- a + aly J + alz k

1 lx
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0 1 =Ci +cO j + C k.cl Clx i ly J lz

Making the above substitutions in equation (1) and equating coefficients

of the unit vectors i, -, k we obtain

X=X1 +R3 (x Cos A + blx Cos QB1+ C1X cos G0 l)

y =y 1 + I3 (aly Cos "Al + bly CosBl+Cly cos 0 1)C

Z 9 Z1 + R3 (alZ cos QAl + biz 008 QB+ Cjz° 8 C)

Rr-- 4S1MS1LUtI Jsti



4

MTE

If

FIGURE 2 - COINCIDENT OBSERVATION



Similarly using

Xi + + = (X2i + Zk+ z) + (R4A X2 + R4B B2 + R4C C2)

we obtain

x x2 + R4

y 2 +

Y Y2 +4 R
Z Z2 + 4

(a 2. coo QA2

(a.x COs 9A2 +

(a2. CosQ 92 +

b2x Cos

bty Cos

b2z cos

9B2 + c2x

9B2 + c2y

OB2 + '2z

Let

W1

"2

/1A2

T2

3 alx

= a2x

= aly

= a2y

=lz
= a 2 z

CoB

COB

COs

Co0

C00

COs

9A1

0 A2

QA1

0A2

9Al

GA2

+

+

+

+

+

+

COs

Co0

Cos

Co0

COs

COs

9B1

9B2

"B1

9B2

9B1

QB2

+

+

+

+

+

+

Clx

C2x

0ly

C2 y

CJz

C2 z

CoB QC1

C005 C2

Cos QC1

Co0 BC2

Cos 9Cl.

C08 9C2'

Therefore we have

X 3 X1+ ¢1 R3 (3)

= R (4)
1 ~1 3

Z 1 R3 (5)

From the above we can write

R3 = XX1
5 QCI

X = X2 +0<2 14

y = Y2 +P2 R4

Z = Z2 + 2  R4 .

C-<2

Equating equations (4) and (7) and substituting for R3 and R4 the above

definitions we can solve for X in terms of known quantities:

Y1 + Pi ( 5 ) = Y2 + Z(2

X(l -4 -) =-Y1+ x 1 cC 2
iX 1 '-+ A /- O ,

5

(2)

QC2)

9C2)

9C2)

¢08

COB

Co0

(6)

(7)

(8)
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(Y2-yl) +A x1 X- X2
XU .061 Oe-2 ,(9)

al C"-2

Equating equations (3) and (6) and substituting the values of R3 and R4

obtained by solving equations (4) and (7) respectively we can solve for

Y in terms of known quantities:

X1 + ( 1) = X2 + (0A2 )

Y 1 'l-2 X , (~10)Oe

2 1 - - 2

O~l OP2 ~1l P

-Y 2Y

1- 2

Similarly an equation for Z in terms of known quantities may be obtained:

Y1 + 1 ( l 2 +82 (Ya 2)
Yl r

(Y 2-Yl) + 41z1 -4
Zi w \' 2 * .................(n)

From equations (9), (10), and (11) the satellite coordinates X, Y, and Z

can be computed, using the known values of the station coordinates X1, Y1,

Z1, X2 0 2 21 the station vector components of A, B, and CUand the meas-

ured values of the direction cosines at the respective stations. Since

equations (3) through (8) represent six equations in five unknowns, they

are considered redundant. Consequently equations (9), (10), and (11) can

be modified to compute statistically optimum values of the coordinates,
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using the X, Y, and Z ffom equations (9), (10), and (11) as a first guess.

Appendix A presents the procedure for computing these statistically optimum

values and is based on the second section of Chapter II in a University of

Maryland Master's Thesis by H. G. deVezin of the Space Surveillance Brcanch

("The Computation of Optimum Orbital Elements Derived From a Single Coinci-

dent Observation by Two Receiving stations of the Naval Space Surveillance

system," reproduced as NRL Report 6172).

Computation of Standard Elliptic Elements. The standard elliptic

elements for a given epoch which will be referred to in this thesis are

listed in Table 1 and their definitions may be found in the literature.2

Of the nine variables in the list, only six are independent, since the

semi-major axis and the period are related through Kepler's Third Law, the

mean and eccentric anomaly are related through Kepler's equation, M = E -

e sin E, and equations like cos v = cos E - e relate the eccentric and
1 - e Cas E

true anomaly. The computation of these elements from Space Surveillance

angle data requires two observations of the satellite on its orbital path,

the time between these two passes, the south-north (SN) or north-south (NS)

direction of the two passes, the east-west (EW) or west-east (WE) direc-

tion of the satellite, the Greenwich Hour Angle of Aries (GHA) at the time

of the first pass (epoch), and an approximate value of the anomalistic

period of the satellite. An optional third observation of the satellite

may be used, in which case an approximate value of the period of the sat-

ellite would not be needed. In place of this, the time between this third

pass and one of the first two passes having the same NS or SN direction is
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TABLE 1 - STANDARD ELLIPTIC ELEMENTS

ELEMENT NAME SYMBOL UNITS

SEMI-MAJOR AXIS a STATUTE MILES

ECCENTRICITY e -------

INCLINATION i DEGREES

ARGUMENT OF PERIGEE LJ DEGREES

RIGHT ASCENSION OF DEGREES
THE ASCENDING NODE

MEAN ANOMALY M DEGREES

TRUE ANOMALY v DEGREES

ECCENTRIC ANOMALY E DEGREES

ANOMALISTIC PERIOD T MINUTES

used, together with the number of revolutions of the satellite during thi

time. (The division of this time, in minutes, by the number of revolutia

will yield a first guess at the period of the satellite.)

The first step in the derivation of the elliptic elements from anglE

data is to calculate the position vectors for the two passes, from which
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the latitude and longitude of these two points can be computed. Similarly,

if a third observation is given, the position vector is first computed and

then the latitude and longitude of this third point can be calculated.

The longitude of the second point is then corrected for the earth's rota-

tion during the elapsed time between the first two passes. (It should

be remarked here that the longitude defined herein is east longitude.)

From this longitude and latitude information, the central angle between

the two position vectors (Fig. 3) can be computed, using the following

equation derived from R, . R29

c½= cos 1  os o ,1 cos L2 cos Q 2 -X1) + sin L1 sin L27 (12)

where L = latitude, ),= longitude, and oL= central angle. The above equa-

tion yields the principle value of the central angle (O 4 o 1800); using

this value of central angle, and assuming a non-retrograde orbit, the in-

clination can be computed using the following equation derived from

RxRR1 2 R k,

/R1 x R2/

-1 co s L Cos sin 241 * (i)
L ~sin or -

This value of inclination will be used as a temporary value; if the absolute

value of this inclination is greater than or equal to 45° we will use SN or

NS direction information to determine the true value of inclinationwhich

will either be the above value or 1800 minus the above value. If the abso-

lute value of this inclination is less than 45° we use EW or WE direction

information to determine the correct value of inclination. Essentially in

the above we are attempting to resolve the ambiguity in the direction of

the satellite between the two observed points, which implies that we are
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attempting to determine whether it passed from the first point to the sec-

ond through the large or the small central angle.

The next element to be computed is the semi-major axis. This is done

in one of two ways, depending on the information given:

1. If the approximate anomalistic period is given, the semi-

major axis can be computed immediately from the equation of Kepler's

Third Law.

2. If the time between the third pass and one of the other two

passes in a like SN or NS direction is divided by the number of revolutions

between these passes, an approximate nodal period, uncorrected for latitude

difference, is obtained.

In either case, a guess at period is obtained, since anomalistic and nodal

period are approximately the same, and the semi-major axis can be computed

from the equation

a 2 205.835706 T2/3 (14)

where T is in minutes and a is in statute miles.

The regression of the ascending node during the elapsed time between

the two passes can then be computed, assuming a circular orbit, using the

equation

-t = - 9.9596 (re) cos i deg
dt a ( )2 day (15)

where re is the equatorial radius of the earth in statute miles. The

longitude of the second point can then be corrected for regression, and

subsequently the central angle and the inclination can be corrected for

regression. Similarly the rotation of perigee during the elapsed time

can be computed using the equation
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dW= 4.9798 ( e)7/2 (5 cos2 i-) deg
dt Q(1-e 2) day (16)

If three passes are being used as input information, the approximate nodal

period previously computed is then corrected for latitude difference and

the rotation of perigee during the elapsed time and the resulting period

will be the approximate anomalistic period.

The next pair of elements to be computed are the eccentricity and

the true anomaly of the first pass, calculated using the equation

R = a(-e 2 )
l+e cos v (17)

which is the defining equation of a conic section. Applying the above

equation at t1 and t2 (times of the first and second pass respectively)

and using the fact that v 2 -v 1 =od, a fourth degree equation in eccentricity

is derived from which only two solutions are possible.(The derivation is

reproduced for convenience in Appendix B.) The existence of two possible

solutions implies that two possible ellipses fit the two observed points

and the choice of the correct set of values of eccentricity and true

anomaly is made by substituting (vl +oc) and (27T- v, +oC) into equation

(17) at t2 and seeing which of these substitutions yields a value of It

closest to R 2. Using this correct value of e and vl, and computing v2

with v2 = v +0• we can calculate a time difference (less than a period)

between the two passes from the equation

t2 -t:,, - [e + e sin v + sin (cos v + e vl (18)
L1+ e cos v 1l+e Cos v]

V2

which is nothing more than the integration of Kepler's equation M = E - e

sin E, using the following relationship between E and v,
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E = cos v + e
1 + e Cos v

and the fact that M =X/2 (t2-t1).

This quantity is evaluated so that an iteration process can be performed

in order to obtain an accurate value of anomalistic period.

The first iteration is carried out by computing a second value of

period from T1 ( BS ) TGUESS (19)

GUESS

where ATOBS = observed time difference reduced to a value less
than one period

ATGUESS calculated time difference from equation (18)

T GUESS value of anomalistic period computed previously.

The second value of anomalistic period T1 is then used to repeat the

procedure previously indicated, beginning on the bottom of page 11. After

completing the process a second time, a straight line fit is made on the

successive periods using

Tl = T -.ATn ATOBS (T - T1 ) (20)
ATn -AT 1

until the successive periods are within a pre-determined tolerance.

Once an accurate period has been obtained, a vector which points

along the line of nodes, in the direction of the ascending node, is com-

puted (see Fig.3). The sum of the anomaly and the argument of perigee

(argument of the latitude) can then be computed using

(v +[) = Cos 1  [ j (21)

-

where N = the vector along the line of nodes in the direction of the

ascending node. Subtraction of the true anomaly from the above quantity
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will yield the argument of perigee. The longitude of the ascending node,

N' can be computed using

AN [/ Ns] (22)

where NX is the component of the node vector along the X axis. The right

ascension of the ascending nodeQ, can then be calculated using

Q= GHA -AN forA n < GHA (23a)
or

Q= 2WT- ON - GHA) forAN > GHA (23b)

where GHA = angle measured west from Greenwich to Aries

AN = angle measured west from Greenwich to node

Q= angle measured from first point of Aries east to the node.
The computed values of V1 and v2 can then be converted to the mean anomaly

at t1 and t2 from

M = co-1 [Cos v+ e l - 1 | sin v (24)
v 1 + e cos 1 + e cos v

remembering that if v<77r, M =Mv and that if v > 77, M 2Tr- M .

The above procedure was adapted by the author to the Naval Research

Electronic Computer (NAREC) in order to facilitate the computation of

orbital elements from many sets of observed angle data.



CHAPTER II

PERTURBATIONS

Introduction. The main causes of perturbations of a satellite orbit

are asphericity of the primary, atmospheric drag, lunar and solar pertur-

bations, perturbations by additional satellites or planets, electric and

magnetic fields, relativistic effects, and interplanetary dust. The first

two perturbations are of particular concern in the theory of close earth

satellites, whereas the third and fourth perturbations involve deep space

probes. The other perturbations are negligible by comparison with the

first four. The term asphericity includes both oblateness and deviations

from the oblate spheroid of revolution.

This work is primarily concerned with the first perturbation in the

above list, namely asphericity of the primary, and in particular is con-

cerned with the oblateness perturbations involved therein. The oblate-

ness of the primary, which in this instance is the earth, produces five

perturbations on a close earth satellite: regression, rotation of perigee,

variation of radial distance, variation of the period of revolution, and

periodic variations of the orbital elements.3 More specifically, this

work is concerned only with first order oblateness effects assuming that

the only forces acting on the satellite are those due to a gravitational

field with axial symmetry.

A large number of articles have appeared in the literature since

the advent of artificial earth satellites which discuss the motion of

a close earth satellite in the gravitational field of an oblate planet.

15
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Because of this large number, it would be impossible to list them all in

the brief confines of this work, but a few of the more pertinent articles

are those written by Brouwer4, Garfinkel 5, King-Helo6 , Kosai7, Merson8,

Musen9, and O'Keefo, Eckels, and Squires °.

At Undisturbed t*7Bod Prablia. In the undisturbed two-body

problem the equation of motion can be written as

(25)

dt2

where M - mass of central body

m - mass of orbiting body (or satellite)

G - gravitational constant

r - position vector between central body and

satellite.
Let us now define the force function

a G.(M+m)
o r

Jo that the above equation becomes

d2F - -t o(25a)

Since the force function in undisturbed motion is time independent the

integral of energy does exist and we can write

T - 0 + h

- GLM + m) 'F
r3
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where T = kinetic energy per unit mass

-2 G (M + m) G (M + m)

2 r 2a

Now define/I G (M + a) and the above equation becomes

t2 , g (26)

Now consider

dt (r s dr) xt dd+r s- d2'dt dt dt dtdt2

The first term on the right hand side of the above equation is obviously

zero and the seoond term will be found to be zero also by crossing the

vector F with equation (25). Therefore we have

r s r . 'a (27)

where ¢ is a vectorial constant; this equation repreaents the area

or momentum integral. Next we write equation (25) as

d~v
dt - r3r

and cross this equation with the vector U. The result is

X + 3 x (dt x )
r

dr- dr
- drjr

d~v r
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But since c is a constant vector we can write

d (Ix.V) +gd ( 0) 0

Therefore

xv + MY+97 0 (28)

where e - vector directed towards perigee along the X axis. Equation

(28) is known as the Laplacian integral. Still another integral of the

motion may be derived, the Hamiltonian integral, which is essentially

an algebraic combination of the area integral and the Laplacian integral:

'a ( x Xv) +g c x (r) +,' X c x er

c (¢* v - (c* T w gEx (r + e

2 + )(29)2 r

Because the Laplacian and area integrals are not entirely independent,

only five of the six independent scalar integrals needed to obtain a

complete solution to the problem are obtained from them. The sixth in-

dependent scalar integral is obtained by using Kepler's equation in

conjunction with one of the equations for the position vector in terms

of the elliptic elements.

Th. Disturbed Two-Body Proble. In the disturbed two-body problem

the equation of motion becomes

d2 1 G (+m).
2 - 3 r

dt r
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where F = the disturbing force per unit mass. An immediately obvious

consequence of the addition of the disturbing force is the vanishing

of the area integral, since now we have

dt -

which implies that e is no longer a vectorial constant. In order to

obtain a clearer physical picture of what happens to the elliptic ele-

ments when a disturbing force is present, it is useful to decompose the

disturbing force both along the vector set in the orbital plane and

along the radius vector to the satellite. As a result of this decompo-

sition, we come to the obvious conclusion that the elements a, eW,

and M are primarily affected by components of forces in the orbital

plane and the elements i and -Lare primarily affected by components of

forces outside of the orbital plane. The equations for the variations

of the standard elliptic elements can then be derived in terms of the

components of F along the above-mentioned vector sets by applying Brown's

operator, S/dt, to equations (26), (27), (28), and (29).12

The Disturbing Function. If we write equation (30) as

2-

dr U + F (30a)

and write F - V En for n > 1, letting n indicate the order of the cor-

rective term to the force function, and note that for n = 0 we have the

force function in the undisturbed two-body problem, we can rewrite equa-

tion (30a) as

2-

dt2 =V U (31)
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In considering oblateness effects due to an axially symmetric gravita-

tional field (which means that only latitude dependent or zonal harmonics

appear in the force function expansion, and longitude dependent or tes-

seral harmonics are absent) we can write the force function which des-

cribes the earth's gravitational field in terms of a series of spherical

harmonics

00

U Z Am r-m-1 Ym (,)

m-o

where Ym (GA) is the spherical harmonic of order m, Q is the co-latitude,

X is the longitude, and the Am's are constant coefficients in the expan-

sion. Since we are omitting tesseral harmonics in this work, the force

function can be written more simply in terms of Legendre polynormials of

order m,

U G E 1G - Z (rE/r)m Jm Pm (cos @) (32)

m=2

where G = the gravitational constant, M = the mass of the earth, rE =

equatorial radius of the earth, and the JM 's are constant coefficients

in the expansion. The term for m=l in the above expansion is omitted

because J1-= 0 if the origin of coordinates is chosen to be at the center

of the earth, which is the case for all practical purposes. The disturb-

ing function R = U - GM can be derived immediately from equation (32),

R = -G (rE/r)m+l J P (Cos )(

Em=2

and the Legendre polynomials PM(cos @) are conventionally defined as

Pm (Cos Q) = 2m Z d = (COS 1 )m 2am! d(cos Q)m
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The explicit forms of the first five Legendre polymonials are given in

Table 2. Since it is the purpose of this author to discuss first order

periodic perturbations on all of the elements and first and second order

secular effects on the argument of perigee and right ascension, only the

terms for m = 2, 3, and 4 need be considered in equation (33). Therefore

the expression for the disturbing function can be written more explicitly,

noting that cos Q = sin L, where L = latitude, as

TABLE 2 - LEGENDRE POLYNOMIALS (m = 2 to m = 6)

P2 = (3 cos Q-I)

P3 = (5 cos3 @- 3 cos@)

P4 = 1/8 (35 cos 4 - 30 cos Q + 3)

P5 = 1/8 (63 cos5 @ - 70 cos3 Q + 15 cosB)

P6 = 1/16 (231 cos6 Q - 315 cos4 Q + 105 cos2 @ - 5)

R -G' -(r E 3 (hj2( -GM E/r) (J 2) (3 sin L - 1)

+ (rE/r)4 (I -j3 ) (5 sin
3 L - 3 sin L)

+ (rE/r)5 (1/8 j 4) (35 sin4 L - 30 sin2 L + 3)J. (34)

Using the relation sin L = sin i sin (v + L), and reducing second, third,

and fourth degree terms to ones involving multiple angles, the above

equation for the disturbing function becomes
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2

R = GM Z(3 J2 E (a/r)3 2sin 2 i + Z sin i cos 2 (v + w)}

a (- (a/r)4 15 sin3 i -3sin i) sin (v + 4)

7- 51fl2

8 sink i sin 3 (v + W)

J.) (r ) (a/r)5 { - sin2i + 8 sin4 i

+ (Isin 2 i - sin4 i) cos 2 (v + W) + 8 sin4 i cos 4 (v + W

The constant J2is of first order, the constants J3 and J4 are of second

order, 3' and the values used for them in this work are J2  1.08219

x 103 J3  - 2.29 x 10 , and J4 - 2.12 x 10 6. It would now be con-

venient to separate the disturbing function into a first order secular

part, a second order secular part, a first order long periodic parts and

a first order short periodic part. Terms in R not depending on M or J

are considered secular, terms depending on LO but not M are considered

long periodic, and terms depending on t but not on ( are considered

short periodic.1 5 We shall designate the first order secular part of

R by R1, the second order secular part by R2, the first order long

periodic part by R3 and the first order short periodic part by R4. In

order to smooth out the rapid variations due to changes in the mean

anomaly we first integrate the disturbing function with respect to the

mean anomaly as

_ = R dM (36)

and then we can write down the expressions for R1 , R2, R3, and R4

according to the above criterion. In performing the above operation

it is useful to recall that
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1

2W

and that

f ()P sin q v dM O

a

wr (ar)P cos q v dM = X Piq

(36a)

(36b)

where q and p are positive or negative integers, and X pq is a Hansen's

coefficient and is defined as

X psq (-l)q (e)q e2) .

1 I
In the above + q + ) is the notation for the binomial coefficients

q

and F(2 2 1 2 , 1 + q, e2) is the conventional hypergeometric function

form. The evaluation of the integrals of the form of equations (36a) and

(36b) may be found in the literature.16 The resulting expressions for Rip

R2, R3, and R4 are

R GM 1 2. ) (1 -e2Y.
a22 (3 - 2 sin (2)a3 (37)

R 2 - GM (8 J4) a5 35 7 sin i 8 sin4 i) '2 e2) (38)

R -GK M rE 22 -/3 [3 - 2 "3(--) sin i (z sin i - 1) e (1-i ) /sin u

+(MJ4).-5 sin2 i(2 - I sin2 i) e2 (:,2 )-7/2 cos 2W](39)
8 a52 8

R4 = GM ( J2)
a

[ (3-_in 2 i)(a/r)3 - (i-e23/2}

+ % (a/r)3 sin2 i cos 2 (v +W)

where

(4o)

+ q + P (q-12-1 "-P 9 1+q,
a 2 ' 7- -2
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(a/r)3 = (-e 2 3  [(1 + 3 *2) + (3e + I e3) Cos v + I e2 cos 2 v

+ ) e3 cos 3 v] .

The above expressions for Rl, R2, R3, and B will then enable us to write

down the secular, long periodicand short periodic variations of the

standard elliptic elements.



CHAPTER III

VARIATION OF ARBITRARY CONSTANTS

Basic Principles of the Method..7, 18 In the undisturbed two-body

problem, if the position and velocity of a satellite at a given instant

of time is known, or if two positions of the satellite for two instants

of time are known, the six orbital elements of the satellite can be de-

termined, and these six elements do not change with time. In the dis-

turbed two-body problem, however, the six orbital elements determined

from position and velocity measurements at a given timevor from two

position measurements at two times, do vary with time, and the set of

elements determined at an epoch are exactly the elements of the ellipse

that the satellite would follow if all perturbations on the satellite

would cease from that moment on. This ellipse is called an "osculating"

ellipse and the elements are called the "osculating" elements. Our pro-

cedure is to first obtain the elements as functions of time and then to

substitute these elements into the equations relating the coordinates

and the elements, and thus obtain the coordinates as functions of time.

This is the basic principle of the method of the variation of arbitrary

19, 20
constants or variation of parameters , and in celestial mechanics

it is applied to a system of sixth order differential equations.2 The

equations which relate the coordinates and the standard elliptic elements

are 2
X a(l - e) ) sin2 i cos (2Tr- 2 (41)

1+ o V sin v sin i csi n

a~ 2) 2~+~)sn i
Y 1 )si isn(2 Th-%k +) (42)

1 + e Cos v -ni

25
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a~ 2
z = sin (v +w) sin i (45)z l+e cos v

where% n = longitude of the ascending node and

3  s 1 [ sin (v sn) Cos i 3
sin sn V £ sn

where the value of P is taken to be the principle value of the arcsine.

In order to resolve the ambiguity in the determination of t, check the

sign of the quantity cos (v + W). If cos (v +J) > 0, then the principle

value obtained is correct; if cos (V +UJ) 4 0, then Thminus the principle

value is the correct value of f.

Equations for da, de, etc. The equations for the variation of the

elements will be derived using two methods. The first method used is

referred to as the classical method, and can be found in Brouwer and

Clemence's book but will be reproduced in part here for convenience.

The second method, using the Pfaffian expression &0d t dOX = 022, was

developed by Dr. Peter Musen in his lecture notes from an Advanced Celes-

tial Mechanics course taught by him at the University of Maryland, part

of which will be found in Appendix C.

In the classical method, one of the basic assumptions is that each

of the components of the disturbing force can be written as a derivative

of some disturbing function R. In addition we should remember that if

the disturbing force should cease to exist (an instantaneous ellipse)

the solutions for the position and velocity components would be of the

form

X fl (el, e 2 , ... e 6 ; t) 1 g1 (el, e2, .. e6 ; t)

.2 (e1 , e2 , 6 ; t) g2 (e1 , e 2 , .. e6 ; t) (44)
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Z = f3 (el, e2 , ... e6 ; t) g3 (e 1  e 2 , ... e6 ; t)

where el, e2, ... e6 represent the constants of integration, which in this

case are the standard elliptic elements. The problem now is to satisfy

equation (50) by the equations (44) which apply to elliptic motion, which

means that we must first derive the equations for the variable elements

el, e2, ... e6 in perturbed motion. Now in perturbed motion it is true

that

f f, de.
dx = aa + E a :fI

dt ae dt
dt + at j e dt (45)

d fT afd de.
dt )at j=l aej dt

and when these equations are differentiated again and substituted into

d2x x
dt2 r a x

d2yR

dt2 r3 }(46)

d2 z a R

dt r

three equations result for the six variables el, e2, ... e6, which

equations could be satisfied in an infinite number of ways. Therefore,

we introduce an additional set of conditions to make the problem well

defined. The choice of these conditions is dictated by the fact that,

in unperturbed motion,
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dx )fl dy zf 2  dz )f
dT = } 3 -Ca5(7

and that, in perturbed motion, we would like to be able to express the

coordinates and velocity in the form of equations (44), where el, e2,

... e6 would again be constants of integration. The additional conditions

are then

6 a de.

Z )e. dt 0

j=l a

6 d f ff

z aj dt 0 (48)j.l

6 f 0fi

zeJ dt
jml

Differentiating equations (47) once again with respect to the time and

substituting the result into equations (46) yields

6

a I gl de. + R

t2 /= )e dt r3

2 6

f2 + g dt 3 2 f Y (49)
J-1 r

2 6

f- -7 u +Lif )R
)t 2  + )e. dt 3 3 )z

j=l r

But since f'1, f2f were defined such as to satisfy the equations of
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elliptic motion the first and third terms in each of the equations (49)

cancel each other, and we have

6 gl de.

zei dt )x
J=l

I . e R (50)

j~l

j Be dt zz

J-1 i

The equations (48) and (50), which represent six first order equations,

are exactly equivalent to equations (46), which represent three second

order equations. If we then multiply equations (48) and (50) successively

by -jx/}e, 4y/)e.i -)z/)ei, + ax/lei, + ay/bei, + z/lei and replace fl1

f2' £3 by xyz, and g l g2 l g3 by x, y, z we obtain

6 6

-j Z x 0

i=l jMl e i

6 6

- V e de (48a)

i-l j=l

6 6

)z de.Z e 'e. dt
i2l j=l I
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6 6 6

de.

e- )ei dt I x bei
i= j=l i=1

6 6 6

d Eyd e. RZ (50a)

i=l j=l )e idt7l

6 6 6

izl j-l je i dt i=l i l

Adding equations (4 8a) and (50a), introducing the Lagrange brackets defined

as

ffi ' 0e. J e. 0 ev. ze + e. 0  a e13eji 3T Ji
+z EZ z Ez EL

1 j 1

and noting that the right-hand side of the new equations becomes )R/}ei,

we obtain

6 6 6

dt,

at i e f i= X (51)iJ= i=l
The quantities to be evaluated in the above six equations are the thirty-

six Lagrange brackets /e, e. . By the very definition of these Lagrange

brackets we can see that eig ei-j = 0 and that /.ii e.j] =-Le.' eiJ7.

Therefore the determinant formed by the Lagrange brackets in equation (51)

is antisymmetric and the diagonal elements are zero.
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(A discussion of the time independence of the Lagrange brackets and

Whittaker's method for evaluating them are contained in Brouwer and

Clemence's text in some detail and hence w'ill not be reproduced here.)

The equation which is used to compute the necessary Lagrange brackets

i823

L) 0¾G) + H (52)
ejej eis eJ

where n is defined in Xepler's Third Law / n 2a 3 , M - nt, L =\/r7,

G = /ta(l-e7), and H - Vga(l-eZ) Cos i. In addition we shall define

a - el, e = e2, i e3'W e4,-C-= e5, and e6. The only non-zero

brackets then are

e19 e = fai Uj= - n a =1 -eT a 5a41  2 7 (52a)

feL e5 J = /.a J -= na V7  cos i = - 2, 7 (52b)

L-l1 e6  -= a , J6 =2 - na = -C 7S (52c)

e2' e 7 = ZWJ - na 2 e - [, 27 (52d)

Z 2 e 7 = -s na2 e cos i 3 - 7 (52e)

Le 3 , e 5.7 -5 ,4&7 -na2 sin i = -T1:i:, e7 (52f)

Substituting these into the six equations represented by equation (51)

gives the following set of equations

- na dt - na C087 cosi d- na dt- Ya (53a)

na e dw+ na2e cos i dX )R
-+ dt te (53b)
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na sin i -e7 Ai. ) R (53c)
dt %i

X na da na2 e de R (53d)

2 ~2 Cos ida na e cos i de 2 . . 2 di
) na l-e dt dt - na -e sin=e (53e)

nda R
d n t D Tdr (53f)

The above equations can then be solved for the time derivatives of the

elliptic elements. Equation (53f) yields immediately the time derivative

of the semi-major axis as

da 2 )R
dt- = -na TM (

remembering that can be replaced by for a given epoch. Likewise

equation (53c) yields the time derivative of the right ascension of the

ascending node as

dCIA (55)

na vl-e sin i

The other equations for the time derivatives of the rest of the elliptic

elements follow from appropriate substitutions in the other equations and

are

dW = e - cos i R (56)

Tt= na2 e Fe sini -

dtnaab _e (57)i

de 2L )R l 2  LR
(57)

dt n a l na2  'be
T na2e 'R ae _
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di Cos i 1
(59)dt =~

na2 sin i V1-e( na2 sin i T*()

If we remember that d6= d n, equation (57) can be re-written as
dt t

dM n - 2 _R _R (57a)
dTTn na a na2e e

where it should be noted that n appearing as the first term in the above

expression is itself a function of time as can be deduced from equation

(54) and the fact that

dn n da
dt 2 a dt

Substitution of the disturbing functions Rl, R2 I R3 9 or R4 into the above

equations will produce first order secular, second order secular, first

order long periodic, or first order short periodic variations of all of

the standard elliptic elements.

Elliptic Elements as Functions of Time. In order to simplify the

long periodic part of the disturbing function, and because we are primarily

interested in short periodic effects on the elements we will ignore the

cos 2W term which appears in equation (39) in this work, and rewrite the

equation as

R G3 -G J3 (r Pat) sin i (4 sin2 i - 1) e (1-e2 5/s2 inUa] (39a)

It should also be noted that = 0 for R equals R1, R2, R 3 or R4 since

tesseral harmonics were not included ii the force function expansion.

Upon examination of equations (54), (55), (56), (57a), (58), and (59), in

conjunction with the expressions for R1, R2, R3, and R4 it is found that
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the semi-major axis exhibits only short periodic effects, eccentricity and

inclination exhibit both long and short periodic effects, mean anomaly ex-

hibits secular and short periodic effects, and argument of perigee and

right ascension exhibit secular, long periodicand short periodic effects

due to the axially symmetric model of the gravitational field of the earth.

An example of the calculation of the elliptic elements as functions of time

will be given using the equation for the time derivative of the inclination

di cos i R

dt na2 sini (59a)

Since R and R2 are by definition functions of neither v or by L i °

R2
WO 0, and

GM J (r /a4 ) sin i (i sin2 i - 1) e (1-e2y)5/2 costs]

and

1W 2 2 ) (ri/a3) [ (a/r)3 sin2 i sin 2 (v +'))

since (a/r)3 is a function of v only. Therefore

di cos i +R ]R4
tna2 sin i 41-e )W

and

di GM cos i ) sin i ( sin2 i - 1) e (1-e2y5/2

na sin i

cos £ - l J2 (r /a 3 ) (a/r)3 sin2 i sin a (v +w)] dt. (60)

In order to facilitate the integration of the above equation, it is useful

to substitute
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t a3/2 )2 (l-e 2 )d
dt = aS/ (a/:rE)2  51( 5/ si 2  d u

* EM 3 J2 (1 - 5/4 sin i)

when integrating the long periodic part of the inclination equation and

to substitute

dt 3 dM
n

when integrating the short periodic part of the equation for the inclina-

tion. Upon making the above substitutions in equation (60) we obtain

di = 2)J3IJ2 (x /a) e ' 5W

r,,a)2 sin 2 . (ar)32 J sn2 (a/r sin 2 (v +Uo) dM (60a)

the first term of which is readily integrated, and the second term of which

can be integrated with the aid of equations (36a) and (56b), for p 3

and q = 2.

Since in this work we are considering only first order perturbations,

the solutions for the orbital elements will be of the form

a = a0 +Aa 1

e = e0 +Ae 1

i = i0 +AiI

LA =bAEPOCH +WAt +A 0l

J =PPOCH +-St +A

N = MEPOCH + Mt +AMl
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where the A's represent the first order periodic corrections and the zero

subscripts indicate the constants of integration for the particular ele-

ments. The quantities %EPOCH'nL and 'EPOCH are the values of the
EPC'EPOCH' 1 1 PC

argument of perigee, right ascension,and mean anomaly for t = o and from

which periodic terms have been subtracted. Consequently, in this approx-

imation, it is permissible to substitute a , e0, and i0 for the elements

which appear as coefficients of the partial derivatives in equations (54),

(55), (56), (57a), (58), and (59). The substitution of these integration

constants for the semi-major axis, eccentricity, and inclination makes the

integration of equation (60a) and the other orbital element equations

comparatively simple.

Upon integrating equation (60a) we then obtain

i-i 0 + X ( 3/J2) (rn/po) eo cos i0 sin uj

+E J2 (r/po)
2 sin 2 io[e cos (v + 2w) + cos 2 (v + w)

+-e c Cos (3v + 20)] (61)350

where p = a (l-e2) and is defined as the semi-latus rectum of the in-

stantaneous ellipse. Similar procedures are used to integrate the other

equations for the variation of the elements, which may be found in the

literature24. The results are written below for the other elements.

The equation for the variation of the semi-major axis is

a + 3 32 r .(1- 3 sin2 i) [- 1 (1_e2)3/2 + 3 (1 + e2)
0 a (+ -e2)3  2 v 3 0 5 2 0'

+ (e + J4 e3 ) cos v + 36 e2 cos 2v + 1 e 3 cos 3V1



+ sin2 i e3 cos (v + 2W) + 8 e3 Cos (v - 2W)

+ (1 + S e 2 ) Cos 2 (v + w) + I e3 Cos (3V + 2u)

+ eo cos (4v + 2W) + 008 (5v + 2O) + e2 cos 2W]

+ 4 e sin2 i [cos (v + 2w) + oos (3v + 2Wi)j

The variation of the eccentricity can be written as

e= e - 3/J2) (rj/ao) sin io sinWJ + e

where the short periodic part e5 is defined as
/1

es = 3 J (r/po) 2
52 2 o (1 - 3 sin2 i ) [- (1-e2)3/2 + 1 (1

[ e 0 3e0

+ (1 + 3' e2) cos v + Z e co0s 2v + 12 e2 cos 3v

+ sin2 io ( + 36 e2) cos (v + 2w) + 16 e cos (v - 2W)

+ (91 + 3 e ) c08 2 (v +w) + (4 + -6 e2)
0

+ -e cos (4v +2W))+-1e2Cos (5v + 2t0)
8 o 16 0

I J(/2 sin i02 2 (,/ao (1-e 2)
I 0cos (v + 2) +

Cos (3v + 2W)

+ 3 e Cos 2 }

21 C8s 2(v + W)

Cos (3v + 2W) .

The mean anomaly variation is

1 . + J2
1 + 2 J2 (rE/po) .(i

. sin2

2

0

t + MS
(64)

where t represents the time after epoch and the short periodic part M1 is

given by

37

(62)

(63)

+ 3 e2)2 o

M = CH

(63a)

i ) AFL --e- 70 0
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M = I J (r . PO) 2 | (1 -
s 2 2 rep, 01

+36e sin 2v+-e2 sin 3v
0 v-r1 2 0

I sin2 ie) (1 - Y4 eO) sin
2 si 0) 1( 07

+ sin2 i
0

(34A + e2) sin (v + 2W)

-76 e2 sin (v - 2L) + (- 1 + 78 eo) sin (3v + 2W)

-. eO sin (4v + 2W)-- e sin
8 o 16

(5v + 20)]} 0 (64a)

The variation of the right ascension of the ascending node is given by

Q'QEPOCH +Qt - 3(J3/j 2) (rR/p)
e cos i

0 0

sin i
0

cosO +Qs

S

where t is again the time after epoch, Qis given by

- 9 9 (r/&a)7/2 Cos io

Q= - .9596 (1-e) 22

- o48778 (rR/aO )11/2
- 0.0487782 4

0~~

cos i
0 (1 - z sin2 io) (1 + 3 e2)

expressed irr Ulits of degrees per day, and the short period variationQS is

Q8 = - 2 J2 (rE/po) 2 cos ii [ (v-M) + eO sin v - A eO sin (v + 2W)

- 3h sin 2(v + W) - 6 eo sin (3v + 2W) .(65b)

Finally the argument of perigee variation is given by

J = UEPOCH + 6Jt - A(J3/J 2 ) (rE/po)

'2 2 2 .sin i - e cos i
0

e sin i
0 0

a

Cos z) + L)
5

where again t represents time after epoch, u) is given by

V

(65)

(65a)

(66)

[
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(rE/a )7/2 (5 Cos2i -
(;J = 4.9798 (° o2

(1-e0)2

+ 0.097555 (rE/a1) C [1 - sin2 i+4 sin (66a)
(1-e 2)4 8  0 60 6a

expressed in units of degrees per dayand the short period variation WS is

S 22J Eor ( 2 sin i0) [(V - M) + e sin v]

+ (1 - - sin2 i) ( e) sin v + h sin 2v+ 1 sin 3V2 o e 6e 120 iv

. 2
15 2 sin i)

- 3 o 16 e sinf 10+ 4 e )sin (v÷+2t0)

+ 16 eo sin i sin (v - 24 -2 (1 -2 .in2.in sin 2 (v +wU)si 0 Sl V.~j\ 2 Sf 10)

+ 7 s2 e - e + 48 e sin i ) sin (3v + 2)

+ sin2 i sin (4v + 2o) +1 eo sin2 i sin (5v + 2W)p (66b)

In equations (61), (62), and (63), a , e , i0, represent the constants of

integration; in equations (64), (65), and (66), MEPOCHPQFPOCH' and WEPOCH

represent the values of mean anomaly, right ascension, and argument of

perigee at epoch (t = o) from which periodic perturbations have been sub-

tracted.



CHAPTER IV

MODEL ACCURACY VERSUS SYSTEM ACCURACY

Measurement of Satellite Position Errors. Measurement of satellite

position errors along the orbital path involve first the construction of

what we shall call an error plane normal to the reference orbit plane.

This is accomplished by constructing a unit vector normal to the plane

of the orbit and a unit vector in the direction of a line which passes

through the center of the earth (see figure 4). The vector cross product

of a unit vector along the line of nodes in the direction of the ascending

node with the position vector from the center of the earth (which here is

taken to be R1) produces a vector normal to the orbital plane. Therefore

N x R 1

A =1-' x (67)

where N, R1 , and A are unit vectors, and A is the vector normal to the

orbital plane. A unit vector normal to the error plane is then constructed

from

II x 9l (68)

Once the error plane is determined, we can measure satellite position

errors in this plane between an unperturbed or reference orbit and some

other orbit which we shall call the perturbed orbit. In figure 5 orbit

1 represents the unperturbed or reference orbit and P1 is the point where

this satellite path intersects the error plane; orbit 2 represents the

perturbed orbit and P2 is the point where this orbit intersects the error

plane.
40
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FIGURE 4 - CONSTRUCTION OF ERROR PLANE

FIGURE 5 - UNPERTURBED AND PERTURBED ORBIT PATHS
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In the computational procedure for calculating these position errors,

we begin with a set of unperturbed orbital elements at some epoch, repre-

sented by the position vector Ro in figure 4, and we also have a set of

perturbed elements at this same epoch, represented by a slightly different

value of R . The unperturbed true anomaly at this epoch is then updated

by some arbitrary small increment and a corresponding time difference is

computed from equation (18). Using this time difference the argument of

perigee can be updated using equation (16), and longitude of the node at

this time can be computed from equations (23a) or (23b) once GHA has been

updated and regression during the elapsed time has been computed from

equation (15). Assuming the semi-major axis, eccentricity, and inclina-

tion are essentially constant during this time interval, the coordinates

of this point, and hence the position vector RIl can be calculated using

equations (41), (42), and (43). The vector N can be computed from

N cosin i - sinAn a (69)

and then vector A can be computed from equation (67). The unit vector

normal to the error plane is then calculated from equation (68). This

procedure establishes the error plane at this time, normal to the orbital

plane, where the point P1 is given by the components of R1, namely X1, Y1,

and Z1.

(It should be noted here that the above updating is done using only

a very approximate model of the earth's potential.)

The perturbed true anomaly is then updated by the same small incre-

ment and the corresponding time difference is again computed from equation

(18). All of the orbital elements are then updated according to the first

order model of the earth's potential using equations (61), (62), (63), (64),
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(65), and (66). This updating procedure involves first the computation

of the constant set of elements a , et i VLAJ and Q CH0 0 EPOCHS EPOCH'aI&KPH

from the given set of perturbed elements at epoch, using this given set

as a first guess for the constant set and performing an iteration process

until successive constant elements are within a pre-determined tolerance.

Having obtained this constant set, the argument of perigee and mean anom-

aly can be updated approximately assuming only a first order secular vari-

ation for them. The mean anomaly can then be converted to true anomaly

and a first guess for all of the updated elements for the given time in-

terval can be calculated from equations (61), (62), (63), (64), (65),

and (66). This computation produces more accurate values for the argument

of perigee and mean anomaly, and having again converted this more accurate

value of mean anomaly to true anomaly, we can begin an iteration process

by substituting the successively more accurate values of argument of peri-

gee and true anomaly into equations (61), (62), (63), (64), (65), and (66).

This iteration process is terminated when successive values of each of the

updated orbital elements is within a pre-determined tolerance. This final

set of updated perturbed elements can then be substituted into equations

(41), (42), and (43) and in general will produce a point PI (see figure 5)

which does not lie in the error plane. In addition, the time at which the

perturbed satellite reaches the error plane will differ from the time of

arrival of the unperturbed satellite by some small amount. The point P 2

is then adjusted to the point P2 in the error plane by adjusting the time

difference between the epoch time and the time of arrival of the perturbed

satellite in the error plane until the distance of the perturbed satellite

out of the plane is lees than a tolerance of 0.01 mile. Once this is
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done, the errors between the two paths in the error plane can be computed

as follows:

1. The cross track errorAx, is the component of the vector 1
2 1

along the vector A and is given by P2 P1iA.

2. The height errorAh, is the component of the vector P2P1 along

the vector R and is given by *!
1 21 1

3. The range error, AR, is merely the square root of the sum of the

squares of the cross track and height errors.

4. The time error, At, is the difference between the time of arrival

of the unperturbed and the perturbed satellite in the error plane.

The above procedure is then repeated by incrementing the unperturbed

and perturbed true anomalies for one or more complete revolutions of the

unperturbed and perturbed satellite paths. Since the difference between

the epoch anomaly and some other anomaly at a later time, corrected for

the rotation of perigee, is defined as the central angle, this enables

us to plot height, cross track, range, and time errors as a function of

central angle for one or more revolutions.

The procedure outlined above for the construction of the error plane

and updating the unperturbed elements was developed and adapted for the

Naval Research Electronic Computer by J. A. Buisson and H. G. DeVezin of

the Space Surveillance Branch and the updating procedure for the perturbed

set of orbital elements was developed and adapted for the NAREC by the

author in order to incorporate first order oblateness effects on all of

the orbital elements.

System Angle Perturbations. When speaking of system angle accuracy,

it has been found experimentally from optical measurements that there is
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a constant error in the system measurement of direction cosines when the

error in angle is plotted against the cosine of the angle. This error in

system measurement is usually spoken of in terms of some nominal number

of degrees at zenith, which for example could be 0.010. This means that

in order to compute a theoretical perturbation in the system angle meas-

urement consistent with the nominal system accuracy we take the measured

angle, convert it from degrees to radians, subtract the sine of 0.010 (or

the cosine of 89.990) from it, take the arc cosine of the resulting number

and this is what we shall call the perturbed angle. This procedure enables

us to generate an unperturbed and eight perturbed sets of orbital elements

from the orbital element computation procedure outlined in Chapter I. The

eight perturbed sets of elements are the result of perturbing one of the

eight input angles at a time. By updating these eight perturbed sets and

the unperturbed set in the manner cited for the reference orbit in the

previous section (that is we assume a, e, i are constant and tnat WQ,

and M exhibit only first order secular variations) we are able to generate

errors in satellite position due to system measurement accuracy.

First Order Differential Corrections to the Elements. The functional

form of the orbital element variation equations is

a =F 1 (at, eo, io, vPLn)

e F2 (ao, e0, i0, vow)

i =F3 (a0 , e0, io, v ,W) (70)

Q F4 (a 0 , e0 , io QEP0CH' s W, My t)

W= F5 (aO0 eo0 1ovWEPOCHP vW, M, t)

M F6 (aO, eo, io, MEPOCH' VPW9 t)
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where we will assume that the elements a0 e 0 iO'EPOCH' EPOCH' and

M have been computed from a measured set of elements for some givenEPOCH

epoch.

We would like to have the coordinates of the two observed points on

the orbital path in the form

I 1 (a 0, %' i EPOHQEPOCH MEPOCH, tl)

Y1 = Y1 (a0, e0 , i., WSPCHQBPGCH 1 PCH' 1 )

Z1 - 1 (a 0 , e 0  it0 '0EPOCH' EPOCH 1 o' )

X2 M X 2 (a., e., 'o'-)EPOCR9QEPOCH1 MEPOCH' t2) (71')

y31 Y2 (a 0 , eo, io0 ,LEPOCEY 2 EPOCHP MEPOCH5 t2

z2 = Z2 (a 0 , se ioiUEPOCCH? "EPOHt tf)

Consequently, if we were able to write our coordinate equations in the

form of equations (71), the first order differential correction solution

would involve solving the following six equations for the six unknowns

da., de 0 dio', d% QE, ad dMEwhere for simplicity we shall write dj,

dQE, and dMK for d0 CHQOCH, and dMEPOCH?EPOCH

X1  ,xX1 .X X bX1dy 2 a-= da + 5-- deo + _ il dio + , dW + dQ dME

ao eo o E -6M

dy -= da + -d deo + io ° E--d i LJ dME

l~ e o da bM4 )o 0 0E E

(72)

d X 2 gd2 d X2 2i ?4X 2dx2 aa- dao + ae- deo + Er dio + saW dOE + ag doe a dM



bY2tL2 ada

- za

d8 a--da
'"2 - ba0

+ b2 de
beo 0

+ de +
be 0

+ - di
bi 0

dUi + r1 7dQ-B+ a~ N

bz2dll + aN- dNdi

where the partial derivatives of the coordin tes with respect to time do

not appear since we assume time is measured correctly and consequently

dt1 - dt2 = 0.

Unfortunately, the actual functional form of the coordinate equations

is x1 = x (ale 1l i.1 9i)Ql V1)

Y- ' I (al, e1,

Z1 = Z1 (a 1 ., e1 ,

=2 = X; (a2 9 e2,

2 Y2 (a 2 9 e2,

i l , 1 991, I1 )

il'l U 3 0-l)

i2,)29,Q2, V2)

i2 ,0)2 vQ 2 , 2 )

2 3 Z (a 2  e2, i2 , c 2  v2 )

so that the first order differential correction equations are of the form

dx bx1
1 -ba

bz 1

1
dz =- Z

1 ba

da X1I

IC~ -T be 1

da + -1 be1

dal + Z

1 be 1

I I
bxl a6xi

del + Ei- di, +d a WI

*Yt
de1 + aa- di, + zie delt1

de1+ di l+ adL9

+ 1 dQl+

+ a~ dQ1++ZM

1

6vl 1

t--d
2baada 2

bx2

b ae2

d x2
de +- di22 a2 2

47

(73)

* dv
1

b, 1dv
by 1 1

(74)

2x2
2 + 6a2dQ+ - dv2

. + LT2
0 bL4�

bz2
0
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4 =

dY2 = ba 2  2

dz aa2 da
2 b !a 2 .2

de2
a'2

de 2

di2

di + -+ bY2 dQ2 + aV2 d,,
5 + -V2

2 + 2 dv

where the differentials daU, de,, dil, d&1 dQt dvq da 2  de -d 2

dQ2 dv2 can be evaluated by forming the total differentials of equations

(70) at t1 and t2, and by transforming dvl and dv2 to d2 and d u

the relationship

dv( 1 + e coB s 2
(I- e2 )32d

+ (2 + e cos v) sin v
(1 - e2)

applied at t1 and t2, which is the equation relating the true and mean

anomaly in perturbed motion. The total differentials of equations (70)

to be applied at t1 and t2 are

bFl
da - da

= a;a0
+.-de

'6e0 0
+ -di

bio 0

d Fl

%a . U U

de =
0ba

diF3

bF2
da +

0

dao+

dQ= aa- da0
a0

'bF2
de +-di0 ~i 0

0

a -F
de + 3- di

0bi0 0

bF4
de + FdiO di1 0

+ a-F2 dv
+V-d

a dLF2

d -F
dv + a) d L)

+ 64 do+ -% dv

d ; 4M

aF
dqi + t: dv

6aF
dL.) +l

de (75)

(76)

dW = -6
0eFda + K

° 6e0 de dio 'bio

I

+ -bY2
bu�

+n'but dll
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dK ba da% + ET o d + aoF dio + ME

+b dv + g do)

where again the partial derivatives of the elements with respect to time

do not appear since it is assumed that dt.- 0. The solution of the prob-

lem to obtain first order differential corrections, once having applied

equations (76) at t1 and t 2, is to substitute the resulting equations for

da1, de,, di, ,l 1 , dWl , dMl da2 , de2 9 di 2 9 4 2, 9dQ, and dK2 into equa-

tions (74) and to replace dv1 and dv2 in equations (74) by equation (75).

The result of this substitution will be the set of equations (72), which

must then be solved for da , de , di0 , Hd4,dQ, and dM,-

This is accomplished by evaluating dx2, dy2, and dz2 and by assuming

that dx 1, dyl, and dzj are zero as a first guess. The first guess for

values of dx2 , dy2, and dz- is obtained by calculating the difference
2 Y2 2

between the coordinates obtained directly from the observed direction

cosines at t2 , and the coordinates obtained by updating the orbital ele-

ments at t1, using an improved model of the earth's potential, and

substituting the resulting orbital elements into equiatins (41), (42),

and (43). After solving equations (72) for the differential corrections

to the constant set of elements, these results are then substituted into

equations (76) for t1 and t2 and the resulting differential corrections

for the orbital elements at t1 and t2 are obtained. These corrections

are then added to the elements at t1 and t2, and the resulting elements

are substituted into equations (41), (42), and (43) in order to evaluate

new coordinates for the two times. The difference between these coordi-
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the two times yields new values of dxl, dyl, dzj, and dz The

above process is then repeated until the corrections to the position vec-

tors df 1and dR2 are within 0.001 mile.

These corrected elements can then be used as the perturbed set of ele-

ments, and with the elements obtained using an approximate model of the

earth's potential, as outlined in Chapter I, as the unperturbed or ref-

erence set, the comparison of these two sets using the procedure outlined

in the first section of this chapter enables us to produce errors in sat-

ellite position due to model accuracy.

This procedure was also adapted by the author for the Naval Research

Electronic Computer (NAREC) in order to evaluate the corrected set of

elements for many observed sets of data.



CHAPTER V

EXPERIMENTAL RESULTS

Experimental Data. In order to minimize the effects of other pertur-

bations and hence to maximize the effect of perturbations due to first

order gravitational anomalies, experimental data from the Vanguard I sat-

ellite was used in the computation of the experimental error curves for

the comparison of the measuring system accuracy and the model accuracy.

In order to generate curves which would display cross-track, height,

time, and range errors as a result of the accuracy of the measuring system,

the following procedure was used.

First a set of eight observed angles, obtained from two coincident

observations of the satellite along its orbital path, were used to derive

a set of unperturbed orbital elements, using an approximate model of the

earth's gravitational field as outlined in Chapter I. (These eight observed

angles consist of an east-west and a north-south angle for each of the two

observing stations on the first pass, and a corresponding set for the two

observing stations on the second pass of the satellite.) Then eight sets

of perturbed orbital elements were derived by perturbing one of the eight

input angles at a time, leaving the other seven angles unaffected, and

using the seven unperturbed angles and the one perturbed angle in the pro-

cedure of Chapter I to derive the elements. (This angle perturbation pro-

cedure was discussed in Chapter IV, and for these experimental data runs,

nominal system accuracies of 0.01p, 0.05°, and 0.10 at zenith were used.)

The unperturbed or reference orbital elements were then updated using an

approximate model of the earth's gravitational field and were used to

51
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construct the error plane at 108 anomaly intervals along the orbital path;

each of the eight perturbed sets of orbital elements were also updated in

a similar manner and the errors between these sets, expressed in terms of

cross-track, height, time, and range errors in the error plane, were then

calculated for the 10° anomaly intervals along the orbital path for one

complete revolution of the satellite. The result of this procedure was

eight sets of error curves inAx,,Ah, At, andAR corresponding to each

of the eight perturbed sets of angles. In order to evaluate the effect

of a system angle error being present in all of the eight input angles at

the same time and in order to avoid the effect of canceling errors, we

calculated the square root of the sum of the squares of each of the errors

at the 10° anomaly intervals along the path forAxAh, At, andAR. The

result of this computation was one set of error curves inAx, Ah, At, and

AR for each of the nominal system accuracies used.

In generating curves which would display cross-track, heights time,

and range errors due to model accuracy, a similar procedure to the above

was used.

In this instance, the unperturbed or reference elements were the

same as in the previous procedure and were updated in the ame manner in

order to construct the error plane at 10° anomaly intervals along the

orbital path. However, the perturbed elements were derived by differen-

tially correcting the unperturbed set, using the first order oblateness

model of the earth's potential. This perturbed set was then updated using

the same first order model, and the two sets were compared for the same

10° anomaly intervals for one complete revolution of the satellite. The

square root of the sum of the squares of each of the errors at 10° anomaly
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intervals along the path were calculated here also.

The error curves for a typical set of data, displaying cross-track,

height, time, and range errors appear in figures 6, 7, 8, and 9. The

curves labelled A in these figures correspond to the 0.01° angle accu-

racy, those labelled B correspond to the .0.050 angle accuracyand those

labelled C correspond to the 0.10 accuracy. The D curves in these fig-

ures represent the errors due to the model accuracy. The ordinate axes

in the cross-track, heightsand range error curves are expressed in units

of normalized statute miles, each interval being one-tenth of a mile; the

ordinate axis in the time error curve is in normalized seconds, each in-

terval here being one-tenth of a second. The abscissa axes in all of the

curves are expressed in 10° intervals of central angle from the epoch

pass 6f the satellite. Computation of the actual value of the amplitudes

of any of the curves is effected by multiplying the normalized ordinate

value by the appropriate scale factor of the curve of interest.

Conclusions. The conclusions which were drawn from the typical data

displayed in figures 6 through 9 and the other data which was run were

that if the measuring system possessed nominal accuracies of either 0.05°

or 0.1° at zenith, the errors produced by the system would be approximately

-ten times the errors produced by the model when plotting these errors for

one complete revolution of the satellite. This~ can be seen by noting the

maximum values of the At andAR error curves for one revolution. The max-

imum value of theAR curve for 0.05 is 23.8 miles and for 0.1° it is 47.5

miles; the maximum value of theAR curve for the model is only 3.4 miles.

Similarly the maximum value of the At curve for 0.05° is 20.6 seconds and

for 0.10 it is 41.1 seconds; the maximum value of the At curve for the
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model is only 1.8 seconds. Now if the measuring system possessed an ac-

curacy of 0.01° at zenith, the errors produced by the measuring system

would be of the same order of magnitude as the errors produced by the

model. Again considering the maximum values of the At andAR error

curves for one revolution of the satellite, it is seen that for 0.01

At Mas a maximum value of 4.5 seconds and AR has a maximum value of

5.2 miles; for the model accuracy curves At has a maximum value of 1.8

seconds and AR has a maximum value of 3.4 miles.

Therefore, if the measuring system is capable of an accuracy of

0.01° or better at zenith, and we wish to derive a set of orbital ele-

ments from two observed points on the orbital path of the satellite and

predict for small intervals of time (of the order of one revolution of

the satellite) using these epoch elements, the model of the earth's

gravitational field which we use should at least include the first order

oblateness effects discussed in this work. Conversely, if the accuracy

of the measuring system is more closely related to the 0.05° or 0.1- nom-

inal accuracies, then the procedure for deriving a set of orbital ele-

ments from two observed positions of the satellite, and the subsequent

updating of these elements for small intervals of time, could be effected

using a procedure similar to that outlined in Chapter I of this work.



APPENDIX A

OPTIMUM VALUES OF XYZ

In the procedure for computing statistically optimum values of the

coordinates we begin with the set of equations

X =X +8X

Y =Y +Ay (I)

Z = z+z

where X, Y, and Z are first order approximations to the coordinates calcu-

lated from equations (9), (10), and (11) of Chapter I, X , Y , and Z.

represent second order coordinate approximations*and&x, AY, and Z are

small corrective terms. The equations for the cosine of the north-south

angle and for the cosine of the east-west angle can be written in the form

cos = F1 (X +X, Y +LY9 Z +AZ)

(II)
cos 9 F2(X +x, Y +FY9 Z +Az)

where Oi represents the north-south angle, 0i represents the east-west

angle, i = 1 designates the eastern receiving station,and i = 2 designates

the western receiving station. If we then make a Maclaurin series expan-

sion about the point AX = O. AY = OAZ = 0 using equations (II) we obtain

equations of the form

Cos A + BiAX + CiAY + DiAZ
(III)

cos 9. A.+ BAX + CBLMY + DXY A+ Z1 1 1 1 1i

59
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where higher order terms inmAX, AY, and.AZ are neglected since the correc-

tive terms are assumed small. We can then form a function

2 20 2q 2 fAl + B1Ax + C1 AY + D 1AZ - COS O1m-

12 2
+ 12 f2 + B2 AX + C2 AY + D2 AZ - Cos I2V)
26  LA+ (IV)

+-2 Al + B1 AX + CLAY + D1 AZ - Cos 2i;

+ 1 A2 + B2 AX + cAY + DAz -Cos 9 2

which is nothing more than the exponent of the exponential in the expres-

sion for the normal probability density function. In equation (IV) Cos 00m5

cos 02' cos Q}, and cos Q are the measured values of the direction

cosines from the north-south and east-west antenna fields, the quantities
I I * I

Ai, Bi, Ci, D., A., B., C., and D. are given, and the sigma values d and
. 1 1 1 1 1 1 11

67 are known from optical calibration of the measuring system. In order
2

to maximize the probability that a satellite will be in a given position

for a given time using the measured direction cosines at that time, we

must minimize the function in equation (IV). This requires that we form

the expressions

a 0=; a 0; 6AZ= - 0
which will produce three linear equations in the three unknowns AX,AY,

and AZ. Solving equations (i) these terms are then substituted into equa-
* 1. t

tion (I), and the above procedure is repeated using X , Y , and Z in place

of the original X, Y, and Z until the square root of the sum of the squares

of these corrective terms is within some arbitrary tolerance.



APPENDIX B

DETERMINATION OF ECCENTRICITY FROM TWO

OBSERVED SATELLITE POSITIONS

The measurement of two positions of a satellite, the central angle

between these two position vectors, and the semi-major axis of the orbit

yield sufficient information to determine the eccentricity of the satel-

lite orbit. Using the defining equation for a conic section at each of

the positions of the satellite we can write

1 1+e cos v

R-a (.1-e2) i
2 l+e cos v2  (II

where v2 ° v 1 oCis defined as the central angle between the two posi-

tion vectors. Therefore we can write

R (1-e2
R1 =+e cos v2 -oL (III)

and from simple trigonometry we know that

cos (v2 C-) cos v2 coso( + sin v2 sinoL (IV)

and sin v 2  2(v)

From equation (II) we obtain

a (l-e2) - R.
Cos V2 R (VI)

2

Substituting equation (VI) into equation (V) we obtain the result

61
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sin v = 1 V-(1-e2) / aR2 - a2 (1-e2 ) - R2 (VII)

and now we substitute equation (IV) into equation (III) to obtain

R1 + eR rosv v2 cos i + sin v 2 sinO7 = a(l-e 2 ) . (VIII)

Then we substitute eqjuations 'VI) and (VII) into equation (VIII) and group

together the terms with e and e2 as coefficients. After some algebraic

manipulation we obtain an equation of the form

Ae4 + Be2 + C = 0 (IX)

where A = a 2 (R2 - R1 ) 2

B = - 2a 2  - 1 2+a (R1R2 R 1 1R2) (l-c2sR2)

2 2 2e-R R2 sinoC

C = a2 (R 2 - R1 )2 +2(l-CS00.) g R 2 - a (R1R2+ R1R2)7.

The solution of equation (IX) is

-B + VB72 -AC

e2 = 2A-(x)
2 2

Equation (X) yields two values for e2; for each positive value of e 2, take

the positive square root, and these are the two eccentricities.



APPENDIX C

DERIVATION OF ORBITAL ELEMENT V'ARIATION

EQUATIONS USING THE PFAFFIAN EXPRESSION

The derivation of the Pfaffian expression god - d6 = O and a

discussion of the application of Pfaff's method to celestial mechanics

is found in the article by Bilimovitch; a general discussion of Pfaff's

expression in analytical dynamics may be found in the literature. 25

The expressions Od d are defined as

n

d Z Pi dci - Hdt (I)
i=l

n

0 aE Pi qi - E t (II)
i-i

where p generalized momentum

qj = generalized coordinate

t = time

H = Hamiltonian of the system.

The & operator indicates changes in initial conditions and the - opera-

tor implies changes along a trajectory. Now assume we have picked a

transformation for which

P = P (z 1 Z2 , .- * z2n; t)

q = q (zl, z2, ... Z2n; t).

Therefore we have
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2n

Od Zi (zl' Z2' z2n; t) dzi + Hdt

2n

' Zi (Z2 Z2, *- Z2n; t) Szi
i-i

2n bd_0
and & dd- d.=Z(a - dZi) Ezi + ( F) t u O.

idl
Since the above variations are arbitrary the coefficients of szi and . t

may be set equal to zero, and we obtain

(-Q - dZi) = ° (IV)
ibzl

F ci wO (v)st- d.? - 0 M

Equation (IV) is the important equation to be considered in the derivation

of the equations for the variation of the orbital elements, In the disturbed

two-body problem the Pfaffian expression is written as

0d - Ldl + Gdg + Hdh + Fdt (VI)

where 2 a1g + R

and R = the disturbing function. The quantities L, G. H. l, g, h are the

DeLaunay canonical elements and are defined as

LI .V a 1I n (t - to)

G J/ga(l-e 2 ) g (VII)

H Tg\/a(l-e')" Cos i h2Q.
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Substituting equations (VII) into equation (VI) we have

d d= dl + Vi Ua(l-e (d + cos i &0

+ (- + R) dt. (VIII)

Using equation (VIII) the equations for the variation of the orbital

elements can be derived immediately. For example, if we let = 1, then

Z, = L, as can be deduced by comparing equations (III) and (VI), and there-

fore equation (IV) is written as

a~i - d( ) = 0 .(It)

From equation (VIII) it is obvious that

'60d 6R d
al = aldt

so that equation (IX) becomes

R dt - dR'(a ) =0. (IXa)

From equation (IXa) the equation for the variation of the semi-major axis

is immediately derived as

da 26R (x)
dt=n a

Similarly the equations for the variation of the other orbital elements

can be derived by letting 5 = i, Z3 =W9 z4 =Q9 z5 = e, and z6 a a. The

corresponding equations derived for the above sequence are the time deriv-

atives of the right ascension, eccentricity, inclination, argument of

perigeeand mean anomaly respectively.
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