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Calculation of the Monostatically Reflected Velocity Potential
in the Far Field of Certain Finite Rigid Bodies

A. J. RUDGERS

Propagation Branch

Sound Division

An existing theory of acoustic reflection, applicable in the far field and embodying the
Kirchhoff approximation, is used to calculate the velocity potential of the acoustic wave
monostatically reflected from certain rigid bodies. Where possible, a reflection summation
formula is applied in these calculations that is written in terms of a few simple geometrical
parameters of the reflecting body. The limiting forms of the summation-formula results
are found. These forms are identical to results which can be derived according to a well-
known reflection integral. A comparison of the approximation of the reflection summation
formula to the reflection integral is discussed for certain bodies. General formulae are
derived which may be applied to any reflecting object whose surface can be generated by
a conic section, or to segments and frustums of such objects. A limitation of calculation
schemes based on the summation formula is discussed and illustrated by calculating the
velocity potential of the wave reflected from a short, rigid, right-circular cylinder ac-
cording to the reflection integral. Results of the calculations are discussed in terms of the
geometrical parameters employed in the reflection summation formula.

INTRODUCTION

The calculations reported here are restricted to the case of acoustic reflection from a smooth
rigid body insonified by a spherical harmonic wave. The spherical wave originates at a point
source located at a very great distance from the reflecting object. Only objects having no con-
cavities are considered in order to exclude the problem of multiple scattering. At some point
on the line passing through the source and the reflector, a pointlike or "probe" receiver is
located. This is also at a great distance from the reflector but need not be coincident with the
source. The line connecting the source, receiver, and reflector will be called the monostatic axis
since a collinear arrangement of source, receiver, and reflector is termed "monostatic." Only
certain orientations of reflectors with respect to this monostatic axis are considered. The velocity
potential at the receiver point, due to the presence of a reflector in the acoustic field of the
source, is calculated subject to one further simplification -the introduction of the Kirchhoff
approximation in describing the conditions which exist at the surface of the reflector due to the
wave incident upon it.

The analysis of monostatic reflection from rigid objects of arbitrary shape, subject to the
above conditions of distant source and receiver points and to the restriction of the Kirchhoff
approximation, has been fully described by Neubauer (1). Some of Neubauer's analysis will be
outlined here, however, since the calculations to be described are based directly on certain
equations developed in his treatment of the reflection problem. In Neubauer's treatment, the
reflector, source, and receiver are referred to a normal plane, which is the plane that is per-
pendicular to the monostatic axis and tangent to the reflector surface (Fig. 1). The source
produces a spherically diverging acoustic wave of velocity potential (Pi, having speed c. At a
distance r from the source this wave is described by the expression

A
-i = A-exp[ik(ct-r)],
r

* NRL Problem SO1-04; Project RF 101-03-45-5252. This is an interim report on the problem; work is continuing. Manuscript submitted
March 30, 1965.



A. J. RUDGERS

NORMAL / N

PLANE INSONIFIED' SHADOW

I REGION REGION

Fig. I - The geometry of monostatic reflection from an object of arbitrary shape

where A exp (ikct) is the strength of the point source at a unit distance from the source at a
time t, and k, the wave number, is 21T divided by the wavelength X. The distance ri from the
source to the normal plane is considered to be great enough so that this spherical wave may be
treated as a plane wave in the vicinity of the reflector. In particular, this plane-wave assumption
consists of three conditions:

a. There is negligible divergence of the incident spherical wave in the region between the
normal plane and the reflector so that there is no variation in the amplitude of the insonification
from point to point on the object.

b. The wave normals in the incident wave are essentially perpendicular to the normal plane
so that the phase at the normal plane is related to the phase at an elemental area da of the
reflector by the distance Ar, which is measured from the normal plane to the elemental area and
is perpendicular to the normal plane.

c. The incident particle velocity 6 at da is related to the incident velocity potential pi by

i= iktpi.

Subject to the first two of the above conditions, the velocity potential of the wave incident on
the area-da is given by the expression

(p = aB exp(-ikAr),

where B = (A/r) exp(ikct) and a exp(-ikri). Using the third assumption and treating
each elemental area da as a simple source in an infinite baffle radiating through 27r steradians
whose strength is determined by the particle velocity of the incident wave (i.e., making the
Kirchhoff approximation), an expression for the velocity potential der of the wave reflected by
the element da to the receiver point is obtained:

d pr =- iaa'kB [exp(-2ikAr)] cos 0 da. (1)
21rr
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l-ere 0 is the angle between the outward-pointing normal of the element da and the wave normal

of the incident wave, rr is the distance from the receiver to the normal plane, and a' exp-

(-ikrr). Equation (1) has the form of a spherical wave originating at the element da. However,

several additional approximations are made in its derivation which are valid if the receiver

distance rr is sufficiently great:

a. When two arbitrary elemental areas having different distances from the normal plane are

viewed from the receiver point, the amplitudes of the elemental spherical waves arriving
from each are essentially equal.

b. When the reflector is viewed from the receiving point, the elemental spherical waves

arriving there from any two elemental areas differ in phase only due to the difference in the
perpendicular distances of the two areas from the normal plane. That is, the distance rr + Ar

determines the phase of the contribution from any elemental area.

Integration of Eq. (1) gives the total velocity potential of the reflected wave at the receiver due
to all the infinitesimal elements da:

iaa'kBf
i27rrB fs [exp (-2ikAr) ] cos 0 da. (2)

The integration is performed only over that portion of the reflector surface directly insonified

by the incident wave. The portion of the reflecting object in the geometrical shadow is assumed
to make no contribution to the reflected velocity potential. Since, geometrically, the quantity
cos 0 da is the projection of da upon the normal plane, the reflection integral given in Eq. (2)
may be written

iaa'kB f exp(-2ikAr) da' f Reflection(3

'P= 2r r face da Integral } (3)

Projection

where da' is this normal projection of da.
As a model of the reflection process, Neubauer then develops a finite sum which approxi-

mates the integral in Eq. (3). This is done in the following way. A rectangular coordinate system
is chosen (Fig. 2) having its X axis, which points from the source to the reflector, along the
monostatic axis and its Y and Z axes in the normal plane. The length I of the X axis which is
occupied by the insonified region of the reflecting object is subdivided into t zones by passing
sectioning planes at equal intervals of I/I through the object, all parallel to the normal plane.
These planes and the corresponding subdivisions of the object are numbered 1 through 11,
with the normal plane being designated with a zero. The letter p refers to an arbitrary member
of this family of subdivisions. For each p, the contour defined by the intersection of the pth
sectioning plane with the insonified portion of the object is projected onto the normal plane,
resulting in a family of i contours on the normal plane. The area between the (p-1) th and the
pth contours on the normal plane is designated as Aa,. Then Aa, represents the projection
of that portion of the reflecting object's surface that lies between the (p-l)th and the pth sec-
tioning planes. Since the distance from the normal plane to the p. th sectioning plane is 2, and
this length I is divided into equal intervals by the family of sectioning planes, the distance along
the X axis from the normal plane to the pth sectioning plane is p 11g. Replacing da' with AaI
and -2ikAr with -2ik pi/ll, and summing the contributions of finite-sized elements of the
reflector rather than integrating the effects of infinitesimal elements, Eq. (3) becomes a re-
flection summation formula given by the expression
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-II

-LI

Fig. 2 - The geometrical quantities involved in the derivation of the reflection summation formula (see Eq. (4) in

text). For clarity, the contours defined on the reflecting object are not projected onto the normal plane, but onto a

plane parallel to the normal plane at a distance ' from it. The family of projected contours on this parallel plane

is identical to the family of contours which would be obtained if the projection were made onto the normal plane,
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iaa'kB u AaLq e P {Reflection o

27Trr -:- ' (Summation Formula (4)

where the velocity potential of the reflected wave given by this summation formula is written

r(tt) rather than 'pr to distinguish it from the velocity potential calculated according to the
integral formula [Eq. (3)].

Other methods (2-4), often making similar initial assumptions, have been employed to cal-

culate the reflection from certain of the objects treated in this report. In general, though, such

methods differ markedly from those employed here, and while some correspondences can be
found between the formulae for reflection characteristics developed by others and those re-
ported here, this report will not attempt to make comparisons with the results of the various

other treatments. Properly made comparisons would be quite complicated because the impor-
tant parameters involved in the other treatments are usually very different from the parameters
involved in the reflection summation formula, upon which the present work is based. In general,
it is felt that the present treatment considerably simplifies the derivation of reflection formulae,
since in the case of the quadric-surface reflectors, their segments, and their frustums, all formu-
lae for particular bodies follow in a simple direct way as special cases of the general formulae
derived herein. Also, in the case of the finite-cylinder reflector, the approximations made are
not as restrictive as those required by descriptions published elsewhere.

REFLECTION FROM A RIGID SPHERE

The sphere of radius I is represented in Fig. 3. This figure shows the sphere as if it were
viewed in the XZ plane of Fig. 2. The sectioning planes define circular contours on the hemi-
spherical insonified portion of the sphere which are projected as circles onto the normal plane.
The quantity Aap' is the area of the annulus defined by the pth and the (p-1)th such circles
and is equal to the difference between the areas of these two circles. The area of the pth circle

Fig. 3 - The geometry of monostatic reflection from a sphere
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on the normal plane is identical to Ap, which is the sphere's cross-sectional area as defined by
the pth sectioning plane. The area Ap is readily determined with the aid of the figure and is
found to be

A, = 7T22 [p (/___P)2
]_

Similarly

Ap_, =7£r [1 - (1.- (P-I)) 2 ],

so that

IT P
Ae = Ap -A..= -- (2. - 2p + 1). (5)

Using this value of Aap in Eq. (4), the velocity potential of the reflected wave is given as

r(/ ) = 2 Z ( 2 tL - 2p + 1) exp -2ik ),
p=

1

which may be written

Pr(/L) = ( ( 2 . + 1) exp-2ik--77 -2 p exp(2ik (6)

The first summation expression in the brackets of Eq. (6) is the sum of a finite geometrical
series and is readily found. The second summation expression in the brackets, which involves
products of the type p exp[-2ik (p£]/l)], may be expressed in terms of a series of other
(geometrical) series and reduced to a simple expression as shown in Appendix A. For the
sphere of radius 2, the velocity potential (Pr (L) that is calculated using a summation approxima-
tion with j subdivisions on the reflector is then given as

(L)=(---B)(2)\( 2"[ ex1(122c-) 2 ]t2. [exp(-2ik 1)-
/k 2 p (2ikL

- [exp(-2ik1) - 1] [exp(-2ik L) + l. (7)

As the number of subdivisions A is increased, the velocity potential given by Eq. (7) ap-
proximates more closely the velocity potential given by the integral expression of Eq. (3).
In fact, by taking the limit of '0r(.) as A increases without bound, the reflection integral of
Eq. (3) can be determined in the same manner as a finite sum is used in analysis to define the

Riemann integral of a real function. When the limiting process is carried out on Eq. (7), the
expression

ioaa'B
r= lim (,r(A) = a [exp(-2ik1) + 2iki - 1] (8)

A' - 0 4krr
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is obtained. This expression is the same as that obtained by directly performing the integration
in Eq. (3). The modulus of this complex expression gives the amplitude of the reflected velocity

potential as

I'o,. =BI () (sin2 (k21) sin(2k2) + 1)1/2

r,- 2/\ (k2J) 2  k2 i ) (9)

This is a well-known expression for the monostatic reflection from a rigid sphere, and forms
similar to it are encountered frequently in the literature.

By calculating the difference between the modulus of 'Pr(tk), given by Eq. (7), and JOri,

given by Eq. (9), the degree to which the summation process approximates the direct integra-
tion can be found. Comparison is most easily made at values of the size parameter k2 equal to
integral multiples of 7r because, for k2 = nT, Eq. (7) yields

Ir(-)-B!_ c(~! , (n=l,2,3,..). (10)
I '( ) I = InI( )'n4 csc (10).

rr 2  A

Equation (9) then becomes

rr-- 2/ (11)

Equations (10) and (11) may be normalized with respect to their common coefficient IBu1rr (2/2)
to obtain the equations

IPo GO)I = csc (!iA) (12)

and

I(I= 1 (13)

which have a more useful form when making the necessary comparison. The number of sub-

divisions required to obtain a given degree of comparison changes as the size of the sphere

changes with respect to the wavelength of the insonifying wave. However, for k2 = n7T, the

value of Ipo(A.) I remains constant when the subdivision density D, that is, the number of sub-

divisions of the object per insonifying wavelength, is constant. Thus, for k2 = 2 7r, twice as

many subdivisions must be chosen as for kI = 7r if the difference between I'po(I.L) I and I0 oI
is to be the same. This can be proven in the following way. For k I = nIT, 2 is equal to nX/2.

But A, the number of subdivisions on the sphere, is equal to the subdivision density times the

radius of the sphere expressed in wavelengths, or

D() nD
X 2"

So Eq. (12) becomes

I Po~) GO 1(21r csc (-T (14)

Since the value of Ipo (p.) I depends only on the subdivision density D, the accuracy of approxi-

mation of the reflection summation formula is constant when the number of sectionings of the

reflecting sphere per insonifying wavelength is constant. While only a partial comparison of the
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summation and integral formulations of the reflection from a rigid sphere is effected when
the size parameter k2 of the sphere is restricted to a few discrete values, such a limited corn.
parison is nevertheless useful for determining the approximate number of subdivisions required
to make the difference between the results obtained from the two methods as small as desired
for a sphere of a given size. A comparison of Eqs. (12) and (13) has been published elsewhere (1)
for the case where n = 2.

REFLECTION FROM A RIGID ELLIPSOID

A calculation of the velocity potential of the wave reflected from a rigid ellipsoid, with one of
its principal axes lying on the monostatic axis, can be made in a manner similar to the one which

was made for the rigid sphere. Let the lengths of the principal axes of the ellipsoid be 21,,
2 22, and 223, respectively, with I, lying along the monostatic axis as shown in Fig. 4. However,
instead of placing the origin of a coordinate system at the intersection of the monostatic axis
with the normal plane as is shown in Fig. 2, let it be located at the center of the ellipsoid. In this
coordinate system the equation for the (quadric) surface of the ellipsoid is

x 2  y 2  z2-2 + - + -£2 = 1. (15)

A cross section defined by the pth sectioning plane has the x coordinate xp = 21 [1 - (pI/)].
Substituting this value for x in Eq. (15) gives the equation of the pth contour on the surface of
the ellipsoid as

y2 2

+ 232
22 [2p- (2] 132[2f (p)2]

But this expression is the equation for an ellipse whose two principal semiaxes have lengths

292 [2p _ (p )2] 1/2

and

23 [2p _ (p)2]1/2,

respectively, so that the area of the pth cross section is

A,= V1212p _ (p)].

Therefore, the pth elemental projected area on the normal plane is

Aa 2 (2- 2p + 1), (16)

so that the velocity potential of the reflected wave, as given by Eq. (4), is

r ia'kB ( /)2 (2. - 2p + 1) exp(-2ik--2r, /J p.2
pJ
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MONOSTATIC

AXIS

OUTLINE OF PRINCIPAL
SECTION (YZ PLANE)
ROTATED INTO XZ PLANE

Fig. 4 - The geometry of monostatic reflection from an ellipsoid

This equation, however, may be written

Pr (1) = -'2'3 ia'kB (2s)2 - E (2 g. - 2p + 1) exp (-2ik P--)] (17)

Now the expression within the brackets of Eq. (17) is just the reflected velocity potential from
a sphere of radius 21, so that

]((t)IElipsoid = 223) ['Prp.) (18)

if the correspondence between the two reflecting bodies is drawn only when the distance be-
tween the normal plane and the pkth sectioning plane is the same for both. Therefore, the
expressions for the ellipsoid, corresponding to Eqs. (7)-(9) for the sphere, may be written
down directly. In particular, Eqs. (8) and (9) become for the ellipsoid

and

r =1iaar A2 23) [exp(-2ik 1 ) + 2ikis - 1]

4kr \ 2 1/

'Pr! - BI ( (sin (kil) sin(2k 21)
rr -2 2 k 1 )2

(19)

(20)

The ellipsoid formulae contain as special cases the reflection formulae for prolate and oblate
spheroids at various aspects (i.e., orientations of the object with respect to the monostatic axis)
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TABLE 1
Reflection Characteristics of the Rigid Ellipsoid and Its Special Cases

General
Reflecting Geometrical Eeeal Magnitude of the Reflected Velocity Potential
Object Aspect* Conditions (Aa ) Area

Along a ___ (2, - 2_ + 1) ( sin2 (kl) sin(2k-2)++ 1(
Ellipsoid Principal A112- 3  r 2 1) Ak22

Axis rr (kfl)2 A

Sphere Any 1=-r1 3  - (2 A - 2p + 1) 2 _.(kis)2 siProlate 7rk2  LB & 21( 21)

Prolate ---1 ] (2 (_L)' sin2 (k2l) sin (2k21) /-End-On 21 < (2- 2p + 1) - + 1-1Spheroid r 1) \2

Prolate Br - + B (L 2 (_ )(sin 2 (kil) sin(2kii)
Spheroid Bem 1,.k 2 -2 \2s \2/k \(k)

Oblate 1B 1_ Z2 _\j
1

___________Spheroid End-On t< k=-k -k-- (2,u - 2p + 1) L rsin k-) snk2l) 1/Speri A~ 2 )( (U2) 2  ks 1

Oblate 7rilk ~ IBI h16\ 1\ si 2 (k1L) sin (2k1,)+ 11/2
Spheroid m l=k>k (2/1 - 2p + 1) r \ (k)2 k- )

*Orientation of the reflector with respect to the monostatic axis.

as well as the formulae already derived for the sphere. These special cases are described in
Table 1. In Table 1 the value of I 'Or given by Eq. (20) is shown in order to demonstrate that at
certain aspects the reflection characteristics of diverse bodies can be readily systematized. The
similarity in the values of the reflected velocity potential results directly from the fact that
the geometrical shapes of the various bodies are alike to the extent that, for each, the pth pro-
jected elemental area Aas, contains the expression 2 A. - 2 p + 1. Therefore, the only differences
between the various Aap are in the coefficients multiplying this expression. Since such a co-
efficient, in any case, contains only geometrical parameters of a body, it may be brought outside
the summation sign in Eq. (4), and the sum may be performed independently of these param-
eters, or in other words, independently of the particular body being considered.

The similarity of the formulae which give I'Pr! for the various bodies in Table 1 permits a
simple mnemonic device to be used for reproducing any of these tabulated expressions if one
such formula is remembered. For each body, the formula in the table for ' Ir! has been written
in the form

'Pr! = C (- ) sin 2 (k21 ) sin(2k2l) + (21)r- 2 (ki -  kil

where the coefficient C refers to a particular body at a particular aspect. Then, except for the
value of C, the entries are the same for all the bodies listed in Table 1. Therefore, if C can be
found quickly for any object, the formula for I 'Pr! can be directly reproduced for that object.
However, the value of C for a particular body is the ratio of the cross-sectional area defined by
that body's pkth sectioning plane and the cross-sectional area defined by the pUth sectioning plane
of the sphere whose insonified portion occupies the same distance I, on the monostatic axis as
does the body in question. Thus, for example, for a prolate spheroid at beam aspect the crosS-
sectional area defined by the pAth sectioning plane is 7T 21 23, while for the corresponding sphere
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this area is 7rT12. The ratio of these two quantities is 23/21, SO that Eq. (21) for a prolate spheroid

at beam aspect becomes

1B 13 ( I 2) sin2(k21 ) sin(2k21 ) + 1(1/2

r- (11)(2 k 1 )2  k2 (22)

which is exactly the formula found for this case in Table 1.

Moreover, since the formulae for the various cases of the ellipsoid are related to the sphere

formulae by simple multiplying factors, the arguments advanced in connection with the sphere

calculations concerning the relationship between summation and integral formulations are

valid. Thus, the approximate number of subdivisions that is required for a given degree of

correspondence between the reflection integral and the reflection summation formula is known

not only for the sphere, but for the ellipsoid and its special cases as well.

REFLECTION FROM A RIGID GENERAL QUADRIC SURFACE

The reflection from such bodies as a cone, a limited elliptic paraboloid, and a limited elliptic

hyperboloid can be calculated by applying to each body the methods used to treat the sphere and

ellipsoid problems. Rather than calculate the appropriate formulae independently for each

body, however, an expression can be derived for reflection from any object whose reflecting

surface is generated by a conic section. This expression will be written in terms of a set of general

constants common to all the quadric surfaces so generated. By substituting into this formula

the particular constants which characterize a given quadric surface, the reflected velocity poten-

tial from an object of that shape may be obtained.

Figure 5 shows the XZ plane of Fig. 2. In this plane the trace of the reflecting surface is one

of the conic sections. A conic section is defined as the locus of points P whose distance d from a

MONOSTATIC
AXIS

Fig. 5 - The geometry of monostatic reflection from
a general quadric surface
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fixed point, called the focus, is proportional to its distance h from a fixed line, called the directrix.
The constant of proportionality E is called the eccentricity and its magnitude determines the
type of conic section defined. For E = 0 the conic is a circle, for 0 < E < 1 it is an ellipse, for E = I

it is a parabola, and for E > 1 it is a hyperbola. If the origin of the coordinate system of Fig. 2
is translated along the X axis until the Z axis lies along the directrix rather than being in the
normal plane, the equation for the conic section which represents the trace of the reflecting
surface is

(I - 2)X2 - 2"rx + Z2 + 2= 0, (23)

in which r is the distance from the directrix to the focus of the conic. The quadric surface
generated by rotating the conic described by Eq. (23) about the X axis is given by the equation

(1 - E2)x2 -2Tx + y2 + z2 + _r2 = 0. (24)

The cross sections of the object defined by Eq. (24) are circular. The corresponding object
with elliptical cross sections is defined by the equation

(1 - E2
)X 2 - 2rx + y 2

/o- 2 + Z
2 

+ 72 = 0, (25)

where o- is the fineness ratio of any cross-sectional area, that is, the ratio of the lengths of a
cross section's principal semiaxes in the y and z directions, respectively. If q is the x coordinate
of the normal plane in the coordinate system used in Fig. 5, the x coordinate of the pth cross-
sectional area of the reflecting object is

Xp = q + p 1/.L (26)

when the quadric surface occupies a length 2 of the X axis. (Thus, the surfaces generated by
parabolic and hyperbolic traces must be limited at x = (q + 2) rather than being limitless in
the positive X direction.) Using the value of xp given by Eq. (26) in Eq. (25) and transposing
terms yields

yp2/0 2 + Zp
2 

= Cp
2

,, (27)

where

CP 2(EW 1)[q2±+2q d+ (P 1)] 2 2+ 2rq +2, (28)

and yp and zp are the y and z coordinates of points on the yz contour that is located at xp. But
since Eq. (27) is the equation of an ellipse, with o-Cp and Cp being, respectively, the principal
semiaxes in the Y and Z directions,

Ap = 7rorCp 2  (29)

is the cross-sectional area defined by the pth sectioning plane. The pth elemental area projected
onto the normal plane, as found using Eqs. (28) and (29), is then

Aa A 2 + 2(E ) (30)
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jn the manipulations which lead to Eq. (30), the relation
T

q + (31)

was used to eliminate the explicit dependence of A@ on q. Equation (31) follows directly from

d 5 Eh, the defining equation for a conic section.

Equation (30) is used in the reflection summation formula [Eq. (4)] with the result that

)= 2rra'Bk o2 f ex2(/2A)r7- (p2_ 1)2]
2rr a 2 exp(-2k ) - 12

x [exp(-2ik2) - 1] [exp(-2ikI/pL) - 1]

+ [2/2(E2 -1)] [exp(-2ik2)] [exp(- 2 ik )-1]

- [21(E2 - 1)] [exp(-2iki) - 1]}. (32)

Similarly, the limiting form of Eq. (32) as t increases without bound is

iaa'Bor
(Pr 4krr exp(-2ik2) {2iEkr [1- exp(2ik2)]

+ 2ik(E2 - 1) + (E 2 
- 1) [1- exp(2ik2)]}, (33)

which gives the reflected velocity potential (pr according to the reflection integral [Eq. (3)].
The magnitude of the reflected velocity potential is

L iI ") I(_ 1{ - 2 ) 2  sin(2k2)J Orj = B- o (1r 0)- ( 2_- 1)2 k
rr 2I V k2

sin2 (k2) 11/2
+ [(E2 1)2 + (2Ek7) 2 + 4Ek2 I-( 2

- 1)] (k2) 2  1 (34)

As indicated by Table 2, Eqs. (30) and (34) for the general case of a reflecting quadric surface
can be specialized to specific shapes. The ellipsoid formulae previously determined (Table 1)
are found again. The sphere formulae result as limiting cases of these ellipsoid formulae when
t(= 13) approaches 4 . The sphere must be treated in this way when using the general quadric-
surface formulae because the product ET" which appears in all of these equations does not be-
come zero when E goes to zero. The reason this occurs can be seen by examining the relation
between 4E and 7 in the case of an ellipse of semimajor axis I, and semiminor axis Z3 (Fig. 4).
Using (a) the expression d = h that is the defining'-Nuation of this conic section, (b) Eq. (31),
and (c) the fact that the ellipse's semi-interfocal distance s divided by I, is equal to its eccentricity,
the quantity 7 may be expressed by

T = (11/E) (1 - e2). (35)

Equation (35) defines T only for E # 0, but the product

CT = 11 (1 - 4E2 ) (36)
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CENTRAL DIRECTRIX
AXIS

Fig. 6 - The geometry of monostatic reflection from a limited (circular) hyperboloid

equals 21 when E = 0. Thus, since 7 increases without bound as E approaches zero, individual
values of e and 7 cannot simply be inserted into the quadric-surface formulae in the case of
the sphere. Equation (36) must be employed instead. Since Eq. (36) is derived by use of the
ellipse formulae, it is seen that the ellipsoid must be considered before it is possible to derive
the sphere relations from general formulae.

The results of the application of the quadric-surface formulae to a circular* hyperboloid of
limited extent are given in Table 2. The variables used to express the formula for a reflecting
hyperboloid are a commonly used set, and their geometrical interpretation is shown in Fig. 6.
The trace of this hyperboloid is one branch of a pair of hyperbolae which are symmetrically
disposed about a central axis. The central axis lies midway between the vertices of the two
branches and is perpendicular to the X axis. The distances from this central axis to the vertex
and to the focus of this hyperbola are, respectively, bi and b3. The distance bi is known as the
semitransverse axis of the hyperbola. A quantity b2 = (b 3

2 - b 2 )1 2 is also defined and is known
as the semiconjugate axis. The asymptotes of the hyperbolic trace meet at the intersection of the
central and the X axes, and as seen from Fig. 6 there exists the relation

b2[b, = tan t4,

where 41 is the angle between an asymptote and the X axis.
The results for the reflection from a limited circular cone (Fig. 7) can be determined as

limiting forms of the equations found for the hyperboloid. A circular cone of semiapex angle q1
can be defined by the asymptotes of the hyperboloid's trace. These asymptotes are obtained
from the equations of a hyperbola by allowing both bi and b to approach zero but in such a
way that the ratio b2/b, = tan 4, remains constant. This limiting process transforms the hyper-
boloid equations into the relations shown in Table 2 for the reflecting, limited, right-circular
Cone. It is interesting to note that, for the cone, the expression for o(Pr1 given in the table has
the form of Eq. (21), with C = tan 2

qj. Moreover, the coefficient C can be found as the ratio of

*While the general quadric-surface formulae can be readily applied to hyperboloids and other conic-section-generated bodies that
have elliptical cross sections, no useful purpose is served by explicitly treating the cases of o # 1 when describing quadric-surface reflectors
i5 the remainder of this section of the report.
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Fig. 7 - The geometry of monostatic reflection from a limited (circular) cone

the tAth cross-sectional area of the cone to the corresponding 1.th cross-sectional area of a sphere
whose radius is equal to the base-to-apex height 2 of the cone.

The relations for a circular paraboloid (Fig. 8) are also found in Table 2, and for this case
the resulting formulae are particularly simple. As shown in Fig. 9, the magnitude of the re-
flected velocity potential varies periodically between zero and [Bjg2/2rr1 as k2 is increased.
This regularity occurs due to the nature of the elemental areas Aa£ and may be explained as

follows.
Since the value of A a does not depend on p, the elemental areas are all of the same size and

the only difference between the contributions of any two elemental areas to the total reflected

velocity potential is in their relative phases. Suppose that the subdivisions of the paraboloid are
chosen at constant intervals of length A 2 along the x axis and consider the contribution from
each elemental area so defined to be a vector in the complex plane that has a constant modulus
equal to the common value of Aap' and a phase angle of -2pkA2, where p is the number of the

subdivision, as before. Initially consider only paraboloids having 0 -< k2 -- 7r. The elemental
vectors may be geometrically added head-to-tail as shown in Fig. 10(a). The vector resultant
is the velocity potential reflected by the entire paraboloid for the particular value of k I chosen,
and the modulus of this vector is the ordinate of Fig. 9. This resultant has a modulus which
grows to a maximum at ki = ir/2 and then decreases to zero when k2 is increased sufficiently
for the contributions to have a combined phase of 27r radians. In this latter case, the broken
line formed by the elemental vectors will close on itself as a polygon [Fig. 10(b)]. This closed

vector polygon corresponds to the null in the curve that occurs at k2 = 7r That is, this null
occurs when the combined effect of all the reflected contributions is zero due to their mutual

interference. Therefore, if a portion of the paraboloid completely oGcuples the X axis between
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NORMAL 1

AXIS
FOCUS

TRACE OF _

DIRECTRIX PARABOLOID

'Fig. 8 - The geometry of monostatic reflection
from a limited (circular) paraboloid

rr~I)2

0 k.
0 "r 2"r 3"r 4"r

Fig. 9 - Reflection characteristics of a limited paraboloid showing the variation of the
magnitude of the reflected velocity potential 1(r1 

as a function of the size parameter ki

the normal plane and a parallel plane passing through the object at a half-wavelength's distance
from the normal plane (i.e., a plane at k 2 = ri), this portion will contribute nothing to the total
reflected velocity potential. This implies that for k2 > 7r, only the contributions from the portion
of the paraboloid lying beyond the plane jt k2 = 7" need be considered when composing vector
diagrams. Also, between k2 = r and k 2= 2 7T the vector diagram is indistinguishable from
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Fig. 10(a), which is obtained for the range 0 -< k2 I< 7t, because there is a one-to-one corre-

spondence between the elemental vectors in the two cases. That is, in both cases all of the ele-

mental vectors have the same modulus and the corresponding vectors in the two cases differ in
phase only by 27r radians. Thus, between k2 = 7r and k2 = 27r, the modulus of the vector re-

presenting (Pr grows to a maximum and decays to zero as before, and the cycle of variation

in the curve of Fig. 9 is the same in this range as it was for 0 1 k2 I< 7r. Again it will be noted

that when k 2 = 27r there is a null in the I Pr I curve and the contributions from the elements of

a paraboloid between planes at k I - 7T and k I = 2 7T will mutually cancel so that, if k I > 27r,

only contributions from elements lying beyond the k I = 27r plane will contribute to the resultant

(r vector. Between all other k2 values that are integral multiples of 7r the velocity potential
behaves similarly, so the 19,! curve of Fig. 9 again and again grows to a maximum and decays
to a null in identical cycles. Strictly, of course, the plot of !rI,1 vs. k2 in Fig. 9 corresponds to

the limiting case when the subdivisions of the paraboloid are vanishingly small in size and
infinitely great in number. For this situation, the broken line of Fig. 10(a) becomes a smooth
curve in the complex plane and the polygon of Fig. 10(b) becomes a circle.

It is interesting to compare the expression for the velocity potential reflected from the parab-

oloid with an expression for the velocity potential reflected from a rigid finite plane (5). The
velocity potential reflected from such a plane, which has dimensions Wi and W2 and is tilted at
an angle O with respect to the monostatic axis, is

(Pr aa'Bw [exp(-2ik2) - 1] (37)pr=4,7rrr tanO

where 2 is the distance from the normal plane to the most distant edge of the reflector, as shown
in Fig. 11. The corresponding equation for the paraboloid is

(Pr 4'() [exp(-2ik2)- 1], (38)

which may be written, using the constant K, as

aa'B
(Pr = 4r K [exp(-2ik2) - 1] (39)

4r, 39

because in a coordinate system, such as that shown in Fig. 2, with the Z axis in the normal plane,

the equation for the parabolic trace may be written x = z 2/K. Equations (37) and (39) do not
differ in any essential respect because the size of the elemental areas Aa; does not vary with p

either in the case of the tilted plane or in the case of the paraboloid. Therefore, a consequence
of the restricted theory of reflection being used is that the tilted plane and the paraboloid be-

have similarly when used as reflectors, even though their geometry is greatly different.

REFLECTION FROM RIGID QUADRIC SEGMENTS AND FRUSTUMS

The equations developed in the previous section can be applied in order to calculate the

velocity potential reflected from objects which are portions of the quadric-surface reflectors

treated there. For example, the reflection from a spherical or ellipsoidal segment (i.e., that
portion of a sphere or ellipsoid lying between the normal plane and a parallel plane which is

separated from the normal plane by a distance less than the radius of the sphere, or less than
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Fig. 11 - The geometry of monostatic reflection from a finite
rectangular plane, tilted with respect to the monostatic axis
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Fig. 12 - The geometry of monostatic reflection from
a quadric-surface segment or frustum
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the length of that principal axis of the ellipsoid which lies in the direction of the monostatic
axis) can be found. Or again, the reflection from the frustum of a truncated cone may be cal-
culated. In general, the velocity potential reflected from the segment portion and from the
frustum portion of any quadric-surface reflector can be found from the formulae already
derived.

Figure 12 shows a reflector defined by a general quadric surface which has been divided by
passing a truncating plane through the object parallel to the normal plane and between the Yth
and the (y + 1)th sectioning planes. The number y can be written as a fraction of the total
number of subdivisions 1 into which the object is divided

y= mp

with 0 <- m 1 being a rational number. If the segment portion of the reflector between the
normal plane and the truncating plane remains as the reflecting object and the rest of the
original body is removed, then a length mi of the monostatic axis is occupied by this segment
in the limiting case when /i --) o. But Eqs. (33) and (34) are general, and the only restriction on
the parameter 2 therein is that it represents the length of the monostatic axis occupied by the
insonified portion of a reflector. Therefore, since the insonified portion of the quadric-segment
reflector occupies length mi of the monostatic axis, Eqs. (33) and (34) may be written as

iaa'Bo-
(Pr 4krr exp(-2ikm2) {2iEkT[1 -exp(2ikm2)]

+2i(E 2 - 1)km2+ (E 2 -1) [1-exp(2ikm1)]} (40)

and

B! 0 2)2 2i-12 sin(2km2)
=rr (M2 (1 E e- ) m

+ [(E2 - 1)2 + (2EkT) 2 + 4Ek2m29(E2_ 1)] (km 1/2 (41)

by directly replacing 2 in those expressions with mi. Thus, for example, for a segment of the
sphere of radius 2 which has been treated previously, Eq. (41) becomes

B! (mi { 1 - sin(2km2) 2k-) }/2
r--- 2 km, + [1 + (1 - m) (2k1) 2] sin (km 2) 42

when the truncating plane defines a segment with a sagital distance (i.e., the distance measured
along the monostatic axis between the truncating plane and the normal plane) of length mi,
with 0 ': m 1.

However, substituting the quantity m I for 2 in Eq. (32) does not result in the reflected velocity
potential according to the summation formula. This is because the segment is not divided into
A subdivisions but into y subdivisions, or in other words, t must be associated with the length 2
and not with the length mi. The approximate velocity potential reflected from the segment is
given by the expression

-iaa'kB ' p2
(p -'(Y) = Aa' exp(-2ik-) (43)2 7rrr /'"
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which is the sum taken only over those subdivisions occupied by the segment rather than over
the g. subdivisions contained in the length 2. Of course, when the summation of Eq. (43) is
performed and y is replaced with mg., Eq. (40) results, in the limit, when g increases without
bound.

Using the results derived in previous sections and the formulae just derived for reflecting
segments, the reflection from frustum portions of the objects defined by quadric surfaces can
be found. When a segment of a reflector is removed there are two surfaces which contribute
to the velocity potential reflected from the remaining frustum: (a) the disk (in general, elliptical-
ly shaped) which is the cross section of the object defined by the truncating plane, and (b) the
remaining peripheral surface between the truncating plane and the pgth sectioning plane. The
contribution from the disk may be treated as the velocity potential reflected by a plane elemental
area. If the truncating plane divides the yth subdivision of the original complete object at a
distance 41/p. from the yth sectioning plane, where 0 < / 1, then the contribution of the
disk portion in the case of finite-sized subdivisions is

iaai'kB r
Pr(/ ..)disc A exp-2ik + (44)r( l )dic 2 7rr ' 44

where A is the cross-sectional area defined by the yth sectioning plane. The contribution from
the peripherial surface of the frustum is

(Pr/.~arfae -iaa'kB A

27rrr p=Y+,

since such a summation carried out from p=l to p=y gives the contribution of the segment
portion previously considered [Eq. (43)]. Therefore, in the case of finite-sized subdivisions,
the velocity potential reflected by the frustum due to both contributing surfaces is given by

(Or(t)frustum = (Or(1-)disc + Pr(fl)surface,

that is

(Or(AL)frustum = (A- i r exp 2ik + Y
+( / [

+/( iac'kBj A.p\
2'r~ [pYi A ap exp -~2 tk ) (46)

using Eqs. (44) and (45). But

aa'kB[ - iat'kB)[ e 2)]
&~2~rr ~ Aa' exp -2ik P-1 .x-2rr ~ Aa' exp~ 2ik-

Br iaa'kB ) Aa' exp(2ik 1p= l p J

Therefore, referring to Eqs. (4) and (43), the contribution of reflected velocity potential from
the peripheral surface of the frustum is the contribution from the original, complete object
minus the contribution from the segment removed in order to form the frustum, that is, Eq.
(46) may be written
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(p(.)frutum ( B {A- exp[2ik ( -- ]}+ r() (Pr(y). (47)

Now if, as before, y = mL, then according to Eqs. (28) and (29) the yth cross-sectional area is
given by

Ay = 7rom2[2ET + mr(E
2 - 1)] (48)

regardless of the number of subdivisions p.. In the limiting case of Eq. (47), when p. increases

without bound, Eqs. (33) and (40) can be used along with Eq. (48) to write the velocity potential
reflected by the frustum as follows:

(Pr= (iaakB {7ro-m2 [2,ET + mr(E2 -1)] exp(-2ikm)}

" iaa'Bo' exp(-2ik2) {2iEk'r [1 -exp(2iki)]+ 4krr )

+ 2ik2(E 2 - 1) + (E2 
- 1) [1- exp(2ik2)]}

iaa'Bo0 exp(-2ikm) {2i~kr [1 -exp(2ikm )]4kr,.

+ 2ikm(E2 - 1) + (E 2 - 1) [1-exp(2ikm)]}.

This expression may be further simplified to the form

(P (= ( ', ' exp(-2ik2) {2km2 [2EkT'+ km2(E2-1)] exp[2ik2 (1-rn)]

+ 2i~kr (1 exp[2ikI (1- M)])

" 2i(E 2 
- 1)k2 (1 - m exp[2ik2 ( -m)])

+ (E2_ 1) (1 -exp[2ikI (1 - M)])}. (49)

Equation (49) gives the velocity potential reflected from the frustum portion of any of the
quadric-surface reflectors previously considered. This is the velocity potential according to the
reflection integral in the case when the original body is divided by the truncating plane at a dis-
tance mI from the normal plane, with 0 <- m <- 1.

REFLECTION FROM A SHORT, RIGID, RIGHT-CIRCULAR
CYLINDER AT BEAM ASPECT

In the previous sections of this report, the methods used to calculate the velocity potential
reflected from simply shaped objects all depend on the fact that, for these objects, the ex-
pressions for the projected elemental areas Aa' are relatively simple. This allows an expression
for A a to be used in the reflection summation formula and the necessary summation performed.
The reflected velocity potential obtained by passing to the limit of the summation-formula
result is the same as that given by the reflection integral, although no direct integration has to
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be performed to obtain it. However, for other reflecting objects, and not necessarily very

complicated ones, the elemental areas are not given by a simple expression and it is necessary to

use the reflection integral [Eq. (3)] in order to calculate the reflected velocity potential. Of

course, the implication here is not that the reflection summation formula [Eq. (4)] is not applica-

ble to certain objects, but only that there are objects for which the algebraic problem of reducing

an expression from the form of Eq. (4) to a form which would be analogous to Eq. (7) is not

tractable due to the form of the Aap involved in the calculations. One such object is the short

right-circular cylinder with its axis of symmetry normal to the monostatic axis (i.e., at beam

aspect).
The cylinder of length L and radius 2 is shown in Fig. 13(a) as it would be seen in the XZ plane

of Fig. 2. The cross sections are rectangular, and the area of the pth such section is

Ap = 2L /2p -p 2,

while the (p-1)th area is

Ap_, = 2L ___/2( + l)p-p 2 - (2g + 1).

The projected elemental area Aap' then is

Aap=-2L (/2gp-p2-V/2(p+ 1)p-p2-(2/+ 1)). (50)

This expression cannot be significantly simplified, and when it is substituted into Eq. (4) the
resulting summation is too complicated to be performed using straightforward algebraic tech-
niques. Because of this, the reflected velocity potential is calculated for the cylinder according
to Eq. (3).

The cylinder at beam aspect is again pictured in Fig. 13(b), which shows the parameters
needed in this calculation. The infinitesimal elemental areas da are defined by the angular
variable fl and its infinitesimal increment d12 as shown in the figure, with -7r/2 fl -: V/2.
Then these elemental areas are strips of length L and width Idil so that da = L If. It is easily

shown that the projection da' of da upon the normal plane is da cos f so that

da' = L I cos fi dfl. (51)

From the figure it is also apparent that Ar, the distance from a given elemental area to the
normal plane, is equal to Y(1 - cos fl). Therefore, using this value of Ar and the value of da'
given by Eq. (51), the reflection integral for the cylinder, according to Eq. (3), is

iaa 'kB iT12

(Pr=- 2rk (2L) exp(-2ik ) [exp(2ikIcos 1)] cos il dfl. (52)
2 rr/2

The integral in Eq. (52) can be solved as shown in Appendix B. The velocity potential reflected
from a cylinder at beam aspect is then

iaa'kB
(Pr= 

2iarr (2L) exp(-2ik2) [2J 0 (2k2) + iiTrJ(2k) -4S(2k2)], (53)

where J0 (2k2) and J1 (2k 2) are ordinary Bessel functions of orders zero and one, respectively,
and S(2k2) is defined by
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1J0 h(2kl)S(2k2) = y (2 (54)
j=1

where J2 (2k2) is an ordinary Bessel function with (integral) order 2j. The magnitude of the
velocity potential then is

B121 2 11

I(Pri1B_ (22L) {[S(2k) - IJo(2ki)] + (4)2 [J,(2k)]21. (55)

The inappropriateness of applying the summation formula in the analytic treatment of the
cylinder problem is also apparent from the forms of (Pr and ( pr1 obtained using the integral
method embodied in Eq. (3). The deduction of the Bessel-function forms from a finite sum of
simpler algebraic and exponential functions (Aa, and exp[-2ik(p 2/x)], specifically) would

be a formidable mathematical task.

SUMMARY

By applying the simple theory of reflection discussed in the Introduction, the velocity potential

reflected by many objects has been calculated in a systematic way. Similarities in reflection
characteristics occur because the many small parts of two different objects can contribute in
the same way to the respective total velocity potentials that the objects reflect. That is, if the
elemental areas defined by the sectioning planes on one object are similar to those on another,
the reflection characteristics for the two bodies will be similar also, even though the bodies
themselves are geometrically dissimilar (as in the case of the limited paraboloid and the tilted
rectangular plane). The fact that the elemental areas of all the quadric-surface reflectors can be
related to one another through the use of one set of geometrical parameters allows a general

formula for all such reflectors to be deduced. Similarly, the complicated nature of the elemental
areas on the short right-circular cylinder determines the methods needed to calculate the velocity
potential reflected from this object. This dependence of reflection characteristics upon the
nature of the elemental areas of a given body makes the reflection summation formula [Eq.
(4)] very useful in discussing the relations between reflection characteristics and reflector shape.
Of course, in general, it is the limiting forms of the summation-formula results that are to be
compared. However, discussing these results in terms of the finite number of finite-sized ele-
mental areas employed in this approximate formula gives more insight into the important
geometrical characteristics of the reflector than does an attempt to visualize the reflection
process directly in terms of the infinitesimal elements involved in the reflection integral formula
[Eq. (3)].
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Appendix A

SUMMATION OF THE SERIES pexp -2ik -

p=1

A quantity/3 is defined by/3 = -2ik2/p.. The series to be summed is

A(.) = pe-- P.
P=1

In calculating A(p.), the summation formula for a geometric series is repeatedly used. The
well-known formula for the sum of a geometric series is

JA Rv, - V1

p- R-1 (A1)
p=n

where v. is the first term in the series, v, the last term, and R is the common ratio of successive
terms.

The sum A (p.) is found by the process

A(p.) = eO + 2e 2g + 3e 30 + ... + (p. - l)e( -1)0 + pgeAR

= eO P) + e 2 + 2e 3  + ... + (p.-2)e(9- )0 + (p. e-g
P=

= (~ e0P) + eOP + e 3  + ... + (.- 3)e(A-)0 + (t - 2)eO,
P=

etc. This process is continued until A(/) is written

A(p.) = eO) + e0P) + ( e) + ... + (P eP + e0 P) (A2)
= P=2 P=3 p= 1) + =

But each term in parentheses in this expression is a geometric series. For each of these series
the ratio R equals eg, and the last term vg is eg4 . The first term Vn for each is eO, with n = 1 for
the first series in parentheses, two for the second, and so on. Therefore, using Eq. (Al), Eq.
(A2) becomes

e~e O - eO efe m - e2f efe ,t - e3 0
A (e_1) + (e-1) + (e-1)+

e~e , - e(-1)+ ete 0 e g
(e- 1) (e-1)

(eO 1l) -z°e' / (A3)

But the last term in the parentheses of Eq. (A3) is again a geometric series, so that

A(p.) = (el 1) e 0- - (A4)
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Since/3 = -2ik 2 /p., the final expression for the required sum is

pexp(-2ik2/p.) = e (2i (P . exp(-2ik2I) ex(2k)~1. (AS)

Appendix B

INTEGRATION OF THE FORM [exp (2ik I cos ) ] cos l dfl

The integral to be evaluated is

fIr/2
I= J [exp (2ikIcos fl)] cos 0l dfl. (B1)

J -T/2

A quantity 8 is defined by 8 2k2, and a change of variable is made by defining W' (7T/ 2 ) - fl,
in which case Eq. (B 1) becomes

I [exp (i8 sin fl') ] sin Wl dfl' (B2)

= f cos(8 sin fl') sin fl' dl' + if sin(8 sin l') sin l' dfl' (B3)

= iUTJs(8) +f cos(5 sin W') sin Wl' dfl' (B4)

since-the second integral in Eq. (B3) is a special case of the identity

Jj(8) = (
1
/IT) sin(8 sin W') sin(jfl') dfl', (B5)

where Jj(6) is the ordinary Bessel function of odd-integral order j. To solve the first integral
of Eq. (B3), the cosine form in its integrand is expanded in a series of cosines having ordinary
Bessel functions of integral order as coefficients:

cos(8 sin W') = Jo(8) + 2 J2j(8) cos (2jfl'). (B6)
j=l

Then,

f cos(5 sin W') sin 'dfl' = Jo(8) f sin Cl' dfl' + 2 J 2j(8) cos(2jfl') sin Cl' dfl'.

0 J
= 1

(B7)
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The first term in Eq. (B6) is just 2J0(8). Since the series

J2j (8) cos (2jl')

converges uniformly in the interval 0 tl' -< Ir,

J2j(8) cos(2jfl') sin Wl' dl' =E (JA(8) f cos(2jfl') sin l' dl'). (B8)
j lj=1l

Collecting terms from Eqs. (B7) and (B8) and substituting them into Eq. (B4) yields

= iITJI(8) + 2Jo(8) + 2E (J2j (8) f cos(2jfl') sin C' dl's). (B9)

Now

L ]1 (cos[(21-l)Cl']_cos[(2j+l1)Cl'])l
f cos(2jfl') sin C' dl' = I 2j- I) W] [ (2j + I) W] 07F

02 k 2j- 1 2j + I /

1 1 2
2j + 1 2j- 1 (2j)2- (B10)

Therefore, using Eq. (B 10), Eq. (B9) becomes

I = 2J(8) + iTJ1 (5) -4 J2j(8)

(2j)2 - 1 (Bll)

If a quantity S (8) is defined by

jl J 2j ( 83)
S(8) =1, 2, 3, (( 2  ) (B12)

then Eq. (B 11) becomes

I= 2J0 (8) + iirJl1(8) - 4S (8). (B 13)

Therefore, the final expression for the required integral becomes

_ /[exp(2ik Icos fl)] cos f dl = 2Jo(2k2) + iITJ,(2k2) -4S(2k). (B14)
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Appendix C
DEFINITIONS OF SYMBOLS USED IN THIS REPORT

English Small Letters

da, Aa Respectively, the infinitesimal elemental area and the analogous finite-sized
elemental area on the reflector surface.

da', Aa' Respectively, the projections of da and Aa onto the normal plane.
A@ aProjected elemental area of the pth reflector subdivision.

b lDistance from the center of a hyperbola to its vertex (or the length of its semi-
transverse axis).

b3  Distance from the center of a hyperbola to its focus.

b2 --=_ Nb 3
2 -- b, 2 , the length of the semiconjugate axis of a hyperbola.

c Speed of a spherically diverging acoustic wave from a point source.
d Distance from the focus to an arbitrary point P on a conic section.
g Maximum cross-sectional diameter of a limited circular paraboloid.

h Distance from the directrix to an arbitrary point P on a conic section.
i One of the two imaginary square roots of-1.
I Index of an ordinary Bessel function (j = 0, _1, _-2, -3, ... ).

k Wave number (k = 2IT/X).

2Length of that part of the monostatic axis occupied by the insonified portion
of the reflector.

2' Distance between the normal plane and a parallel plane displaced along the
monostatic axis.

21,22,23 Lengths of the principal axes of an ellipsoid in the X, Y, and Z directions,
respectively.

At Length of that part of the monostatic axis occupied by a single reflector sub-
division.

in A number 0 < m -: 1. The length 2 is divided into two portions of lengths m 2
and (1 - m) 2 by the truncating plane.

n An integer.

p Ordinal number of an arbitrary subdivision of the reflector (p is an integer).
q Distance from the directrix to the vertex of any conic section.
r Radial distance from a point source to an arbitrary field point.
ri Distance between the source and the normal plane of a reflector (measured

along the monostatic axis).
rr Distance between the receiver and the normal plane of a reflector (measured

along the monostatic axis).
Ar Distance of da or of Aa from the normal plane (measured perpendicular to the

normal plane).
s Semi-interfocal distance of an ellipse.
t Time.
V ,M,Vp Respectively, the first, last, and general term in a geometric series.
W 1 ,W2 Respectively, the height and the width of a plane rectangular reflector.

x,y,z Cartesian coordinates of an arbitrary point in the XYZ coordinate system.

xp,yp,zp Cartesian coordinates of a point in the XYZ coordinate system with reference
to the pth sectioning plane.
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I

Jj (x)
K
L
R

S(x)

XYZ

aa

T

(Ps
(Pr

I(Pol, IlPo(.)I

English Capital Letters

Amplitude of the incident spherical wave at a unit distance from the source.
Area of the reflector's cross section defined by the pth sectioning plane.
Parameter characterizing the incident acoustic wave in the vicinity of the

reflector [B (A/ri) exp(ikct)].
Coefficient which can be used to express (p1, for certain reflectors.
Parameter used to describe the pth cross-sectional area of the solid defined by a

general quadric surface.
Subdivision density: the number of subdivisions of the object per insonifying

wavelength.
ir/2

The integral f [exp(2ikI cos l)] cos 0l dfl.

Ordinary Bessel function in x of integral order j.
Constant used in describing a paraboloid.
Length of a right-circular cylinder.
Common ratio of successive terms in a geometric series.
- 0 J2j(X)

-I (2J)2" - I

Designations of the three axes of a Cartesian coordinate system.

Greek Small Letters

exp(-ikri) and exp(-ikrr), respectively.
A parameter (/3 -2ik 2 /p.).
Ordinal number of the reflector subdivision through which the truncating plane

passes.
A parameter (8 - 2k2).
Eccentricity of a conic section.
A number 0 -< -< 1: The reflector subdivision through which the truncating

plane passes is divided into two portions of lengths 2 /p. and (1 - )/p.
by the truncating plane.

Angle between the outward-pointing normal to an elemental area da and that
wave normal of the insonifying wave which passes through da.

Wavelength of the insonifying acoustic wave.
Number of subdivisions into which the length 2 is divided.

Acoustic particle velocity in the insonifying wave.
Fineness ratio of the elliptically shaped cross section of a quadric-surface re-

flector. It is the ratio of the lengths of the principal axes of the cross section
that lie in the Y and Z directions, respectively.

Distance from the directrix to the focus of any conic section.
Velocity potential in the insonifying spherical wave.
Velocity potential reflected from an object, as given by the reflection integral

[Eq. (3)].
Velocity potential reflected from an object, as given by the reflection summation

formula [Eq. (4)].
Respectively, the normalized forms of (pr and I(,.(g) I that are obtained by

dividing each of these quantities by (lB I )/ (2r,.).
Semiapex angle of a cone. Also, tan i/ is the slope of the asymptote of a hyper-

bola.
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Greek Capital Letters

0 Angle at which the rectangular-plane reflector is tilted.

A(p.) The sum: y p e8P.
p=1

Cl Angular variable.
fi' = r/2 - l.
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