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ABSTRACT

A simple derivation of the spectral resolution of the
standard Perkin-Elmer prism and grating monochromators
(Models 12-C and 12-G) has been carried out. Some atten-
tion is given to discussion of the variation of the diffraction
pattern width at the exit slit as a function of the physical width
of the entrance slit. Brief mention of power considerations is
also made. The resulting formulas have been used to calculate
spectral slit width c u r v e s for eight different prisms and
twenty-six gratings. The spectral slit width in cm-' is
plotted as a function of the frequency in cm-1 and wavelength
in microns. These detailed graphs allow a determination
of spectral slit width from quick inspection.
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CALCULATED SPECTRAL RESOLUTION OF PERKIN-ELMER
PRISM AND GRATING MONOCHROMATORS

INTRODUCTION

In spectroscopic research problems a knowledge of the spectral slit widths used, i.e.,
that portion of the continuous spectrum thrown across the exit slit focal plane which gets
through to the detector, is often necessary. The equations are developed here taking into
account both the effects of finite slit width and diffraction of a limiting aperture. Exten-
sive calculations for Perkin-Elmer monochromators such as Models 12-C and 12-G
equipped with various prisms and gratings have been made. The results are presented
graphically for convenient use in the laboratory. A brief mention of power received at
the detector, in terms of various spectral parameters, is presented.

In Table 1 at the end of the text are listed the prisms for which calculations were
made. The dimensions of the prisms are primarily those given in various Perkin-Elmer
manuals. The indexes of refraction for these materials were obtained from a report by
Ballard, McCarthy, and Wolfe (1). In Table 2 are listed the echelette gratings for which
calculations were made. The gratings were obtained from Bausch and Lomb Optical Co.,
Unversity of Michigan, and Farrand Optical Co. Much of the development is based on
papers and books by the following authors: Briigel (2), Jenkins and White (3), Conn and
Avery (4), Barnes, McDonald, Williams, and Kinnaird (5), Cross and Nixon (6), Schuster
(7),. and Von Keussler (8).

DEFINITION OF SPECTRAL SLIT WIDTH

To facilitate a simple discussion of spectral slit width, a schematic diagram of the
prism monochromator optics is shown in Fig. 1. A grating monochrometer would be
similar; if the prism is removed, we may consider the Littrow mirror in the grating
position after slight modification of the collimating mirror. Ignoring diffraction effects
and considering monochromatic radiation of wavelength k, a geometrical image of the
entrance slit is formed on the exit slit focal plane. Consider that the dispersion element
(prism or grating) is adjusted to move this monochromatic image across the exit slit. For
entrance and exit slits of equal widths, the signal observed by the detector is triangular
in shape as a function of the motion of the dispersion element (angle of grating or prism)
as illustrated in Fig. 2(a). This triangle is called the slit function. If another monochro-
matic wavelength X2 also illuminates the entrance slit, the detector signal is triangular
also, as shown in Fig. 2(a). The two wavelengths k, and 2 are separated physically in
space because of the dispersion. All the energy detected under each triangle is of wave-
length 1 or x2' respectively. We may now replace the horizontal scale with a wavelength
scale as in Fig. 2(b). The two triangles are on the verge of resolution when the peak of
one is over the edge of the other as shown in Fig. 2(c). In the overlap region the energy
is a mixture of X1 and X2 . The physical slit width expressed in terms of the wavelength
(by calculation of the dispersion) may now be called the spectral slit width AX. In practice,
the concept is more complicated since the image of the entrance slit is a diffraction pat-
tern and the specific criterion for resolution is important. Also a distortion of the triangle
is produced whenever the dispersion is not constant. A more thorough discussion of spec-
tral slit width is given by Streiff and Ferriso (9).

Note: James R. Stevenson's permanent address is Georgia Institute of Technology,
Atlanta, Georgia.
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Fig. 1 - Schematic optical ray diagram of the
prism monochromator
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Fig. 2 - Triangular slit function used in the
discussion of the spectral slit width

PRISM CALCULATIONS

The calculation of the spectral resolution or spectral slit width in the prism instru-
ment is made under the assumptions that the Littrow mounting is used in which the light
passes through the prism twice and that the prism is nonabsorbing. The prism is used
close to the angle of minimum deviation. Optical abberations, prism absorption, and
coherence effects are neglected. Figure 3 shows a schematic ray diagram in which S is
the width of the entrance and the exit slit, f is the focal length of the collimator mirror or
lens, D is the width of the collimated beam, b is the width of the prism base, A is the apex
angle of the prism, and i is the angle of incidence. A collimating lens is used for sim-
plicity. We neglect the angular separation 8 of the two slits in subsequent calculations.
Following Conn and Avery (4) we introduce a variable a defined as

S/f
X/D'

ENTRANCE
SLIT

LITTROW
MIRROR

AS
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-f

Fig. 3 - Schematic ray diagram for the Littrow mount

This variable differs by a factor of two from that defined by Conn and Avery. The numera-
tor S/f is the angle subtended by the entrance or exit slit of width S on the collimating
mirror of focal length f. The denominator X/D is the angular half-width of the first dif-
fraction maximum formed at the exit slit of an infinitesimal entrance slit, because the
optical beam is limited to a width D by either the collimating mirror or the prism. These
conditions result in Fraunhofer diffraction.

Fresnel diffraction of the converging beam at an entrance slit of finite width and depth
is important when the wavelength becomes comparable to or larger than the slit width. In
this case energy is lost from a beam of fixed solid angle, and there may be an effect on the
resolution. This problem has been considered by Moore (10), and also by Bell, Burnside,
and Dickey (11) in connection with power measurements with a Perkin-Elmer spectrometer,
and is mentioned by Sawyer (12) in connection with the work of Van Cittert (13). Jones and
Richards (14) have studied diffraction and polarization effects of slits. These papers refer
to several of the more basic theoretical works pertaining to diffraction by apertures,
especially when the aperture size is comparable to the wavelength.

In the present work we avoid the question of whether it is actually possible to produce
a diffraction pattern of a point or line source that has a physical size less than the wave-
length of the radiation being used.

We now simplify further by using the schematic ray diagram in Fig. 4a. The angular
width AO of the monochromatic image of a finite entrance slit on the exit slit focal plane
can be written as the sum of the geometric angular width Aos and the extension due to
diffraction A 0D :

Ad = A0s + A6D" (2)

Then from the definition of A s and a
S .

AOT+ AD -- +AD. (3)

This is illustrated schematically in Fig. 4b where an intensity pattern is shown for a geo-
metrical image and the extended pattern due to diffraction. For optimum resolution, the
exit slit should be slightly wider than the entrance slit. The extension of the image due to
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I

Fig. 4a - Simplified schematic ray diagram of
the beam passing the prism once

COLLiMATING
LENS

2

I INTENSITY

Fig. 4b - Schematic diagram of the angu-
lar width of the monochromator image of
a finite entrance slit on the exit slit

diffraction is related to the width of the diffraction maximum and can be written as a
function of a. A convenient method of writing AdD is

0 = Xh(a), (4
AD D~

where h(a) is a function (to be discussed in a later section) which when multiplied by k/D
gives the extension to the angular width due to diffraction. Hence

A [a + h(a)].

The spectral wavelength range associated with this total angular
as

width can be expressed

Ak DAd AdAX= " AO = DA 0 D R'

R 0 = D A0 = [a + h (a)]
AX AXI.

Equation (7) may be rewritten as

10
A -[a + h(a)]

where
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which serves to illustrate the significance of the various parameters. The factor Ro is
the usual definition of resolution in terms of diffraction patterns and the Rayleigh criterion.
When a approaches zero (S-0) and h(a) approaches unity,

R - o  (9)

where 6X is the wavelength separation of two diffraction patterns when the maximum of one
falls at the first minimum of the other. In this special case the total angular width is asso-
ciated with diffraction, and the geometric image of the entrance slit is infinitesimally
narrow. However, in practice this situation is not obtained, and the actual or practical
resolution R is given by rewriting Eq. (8) as

AX- [a + h(a)]

where p = 1/ [a + h(a)]. The quantity p is called a purity factor by Schuster (7). Then
Eq. (10) rewritten gives

R pR o  D. (11)

To relate the angular dispersion to the prism parameters, we consider the limiting case
when

XAp Dd p-- D.
_ jndk p D .:Pd (12)

The quantity dd/dX may be associated with the wavelength interval included in an angular
width formed by the exit slit and collimating mirror ignoring diffraction effects. As an
example, consider two rays of wavelength k 0 and Xo + dk passing through the center of the
entrance slit. Assume that X0 passes through the prism at the angle of minimum devia-
tion and passes out through the center of the exit slit. The ray Xo + d/ will strike the
prism at the same angle of incidence but will be refracted a different amount and, conse-
quently, will pass through the exit slit at a different place. This angular width (associated
with an infinitesimal entrance slit) due to slightly different indexes of refraction is the
physical bases for d/dX. The magnitude of the angular variation with wavelength can be
expressed in parameters associated with the prism. Assume as in the previous example
that a ray of wavelength X0 passes through the center of the entrance slit and that it also
passes through the center of the exit slit. Assume that x1 and x2 are the maximum and
minimum wavelength which can pass through the center of the entrance slit and fall in the
geometrical image of the entrance slit on the exit slit. Then let A X - i2" The angu-
lar width associated with this wavelength interval is A ds - S/ f.

This same wavelength interval could be swept across the slit by an appropriate change
in the angle of incidence (rotation of the prism or Littrow mirror). The wavelength inter-
val Ak associated with the angular widthA5 s is related to the way the angle of incidence for
minimum deviation changes with wavelength. With use of the symmetry for \0 at minimum
deviation, Fig. 5 shows how much the angle of incidence i must be changed to sweep /- to
to the other side of the exit slit. When the paths of the rays are reversed, Xv has an angle
of incidence of i + A dS/2 and the emergent X I will have an angle of final refraction equal
to iL. Also, if X 2 has an angle of incidence of i- A as/2, then the emergent x 2 will have an
angle of final refraction equal to i. Thus the A i required to make X, go through the other
side of the slit is

Ai = Ads.
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X1

A
2

.4 , ne

Fig. 5 - Refraction of three wavelengths
through a prism

Then

An An

or in the limit

di dO
dn - dn

where the subscript S has been dropped. We may then write

A
2 sindi dO 2 ( 3

dn dn - n2 sin 2 A)1/2 (13)

This equation, valid at the angle of minimum deviation, is given in most optics books (3).
Equation (12) can now be expressed completely in terms of prism parameters, since the
dispersion dn/dN is also known.

This discussion was in terms of a single pass through the prism to keep the argu-
ments simple. Since the calculations are to be for a prism used with two passes, the
value of dd/dn to be substituted into Eq. (12) will be

A
d ? 4 sin A 14

ddhe 2 (14)
dn -( n 2 sin2 A1/2

Then Eq. (12) becomes

4 sin A
N. 2

(1-n2 sin2 A)'/2
dn D
dN.

or the total spectral range of wavelengths AN is

AN. N. (-n2 sin2 A)1/2
AX = -- A

dn A
pD-dn 4 sin -d X 2

(15)

(16)

)



NAVAL RESEARCH LABORATORY

Since

1- a + h(a) =-SD+ h(a)
p f

then

S

dnfd--

n2 Sin 2 A)112 (n2 Sin 2 A 1

A + h h(at)
4 sin

2
un i-_4D - sin A
dN. 2

(17)

For purposes of calculation, the collimated beamwidth D can be expressed in terms of b,
the width of the prism base. With reference to Fig. 4a

B--C _ b

2 sin
2

If the angle of minimum deviation is b, then

sin A+2b
i - and n 2

2 Asin -
2

Also,

D - BC cos i = BC-- (I-sin 2 i ) 1/2

- C 1 sin2 A=qb l 2

BC - n
2

sin
2 2A) 1/2

BC
sin2 A2
sin 2

2

b
A

2 sin 2

sin
2 A+

n
2 sin2 ) 1/2

This expression for D used in Eq. (17) yields

S1-n
2 sin2 A)

1/ 2

dn A2
f-q 4 sindN. 2

+ X h(a)
2bdn
2bX

Aks + AN. h(a)

ANs + A. (

AN. =

(18)
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In wave numbers the results are

S(1-n2 sin2 A) 1/2
-=2 + 1 h(a)

dn A dn
f -n 4 sin - 2vb d-

dv 2 2b-

A s + svph(a)

- Afs + AZp. (19)

The first term on the right is associated with the spectral resolution due to finite slit
width, while the second term is associated with the prism resolution due to diffraction
caused by limiting the optical beam to a width D. Note that with two passes, we neglect
slight changes in the beamwidth and "effective" prism base such as are discussed by
Cross and Nixon (6).

PRISM RESULTS

The two terms in Eqs. (18) and (19) have been calculated for the prisms listed in
Table 1. The results are shown at the end of the report in Figs. 11-18 in wave numbers
rather than wavelength. The term Avs was calculated for S = 0.01 cm. The results are
plotted as Avs vs v. The term Av4 was calculated and the results plotted as A74p vs v. The
complete second term A12p may be obtained after h(a) is determined graphically using Fig.
9. In many practical cases with wide slits, Av4 is negligible compared to Av and even
more negligible when the value of h(a) is considered.

DISCUSSION OF h(a)

The quantity h(a) is contained in the purity factor p and has been calculated by Schuster
(7). In his treatment the physical slit width is measured in units of a -= SD/ f N. For a very
narrow entrance slit with a = 0 as shown in Fig. 6, the first diffraction minimum occurs
at a distance c from the center of the diffraction pattern. At E/2 the intensity has dropped
to 0.405 of the maximum intensity. For an entrance slit of finite width a, the distance
from the center at which the intensity is 0.405 is determined. Twice this distance is
called the "distance of resolution." The reciprocal of this distance is called the purity
factor p. It expresses the fraction of the highest possible resolving power (Rayleigh
criterion) which is retained with finite slit widths. As can be seen in Fig. 6, when the
physical slit width a = 1, the geometrical image of the entrance slit has a width E and
fills the diffraction pattern for an infinitesimal entrance slit out to an intensity of 0.405.
The actual image of the finite entrance slit is wider than E. The width out to an intensity
of 0.405 is 1/p = 1.283, which means that the Rayleigh resolving power is not quite reached.
The actual resolving power R is then given as R =pRo = 0.779 R0 , where R is the Rayleigh
resolving power. In Fig. 9 are shown plots of a vs 1/p and a vs h(a) based on the calcula-
tions of Schuster.

In most practical cases, the value of a used is larger than 2, so that the spectral slit
width term n, = AX4 h(a) is negligible compared to Au since h(a) = 0.2. As previously
noted A,, is already negligible compared to Avs in many practical cases.

In Fig. 10 is given a plot of S vs N showing lines of constant a when D = 5 cm and
f = 27 cm. This is useful to determine whether or not h(a) is significant in Fig. 9. A later
section will consider a typical example in which use will be made of Figs. 9 and 10.
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Fig. 6 - Diffraction patterns for infinitesimal and
finite physical slit widths

GRATING CALCULATIONS

Equation (12) is general, and for a grating we must merely interpret dd/dk in terms
of the grating angle q5. The optical ray diagram for the grating is shown in Fig. 7, except
that a lens instead of a mirror is used for simplicity. At the central image position, t = 0;
at the blaze position, € = blaze angle. We consider dd/dk in terms of the angular separa-
tion of two wavelengths.

The grating equation with reference to Fig. 7 is given as

mN = d(sin i + sin D), (20)

where m is the order, d is the grating space, i is the angle of incidence, and b is the angle
of diffraction. In terms of the grating angle €

mN. = d in k + )+ sin - 2d cos-_- sin , (21)

where 5 is the angular separation of the entrance and exit slits. For the Perkin-Elmer
monochromator 5 4 degrees. Usually 1/(2d cos S/2) is defined as K, the grating constant,
so that in wave numbers

v = mK csc ¢. (22)

We are interested in what wavelength interval A. appears across the exit slit (ignoring
diffraction). Consider the grating set at an angle 0, so that the wavelength N 0 falls at the
center of the exit slit for infinitesimal entrance slit as shown in Fig. 8. Two wavelengths
N 1 ajd X. 2 fall as the edges of the finite exit slit. The angular separation of N 1 and x. 2 is

considered to be Ads. It follows thati 0 = i 1 = i-2  + 8/2 ; 1Q= 8/2 ; 19, = /2 +Ads/2

and 02 =- S/2 - As/2. Then

MN.0 = d sin 'k+_-'+ sin 01--) (23a)



NAVAL RESEARCH LABORATORY

Fig. 7 - Schematic ray diagram for a grating

Fig. 8 - Schematic ray diagram for three wavelengths which
pass through the middle and edges of the exit slit

Is ( s(2b
mN. = d [Sin (4 + + sin( - + -)] (23b)

mN. = d in ( +  + sin( Z Ao5)] (23c)

Subtracting Eq. (23c) from Eq. (23b) and defining AN = N 1 - N 2' we can write

A. -= cos 9-- sin A S d cos - cos (24)
m \2/- Y 2 m 2 _

since if 0 is not near 90 degrees, sin(Ads/2) (Ads/2) and sin ( /2)- 0 , which are gen-

erally reasonable working conditions. But with the use of the grating equation, Eq. (21),
we can rewrite Eq. (24) as

Ad X X ctn 5. (25)AOs  2

If we now take the limit, dropping the subscript S and considering a general angular sep-
aration Ad, Eq. (25) becomes

dN = X ctn q5. (26)
dd 2

But direct differentiation of the grating equation gives

dN 2d cos (27)
m 2coskN ctn 5.
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Therefore

dk _ 1 dk (28)
dd 2 d (28

Substituting Eq. (28) in Eq. (12) and using the definition of p (see Eq. (10)) and Eq.. (27),
we get

[a + h(a) X2 ctn ¢ [a + h(a)]. (29)
D 2D

This relation must be modified, for as the grating turns, D cos (6/2) cos 4) becomes the
limiting width of the beam. This modified beamwidth must also be used in the expression
for a. Then

SD cos - Cos X
n2 ctn 2 ctn h(a)

8 f
2D cos 2 cos 2D cos Cos

XvS ctn (k + - 2  h (a) (30)

2f 2D cos - sin c5
2

Again using the grating equation, Eq. (30) becomes

N.S ctn 4 N~d
AX 2f + Xd h(a) =A s + AX.I h(a) =AN + ANG , (31)

where Dm/d = R is the Rayleigh resolution of the grating. In wave numbers

AV=S ctn + V h(a) - AV + Av ' h(a) = Av + AVG. (32)2f R o  S GS G

The first term is the contribution to the spectral slit width due to the physical slits and
the second term is the contribution due to the ultimate resolving power of the grating.
However, as in the case of the prism, the ultimate resolving power is not reached, since
AVG depends on the physical slit width through the term h(a).

GRATING RESULTS

The first term in Eq. (32) has been calculated for the echelette gratings listed in
Table 2 for physical slit widths of 0.1, 0.01, 0.001, or 0.0001 cm. The gratings were all
6.4 X 6.4 cm 2. The results are shown in Figs. 19-44 as Avs vs v. It is easy to obtain Avs
for any physical slit width since AV. is directly proportional to S. For the second term,
only AVA has been calculated, since for practical physical slit widths h (a) is not usually
significant. The results are shown as AuV vs v. Of course, h(a) may be obtained from
Fig. 9 to correct AV to A av whenever necessary. For most experiments in solid state
physics Av6 is negligible compared to AVs . From the curves for AV6 and Avs, if the slits
are open about ten times wider than the S indicated, AV is negligible. Also shown in the
graphs are curves of € vs v calculated from Eq. (21) or (22) but neglecting the small
terms cos (s/2) = 0.998.

EXAMPLE

To illustrate the use of the graphs for prism and grating monochromators, we cal-
culate the resolution for a CsI prism used at 35 j' = 285 cm - ' and the Bausch and Lomb
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30-1- grating used at 35 L. Typical slit widths for the prism instrument in a magneto-
optical experiment like the free carrier Faraday effect in InSb might be S = 0.08 cm.
Using the values of f and D shown on Fig. 10, the value of a = 4.2, and from Fig. 9, h(a)
0.215. For a CsI prism Fig. 18 gives a value of A 0 .01 -= 1.15 cm - 1 and Av = 1.85 cm - .
Then AV = AV s + Vh(a) = 8(1.15) + 1.85(0.215) = 9.20 + 0.40 = 9.60 cm - ". For the grating
used at 35/ in the same experiment with the slits still set at 0.08 cm, we find with the
use of Figs. 9, 10, and 32 that h(a)= 0.215 for a 4.2 and that A,. 01 = 0.086 and Av6 = 0.15.
Then Av = Av s + Avh(a) = 8(0.086) + 0.15(0.215) = 0.69 + 0.03 = 0.72 cm-'.

Everything else being equal, the grating used in place of the prism would provide a
factor of-13 improvement in resolution but because of the added dispersion a factor of
-13 reduction in signal (see the next section). Therefore, the slits of the grating mono-
chromator should be opened about a factor of Y = 3.6 to 0.288 cm to arrive back at the
original prism signal. Then for the grating A = 8(3.6)0.086 + 0.15(0.21) = 2.48 + 0.03 =
2.51 cm - '. This resolution is still appreciably better than with the prism monochromator.
Finally, if the low resolution of 9.6 cm -1 is adequate, the slit of the grating monochromator
may be further opened by a factor of 3.8 to about 1.1 cm to give a resolution of 9.6 cm - '
with the subsequent gain in signal of 3.82 = 14.4.

POWER CONSIDERATIONS

We briefly set down the expression for the power P reaching the detector in terms of
the parameters of the optical system (15):

P E - TE C /  dX) AQ, (33)
ec2 /XT

where

= emissivity of source

T = transmission of optical system

E = efficiency of dispersion element

C, = 1.77 X 10 -
12 watts/cm'-ster-cm

c2 = 1.432 cm-°K

A = area of source

L = length of slit (1 cm for the standard monochromator)

S = width of slit

T = absolute temperature of the source

Q = solid angle of radiation collected from source (matched to f/4.2 of the
standard monochromator)

N = wavelength

For both a prism and a grating A = SL determines dN., the spectral slit width, so for
everything else being fixed except dN and A, it is easy to compare prisms and gratings
as to signals to be expected, provided that estimates of T and E can be made.
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Table 1
Prisms For Which Calculations Have Been Made

Material Apex angle A Base width b Fig.
(deg) (cm)

LiF 72 8.8 11

CaF 67 7.8 122

NaCI 60 7.5 13

KBr 60 7.5 14

KRS-5 26 2.9 15

CsBr 25 2.6 16

CsBr 50 7.5 17

CsI 25 2.6 18

Gratings For
Table 2

Which Calculations Have Been
Made (Area of Gratings, 6.4 X 6.4 cm 2 )

Manufacturer (grooves/cm) Blaze X (pt) Blaze angle Fig.

Bausch

Bausch

Bausch

Bausch

Bausch

Bausch

Bausch

Bausch

Bausch

Lomb

Lomb

Lomb

Lomb

Lomb

Lomb

Lomb

Lomb

Lomb

Bausch & Lomb

Bausch & Lomb

Bausch & Lomb

Bausch & Lomb

Bausch & Lomb

U. of Michigan

Bausch & Lomb

U. of Michigan

U. of Michigan

Bausch & Lomb

Bausch & Lomb

Bausch & Lomb

U. of Michigan

Bausch & Lomb

Farrand

Bausch & Lomb

Farrand

18000

12000

3000

4000

6000

Z000

3000

1500

1500

750

750

600

400

300

219 (556/in.)

200

126 (320/in.)

50.4 (l8/in.)

100

80

50

39.4 (100/in.)

40

19.7 (50/in.)

20

9.85 (25/in.)

0.50

0.75

1.2

1.6

1.6

1.7

3.0

4.0

6.0

8.0

1Z.0

16.0

20.0

30.0

40

45.0

70

70

90

112.5

180

200

225

347

450

694

26045 '

26045 '

100 25'

18032 '

26045'

100 00

26045 '

170 27'

26045'

17027 '

26045 '
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Fig. 26 - Resolution of a grating with a blaze wavelength = 4.0 IL,
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