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ABSTRACT

This report deals with theoretical methods for determining

the effective physical properties of suspensions or statistical

mixtures of spherical particles of different isotropic materials.

The methods are shown sufficiently general to allow estimates

of secondary physical effects such as the average optical

rotatory power, the thermoelectric power, and the acoustic

attenuation of appropriate suspensions. When particles have

sizes comparable with wavelength, the attempted average-property

estimates are- less satisfactory, and no attempt is made to

obtain average-property estimates for anisotropic geometries

or particle-materials.

Addition formulas and other useful relations among

spherical scalar and vector wave functions are derived for these

applications.
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PREFACE

This report combines about ten years of the writer's

work in wave propagation in random media. Many of the ideas

originated in discussions with F. T. Haddock, E. 0. Hulburt,

and M. Katzin on electromagnetic subjects, and with R. J. Urick

on acoustic topics. Valuable help was received from G. Raisbeck

in understanding spherical-wave mathematics, and from

H. J. Passerini in most of the heavy algebraic work underlying

many of the formulas here.

The original writing was done with various aims and at

various times; subsequent and spasmodic revisions to present

a connected whole have perhaps left irregularities in emphasis

and style. Parts of the material, notably Sect. IV and

portions of Sect. VII and VIII have been presented orally at

technical meetings; partial versions of Sects. I and VIII ap-

pear in Naval Research Laboratory Reports Nos. 3238 and 3350.

For some years it appeared that the material did not deserve

further publication because the spherical wave formulas were

without sufficient application, and the physical results were

relatively negligible compared with the weight of the neces-

sary mathematics.

When the relatively concise and general theory of

Sect. VII was eventually discovered, the theory and a few of



the results were submitted to the Physical Review. After some

months of perusal, the referee found himself unable to believe

the heuristic justification given in the Appendix to Sect. VII,

although he must be thanked for clarifying suggestions incorpo-

rated elsewhere, As the more formal justification for ignoring

interactions among particles of the conceptual small scattering

sphere required much of the tedious mathematics of Sect, I and

all that of Sect. VI, the writer decided to collect all of the

physical applications into a single manuscript, sprawling but

connected through consistent concern with problems of wave

propagation in suspensions.

Although much of the work is completed, some deficiencies

and further developments might be pointed out: Final results

for the propagation of sound waves in experimentally realiz-

able suspensions are not deduced, for reasons of algebraic

complexity as well as those given in Sect, IX. The theory

of the properties of fine suspensions (Sect. VII) can now

be extended, concisely though heuristically, to mixtures,a)

through a generalization of an argument of R. Landauerb)

The extension to suspensions and mixtures of anisotropic

materials is also obvious although formal justification

along the lines of Sect0 VI is lacking. Reciprocity prin-

ciples are used in Sect. I and especially in Sect. X, and

are latent elsewhere, Reciprocity principlesc) can be

iii



combined with the self-consistent formalism of Sects. II-V for

an approximate answer to the question, latent in Sects. IV and

VIII, where does the randomly scattered component of the power

flux go? It is hoped that the present material will provide a

reasonably solid foundation for such further developments. An

extension of Sect. VII to mixtures is made in 'Notes Added in

Proof', pp 104-114.

Henry J. Passerini is to be thanked for carrying out

the massive algebraic calculations necessary for several of

the results presented here, and for eliminating many errors

from the typescript.

a) "Physical Properties of Fine Mixtures," Paper Q7 presented
at the Washington Meeting of the American Physical Society,
May 1957.

b) R. Landauer, J. Appl. Phys. 23, 779 (1952).

c) "Reciprocity and Scattering by Certain Rough Surfaces,"
paper presented at Session T-lO, International Colloquium
on Current Problems in Wave Propagation, Paris, Sept. 1956.
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Section I. Some Formulas Involving Spherical Wave Functions.

The material in this section is an extension of Chapter VII

of J. A. Stratton's "Electromagnetic Theory", to which the reader

is referred for background. Our aim is to present tables of

useful formulas connected with spherical wave functions; ap-

plications of the formulas will be found in later sections.

We choose a fixed rectangular coordinate system, with

i,j,k being unit vectors in the positive x,y,x directions, re-

spectively. Then the position vector A of a point ' relative

to a point ' can be expressed in spherical coordinates. R, 9,

through

PR=P- .R S &-rocos -t ,&sP -t kP? e, (1.1)

Solutions of the scalar wave (Helmholtz) equation

V + f; =( (1.2)

can be expressed as superpositions of the spherical scalar

waves

where zn is a spherical Bessel function, Pm an associated

n n

Legendre polynomial, and the shortened notations will be used

where the omitted symbols are obvious.

Spherical vector waves satisfying the vector wave equation

-- __N(1.4)v70 V- V AC+AIC-(14



are: 1 = Vf (1.5)
M = V C(Rf) = 1 X R =VX n/k (1.6)

n =7X m/k (1.7)

where the vector waves 1, m, n are understood to have the same

sets of indices as the scalar waves f in their definitions.

The vector waves have the further properties:

X 1 = 0, = 0, = 0 (1.8)

Thus 1 represents a dilatational or longitudinal wave and m, n

transverse waves.

The i, j, k components of solutions of the vector equation

(1.4) satisfy the scalar wave equation (1.2). Through mathe-

matical induction using the recursion formulas for spherical

Bessel, Legendre, and trigonometric functions,one obtains the

general component formulas expressed in Table I. These are in

too general a form to be useful in the important case that the

n-index is small; we obtain the simpler component formulas of

Table II from Table I and the additional identities:

In the subsequent f,l,m,n will denote that a spherical

Bessel function of the first kind (j ) appears in the place

of zn in the definitions while f',l',m',h' will denote that the

function hn appears. The functions Jn(kR) are finite at R = 0

(at q), whereas the functions hn' hn(kR) = hn(l)(kR) correspond



Table I - Rectangular components of spherical vector
wave functions. All functions have the same arguments.

2 (2n + 1) 1 i -(n+m) (n+m-1) fern1 n-2
k -emn 0

(;) i

2 memn
0

= (;)j
- j
(_±)k

+(n-m+l) (n-m+2) fSm-l n+i

-fem+l n-1 - fem+i n+i

(n+m) (n+m-i) fom-1 n-1

+(n-m+1) (n-mm+2) fo 0
em-i nn 1

+m+1 n-ie + feom+ n+I

(+m)fem-

-(n-ml~fen-

(n+m) (n-m+l)fO_ n + fom+i n]

[(n+m) (n-r+I)) mi n - fem+i n]

[2 M 'fmn

2(2n+i) Dern i (n+) (n+m) (n+m-1) em-1 n-i
0 m0

-n(n-m+i) (n-m+2) fem-i n+1

-(n+l) fem+i n-1 + nfem+1 n+1

(-). J(n+1) (n+m) (n+m-1) f~rn. n-i

-n(n-m+l) (n-m+2) fOrn 1 n+1
e

+(n+l) f~m+l n-- nfo
e e

+2k (n+I) (n+m) fem n-
0

+n (n-m+l) fem n+L omn~l_



Table II (Part 1)

Rectangular components of A(p)/k. Entries are functions
of p :eOO =eO(P), etc.

2k I C

eO0 - ell - oil - eOi

3 eO1 - e12 -o12 eO - 2 e02

3 ell eO0 + e02 - 1 e22 - o22 e12
2 2

3 o11 o22 eOO + e02 + Ie22 - o12
2 2

5 e02 - ell - e13 -oll -o13 2 eO - 3 e03

5 e12 3 e01 + 3 e03 _ 1 e23 -1o23 3 ell - 2 e13
2 2

5 e22 6 ell + e13 - e33 - 6 oll - o13 o33 -e23

5 1 o23 3 e01 + 3 e03 + 1 e23 3 oll - 2 o13
2 2

5 o22 6 oll + o13 -o33 6 ell + e13 + 1 e33 - o23

7 e03 - e12 - e14 - o12 -o14 3 e02 - 4 e04

6 e02 + 6 e04

7 e13 - o22 - o24 4 e12 - 3 e14
- 1 e22 - I e24 22

2 2

7 e23 10 e12 + 3 e14 - I e34 -10 o12 -3 o14 - 1 o34 5 e22 - 2 e24
2 2

7 e33 i5 e22 + e24 - 1 e44 -15 o22 - o24 - -1 o44 - e34
2 2

6 e02 + 6 e04
7 o13 - o22 -!o24 4 o12 - 3 o142 1 e22 + 1 e24

2 2

7 o23 10 o12 + 3 o14 - -1 o34 10e12 + 3 e14 + I e34 5 o22 - 2 o24
2 2

7 o33 15 o22 + o24 - 1 o44 15 e22 + e24 + 1 e44 - o34
2 2



Table II (Part 2)

Rectangular components of (p), i (p). Entries
of p : eO0 = fe 0 0 (P)' etc.

are functions

eOO 0 0 0

3 e01 -3 o11 3 el 0

3 ell 0 -3 e01 3 o11

3 oll 3 eO1 0 -3 ell

5 e02 -5 o12 5 e12 0

5 e12 -. o22 -15 e02 + 1 e22 5 o12
2 2

5 e22 -10 o12 -10 e12 10 o22

5 o12 15 e02 + - e22 q22 -5 e12

5 022 10 e12 -10 o12 -10 e22

eO0 0 0 0

3 eOi e12 o12 2 eO0 + 2 e02

3 ell 2 eOO -e02 + e22 o22 e12
2 2

3 oll o22 2 eO0 - e02 1 e22 o1222

5 e02 -3 ell + 2 e13 -3 oll + 2 o13 6 eO + 6 e03

5 e12 9 e0i - 6 e03 + e23 o23 9 ell + 4 e13

5 e22 18 ell - 2 e13 + e33 -18 oll + 2 o13 + 033 2 e23

5 o12 o23 9 eO -6 e03 -e23 9 oll + 4 o13

5 o22 18 oll - 2 o13 + o33 18 ell -2 e13 -e33 2 o23



to waves outgoing from q, the implied time-factor being

exp(-iWt) and Im(k) 0 in physical applications.

When coherent sources of outgoing spherical waves are uni-

formly distributed in the z = 0 plane, their combined radiation

forms two plane waves, one in z O, traveling according to

exp(ikz), and the other, in z <0, traveling according to

exp(-ikz). One can calculate the amplitude of the scalar

plane waves by the stationary-phase principle at large Lzj;

this suffices to determine the amplitude of the wave every-

where, since the asymptotic plane-wave representation of a

plane wave is the wave itself. (Induction can also be used,

and there are probably other derivations.) From the scalar

plane waves, one obtains vector plane waves via Table I; all

non-vanishing waves of this type are given in Table III.

It is frequently convenient to expand a spherical wave,

originating at q, in terms of spherical waves for which a

second point t is origin. If the spherical angles implied in

the arguments R = p - q, = - t, p - t are referred to

the same rectangular axes through relations formally identical

with (1.1), then such expansions are relatively easy to obtain.

For instance, the known addition formula for ho(kR) = fe 0 (kR)

can be written (for >e)

W kc4re LrwVV\~ ( 'Of T P (COS&) ~~~m



Table III
Plane Waves from Planar Distributions of

Sources of Spherical Waves

p (x,y,z), q = (x,y',0), R = p - q

T ---~ f f dx' dy' f' (R)

- 2{7T(-i)n eikz/k 2}, z > z'

= 2 <inr e-ikz/k 2 > , z < z'

fr~onl

fml In

fne In

= 2ik{}k, z > z'; = -2ik<> k, z < z'

= -n(n+l){}j, z > z'; = -n(n+l)<>j, z < z'

= n(n+l){}i, z > z'; = n(n+l)<>i, z < z'

= in(n+l){)i, z > z'; = -in(n+l)<>i, z < z'

= in(n+l){)j, z > z'; =-in(n+l)<>j, z < z'

For all other combinations of functions and indices,
the integral vanishes.

[Other formula of this type, for spherical
and cylindrical wave functions, are given
in NRL Report 4747.]



[L~..~YvvOi](~.r1+) (~~v~/n.± VY)) (1.10)

When (<(, the primes on the right appear on functions of in-

stead of E. To obtain the similar expansion of fe0 1(kR), we

take the k-components of the l's given in Tables I and II to

regain scalar waves on both sides. The result is of course

rather cumbersome and its generalization to higher-order waves

on the left is even more so. Furthermore, the process does

not lend itself easily to obtaining addition formulas for the

transverse vector waves i,n". The vector is invariant with

respect to p, and although the identity V?

could be used, the vector wave functions on the right would

have both p and G as argument, and it would be tedious to

transform the result into the more desirable form in which

is the argument of scalar waves, G of vector waves. Hence,

with physical applications in mind, we simplify the calculations

and resulting expressions by confining functions of R and C to

n-index two or less, carrying functions of with whatever

indices are necessary. The derivation proceeded tediously as

follows: First the addition formula (1.10) was written in

tabular form as Row 1 of Table IV. Then i,j,k components of

= -\q were taken, and entered similarly from Table II to

give the partial addition formulas for the fl(R). On these

the process was then repeated, an feOO(R ) appearing in the



Table IV. Addition formulas for scalar spherical wave functions.
Entries are functions of ,; eOO - feO(A), etc.

R >

P

f eoo0(-) f.o1(-) fell(S) fo,1 (0- fo2(-f fe12(-) f,22() fo12(-) fo22(-")

f' (B) c0 3 e01 3 e11 3 oil 5 e02 5 e12 1i e22 o12 1 022
.00 3 12 3 12

f'(E) -e01 eOO - e12 - o12 2 eOl elli - I e23 oil 1 023
•01 12 1

-_ e02 - 3e03J - e13 -_ 013

f '(,) -ell - e12 eOO 1 . o22 - ell e0l 1 ell o23 I oil
all

+ e02 -e13 +D + e3 - e.13

222 K 3 @33 1 iL o 033

f.O eoi + .i3 1 .2 .1,4 .L 2

ellI

I+ e02 . o3 .- o13 @0 60 * 13

"f ) .02 0 all oIl .00 - . + .22 F c12 e22]

L~ ][7 L I 28 I?28
+ Ii @04

.12 F"1 1~ .r
V (1) @12 Fll f1.0 6023 @1.2] .00 @~ 12 c22 142

F~ A 141iF~l

+ @ 24

.32 1 7i@ 123 i 0! 13 1 cl 0 1 + "e241 @ 14 0 02 + a 14

, it o3 j 34 .o . .04 +

, . 44

(1) o12 - ,1 1 23 .5 .0 0,12] o22 o12 00 F 1
.12 L10J .L I ~ i 7 H141 .0 1.1

+ o13 -2 @03 + 2 014 + 7o24 + I c14 e7 02 -2 @ 14

L @23 jo34j U e04 - e.34

14 e22

- @ 24

f(5) o22 co23 LS- oFl - ell 1o22 L o12 6 44 e12 0

o2 V33  7 7.l K5W4o13 e13 +L L Ko1

I.- - e44



left column was subtracted out by means of the original

addition formula, and duplicated entries for the same functions

of R were compared as a partial check. Table I7 presents the

results. Here, to get addition formulas for in(R), one uses

the fact that 7R =G , so that the f's in column and row head-

ings are merely replaced with the corresponding 1.

A somewhat similar compression in presenting the partial

addition formulas for the transverse vector waves m,t is made

possible through eqs. (6), (7) and the fact thatVR =V;

hence a table of expansions of m(R) becomes one for n(R) when

.A") , "I( ) are replaced by the () , _m(6) having the same in-

dices (Table V). To obtain the tabulated entries, we noted

first from Table II that with jo(kE)-'l with E-> O,

whereas all other , vanish. Hence the entries in the first

three columns are prescribed by the component formulas of

Table II. (The analogous property of the 11 was then used to

check Table IV.) Taking VP in

the manner mentioned then allowed the next three columns to be

filled in from then - rows of Table II. Then each component

of each expanded function was written out through fl(e) terms,

from Table IV. The known re(e) entries could be sub.tracted

away, leaving the remaining entries to be identified as coef-

ficients of n 2EW's. The final m () entries were found2iinso 22



TABLE V

Expansions of m(p) in terms of m(e), n(e), and f(s). The usual forms are in terms of f(R) 
= 

f(-s); to

get these forms, use f(R=-s) = (-1)n f(s), i.e., change signs only of f's with odd last index.

n.o1(c) ,n,11(l ) n.,,(,) M.1(') M,11( 4) in, I ( ) n,,,( g) n. 2( o) n.,00(€ "-12(c) n.2iS(') M,,2(d) m,13(c) R,22( 9) M-,2(c) mo22(e)

.218 18

.00 2 12 " 901 - r -lp 33 oll

oi 2 0 1 a12 10 10 10 10 6 0 2 6 2
.1 -201 61 .0 2p12 " o22 e 12 - 12 -.0 - 13 ".23 0p13 - o23Se2 8 A 1

.00 f.ll -3 .01 - .11 -___o__

ell - .2 i .is

,-".1,0 1 12 .02 -1.2 12 -22 -12 02 -12 - 13 -03 - 13 .o "2 .13

" - .22 .. - .2 .3 . 2 33

~f~i ~.z ~100 -~i ~ 1 .00 all 1 6.22 .101 o.i2

M() oi 12 03 0 622 - All -6 2 1~0 a1u3 032 -j.03-
oil2 0101 411.0 4 2 4. Ao 02 1_ _ -2 - 2 -1

.01 .3.0303

4l 10 l," l 11al1,-0 1 .2 -0 1 2

12 .12 ~.03 - .13 .23 - A.23 - .13 Ai -33 1 R j.02 -14 .24 l -142  - ea4

001 0 1

rn 3 0 3 + 2 R 13 +A 2 -23 1 1 -13 ~.03 . H.4 U.4 -4-A 21+8 1

1 1 1
P 033 -p33 ..~

22 
- e34 ap34

- e e24

54 54 12 12 60 60
1ell -1- oil U a itT el - W4 e12 eO0 1- o12

M(6) 6 410 24 24 1
.2 3+2-o2-.2 je23 -.

1 3  
+ e1

3  
o23 '~13 *1 2 13 - Rl -0 e22 1 84.0 -o4 -p

3 3 2 2 ±4 4 4 ±j 4ije33 +3 o33 - oj.33 + . e33 - 24 e03 - 24 -. e34 -"O4 4 034

- e44

e00

9 27 _ 6 6 is i5 15 30 1
~e02 11 ~ 1000 ell j~01 -p 1 elll 11 ol 1p

2  
j 2 - 02 W4 12

3 3 12 3 4 24 6 6 12 6 96 6~ 12 + e22 o22 +[Lo13 A .23 18 e03 + 1e13 -je03 - e13 01O
3  

-'~4 p24 o104 e.04 + 1

3 1 1 1 15 1-'23 -24 e
3 3  

- o33 -4 '34 + R e22 + v e
34

8 rn24

e00

54 54 12 24 12 10 60 60 60oli TO ell - F2 ell R e~l 02 11 R 022 -4 12 -4 1e2 1 84 02

6 6 'k A 12 e 4 ~ 12 4 2 4 1 24 24..) -322 312 -312 023 - o13 - e13 e23 - 13 
+ 
2
- 
e3 .13 - 24 + 14 o44 +2 14 -2 

4
o22 101-4 1 24 e0 1 -1 4 + 4 - 4 8 "4 -8 4

3 2 244 +1
33 10. + 12 

3 3
Ij333 4 

3 4
+ Te-34 '44



similarly, via Vg VX. Here it was necessary to extend

the first four column. of Table IV to include the f 3(R).

For checking, Table V has been expanded componentwise,

using the scalar formulas of Table IV. The functions n3 ()

have component terms in f2 (E). These were found and the

f2 (E) accounted for among the nl(J), r2(6), and 2 3 (') " The

f2 terms in the component-expansions of 13 were then found

and used in a similar check of Table IV. The entries

f4(f) were not touched in this, so that a scheme of 900 axis

rotations which fairly well scrambled all entries were used.

The probably well-known fact was rediscovered that all

spherical harmonics with n-index two are representable by

superpositions of the harmonics contained in fe0 2 ' referred

to different axes. This means that in any linear problem the

quadrupolar scattering coefficients computed for incident

waves fe02' le02' me02' ne02 suffice to determine the scatter-

ing coefficients for all incident waves f2 ' 12' i 2, n2 ,

respectively.

We notice, in Table IV, a symmetry about the main diagonal:

the entries at the 'intersection' of the f (R) row, f (m )

column are identical with those common to the f (R) row,x'mtn'

f (6) column, except for a numerical factor which we now

xmn
discuss from the point of view of a reciprocity principle.



The wave

VA Yk. R '--
=- 5

satisfied (1.2) everywhere except at R = R' (a spherical

surface centered on q) where F, but not its R-derivative,

is continuous. The surface R = R' thus contains a source

distribution for the wave, which is then 'outgoing' for

R > R', finite at R = 0, and satisfies

F + fF - ,(coSe) C.os

everywhere, the right hand side expressing the sources.

Similarly, a wave

is the solution of

where the spherical surface E= e' is centered on t.

Again we take R = p - q, C = p - t, = q - t, p = (x,y,x)

and stipulate that >\ ' + R'I, so that the 'sources' do not

overlap. By Green's theorem and the orthogonality properties

of the spherical harmonics, we then calculate



Co 00

D - - - 1  7= FC, -G-F)

and find that the (- )-dependent coefficient of f (RI)
fs mln 

!

in the expansion of f (R) about q, multiplied by the Lm,n]of

(1.10) is identically equal the - dependent coefficient of

f (E) in the expansion of f (R) about t, multiplied by

Is Im n I] su

Thus the symmetry about the diagonal of Table IV would be

complete (except for opposite signs when the n-index of fn(f)

is odd) had the column headings been multiplied by the appro-
A _k

priate m,n]. Similarly, entries in row X(R), column Y(E),

Table V, differ from the 'symmetric' entries in row Y(R),

column X(E) by factors which are demonstrably required by the

electromagnetic reciprocity theorem. These factors are system-

atically related through 'normalization' factors,

n(n +1) (n + m, encountered in verifying the tables accord-

2n +l (n - my

ing to reciprocity; the sign of the 'symmetric' entries are

again the same or different according as the n-indices of the

entries are even or odd: f ()= (- 1 )n fn(->) (Relabeling the

column heading in Table IV, V to display these symmetries would



result in more complication in the important 'diagonal' entries

and in the subsequent applications.)

We may regard the addition formulas of Tables IV, V as

giving the partial excitation of a particle T centered at t =

(x",y",z") due to waves scattered by some particle at q, as

function of the relative position vector = q - t. It will

be useful to compute the total excitation of T (through terms

with n-index 2) on the premises that the particles Q which

scatter waves to T are uniformly distributed through a spacel,

the half space q> 0 minus some sphere of radius r centered

on t, and that the wave scattered by the particle at the

general point q = (x',y',z') in this region varies only

through some phase factor exp(ik'z'), We thus evaluate

:1 f ff7

Now f' satisfies

satisfies 72 E +

Theorem:

( k12 -- &kX) I

€ -- whereas E = exp(ik'z')

k' 2E 0 0; we therefore have, by Green's

- ff(E'---v&) Aroe %

I
?



The first integral on the left may be evaluated by first

using the k-component of 1 from Table I, substituting

fn() - (-1)nfn(- ) and referring to Table III. For the

second integral, we use the expansicc of eik 'Z and the

orthogonality relations of the spherical harmonics impied in

f,f'. Both integrals vanish unless the m-index of fI vanishesI

in this case, with - kl'/k,

(T2 - 1)1 a i2v nk "3  f (T + l)ei kzj" - 2TnRn 9 •kf 3 (1.13)
Expanded in powers of r through r 3 , the Rn (r) have the form:

+ V(1 +)t~O~rl + -~(~

Lack of a cubic term in R , n; 1, is evident from hn Jn + inn fl n

and the forms of the power series expansions of the latter

functions. It can also be proved by induction that

Rn - 1 is divisible by 2 1, for all n 0.

The symmetry properties af Table IV, discussed earlier, are

used in a similar calculation in which the space is replaced by

Z', the interior of a sphere S, of radius r', centered on q,

minus a small sphere s of radius r again centered on t and

interior to S.

With R = p p, p - t,: q - t, we calculated

j= famn (k',R)f 'a'm'n'I(k9,G ) d vol p~. (.5



Via Green's theorem, the orthonormal properties of the spherical

harmonics, and the symmetry exemplified in Table IV, we find

that, except for a numerical constant,

(r 2 lkJ = Rn(r1)F(kC) - Rnu(r)F(kM,) (1.16)

where, if Table IV were sufficiently extended, the F's would

represent the p - dependent coefficient common to the

f' (R) row and f (E) column except that the sphericalatta ainn

Bessel functions (J's in this case) have argument kF or k'vO

according as k or k' appears in the F-symbol.

First (on physical grounds) we stipulate that Re(kvk')>O

so that k' + k 00. Then we use the fact that

Rn = L + terms divisible by (2 1) (k 2 -k 2)/k 2 .

With the quotient Q =k[F(k,) - F(kK ,)/(k' - k) obviously

well behaved at k' = k, we conclude that J is analytic in

k,k' in all regions of physical interest.

With r%;- , rl > r we now examine the magnitude of J

when max £ lkr'\ , lkvrlj -= K /< 1. Since the F are

weighted sums of various j's, the 'order' of F is K

() ;,O) where is the smallest integer subscript of the j~s

in F; K is then the order of J when ) > 1. For

= 0, F = 0(1) but Q = 0(K2 ), as is LRn(r2) -R n (r)]/(l -),

so that J = 0(K 2). Hence J 4 0(K), equality arising only from

fl( term in F(k,C).



Section II: Illustrative Application to an Artifical Dielectric

We apply the formulas developed in Section I to the pro-

pagation of waves through suspensions consisting of small

particles randomly distributed throughout a fluid of known

properties.

The particles will be assumed describable through a set

of scattering coefficients, coefficients in the linear re-

lation between waves incident on an isolated particle and

the resulting waves scattered into the fluid. We shall assume

that a shape S is formed of some of the suspension, and immersed

in a bath of the fluid, and illuminated with known waves with

(suppressed) time factor exp(-Mot). Then the excitation of

any particle in S consists of the known incident wave plus

waves scattered by all other particles of the suspension. In

principle, our object is to calculate the average wave scattered

by S into the ambient fluid; we take this wave as the super-

position of waves scattered by all the particles in S, averaged

over all arrangements of the particles.

To calculate the particle's excitation, we make the self-

consistent assumption: we assume (a) that the particle lies

inside a small 'sphere of exclusion', s, into which the remain-

particles in S, however arranged, never enter; (b) that the wave

incident on the particle is the average wave found in s in the

18



absence of that particle; and finally, (c) that this average

incident wave can be determined as an integral over S-s, with

the excitation arising from a volume element dv at a point q

in S - s again an average, namely, Ndv times the average scatter-

ing (evaluated in s) of a particle located at ", where N is the

average number of particles in a unit volume of suspension.

The radius of exclusion, re (the radius of s) enters this

calculation through specifying one boundary surface of this

volume integral. Physically, re is set by the dimensions of the

non-overlapping particles, and perhaps should depend on the size

of the particle in s. However, it will be convenient to take

a single re for all particles. Conclusions about the mode of

wave propagation in the suspension depend on the choice of re,

but for sufficiently small particles, r may be taken smalle

compared with wavelength in the fluid, and its influence

disappears.

We illustrate the method by calculating the propagation of

electromagnetic waves in a suspension of small particles in a

fluid of dielectric constant E, permeability , both constants

being those effective at&4.

We assume that a unit volume of the suspension contains N

identical small particles describable, electromagnetically, by

dipole scattering coefficients A,B. Taking t as the center of

s, p as a general point in s, and At = p - t, the electric



vector of the incident wave (the average wave inside s in the

absence of a particle at t) can be expressed as a superposition

of waves of the form m = m~(n t), nn n VAt), where the

implied propagation constant k is that of the fluid: k = w(we

We assume that the particle responds only to the magnetic and

electric dipole excitations m, and n, respectively, so that if

the expansion (about t) of the incident field in s starts with
the terms (U"

Uxell + Uynol + zneo l ) + (vxmelI + vymolI + vzme0 l )

then the field scattered from t is of the form A(uxn'elI +

uyn'olI + Uzn'eol) + B(vxm'elI + Vym'olI + vzm'eOl), where A and

B are the appropriate scattering coefficients

For the geometry, we assume the suspension to fill the

half-space S = z >0, with fluid filling the space z 4 0. We
-A

assume the wave Wi normally incident on S (from z < O) to be

plane with electric vector in the x-direction; this wave has an

expansion about t = (x",y".,z",) of the form W = iexp(ikz) =

- exp(ikz") ell(&t) + imell(Lt) + (terms in mnA > 1)]. (2.l)

The total excitation W of the particle at t consists of this plus

excitation Ws due to the scattering from other particles in z ' 0:

W = Wi + WS .

We now assume that the average wave propagating in the sus-

pension travels according to some propagation constant k', as

would certainly be the case had z > 0 been filled with a homogeneous

medium. In the present plane-wave geometry, we assume. corres-

pondingly, that



-ek z" = iVk 1 eI~ z ~ 11
WLu + MoI  e + iV ; (2.2)

other dipole excitations vanish by symmetry and higher-order

excitations are omitted as producing no scattering. To find U,V

we use the set of simultaneous equations implied in W = W + W .1 s

Now the scattering into s from a particle Q at ' = (x',y',z'),

owing to Q's excitation-term exp(ik'z') U ell is found, from the

addition formulas of Table V, to be of the form: (2.3)

Uexp(iklz)(A [f'QQ -(1/2)f'e02 - (1/4)f' 2 1  ( ) +

A(3/2)fl eolml(~t) + (other dipole terms) + (terms in with

n-index > 03 where the arguments of the function f' is - =

(q - t). We multiply this by N and volume-integrate on " over

S - s, to obtain the excitation at t due to scattering arising

from the excitation term exp(ik'z')Unll'

General integrations of this type are given in (1.13); it

is seen from Table V that 'other dipole terms' have coefficients

f(p) with positive n-indices and vanish by symmetry on integration.

Similarly expanding the excitations of T due to the Vm term of

W, and applying (1.13), we find:

S-3 -3

where cL= -4ENik3 A .9 = -4Nik3 B, d- = k'/k.



From (2.1), (2.2), and (2.4) we see that the formal equation

W W.+ W amounts to four simultaneous equations, since
-4 5

m(t) # n(t) and exp(ik / exp(ik'z") for general 4t, z".

From coefficients of e ik'z, k and the ratio U/V are determined,

the former through the vanishing of the coefficient determinant,

IDI, of the system

LI 'RA. + V 1-6'1 w(% R-TA/2J o (2.5)

The two equations in U,V determined from coefficients of

e ik z" are linearly dependent, so that no contradiction arises

with the U/V determined by (2.5); from (2.1), (2.2) and (2.6)

we have

UOk + V -2(1 -c). (2.6)

Now we discuss the suspension's propagation constant k',

obtained by solving (2.5) for 6-= k'/k, taking R n 1 as be-

fitting this case of small particles. The polynomial (DI

is now quadratic in 62 and factors readily)one factor being

-1 . The conclusion k' = k from ( 2 _ 1) = 0 is rejected,

showing no influence of the suspended particles. Equating the

other factor to zero yields:

9- I¢ L. I -,(2.7)

Thus there is a single propagation constant k', the



negative root having the usual interpretation as a wave, running

in the negative z direction, which is not excited in the present

geometry. Writing k/2 = 2 C, we regard the first and second

factors on the right of (2.7) as &'/E,, '/. since the factors

arise from electric and magnetic dipole scattering, respectively.

The interpretation of (2.6) is reinforced when one calculates

(via Table III) the average wave " Re-ikz scattered back into

z < 0:

R = (1/2)(V - Uc<)/(1 + d ) = ( 1-)/(l + ) (2.8)

where A = (y)/(t,)3i/2 is the usual relative characteristic

impedance. This wave is identical with one reflected at the

z = 0 interface when Wi is again incident and z > 0 is occupied

by a homogeneous medium with the above e',/k'.

Operationally, one determinesM,, C', by measuring reflected

wave amplitudes under a variety of polarizations and obliquities

of W.. We performed the entire calculation for the case of1

oblique incidence, using the present method and the formulas

mentioned in passing in Section I; the reflected wave remained

that obtainable through the present C',/A1 and the assignment

is 'operationally' valid. Finally, the forms

e se r e b(2.9)

are Uthose required by the Clausius-Mossotti law.



We see that the coefficients of ei , z determine U/V and k',

but that the influence of the boundary plane z = 0 appears as a

limit in the integrals used to calculate (2.6) and (2.8). We

therefore regard (2.6) and (2.8) as establishing the electro-

magnetic boundary conditions at z 0 0. Eq. (2.6) may be regarded

as giving the amplitude of the wave transmitted into z > 0, and

(2.8) of course establishes that of the wave reflected by z 0 0,

but in both it is necessary to have determined the effective pro'

pagation constant kf (i.e.,*) irs.

Section III. Heuristic Theory of Ferromagnetic Exchange Effects
at Optical FreQuencies

The equations governing electromagnetic wave propagation in

a magnetized ferromagnetic metal a:%e Maxwelis equations plus the

(simplified) spin-wave equationsu

t - H (3.1)

which establishes the relation between the magnetic induction

B = H + 4TM and the magnetic field H. The constant A represents

the 'exchange integralU and incorporates9 for the ferromagnetic

continum, the effect of exchange forces between various atomic

spins of the actual metal. The effect of this generally neg-

lected term has been worked out in a special case by



Ament and Rado . They found (following Macdonald ) that for pro-

pagation normal to an applied d-c magnetic field, the metal was

triply refracting, and that at a plane air-metal interface, the

new boundary conditions AdM/de = 0 had to be used to determine the

three relative amplitudes.

We shall treat this problem by the method illustrated in

Section II for the reasons that a continuum (i.e., a differential

equation such as (3.1)) is not needed, that the exchange integral

and the new boundary conditions enter naturally, and finally, that

the range of the exchange force enters explicitly and without es-

sential complication of the resulting algebra. (One might expect

to include a range effect as a fourth-order derivative term in (3o1);

this would give rise to a quintuply refracting medium.) The thin

magnetic films described recently are semi-transparent, so-that

it becomes possible to measure magnetic effects at optical frequencies;

the range of exchange forces, comparable with interatomic distances,

may no longer be insignificant with respect to electromagnetic

wavelengths in the metal, so that the following results may have

more than academic interest.

1) W. S. Ament and G. T. Rado, "Electromagnetic Effects of Spin
Wave Resonance in Ferromagnetic Metals", the Physical Review,
Vol. 97, No. 6, 1558-1566, March 15, 1955.

2) J. R. Macdonald, Ph.D. Thesis, Oxford, 1950 (Unpublished).

5) C. A. Fowler, Jr. and E. M. Fryer, "Magnetic Domain in Thin
Films by the Faraday Effect," Phys Rev, lO4l, 522, Oct 1956.



We assume that the ferromagnetic metal is a suspension consisting

in an isotropic, non-magnetic fluid, of some appropriate metallic

conductivity, in which randomly imbedded particles are responsible

for the magnetic properties. Again we let the4aid fill z < 0, and

the suspension fill z > 0, and let the plane wave with magnetic

vector h = ihoexp(ikz) be incident from z < 0. In addition, let

the static magnetic field JHa be applied. Now we describe the

particle at qi by the vector S( i), and endow S with the properties

that the magnetic field H( ) at an arbitrary point p = (x,y,z) in

the fluid is given by

0( -)&~ + C

(3.2)

and such that

SI, PS( ~p =-) -o--PS

Here T(p,q;W) represents a 'dyadic Green's function', depending on

the frequency4 so that S acts as a radiating magnetic dipole.

Eq. (3.3) is the dynamical equation for the spin S, the first term

representing a torque due to the local magnetic field and the second

representing the exchange forces, with F containing the range de-

pendence of the forces. The constants C and D are parameters

amounting to scattering coefficients.



Now we replace the general vectors H and S by

-L .,

and will linearize the resulting (3.2) and (3.3) by ignoring terms

quadratic in the lower-case quantities. Then, assuming a uniformly

random distribution of the qj in z > 0, we replace the sums by in-

tegrals over z ,> 0 minus small spheres centered on p and o Omit-

ting e ,we than havewith iL

In order to apply the results of Section I, it now becomes

convenient to let F(r) f' eo(k r) = exp(ik*r)/(ik*r) (where

k * =_ i Ik*I to make F real), and to assume that the wave Lfn P'O

varies as exp(ik'z), where the propagation constant k' is now to

be determined through a secular determinant. From the exp(ik'z)

dependences in the above equations, we obtain four simultaneous

homogeneous equations in hx , hz , sx , s z



+c4(),/(i ,+ A-1 H + o.

4- ~4~{ e H Z~e/~ (r (L~~) (3.5)

where: C -  -,1 N1 o C

AA I

and where we have again taken" = k'/k, and assumed Rn = 1.

. Here D' is essentially the conventional exchange integral,

and the effect of finite exchange range is incorporated in the

21W appearing explicitly in the last two equations.

The expansion of the secular determinant of this system

gives a polynomial cubic in r2 , so that there are three propaation

constants k' = kl , k2 , k3 .

To determine the amplitudes of these three waves, we need

analogues of boundary conditions applicable at the interface

z = 0. For this purpose we notice that the integrals on the

right of (3.4) imply, from (1.13), that waves can propagate in

z ;;0 according to exp(ikz) and exp(ik*z). The amplitudes of

these waves are necessarily zero, since the presence of the S.

is ignored in exp(ikz) and the surrounding 'fluid' is ignored in

exp(ik*z). Setting the amplitudes of these unphysical waves



to zero yields three non-trivial scalar 'boundary condition equations'

0 [ 4X/(j-d) +,(3.6)

o7) -A. + /(3.7)

from the two vector equations (3.5).

The quantity of experimental interest is the impedance ratio

= (ho - hr)/(ho + hr), where hr is the amplitude of the wave re-

flected back into z ( 0. From Table III, following the method used

toward (2.8), we find that the reflected wave is polarized in the

x-direction and has amplitude

-_ 'L4f ~~ I44c1 , [ 43.1,163)]+/L (3.9)

Equations (3.6) and (3.9) are equivalent to the standard electro-

magnetic boundary conditions (continuity of tangential components of

E and H), in the same manner as were (2.6) and (2.8). The 'new'

boundary conditions are (3.7) and (3.8). These are identical with

dM/dz = 0 for k = 0, but differ slightly as/ becomes finite, i.e.,

as the range of exchange forces becomes comparable with the skin

depth. (More precisely dM/dz = 0 holds in the approximation that

?'= k'/k* becomes small compared with unity, i.e., that exchange

is small compared with actual wavelengths in the metal.)



For a given k*, one can-now assign CI,D ',S , and He so that when

/X =k/k* is ignored, the physical significance of the present equations

is identical with those used previously.1) Then withlm47 0, the

calculation of the roots of the secular polynomial and of Z can be

carried out, by methods formally identical with those previously l)

used, to show the effect of/A 0 on the previous results. These

identifications and calculations will not be given here. 'What has

been verified is that the previous formal result for '0- [eq. (2.5),

ref. (1)] is obtained when one sets/i = 0 in all equations follow-

ing (3.6).

Section IV. Frequency Dependence of Certain Artificial Dielectrics.

In this section we treat the problem of Section II for the case

that the randomly suspended particles are small identical spheres

of some radius r, and will be concerned with the r-dependence of

the effective propagation constant, k'. The r-dependence occurs

in several ways. The dipole scattering coefficients of the spheres,

expanded in powers of K = kr, lead to replacement of the C<,P of

(2.4) by expansions of the form

/ 4/ K' L V(c~

3. (481)

The constants 0(, O2_ , 0 , , 3 depend on the properties of

fluid and sphere-material. In the absence of ohmic losses, 03 is

related to o(, 3 to , as required by Rayleigh scattering (see



Section VIII). Only the leading terms of these expansions are valid

in the 6lausius-Mos~otti formulas (2.9) as derived there. The effect

of K > 0 will appear as a 'real' effect) Q(K2 )and a lossy term, re-

lated to Rayleigh scattering, of order K3 .

Thus to obtain an effective loss in k1, due to random scatter-

ing, we need to carry terms through K6 in the scattering coefficients

of the spheres (through K3 in c', P'). The quadrupole coefficients

a 2 , b2 of the Appendix have expansions starting out C'K
5 +0(K7 ), so

that their leading terms must also be included. Higher-order coef-

ficients start out Kn , n Z 7, and can be neglected consistently.

Finally, the centers of any two spheres are separated by distances

. 2r, so that the 'radius of exclusion' re is finite and the Rn of

(1.14) must enter the calculation.

We let the suspension fill the half-space z , 0 and let the

plane wave iexp(ikz) be incident from z < 0 as before. For the

excitation exp(ik'z) (AmelI + Bnell + Cm 2 + D we get the

scattering exp(ik'z) A ' + BO'n' + C& ' +Doll ell o12 el2 o

Higher order scattering is negligible and other dipole and

quadrupole excitation will vanish by symmetry. We then calculate

the total excitation on a sphere at (0,O,z'), again using the ex-

pansion of the plane incident wave and table IV followed by (1.13)

From the coefficients of the four linearly independent functions

1 n,m 2 ,n 2 ) we find k' determined through the secular



determinant

'IKr0 +r --1

( + z 2-) ( + i-

1 +,5 6', 164)

_- f

(a7 - I-

(4.2)

whereQ, I' are as in (4.1), where

\IT

o-nA w ke re

When the R n 's are carried to requisite power in Ke = kr e this ap-

pears to give a polynomial of high order in T 
2, but (- -1)3

factors out and the result is quadratic:
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Thus there are two propagatim onstant. k'. Vs euamim that k'

which is a 'perturbed' versim of the ki a k*e of (2.7)1 eipanding

in powere of K nnd omittiM taw of r*Uati" order S we get, with

Ke kr.,

3 + IoQ + -

.0 (i +-)(i +

Now we interpret the tewms of for the case of no ohmic

losses, where t, are proportional to the volme fraction f, occupied

by spheres; for the easo of o ohmic losee, they are real nwsbers

lying between -1 and 2. 55mm, in the ase, it is seen

that the coefficients Q ani V are no-sgi, so that with

X3 0 )the iV 3 is positive imaginary aM eOm sponds to attenuation



in a wave propatating as exp(iklz), whereas -iQKe3 represents

a negative attenuation. The attenuation due to the V-term

seems attributable to Rayleigh scattering by the randomly ar-

rayed spheres, whereas the negative attenuation from the Q-termn

appears to arise from the decrease in randomness caused by the

finite radius of exclusion. This interpretation is supported

by the fact that V = o(fl )", Q = 0(f 2), for small f 1 For

large f < 1 and for reasonable values of r /r ' 2, physically
1 e

realizable o'\ are readily found so that the Q.-terms exceed

the V-terms and the total attenuation Im(k') is negative.

The reason for this breakdown of' the theoxry is nct clear to

the writer. The U and P terms are real in the lossless case,

but can change sign for suitable - foeo . for suitabie

lossless electromagnetic constants of the fluid and the spheres).

These and the K 2V terms then affect only the propagation velocity

implied in k'o

The second propagation constant k is O(K- ); the, leading

term is real, but it would be inconsistent with the present ap-

proximation to calculate higher-order terms. The physical signi-

ficance of this second k' is not clear: perhaps a parallel analysis

of a cubic lattice of finite-sized spheres would shed light here.

It is believed that (7.4) expresses the kr-dependence of reasonably

dilute suspensions of identical small spheres.



Appendix: Scattering Coefficients.

The coefficients here are expansions of the general formulas

(10) and (11), page 565 of Stratton's "Electromagnetic Theory' The

expansions there suffer from inaccuracy and lack of symmetry between

C and/.oL. , _

OR 0 ( )A

-3 4 lx- )A

where primes refer to the material of the sphere, and N = k'/k.

Coefficient b is obtained by replacing ,)4,y with E)' ; the same

holds for b2 with respect to a2 "

Fo e f cA k> t 77e e v i

For perfectly conducting spheres we have with = Ir

+3 _- E9 + 7

.t- 7)

7)



For intermediate conductivities (finite skin depths) one must proceed

from the general formulas.

For lossless media, the scattering coefficients are found,

from the boundary condition equations to have the structure

TL L ~4~~

where L is a linear differential operater with real coefficients.

From hn = Jn + inn, the expansions of jn(x), nn(x) in powers of

2 2
x , and the asyntotic forms for small x, one finds lal = -Re(a);

The expansions above have this structure which, for al, b1 , is a

mathematical equivalent of the theory of Rayleigh scattering.

(See Section VIII, 2).

Section V. Sound Waves in Suspensions

To calculate the propagation constant, k', effective for

dilatational acoustic waves in a suspension is vastly more dif-

ficult than for the electromagnetic case just treated. First,

three kinds of waves (atL) can exist in the fluid; dilatational,

thermal, and shear. For only the first two kinds have propagation
excl4)

constants been calculated exactly in'terms of fundamental physical

properties of the fluid. Only the coefficients for dilatational

4) C. Truesdell, "Precise Theory of the Absorption and Dispersion
of Forced Plane Infinitesimal Waves according to the Navier-
Stokes Equations," J. of Rational Mechanics and Analysis,
Vol. 2, No. 4, Oct. 1953.



incident and scattered waves of order 0 and 1 (monopole and dipole)

are found explicitly in the literature, and these have been calcu-

lated with approximate propagation constants and impedances. For a

small volume-fraction of spherical particles in the suspension,

where interactions are ignorable, the discussion of Section IV shows

that coefficients of order 2 (quadrupole scattering coefficients)

must be kepto give an academically correct k' in the limit of the

fine dispersion. Presumably, those of order 3 are required to give

k' correct to order r 2. As dilatational excitation causes thermal

and shear scattered waves (and vice-versa), the matrix analogous

to (7.2) would be 12xl2, except that there are no shear waves of

order 0, and thermal waves of orders 1,2,3 may be unimportant.

Finally, most suspensions have a variety of particle types and radii.

Consequently we give the general argument in outline only,

then make certain simplifying approximations, and close with the

specific formulas that have been obtained. We suppose that the

average excitation of type i (e.g., monopole-thermal) of a particle

I ik'z
of type is given by 0(, iWie . This results in scattering W'

of type j, according to the appropriate scattering coefficient

,ij. The resulting excitation of type k of a particle of type

6 Lto be calculated through the addition formulas expanding WI

and eq. (1.13)] has the typical term N, .,iA-,ij Idg, jke ik k

where the Id't,jk represents the last factor of (.113) in which the



radius of exclusion r., and hence the R of (1.14) depends on both

types Trand C, and where Nr is the number of type-"F particles per

unit volume. Summing over all types of particles and excitations,

we have the set of simultaneous equations

N~ ~ = 0(5.1)

in which the ('s are the unknown amplitudes. The vanishing of the

coefficient-determinant of these amplitudes determines the possible

values of k'.

To decrease the order of the deteirminant, the most obvious

assumptions are that r-. = r. or r,, or re = constant; the last

approximation, that a single radius of exclusion applies to all

particles, produces the great simplification that the excitation

Wk and Itr,jk are now independent of particle type, so that the

relatively simple

det I s - Z 4I Ari Ij4 =0 (5.2)

determines the various k'. Here it is seen that one may sum (ons')

over the variety of particles first, so that we may write, for (5.2)

det A, -- (5.3)

where Aij represents the weighted average of the scattering coef-

ficients A, ij. Thus the simple generalization of (4.2) to a



variety of spherical particles is now obvious.

The A ij Iij may now be regarded as matrices and the j-sum as

matrix multiplication. In the acoustic case the scattering-coefficient

matrix (used by us) is

I1 Au h =

A 0
1

B0 B0 "

0 0

0 0

0 0 AI AI1"

0 0 C1 C i"

(5.4)

The scattering (excitation) in row (column) 1,2,3,4, is di-

latational, thermal, dilatational, and shear, respectively, and the

order of the coefficient (i.e., monopole, dipole) is indicated by the

subscript. (Also A ZNTACo , etc.) The interaction matrix I = Tjk

is found via Table IV and the right hand term of (1.13).

T
0

t

0

0

0

0

I -

'xrf 11C

6

6 I0-_I
: z .(5.5



where if k, kt, ks , are the fluid's dilatational, thermal, and shear

propagation constants, X = 4T/(ik3 ), y = k/kt, z = k/ks, be = ktre,

ce - ksre, and where 0' = k'/k as before. The diagonal elements

are perhaps obvious; the entry in row 1, colurn 3 comes from the

coefficient of an exciting wave leCl(k, C ) in the expansion of a

scattered wave l eol(k,R). (We have assumed that kre<<l, dilatational

wavelengths in fluids being much longer than thermal or shear

wavelengths.)

We now perform the matrix multiplication, expand and solve

(5.3) for T7. Having made the further simplification (approximate

for very small particles) be <<1, ce <<l we obtain

(5.6)

I-2A )I +X eC x1) z A I

Since I' 2/Ic2 = m'/mn[9/ we have a natural interpretation for the

two complicated factors in (5.6) [m compressibility, density].

When the explicit scattering coefficients (7.33)ff and (9.1) are

inserted, the interpretation is completely verified if m' and m are

adiabatic compressibilities and ' is given through the usual additive

laws of composition. We have not verified the interpretation by

computing a reflected wave. Neither have we considered be , e = 0(1),



feeling that the neglect of order-2 scattering and the difficulties

discussed earlier would make the result meaningless. The finite-ce

assumption would make no substantial change (a slight modification

of z3 ) as it appears in (5.6), since it is seen from (1-14) that the

numerator of the lower-right element of (5.5) is divisible by the

denominator, with the disappearance of 2 in this element.

Section VI. Order of Magnitude of Interactions for a Small Sphere
Suspension.

Now we take the shape S of Section II to be a sphere of radius

r' with center at q, and will consider the r'-dependence of the

average waves scattered by the sphere into the ambient fluid. A

wave W0 incident on S can be expanded about q in terms of spherical

waves. The resulting total excitation W incident on a typical

particle P at I in S is then assumed (in the present self-consistent

formulation) to vary with " in the same way that a physical wave-

field depends on P when the material of S is homogeneous; i.e., the

P-dependence of the excitation of P is that of solutions of the

scalar wave equation with some effective propagation constant kIc

(We take k' as representing, in general, any of the possibly several

propagation constants of the equivalent homogeneous medium.) Thus

the general term in the excitation of P is of the form
(k I"), where -' is the position vector, with respect

to j, of a general point in the neighborhood of p. W(k:ip) in



turn causes P to scatter a set of outgoing waves, which excite T at

t, the general term in the expansion of this particular excitation

being of the form Af'(k, - t)W(k,AK) where AR is position vector

with respect to t, and A is some scattering coefficient.

Thus the excitation of T due to scattering from P has the

general term AW(k, t)f(k', -')f'(k, -t). To get the average

excitation of T, in accord with the self-consistent formulation, we

then multiply the above by Ndv and volume-integrate, with respect to

P, over S - s, where s is a small sphere of radius r interior to S,e

and centered on t. The order of magnitude of this volume integral

is discussed in the last section of Section I: when Ikr'I4 1,

jIk'r'\e< 1, the integral depends on rl as r n , n > 2, except when

the excitation of T depends on t as f (k,t - q.) or f1 (kV,t -q).

We now consider the ra;n-Itude of the effect of T's 'exceptional'

-3NaW
excitation which is of the form k NAW(k.t)f 1 (k or k', t

(This is of the order kr' or kI'r' because of the f1 factor.) The

general term of the resulting scattering to the observation point

u outside S is of the form k NAA'w'(k; -_t)fl, where A' is a

scattering coefficient possibly different from A. The total wave,

arising from this term, is found by again multiplying it by Ndv and

integrating with respect to t over S. For this purpose we then ex-

pand W'(k, u --t) about 4; in this expansion the sole term that will

survive the integration is of the form f 1 (ki, t - )W'(k, u- ).



Therefore the resulting contribution to the average scattering at u

-3N2 .' IL
is different by a numerical factor only from k N AA'W'(k, u - •

Jl(kr) (k" = k or k); the integral is 0(.Ictt4 r 5 (6.l)
0 1

For comparison, we determine the scattering when T is assumed

excited by the incident wave W (k, + "q) oqly. This wave has
0

an expansion with terms:

f (k, t- + f (k9 T q) + 0(kr?) (6.2)eO0 0 ~t ~r)

where W 0 (k,4t) i formally identical with the incident W Re-

placing the .,W 1 by the appropriate scattered waves, expanding

them about , multiplying by Ndv and integrating on over S, we find

that the first termS(6.2) yields r O(k2r'2)] times (Nvl= NUnr?3/3)

times the average scattering to 1 of'particles placed individually

at Q and illuminated by W , being of 'order' Nv'A. By the analysis
0

leading to (6.1), the f W term of (6..) yields scattering of order

NA(k2r 2)v' and the remaining terms of (6°7) clearly give contri-

butions of this order or less.

Gathering results together, we find that, for r' small, and

for a fixed incident wave in the ambient fluid, the sphere S of

suspension scatters, on the average, a wave equal to (4nNr,3/3)

times the average wave scattered by the individual, isolated

particles, placed one at a time at- , the locus of the center of S.

This statement is in error by terms of relative order (kr )2 or

(kvr ,)2 where k' is any one of the propagation constants effective



for the suspension. Consequences of these conclusions are explored

in Section VII.

Section VII. Physical Properties of Fine Suspensions

A. General Theory

To measure the properties of some substance, one would form a

simple shape of the substance, immerse the shape in a fluid of

known properties, illuminate the shape with a known wave of

frequency w, and measure the field scattered by the shape. Then,

in the linear relations (scattering coefficients) between the inci-

dent and scattered fields given in terms of the properties of the

fluid and of the substance, one substitutes the measured scattering

coefficients and solves for the properties of the substance. One

theoretical procedure is to c u the average scattering

coefficients for a simple shape formed of the suspension, in terms

of the scattering coefficients of the suspended particles; these

average scattering coefficients then play the role of those

measured experimentally in the inference of unknown (effective, or

average) properties of the suspension.

For computational purposes, the simplest shape, formed of the

suspension, is a small sphere; this sample-sphere is immersed conceptu-

ally in a bath of the fluid constituent, so as to avoid introduction

of an irrelevant set of physical properties. We are dealing with

randomly distributed, small particles, so that the radius r' of



the sample sphere can be quite small also (r'L4 << 1),, The ex-

citation of a typical particle in the sample sphere consists of

the original incident wave plus scattering from all the other

particles in the sample. Since the sample is small, the number of

other particles is small, and heuristically, the scattered ex-

citation appears negligible (of order rl/L or rl2/L2, say) compared

with that of the incident wave. (In Section VI, it was shown,

through a self-consistent formulation and the use of addition

formulas for spherical waves, that the scattered excitation is

indeed relatively negligible for small particles. We give in the

Appendix an alternative heuristic demonstration that scattered ex-

citation can be ignored; the argument also holds for anistropic

media in which spherical waves are inapplicable.)

All particles in the sample are close to its center (which is

at p , say), and the scattering from any particle (to the 'measuring

probe9 at some fixed distance from the sample) can be regarded as

having originated at P, with a small relative error of order (rv/L)o

It follows that, with small error, the total wave scattered by the

sample sphere is the sum of waves scattered by the individual par-

ticles of the sample, where the wave scattered by each particle may

be easured' by placing the particle by itself at $ and illuminating

it with the common incident wave. From the finite radius r9 of the

sample-sphere arises the small error (of maximum order rl/L,

heuristically) owing to interactions and eccentricity.. The



magnitude of these errors is discussed in Appendix

We may express these conclusions quantitatively. Let N be thet

number, per unit volume, or particles of type t in the suspension,

let At,Bt, .. be scattering coefficients, effective atu), for the

particle of type t relative to the fluid, and let A', B', .. be

analogous scattering coefficients for the sample sphere relative to

the fluid. Then

A' = (4rr' 3/3)ZtNtAt  l + O(r'/L) (7.1)

Equation (7.) expresses the scattering coefficients A',B',...

of the sample sphere of radius r', in terms of corresponding

scattering coefficients A tBt for the particles. To deduce the

bulk physical properties (a',bl,...) of the suspension, we use the

formulas for the scattering coefficients in terms of r', of a',b',...

and of a, b, ..., the corresponding properties of the fluid. For

small spheres, the dominant scattering coefficients are generally

volume proportional.

A' = (4pr' 3/3) G A(a,b,...)F A(a,b,,..;a', b',...) (7.2)

where the subscript A denotes that the factors G, F are those ap-

propriate for scattering of the type to which the coefficients

A', A pertain. (The error in (7.2) will be ignored; it is oft

2
order (r'/L) . See Appendix .) From (1) we therefore obtain

FA(a,b,...;a'b'...) = (/G )t N tA t . (7.3)



If the particle of type t is a sphere of radius rt and physical

properties at,bt,..., then its scattering coefficient At (relative to

the ambient fluid) is of the form (2), with subscripts t replacing the

primes. The volume fraction ft occupied by the spherical particles of

type t is then Nt (4rr t3/3); in this case we therefore havetype

FA(a,b ,. . . ;  a',b',...) = FtftFA(a'b".'* atbt,.e) (7.4a)

Thus we have deduced for each volume proportional scattering coef-

ficient A,B,..., a relation connecting the bulk properties a bv

of the suspension of the fluid, and with the analogous properties

and volume-fractions of the various kinds of spherical suspended

particles.

If all particles are of the same material, with constants

al,bl,.., then the right side is independent of the distribution

of radii and we have

F(a,b,...; a',b',...) -z fl F(a~b.,.o..; al~bl,...) (7.4b)

Each type of volume-proportional scattering gives a relation of

the form (7.3) or (7.4) among the relevant constants of the sus-

pension, the fluid, and the spherical particles. A full set of

such relations then provides a number of simultaneous equations

which may be solved for the constants of the suspension. Similarly,

one can solve a set of relations of the form (7.3) for the constants

of the suspension in terms of the scattering coefficients of the

particles, if the point-particles scatter only those waves for which



A' is volume-proportional; otherwise the sphere's volume (41r'3/3)

cannot be factored out of (7.2) to obtain (7.3). This fact appears

to exclude the assignment of effective constants to the suspension

when the particles produce higher-order scattering.

The formulas (7.2), (7.3), (7.4) are too general for fruitful

discussion of such composition laws, and we therefore turn to par-

ticular cases, considering first the case of electromagnetic

waves.

B. The Electromagnetic Case

In the electromagnetic case, we consider, as the fluid, any

homogeneous medium described by the complex dielectric constant,E

and the complex permeability,/L, both constants being those effective

at angular frequencyW. Then plane waves propagate in the pure fluid

according to exp(ikx - i; t) where the propagation constant k is

given by k = kE. Let the suspension have the similar constants

E' and/". and let some of the suspension be formed into a small

sphere of radius r. Let Bs be the scattering coefficient, of the

small sphere, connecting the scattered electric dipole wave with an

incident electric dipole excitation, and let A be the similar co-5

efficient for magnetic dipole waves. Let Bt, At be similar

scattering coefficients for the particles. The two types of

waves are linearly independent, and we find5 ) that

5) J. A. Stratton: "Electromagnetic Theory" (McGraw-Hill 1941), Ch.7,
and Sect. 9.25. In Formula (39), p. 571, the right side of the
first equation should be multiplied by 2.



B =2ik3r 3  .£Z'-e A =_2krs3 A 2ikr
5 3 '+ 26 3

Hence, from (2) we have

-3 -3
_ -2ikTr tNB mj 1 N tNtAt
+'  2  1 '+2)-k 3

If, in turn the scattering particle of type t is a sphere of

radius rt, constants Et ,pt, then we have, from (7.3

' - = :5 f Et -_
C- + 2C- -G t t + 2

= ft k. -_

(7.7)

where f t = 4rt 3N/3 is the volume-fraction occupied by the particles

of type t.

The 'composition laws' (7.7) will be recognized as the

Clausius-Mossotti laws for dielectric constant and permeability,

rearranged for convenience in handling differences among the

properties of the suspended spherical particles. If the particles

are all of a single type, these laws become rearrangements of the
formuas ofLewi 6 )

formulas of Lewin (The same may be said of (7.6), if allowances

for differences in notations are made. Lewin arrays his particles

in a cubical lattice but replaces sums over the lattice with in-

tegrals; this replacement removes the lattice spacing from the

6) L. Lewin, "The Electrical Constants of a Material Loaded with
Spherical Particles," Inst. of Elec. Engr. Journal, Part III,
Vol. 94, pp 65-68, 1947.

(7 5)

(7.6)

1A'+ 2-

k t - /,-
+ 'ILA

4/-"



resulting formulas, and is equivalent to an assumption that the

particles are randomly arrayed.)

The laws (7.7) must be interpreted as relations among these

E's and/k's which are effective at angular frequency LO. To use

them for information about the statically measured dielectric

constant and premeability leads to incorrect inferences. To

illustrate this point, let the materials have finite conductivities,

d' and d'le The fluid's dielectric constant, effective at u, is

then (in MKS units) 60 + ia/6where C0 is some dielectric constant

necessarily measured under the time-varying conditions owing to

the non-vanishing relaxation time C/6 (Th a steady-state
0

measurement, one necessarily measures d.) Relation (7.7) now

becomes

(7.8)

When conductivities are finite, a steady voltage gradient applied

to the material results in the flow of current of amount determined

by the effective conductivity, ( , obtained from (7.8) by setting

0 = 00 Setting t = o yields an expression for C-o in terms of 6olo

But the equality in (7.8) fails for general t) if these values of6f?

and Cc are inserted. Hence we conclude that the general formulas

(7.3) and (7.4) apply only among the effective constants.



With highly conductive particles, it is possible that ka << 1

for particle radius a commensurable with wavelength in the particles.

Here the scattering coefficients depend on the particle radii 5 ), and

the application of (7.3) and (7.5) leads to

- (_ - C'f(a) 26lEl(kla) - ECk1 a) j 1 (k 1 a)('
& + C 2& J (k a) + 2 (k1 a) j1 (k 1 a)] ,

f~) 11 1 '~

+ 2,, 2,) (Ic a) + /k 1 a) j 1 (k 1 a)

where f(a) is the volume concentration of the particles of radius a,

and af (a) = f1 " Formulas (7.9) are required in computing the losses

I
arising from a skin depth (k/',) 2 comparable with particle radius.

/

In the limit of C1 -7?I k1 al-V , we get

6' -E = fl, )At - A

C-1+2E ,..YN+2/' (7.10)

Heuristically, the two expressions of (7.10) differ in form be-

cause of the fact that electric lines of force end in the perfectly

conducting particles, whereas magnetic lines of force must pass

around the particles. [One sets C =oo, butut = 0 in (7.7) to obtain
(tit/t

(7-10)]. A similar visualization applies to the conductivity relation



obtained by setting co 0 0 in (7.8):

0-__ _ - - (7.I.)

which yields

(7.12)

When 1I = o , lines of current-flow end in the particles, but when

T 0, current flows around the particles. Finally when

0-I/T >>l, (11) may be rewritten as 6' = T(l + 2f1 )(l - f

so that c'-h 0 when e -) 0, a result required by the fact that, for

current to flow through the suspension, it must somewhere flaw through

the fluid.

C. Acoustic Case

We turn now to physical properties important in the propagation

of small-amplitude acoustic waves. The scattering coefficients to

be used here are those found or implied in the recent paper of

Epstein and Carhart7 ). In this work, the relevant physical parameters

appear to be density (9), shear viscosity (r), bulk viscosity (FL)

thermal conductivity ('a), the usual specific heats (Cp,Cv), and %r

the temperature coefficient of volume expansion at constant pressure.

7) P.S. Epstein, and R.R. Carhart, "The Absorption of Sound in
Suspensions and Emulsions, I. Water Fog in Air," J, Acoust.
Soc. Amer., Vol. 25, pp 553-565, 1953.



In the usual treatment, one takesb= 0 a priori, and the thermal

effects are ignored or lumped phenomenologically in a compressibility,

M =-(('/'2 ), where p = pressure. For isothermal conditions T can

be neglected and we may deduce an mT = -(/ p) T = T0( 2 /(Co - PCv)
TT 0 p v

(Tot= mean, or 'undisturbed? temperature.) Likewise, under adiabatic

conditions,i can have no effect; here we deduce the compressibility

mA = mTCv/Cp = mT/

Epstein and Carhart deal primarily with the propagation of

dilatational waves in suspensions; for this purpose they compute two

scattering coefficients, Ao and A1 . The coefficient A relates di-

latational dipole scattering with dilatational dipole excitation.

Some of these scattering coefficients are given in Section IX.

Here the particle moves relatively to the viscous fluid, so that

shear waves are also scattered; the scattering coeffieicnt is C1 .

One may also assume a shear-wave dipole excitation, and compute

the scattering coefficients A1" and C"1
1 for the resulting scattered

dilatational and shear waves. All four of these coefficients are

volume-proportional and arise from essentially the same set of four

simultaneous boundary condition equations. One might reasonably

expect that the application of (7.4) would lead to the determination

of the composition laws for four of the physical parameters, or at

least for e and 9, the two parameters most relevant for the dipole
scattering. The only constant of the particle material which appears



explicitly in the leading, volume-proportional, term in each of the

four coefficients is f. , and the application of (7.4) leads to

V = fl~l + f (7o13)

in each of the four cases, without contradiction or further information.

From the four simultaneous equations expressing the boundary

conditions for monopole (spherically symmetric) waves, one can com-

pute the volume-propertional coefficieits A0, Bo, A0
11 , B0

t. The first

two pertain respectively to the radial dilatational and thermal waves

scattered when a purely radial dilatational wave is incident, and the

last two have similar meanings for radially incident thermal waves.

By systematically applying the approximations of the Epstein-Carhart

paper, carrying only terms of lowest order in the particles's radius,

one obtains the four monopole coefficients in reasonably compact form.

Applying (7.4) first to B.9, one obtains

?I CP = f Cp + f1 ?Cp1
"  (7.14)

This result simplified the application of (7.4) to A and A "; both0 0

coefficients yield

1 1A fC (7-15)

After using both (7,14) and (7.15) to simplify the application of

(7.4) to A one obtains

mT fmT + flmTl (7.16)

We gain further information by calculating the scattering



coefficients appropriate to incident thermal waves of a dipole character.

Here the coefficient for scattered thermal dipole waves yields the com-

position law for thermal conductivity.

f 1 t (7.17)

The coefficients for scattered shear and dilatational waves yield no

new laws, being combinations of (7.17) and (7.13).

The angular frequency appears explicitly in the dielectric law

(7.8); to obtain analogous acoustic expressions would require carrying

the relevent propagation constants without approximation. Acoustic

analogues of the 'skin-depth' formulas (7.9) may also be obtained

at the expense of algebra; this case, however, is not so interesting

as the case where the suspended particles are relatively rigid and

of sizes comparable with thermal and shear wavelengths in the field.

[See Section VII, E.]

The truth and significance of the four "additive" composition laws

(7.13) through (7.16) are obvious. The association of the density

composition law (7.13) with dipole scattering coefficients seems to

arise from the fact that except in the 'thermal' case the dipole

scattering coefficients are volume-proportional only if jeI - o; 0.

For the force tending to move the particle relative to the fluid in

the oscillatory acceleration-field is of the nature of a buoyancy

proportional to the mass of the particle minus the mass of the dis-

placed fluid, a force vanishing if P, = ?. The composition law



(7.14) essentially gives the heat necessary to raise a unit mass of

suspension a unit temperature at constant pressure; the law seems an

appropriate deduction from the coefficient connecting between thermal

incident and scattered waves, Analogously, thec~ls, connected through

the law (7o15), are physical constants relating a thermal cause and a

mechanical effect, in keeping with the derivation of 
(715) from A "

0

and B0 . Both of these coefficients relate thermal with dilatational

waves, and the fact that both lead to the same composition law sug-

gests some underlying reciprocity principle. Only mechanical effects

are associated with A and the resulting law (7.16). The reason this0

law concerns mT rather than mA seems to be that the particles have

been assumed small enough so that they are in local thermal equili-

brium with the fluid.

Finally, since steady-state electrical and thermal conduction

are entirely similar, the formal identity of the Clausius-Mossotti

laws (7.17) and (7.11) is not surprising. It is interesting to

note that (7.17) is derived from the scattering coefficient connect-

ing thermal dilatational incident and scattered dipole waves, whereas

(7.11) was derived indirectly from a scattering coefficient for

electric, transverse, dipole waves.

For acoustic waves in homogeneous substances, the dilatational

propagation constant k is given by k = W (m ) to an accuracy im-

proving withLO. If one ignores thermal waves (by setting t = 0),

the dipole scattering coefficients A1 , C1 , A1 1', C1" remain



practically unaltered, while the sole monopole coefficient is Ao.

In the small-radius limit, this A would lead to the composition law

mA - A flm,,. The law (7.16) is the pertinent one. The thermal

equilibrium is reached by the flow of heat between particles and fluid.

On thermodynamic grounds, this flow of heat should lead to an energy

loss from the wave propagating through the suspension. But the im-

plicit assumption has been that the suspension is passing through a

series of reversible equilibriums, so that no heat losses are entailed.

For a strictly rotational incident velocity field, the particle's

moment of inertia, rather than its Mass, determines the magnitude of

the scattering, so that the scattering coefficient is of order r5 .

For a shear velocity field, the scattering coefficient is volume-

proportional and leads to a composition law for viscosity. This law

is derived in Sub-section VII, D.

D. Composition Laws for Elastic Constants and Viscosities

For the spherical scatterers, we have so far encountered only. two

formally different composition laws; Those for E, t, a- , and t, of

which the laws (7.7) may be taken as typical examples, and those for

and m, of which (7.13) may be taken as typical. The first law (7.7)

is simply the Clausius-Mossotti law, rearranged algebraically in a

manner convient for taking into account suspended particles of

differing dielectric constants. The additive law (7.13) states simply

that the mass of a unit volume of suspensions is the sum of the masses

of the component materials in the unit volume, a law probably well



known to Archimedes. If we visualize non-oscillatory measurements

(U-0O) of the various properties, the Clausius-Mossotti composition

law appears when in the visualized measurements, the particles affect

a vector field of force or steady flow, whereas the additive law ap-

pears when they affect some scalar property, such as a pressure-

volume relation in the case-of m. (It might be objected that a

density measurement requires an acceleration-field, but the dense

particles do not disturb the field in any way, so that their effect

can be construed as scalar)

When the viscosity or shear modulus of the suspension is being

measured, the particles affect tensor relations and the corresponding

composition laws are not expected to follow the additive or the

Clausius-Mossotti form. The scattering coefficients required in

finding these laws by the present method do not seem to be given

explicity in the literature, and will now be derived.

We now compute the volume-proportional scattering coefficients

pertaining to scattering by a solid sphere embedded in a second

solid, thermal effects being ignored. From these coefficients,

we deduce the composition laws for density, 9, and for the Lam6

constants, % and/.. From the law for the shear modulus,/k, we

deduce the composition law for fluid viscosity, ) ; the particular

reason for this roundabout derivation will be given subsequently.

For axially symmetric motions, the dilatational and shear-wave

scattering coefficients (An and Cn, respectively) are to be computed



8)
through four simultaneous boundary-condition equations

aj '(a) +Anah '(a) - n(n + l)Cnh (c) = An 'a'J'(a') - n(n + l)C tjn(CO)

(7.18)

n (a) = Anhn(a) -Cn[hn(C) +chn (C) = A 'j n(a') -C'U(c') +cI n(c')]

(7.19)

+A .(/) 02 h(n2 +(c- )
aJn'(a) -in(a) +AnLahn'(a) -hn(a '-(i/2)Cn high'(c) +(n + n-2)h(C

A Ia j '(a') -J (a')] - (1/2)C ' C' 2 j"(c') + (n2 + n-2)j (c')

n n in n ~nn
(7.20)

a 2 [Jn(a)-2 4n ' (a)] +a 2An h n(a )-2kn' '(a) +/ L(n+l)CnLChn'(C)-hn(C)

= '2n ' ' ' j ( a t')-2M j Jn (a ')] +/2n(n~l)C -[ 1 nJn)

(7.21)

The first two express continuity of (radial and tangential) velocity

at the surface of a sphere of small radius r and of substance de-

scribed by ', %' 9', and the last two express the balance of (tangen-

tial and radial) forces across the boundary. Here the outgoing and

spherical Bessel functions hn(x) =. hn (1) (x) and Jn(x) both satisfy

in - x jn- +Jn+]/(2n+l)

xJn' = x[njn 1 - (n+l)Jn+,] /(2n+l) (7.22)

2jn + 2XJn' + x Jn- n(n+l)Jn = 0x sn' + j Xj'~n(7°23)

8) P. Epstein, "On the Absorptions of Sound Waves in Suspensions and
Emulsions," (Eq. 25), Theodore von Karman Anniversary Volume, 1941.



Also, for x 4< 1)

Jn(x)r.gxnn. 2 n oh (x)"- -1 (2n-i (7.24)
(2n+l),v x n92nx

Finally a = 2 r2 /> + IA C2  2r2 / (7.25)

with similar definitions for a', cK

We are interested here only in the limiting case lal «< 1, c( < 1.

For the spherically symmetric case n = 0, only dilatational waves are

involved, and the 'tangential' equations (7.19) and (7.20) do not apply;

setting n = 0 in (7.18) and (7.21) and applying the identities (7.22),

(7.23) we obtain

j0(a) + j2(a) + Ao[ho(a) + h2 (')] = A /a 2 ) [Jo (a9) + j2 ( a )

3c 2jo(a) - 4a2 [jo(a) + j 2 (a)] Ao0'c
2 ho(a) - /a 2 Cho(a) + h2 (a)1)

- A?(,/,,A) 3c'2 (aI 4a 2 o

respectively. Applying the expansions (7.24), we have

1 -3ia - 3 Ao = (a?2/a2) Ao0  (7.26)

(32_ 4a 2 ) + 4a 2 3i-3 Ao = (/,) [3c 2 _ ,21 Aov (7.27)

Solving for Ao, and applying (7,25), we obtain

3iAg 3 = (3X + 2k) - (3 X + 2A1 (7°28)
3X\ + 20 + 47.

For n > 1, we find that, with the identities (7°22), the combinations

(18) + (n + 1)(19) and (18) - n(19) yield, respectively, the lnew

velocity equations



aJnl (a) + Anahn-l(a) - (n+l)Cn ch nl(c) = An a ij n -l (al) -

-I(n+l)C nC' Jn-l(C' ) (7.29)

ajn+l(a) * Anahn+l(a) + nCnchn+l(c) = Aan jn+l (a') + nC jcjn+l(c°)

(7°30)

In the force equations, we first eliminate the second de-

rivatives through (f.23), then in (7.21), use (7.25) to eliminate

the explicit appearance of . Then (7.20) - 2(n+l)(7.21) and

(7.20) +n2(7.21) result in the simplified force equations

#C 2 jn(a) - 2(n-l)ajn-l(a) + A nC2hn(a) - 2(n-l)ahn-l(a) I

- C (n+l)Lc2 hn(c) - (n-l)chn_\(c) =

An2j(&a) - 2(n-l)a Jn-l(a)] - Cn  A-cc?

(7.31)

2 cin(a) -2(n+2)ajn+
1 (a) + AnLc2hn(a) - 2(n+2)ahn+l(a)

+ nCnLc2hn(c) - 2(n+2)chn+l(c) =

I c ') - 2(n+2)at'j ~(a') + nCn'LC jn(c) (n+2)c 3(c9)

(7o32)

For a general solution, it might be convenient to subtract

2n + 1)c2 - (2n + 2)](7.30) from (7.32); in the present small-

radius case, after this step and the substitution of the expansions

(7.24), one obtains a consistent set of four independent equations in



3 3
which A,C,A',C' are of order a , c , 1, 1 respectively, for n = 1,2,

This last equation is not required, however, since (to the present

order of approximation) the right-hand side of (7.30) vanishes, and

those of (7.29) and (7.31) differ by a constant factor. To obtain A,C

we then need only the first three equations, with (say) the A' terms

eliminated.

For n = 1, in (7.31) we then factor outMc 2 , then apply (7.22)

and substract (7.26), and then substitute /K 'c'2/(?c 2 ) =ev/f. With

the expansions (7.24), equations (7.29), (7.30), and (7.31) become

0 - 3ia-2 A1 - 3ic- 2 C1 = 0

a - iAI + 2iCI =-2c'C1 ' (or a = -2c'C1 ')

0 - 3ia A + 6ic 2C1 = L['/( - l (-2c')C l'.

Solving, we have A1 -ia 3 ( ' -)/(9 ), C1 = -iac
2 ( ' - )/(9 ). (7.33)

For completeness, we compute the scattering coefficients A " and

C1" for the case that the incident excitation is the axially symmetric

shear wave of order n = 1. As may be obvious, the last set of

simultaneous equations is changed only by the appearance of -2c in

place of a as the leading term of the second equation, so that
-2 /a , C" -2cCl/a.

For n = 2, we again omit (7.32) and obtain from (7.29), (7.30),

(7.31) respectively



a2/3 - iA 2a-1 + 3iC 2c-1 = -C 2 ,c
2 ; 0 + A 2a3+ 2C2 c- 3 = 0;

_2a2/3 - iA2 I.3c 2 - 2a2]a -3 + 3iC2c-1 2C?2( '//,002

Including the case of shear excitation (again with doubly primed

coefficients) we have A2 (-3c2/a2)A)CCC = -3c/)A229
2)2

A 2 = -ia 34A, R - 2))/3

3 (X+ 2 )k( 2 A + 3,M ~ }4 (7.34)

Now we apply the theorem (7.4) (using for simplicity, particles

of constants Fl' x',/ i, with tft = fl)to obtain the composition

laws

(31\' + 2V-0) -(3\+ 2$) = fl

= fl

S3 4 2A) (3X+ 2+ )

(3X + 2) + 4/k

(7.35)

(7.36)

Ia' -'

3 ( ++

/14
1- A +

(7-37 )

from coefficients of order n = 0, 1, 2, respectively. The law (7°36)

is the familiar density law (7.13).

= flTl - )



The conversion of these laws into composition laws for emulsions

of viscous fluids (in which thermal effects are to be neglected)

proceeds via the scheme 3/(3A,+ 2t)*m (m = compressibility),

-iq ( = viscosity), -4 (P4 density). Here 1I/m for
2 c2

practical substances and frequencies (i.e. a 2<<c ) and we may

simplify the composition laws through ignoring terms of order

a2/a2 M4:

M' - m f f1 (ml - m) (7.38)

.n' -f i ) '% -
2f + 3r 2'11 + 3 (7.39)

The law (7.38) is identical with (7.16); (7.39) is the sought-for

law of combination of viscosities.

The viscosity law (39) arose from the fact that the 'quadrupole'

scattering coefficients A2 , C2 , A2", C2" are volume proportionai.

In the simultaneous boundary-condition equations for the fluid
9)

sphere, Epstein's analogue of the present (7.21) differs from

the corresponding equation of Epstein and Carhart 10) by terms of

relative order a 2/c2 . In neither case does the analogue of the

italicized step leading to (7.31) and (7.32) appear possible;

9) See footnote 8 on p. 59

10) See footnote 7 on p. 52



the consequence is that A2 , etc., are not volume proportional unless

further judicious use of a 2/c2 0 is made. Hence the present round-

about derivation of (7.39) via the gelastic' laws.

Properties of composite media containing completely rigid sus-

pended spheres are to be found by setting A1 = 0% /i1:(m I = 0) in

(7.35) through (739). For bulk properties when the suspended

particles are completely soft, one setsX 1 = 0, I = 0 (mI =co) on

the right sides of these equations. In particular, the viscosity

of a suspension of rigid spheres may now be written as

= 1 + (3/2)f1  \j + (5/2)f1 + (5/412 (740)

1 -f1

Comparison should be made between this viscosity law and the

Einstein-HughesII ) law

1 + (1/2)fI  + (5/2)f + 5f12]  (7.4)
1 - 2f 1

The assumptions of the present derivation include that of negligible

physical contact between particles, a situation approximated in

viscous flows only for small volume-fractions of particles. Thus

the difference between the composition laws is probably academic.

11) A. J. Hughes, "The Einstein Relation between Relative Viscosity
and Volume Concentration of Suspensions of Spheres," Nature.,
Vol. 173, pp 1089-1090, June 5, 1954.



The same is true of a preference for the denominator 1 - fl of

(7.40) to the 1 - 2f of the Einstein-Hughes formula; the latter

denominator yields perfect rigidity as 50% concentration, and

negative viscosities for higher concentrations, which are achiev-

able without particle contact only on paper. The measurements

cited by Hughes compare about equally well with both (7.40) and

(7.41):

lOOf I  Observed (17o40) (7.41)

0.88 1.022 1.022 1.022
1.76 1.042 1.045 1.045
3.5 1.087 1.091 1.094
7°0 1.195 1.188 1.204

14.0 1o512 1.407 1.486

The writer believes that solid suspensions would be more convenient

for experimental verification of the analogous formula (7.37); at

least, the problem of colliding particles would be avoided. A

prediction for A' should also be derivable along lines closely

paralleling the Einstein-Hughes derivation of K

Mackenzie1 2 ) has computed the elastic constants for a solid

containing spherical holes. We set Xi'1 I to zero in (7.35) and

(7.37). The former yields Mackenzie's result (7.7) if his holes

had been of uniform radius, while the latter agrees with eq. (71.19)

when our f 1 is small and/ 7 A.

12) J. K. Mackenzie, Proc. Phys. Soc. Lond., Vol. 63B, p. 1, 1950



To obtain the viscosity of a suspension of fluid spheres which

retain spherical shape owing to surface tension, we equate each side

of (7.18) to zero, (19) and (20), but ignore the radial force equation

(7.21). After some care with the approximations a ,< c . 1,

a' c' c ( 1, we obtain an A2 which, via (34), (4) and

yields

f 5r1 + 2q

2,,? + 3-o 10(91 )7.42)

For small f, where r''r, this becomes the result (Mackenzie's

eq. (26)) derived by G. I. Taylor.13)

When a fluid has a finite coefficient of bulk viscosity, ' , the

value of q()) = l/m(w0) is effectively complex: for small vibrations

according to e - i kt, q(k)) = q(0) - iW . We have taken = 0

previously, so that q, q1 are independent of O. But an imaginary

term may be deducedfor q' whente-iwi is retained in (7.35), which

now becomes (q' - q)/ (q' -4itJ /3) = fl(q,- q)/(q,- 4iw 9/3). From

this we obtain

(7.43)

where y = q/ql = ml/n) f + fl = 1 and where (7.38) gives m!

13) G. I. Taylor, Proc. Roy. Soc. A. 138, 41, 1932.
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The formula becomes identical with the result of Taylor and Davies
1 4

when y >7 1, f 1 e-1l, the error term is small, and when ml is con-

strued to include surface tension effects. Our T -o-0 when y-*l, in

consonance with the idea that ' depends on and must arise from

shear flow in the ambient fluid surrounding the particle: the flow

should be strictly dilatational when mI =m

Even when computed exactly, our ?'.oowhen m = 0 and fl- O,

as does Ta ylor's. It therefore seems reasonable to explore the

attenuating effect oi waves propagating through the suspension. To

get the propagation constant k' = k(W) = -(m(O) ')f, we therefore

compute m(W) = I/q(vO) exactly, obtaining

+ rM (7.44)

where m' is as in (38), W = 40Y3. Hence

-kW (w Yw) /o- MI\) QJ\

(7.45)

so that the attenuation per centimenter (21m(k)) is proportional to

V3 for small fl, and m > 0. When m = O, the attenuation per cm,

goes as 2f 1 3/2. Intuitively, for small fl, we expect Im(k) to be

14) Proc. Roy. Soc. 226A, pp 34-39, 1954



proportional to the number of scatterers per cubic centimeter, i.e.,

to f1 ; thus the case m = b is either unsatisfactory, or it is

meaningless to talk of sound waves in an incompressible fluid.

For suspensions of very small spheres in fluids of finite com-

pressibility, we have obtained a reasonable,W)-dependent acoustic

attenuation which arises from the fluid's viscosity and vanishes

when all compressibilities are the same. It should be pointed out

that equally important thermal effects have been ignored.

E. Acoustic Scattering by Particles of Finite Size

With regard to obtaining antu-dependence in some of the

acoustic composition laws, one original purpose of this paper was

to obtain a viscous loss term in the effective density of asuspension

of rigid spheres of radius a. It is well known that the viscous

loss depends on the parameter a = a(W)/2?)(1/2) so that (unless

one included the small effect probably obtained when all propaga-

tion constants are carried without approximation) scattering coef-

ficients showing viscous losses cannot be strictly volume-proportional,

and the present method is inapplicable. If however, we treat . as

an effective radius of a point particle, the coefficient A1 leads to

= f~+ 1~) + itf).(9 Pf a f (a) + O a)~ (7.46)

where f(a) a Na41a/3 , and f 2 f(a), f = 1-f (Similar

derivations of ' from A1 8, C1, C1 " differ from (7-46) and mutually



by terms of order a, unless further assumptions are made regarding

A).

The writer has a number of reservations concerning the applic-

ability of the previously derive. 15,16 formula (7.46). The loss

term (on the right) is significant only whenp a = 0(l), in which case

the interactions among the (finite) particles of the suspension are

not negligible, as assumed in the present derivation. A proper self-

consistent calculation of the interaction requires the assumption of

some radius of exclusion a, 2a, a minimum distance between interact-

ing particles. No such radius of exclusion appears in this or

previous derivations. (In deriving (7.46) the assumption of point-

particles also entailed the assumption af- lI)
17

Finally, it is clear from the Epstein-Carhart paper that thermal

waves and viscous shear waves (in fluids) are of commensurable wave-

length, so that thermal losses should be commensurable with viscous

losses; thus the acoustic attenuation in suspensions is not predict-

able through a !lossy2 f' alone.

15. R. J. Urick and W. S. Ament, J. Acoust. Soc. Am., 21, p. 115

1949

16. W. S. Ament, J. Acousto Soc. Am., ?J, pp 638-641, (1953)

17. See footnote No. 7



APPENDIX

We assume that an average unit volume of the suspension con-

sists of the fluid plus total of N point particles, defined through

scattering coefficients. We then select at random a number of small

spherical samples of the suspension, insert the samples one at a

time in a bath of the fluid, measure a given scattering coefficient

of a similar sphere of some 'equivalent homogeneous material' having

physical properties equivalent to those of the suspension. With

randomly located point particles, the Poisson statistics apply, so

that the probability P(n) that n particles will be found in the

volume v' = 4r 13/5 of the sample-spheres is given by P(n) =

(Nv, )n -Nv'
e /nI. Then the average scattering S is determined

through S = EnS(n)P(n), where S(n) is the scattering, on the av-

erage of those sample-spheres containing precisely n particles.

Since the samples containing no particles are continuous with the

surrounding fluid, they produce no scattering: S(O) = 0. With

r' at our disposal, we take it additionatIsmall so that Nv''<( 1;

we then have

S = (Nv') S(l) (7A.1)

(If r' is now taken so small that the scattering from any particle

may be considered as arising from the sample's center, to relative

order (r'/L), eq. (7A.1) is recognized as substantially identical

with eq. (7.1) of the text.) The error in (1) is seen to be of



order (Nv') 2(2). The relative error thus hinges on the magnitude

of S(2)/S(l); i.e., on the average magnitude of the net scattering

by two interacting particles separated by a distance less than 2r',

compared with the scattering by one of the particles. With small

interaction S(2)/S(l),2; with interaction producing some sort of

resonance in the two-particle scattering, one might have S(2)/S(l) =

0(1/r'); but S(2)/S(l) = 0(1/r' 2 ) still leads to a negligible error,

since v' = 0(r' 3). With P(n) = O(r '3n) the n > 2 terms are seen

to contribute to the average S even more negligibly.

For finite particles, we can choose some fixed point, say

the center of gravity, of the particle, and say that the particle

is or is not in the sample sphere according as the fixed point is

or is not in the sphere. Then the probability P(n) that exactly

n finite-sized particles are in the sample is obviously smaller

than P(n) for Point particles, so that the foregoing argument

again leads to S , S(1)P(1)--(Nv')S(l)o

The foregoing argument is heuristic, but is simple and to

the point. We have shown in Section VI that if a self-consistent

theory applies to propagation in the suspension, the error in (1)

ts of relative order (k"r') 2 , where k" is the propagation constant

of greatest magnitude effective for the fluid or for the suspension.

This error estimate includes both interactions within the sample-

sphere and the possible eccentricities of particles there.

It follows that any scattering coefficient A for the sample

sphere has a power series development in powers of r' starting out



like
3 2

A = S r' (1 + cr' (7A.2)

where c is a constant and where S is a constant for a 'dominant'

volume-proportional scattering coefficients, but should be taken as

zero for the higher-order scattering because the physical particles

must be assumed small and therefore incapable of producing 'higher

order' scattering. It can be shown that (7A.2) is also the form

of the dominant scattering coefficients of a homogeneous sphere

(again of radius r' and immersed in the fluid), so that the error

estimate in (7A.2) is of the order of magnitude required for an

equivalence of the suspension's properties with those of an equiva-

lent homogeneous material.

(Suppose one chooses sample-volumes having fixed ellipsoidal

shape and orientation. The present argument would suggest that

small ellipsoids made of a homogeneous substance have volume-

proportional scattering coefficients which are independent of

eccentricity and orientation. But the scattering of a small

dielectric ellipsoid depends on its shape and orientation.

Hence the present argument is suspect, as is the Section's

main argument which would appear to lead also to shape-

independent scattering. This matter is treated more con-

structively in the 'Notes Added in Proof'.)



Section VIII - Approximations Vilid for Dilute Suspensions

A. Dilute Suspensions of Small Particles.
18

Following Rayleigh, we assume the suspension to fill a slab

between the z = 0 and the z = d planes, with kd << 1, and with the

remainder of space filled with the fluid. A plane wave transmitted

normally through the slab emerges with a relative amplitude equal to

unity (as if there were no particles in the slab) plus a plane wave

formed from the scattering of the particles. If the particles of

the slab interact negligibly (as is the case in the dilute limit),

the excitation of each particle is that from the expansion of the

incident wave Ee hz about the particle. From the scattering

coefficients and Table III we then compute the total plane wave

Eteikz in z>d. Assuming no reflections at the slab's boundaries

and a wave inside traveling as e i k z , we set Ereikd = Eeik ' d,

expand in powers of d, and obtain from the coefficients of d1

n.3 (2n + ')(an bn) (8ol)0-=k'/k -1 - iNk n1 (n+)(an+bn Sl

k1/k = 1 - 2TriNk-32= ° (2n + I)An (8.2)

for the electromagnetic and acoustic cases, respectively. Here

N = number of (identical) particles per unit volume of suspension,

the scattering coefficients of (8.1) are given in Stratton1 , those

18) Rayleigh, Scientific papers, Cambridge Univ. press, V. 4,
P. 397-405 (1892-1920); also in Phil. Mag. 47, 375-384, 1899.



those of (8.2) in Epstein and Carhart 7 , and one can generalize to

a variety of particle types by replacing NAi by 2 tN-tAit , etc.

The writer noticed 9, 19 that the superimposed scattering of

particles of the slab should also form in z < 0 a reflected plane

wave traveling as ERe - i k z , where R (like T) may be calculated

through Table III. He then chose the effective physical proper-

ties of the suspension as those of an equally thick slab of

homogeneous material which would have produced the same R and T.

By expanding in powers of d and equating coefficients of d1 , he

obtained

it t+-

(8.3)

(8.4)

2 2
for the electromagnetic (k =UA6) and dilatational acoustic

(k 2 =W2 m ) cases, respectively.

20 21
Darwin and Twersky apply a self-consistent calculation to

'suspensions' filling z > 0. In place of the present 'sphere of

19. NRL Report No. R-3238

20. C. G. Darwin, Trans. Comb. Phil Soc. ?3, 137-167, 1924

21. Verbal Communication



exclusion' they assume (essentially) that a particle at (x,y,z')

receives no excitation from any other particle in z' - d' < z < z' + d'

(kd' l,< 1). Thus the particle's total excitation is deducible from

the expansions of forward and backward-traveling plane waves* For

normal incidence, the most general results of these assumptions are

identical with those derivable by the "method" Just described. In

the electromagnetic case, the results (8.3) do not express the

Clausius-Mossotti laws, but give the leading terms of these laws

when they are developed in powers of N.

The acoustic case is more interesting. We note that the theory

of Section V gave k'/k as the product of two factors which were

verifiably m'A/mA and ?'/". The adiabatic compressibility of the

suspension m' was computed as if fluid and particles in a smallA

region of the suspension were at the same temperature, a condition

valid under our assumption that the particles were extremely small0

This result was obtained by substituting the scattering coefficients

of (9.1) into (5.6). When the same coefficients Li.e., Ao of (9.1)]

are used in the low-concentration formula (8.14), we find that the

m' cannot be interpreted either as an adiabatic or as an isothermal

compressibility for the suspension, owing to the complicated de-

pendence of Ao on the physical constants. If we had included the

volume-proportional A2 in (8.4) the m' would not have been improved

as A2 involves the viscosities explicitly. On the other hand, terms

suggestive of the 'bulk viscosity' found in (7.43) might have appeared.



A better deduction of m' by the 'thin slab' method leading to

would have been to compute the R and T of the slab for a plane

thermal incident wave as well as for the dilatational wave. Then the

m' would be computed as one of the properties of an equally thick slab

of homogeneous material producing the same thermal as well as dilata-

tional Ris and T's. Shear waves, which are transverse, would not

be encountered for normal incidence. (This seems to be the reason that

el of (8.4) is correct.) We have not performed this thermal wave

calculation and therefore cannot' say that the 'thin slab method

gives a wrong m'. On the other hand, the acoustic k' of (8.2),

calculated by Rayleigh's method, is also incorrect when regarded

as an expansion of the 'correct' k in powers of No The error again

arises in the compressibility and is due to the structure of A.-

But this k' has generally been used in former theories of pro-

pagation in suspensions. The writer feels that theories of acoustic

waves in suspensions in which all coefficients of order 0, 1, 2

are not taken account of are oversimplified, although in many

cases practical results may agree closely with experiment.

B. Extinction and the Meaning of kIo

The 'average' plane wave in the present suspension travels ac-

cording to e k Z where k' is a complex-valued effective propagation

constant. To determine k' by the simple theory of part A, one

must measure a slab-thickness d and a plane-wave transmission co-

efficient, T. For the necessarily interferometric measurement of

the complex number T, we imagine an interferometer (immersed in



the fluid) with which one measures the transmission coefficient

T' of a sample-slab (of thickness d) of some homogeneous sub-

stance of properties approximating those of the fluid, The

measurement is also possible when stray radiation from random,

fluctuating sources is added to the transmitted field. Forming

a set of sample slabs of suspension, we similarly measure a

complex T for each sample, and obtain T as the average of T

over the set. Alternatively, we visualize the particles in the

sample slab as swiriing randomly about in the sample slab and

measure T for the time-varying transmitted field just as T'

was measured in the presence of stray radiation. This power

counts as so much receiver noise. (Similar conceptual inter-

ferometric measurements of average reflection coefficients R

and scattering coefficients A. are obvious and will not be1

described.)

Thus e ik'z describes the propagation of an average coherent

(interferometrically measurable) plane wave in the suspension.

In the electromagnetic case, the power carried by this average

coherent waves is attenuated according to exp(-2zlm(k')); from

(8.1) we have (for k real)

where Qt is the 'extenction cross-section', or relative power

removed per particle from the average coherent plane wave. Part



of the 'power removed' is converted into randomly scattered power such

as the 'stray radiation' of the interferometric measurement. Com-

puting in the usual way relative power randomly scattered per par-

ticle (when the exciting wave is plane and k is real) we have:

Q5 = k-2y-n1 (2n + l)(\an\ 2 + bnl 2 ). When there are no ohmic

losses all 'power removed' appears as randomly scattered power and

we must have Q. = Qt; by replacing hn by Jn + inn in the general

electromagnetic scattering coefficient, one finds l an 
2, lbn\2 =

-Re(an,bn) so that Qs = Qt follows as a methematical identity.

(We suppose the particles in the slab of note (1) are opaque

and large compared with wavelength, and each has projected area A

on the z = 0 plane, and finally that NAd - 1 so that shadowing

of one by another can be ignored. Computed by Huygens' principle,

ray theory, or otherwise, T = 1 - NAd so that k'/k = 1 + iNA/k

and Qt = 2A, the well-known result that the extinction cross-

section of a large opaque object is twice the area of its geometric

shadow. About half of the 'power removed' by the opaque particle

is scattered in a cone subtending k 2A steradians, with center

parallel to the positive z-axis in the positive z direction. The

angular width is calculable by antenna theory (physical optics) and

the phase is such that the incident plane wave is canceled immediately

behind the particle, to form its shadow. If the particle were com-

pletely absorbing ('black', or 'matched to space') the forward

radiation remains, and we have an analogy to the fact that a resistor



connected across a constant-voltagi generator dissipates maximum

power when equal power is lost in the generator's internal resistance.

We conceptually measure T and hence t interferometrically to dis-

criminate scattered power flowing at finite angles with the z

direction; this power has random phase if the particles swirled,

and would count as stray light, Van de NIulst22) discriminates

against this stray light by measuring power remaining in the coherent

transmitted plane wave with a properly trained telescope of aperture

A'; the stray light's fractional contribution to the measured power

is made arbitrarily small by taking A'/A sufficiently large. The

large A' is obtainable as the area of a hole in a mask in the z = d

plane, with the discrimination A'/A being realized when the fixed-

aperture power-measuring device is placed at sufficient distance

along the ray through the hole's center; the results of Sinclair

and LaMer,23) obtained with substantially this geometry, confirm

= 2A. Finally a relative power flux 1 - NAd flows (the principal

portion rectilinearly, by ray theory) through the slab, of which 1 -2NAd

retains phase-coherence with the originally incident plane wave. If

the particles were reflectionless half-wave plates (parallel to z = 0)

22) H. C. Van de Hulst, "On the Attenuation of Plane Waves by
Obstacles of Arbitrary Size and Form," Physica XV, No. 8-9,

Sept. 1949.

23) Sinclair, D., Light scattering by spherical particles, J. Optical

Soc. Am. 37, 4 75-480.



the relative power flux is unity, the coherent portion is 1 - 4NAd,

and Qt = 4A; the forward-scattered radiation has the same phase but

twice the amplitude as that producing the shadow of the opaque particle.

It is hoped that misunderstandings of Van de Hulst's exposition will

be clarified by these supplementary remarks.)

We derive Qt as the imaginary part of an effective propagation

constant k'. At least in the electromagnetic case, the writer

believes that an appropriate version of the Kramers-Kronig relation

should apply to k' = k'(), so that Rb(k') should be deductible from

Im(k') and vice versa, for all particle concentrations. For dilute

suspensions, Qt therefore should imply a perturbation (linear in N)

in propagation velocity.

The cross-sections Qt, Q. do not apply for high concentrations

where interactions are important. The area Qt-Qs might be termed the

'cross-section for heat generation' and is the cross section required

for calculating the decay of energy in a reverberation chamber filled

with a dilute suspension. For the acoustic case, only dilatational

waves are measured (or propagate across the chamber) and we have

(power attenuation exponent) =

(which has the same significance as eq. (13.3), ref. 7). With small

particles of radius r, the dominant scattering coefficients Ao, A1 , A2



are of order r3 and their real parts are also of this order, owing

to shear and thermal losses. Therefore, as observed by Epstein and

Carhart, Q. = O(r6 ) (Rayleigh scattering) is relatively neglible.

Section IX - Critique of Angusti-n M~thnf3 And Ram i .lt

As our methods and results in acoustic propagation problems

are incomplete and scattered through the text, we summarize them

here, point out the remaining difficulties, and close with remarks

on related problems.

The chief block toward more complete results in the acoustic

cases is the lack of accurate, sufficiently general scattering

coefficients. In the notation of Section VII C, Henry Passerini

and the writer have found the following coefficients;

3 2I2 I (y I

LO'
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where AoAo",Bo, Bo" are as in (5.4), where a (b) is sphere radius

times dilatational (thermal) propagation constant, and where use

has been made of the thermodynamic relation (r-)r A- Q/(Cr °

The coefficients of orders 1 and 2 were found essentially as in

Section VII D, thermal effects being ignored in the calculations.

Some efforts were made to develop the coefficients of order 0 and 1

in powers of radius; the results have been remarked on in Section

VII E but are not reported, both because of lurking doubts as to

the accuracy of the results and because, as mentioned in Section V,

one needs similarly developed order-2 coefficients, and probably

the leading terms of the order-3, for consistency in applications.

(The derivations were made routinely from equations [9.1 of the

Epstein-Carhart paper7; in addition to difficulties with this paper

mentioned after (7.39) and the use there of approximate propagation

constants,mentioned implicitly in Section V, Passerini's calcula-

tion differed from their result [10.21 in the sign of the last

term. We have used Passerini's sign, which is the minus before

the last term in curly brackets in the form of Ao, above; this

choice of signs is responsible for the clean interpretation of (5.6)

in terms of adiabatic compressibilities.)

We have used available scattering coefficients here in three

theoretical approaches to acoustic propagation in suspensions. The

first, in Section V, should be regarded as illustrating the self-



consistent method since we have not included the volume-proportional

coefficients of order 2 in the formulation, nor have we properly

treated the variety of exclusion radii in practical suspensions.

Furthermore, the formulation should have produced the suspension0s

thermal propagation constant. No doubt this would have occured had

the thermal dipole scattering (coefficient B " of (9.1)) been con-

sidered in (5.4), as now seems proper; what effect this might have

had on (5.6) is hard to imagine. The second method uses the general

theory of Section VII to achieve the results of VII C and VII D.

The latter contain some novelties, but one feels that explicit

4)-dependencies would be found from exact scattering coefficients.

The third simple 'thin slb method of Section VIII is valid for

dilute suspensions; even here the results could be made more

satisfactory by separating thermal and dilatational effects, a

separation ultimately worthwhile only if exact coefficients are

used.

Now we discuss the present theories against the background of

four incompletely explained experimental results. First, observations

at 1 Mc/s of the attenuation in a kaolin-in-water suspension versus

kaolin concentration, showed maximum attenuation at roughly 20% as

compared with a theoretical 38% concentration. The feeling

24) R. J. Urick, "The Absorption of Sound in Suspensions of Irregular
Particles"f, J. Acous. Soc. Am. Vol. 20, No0 , 283-389, May 1948

25) W. S. Ament, "Sound Propagation in Gross Mixtures", J Acous. Soc.
Am., Vol. 25, No. 4, 638-641, July 1953



is that the losses are due to the kaolin particles' slipping with

respect to the water, and that thermal effects are relatively small.

Physically, attenuation would be reduced if, with increasing con-

centration, some mechanism made the variously sized particles move

in unison, which would happen if the viscosity of the water increased.

We altered the 'old' theory (apparently properly) by assuming that

the fluid's resistance D to motion a rigid particle of radius r

was, instead of D = 6cr, D = 67ir'r, where is the viscosity

of water, and ' the viscosity of the suspension given by (7.40).

The albebraically convenient approximations el = 2.5, m1 = 0 and

r2wp'/ e< 1 then led to an attenuation maximum at 20.5% by the

modification as compared with 36.5% by the 'old' theory. If the

above modification q-' is valid, then the present theories must

include the order-2 coefficients which led to (7.40), as these

theories (in Section VII E in particular) at best give substan-

tially the same prediction as the 'old' theory.

The second experimental result24 ) is an observation that the

attenuation of a kaolin suspension did not change substantially as

the water's viscosity was increased over a 100-to-1 range by addi-

tion of methyl cellulose. The strange negative result might be

explained by proper account of thermal losses; but then our

explanations of the first experiment are questionable.

In the third experiment,2 6 ) acoustic heat losses due to fogs

26) Knudsen, Wilson, and Anderson, J. Acoust. Soc. Am. 20, 849
(1948)
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were measured in a reverberation chamber. (This is partially dis-

cussed in Section VIII). Observed sound absorbtions were higher than
7)

theoretical. Here it is possible that surface tension in the

droplets played some role; again an exact calculation of the

revelant scattering coefficients is called for.

Surface tension plays a definite part in the fourth empirical
2¢'), 2 )

observation, that bubbles move to preferred positions in

standing sound waves in fluids. Here the problem of radiation

pressure is foreign, but the 'thin-slab' method of Section VIII

gives a heuristic explanation. We take N identical bubbles per

unit volume of 'thin-slab', of thickness d, placed parallel to the

wave fronts of the standing plane wave system. It is easy enough

to calculate the radiation pressure F per unit area of slab from

its effective density and compressibility m: the result is,

with particle velocity = Vcos(Ot) cos (kx)

f: p. [ ' ' 4Lno0.))

where m,p represent properties of the fluid as usual. Then we use

the approximate equations (8-4), N being arbitrarily small and divide

by Nd to obtain the force on one bubble, More simply for vanishingly

27) D. E. Goldman and G. R. Ringo, "Determination of Pressure Nodes
in Liquids," J. Acousto Soc. A., Vol. 21, No. 3, p. 270, May 1949

28) F. G. Blake, Jr. "Bjerknes Forces in Stationary Sound Fields,"
J. Acoust. Soc. Am. Vol. 21, No. 5, p. 551, September 1949



small bubbles, the additive laws apply for ?', m' and m'/m - f'/ =

f1 [ml/m - el/?], with f, being the volume fraction of air in the slab,

and with el, m1 the properties of air. The result is that the bubble

migrates toward a pressure node when mI = 0 or is effectively nega-

tive. Through a combination of surface tension and high compressi-

bility, bubbles resonate when much smaller than wavelength in the

fluid. The sign of Im(A 0 ) changes across resonance so that larger,

more visible, bubbles have effectively negative compressibilities

and are driven to pressure nodes, in agreement with observation.

This approach to radiation pressure is based on coherent

waves; the energy carried in random scattering is not used. The

error is unevaluable in the absence of a rigorous treatment of

radiation pressure on the bubble. Rigorous calculation would agalb

require rigorous scattering coefficients.

In sum, theories of acoustic propagation in suspensions where

particle sizes are comparable with shear and thermal wavelengths

remain in an unsatisfactory state. According to the writer, the

best hope of improvement lies in a rigorous application of the

methods of Section V; the chief obstacle here is lack of satis-

factory scattering coefficients including surface tension effects.

Section X - Optical Activity

Now we introduce a volume-proportional effect which follows

no previous law of composition. This effect pertains to the iso-

tropic optical activity for electromagnetic waves. To introduce



the new constant, , we first require some general statements

about optical activity.

A solution of sucrose in water is optically active, by which is

meant that a beam of linearly polarized light traveling through this

solution will have its plane of polarization rotated. This optical

activity is isotropic because of the rotation, per centimenter of

travel, is independent of the directions of propagation and of

original polarization. The effect may be explained by postulating

that the sugar molecules have certain peculiar scattering properties,

and are numerous, small, and randomly oriented.

We now consider simple model molecules which, in cumulative

effect, would produce optical activity. To produce activity, the

models must scatter, in the forward direction of a plane-polarized

incident wave, waves with polarization at some finite angle with

that of the incident wave. We first choose optically active particles

composed of isotropic materials shaped in such a way as to be char-

acterizable as right or left-handed. A turn of a right-handed

copper helix serves as an example. These shaped particles are

suspended in an isotropic but inactive ambient medium. For any fixed

arrangement of the particles, the suspension is everywhere describ-

able through the isotropic scalar electromagnetic constantsc(x,y,z),

/A(x,y,z) (effective at angular frequency w). For waves propagating

an inhomogeneous medium with space-varying !calar constants, there

holds a reciprocal relation

E(10.1)



where E1 and E2 are the electric fields produced by the respective

current distributions J1 and J2 , and the volume integrals extend

over all space. If J and J are fixed, but the shaped particles
1 2

are arbitrarily rearranged, so that new fields El l , E21, are pro-

duced, then 1 "  -2 E2 1'. For any particle rearrangement
(and fixed Jl' 2 ) the resulting fields E1 and must likewise

satisfy (10.1). Hence the electric fields, averaged over all

arrangements of the particles, must satisfy (10.1). We now regard

these average fields as those that would have been produced by the

homogeneous, isotropic, optically active medium to which the sus-

pension (suspension I) is equivalent, when the fixed source-

currents are J V J2 "

Electrojnagnetic wive propagation thus takes place in the

homogeneous medium, I, equivalent to suspension I, according to

a version of Maxwell's equations in which there are new constants

proldcing opbical activity, and for which the reciprocity relation

(10.1) holds. At angular frequency w the equations

H;~ + HO6
contain added isotropic constants , " and have plane wave solu-

tions w-ith rotating polarization. But (10.1) holds if and only if

P it =(3. (The proof of this statement for = (x'y'z),



p. = 4(x,y,z), ,"(x,y,z) = (x,y,z) is a slight generalization of

the proof in the case of 1" = = 0 and will not be given.) Hence

medium I satisfies the Maxwell's equations

(10.3)

7 L w , E- E:

where the time-factor exp(-iowt) is again suppressed. These equations

are satisfied by the two circularly poIarized plane waves

3.r

and

L J
Thus the constant l measures the optical activity of the medium I,

since it appears with opposite signs in the two propagation con-

stants; w measures the rotation, in radians per unit distance of

travel, of the plane of polarization of a linearly polarized plane

wave.

If m and n are spherical vector wave functions (See Stratton,

loc. cit.) having the same indices, it is readily verified that

the fields

- y ;+ +

go



satisfy the Maxwell's equations (10.3) where the subscript + (-)

denotes that k+ (k-) is the propagation constant appearing in the

spherical Bessel function. (From the foregoing equations, it is

perhaps apparent that for@ # 0, electric modes of oscillation of

a spherical cavity are accompanied by waves of magne¢ic typo, and

vice versa; this fact suggests a method of measuring 0 at micro-

wave frequencies,)

Now we form some of the substance into a small ophero of

radius 4, immerse the sphere in an optically inactive fluid with

constants 6, p, k= w4707, and let the waves E = mel I and E w nel l

be incident. Applying the usual boundary conditions of con-

tinuity of RxE and RxH across = a, we find the scattering co-

efficients A, P, B, Q of the resulting outgoing waves Am' +ell 1

Pnell and Bn + Qm' respectively. The results are

(10.4)

Now we form medium I into a number of small spheres of radius

a, and suspend these spheres in the fluid in such a way that an

average unit volume of the new suspension II contains an average

of N of the spheres of medium I. Letting f, = 4rNa 3/3, we apply



(7.4) and (10.4) to find the constants C', p.', l of the sus-

pension II, obtaining,after some algebra

ALI.AI 4-4)

2.

I C.e

(10.6)

_____ -___ ____(10.7)

These simultaneous expressions can be readily solved for

, , ) ', but the resulting expressions are complicated, re-

latively unsymmetrical, and seem to contain no further physical

information. When l = 0, ' = 0, and equations (10.5) and

(10.6) becomes identical with (7.7) if 2'tft = f in (7.7), so

that when 1 = , then p.' = p.. But when p.1 = p., and

12/( .)j>0,p1_. p. -- fI 1
2 /(3E), a conclusion perhaps ob-

vious from (10.6). Thus I acts as a property coupling electric

with magnetic effects, and the composition laws (10.6), (10.7) are

qualitatively different from the special 'Clausius-Mossotti"

laws (7.7).



Hoek 9)has obtained a formula for the 'non-specific' (non-

chemical) effect of concentration of active molecules on the

rotation per centimeter, ' = Cf1 (n2 + 2), where n is the

average index of refraction of the solution at molar concen-

tration fl, and C is a constant. To obtain a similar formula,

we solve (10.7) for

:_ L) E(C (10.8)

For small C this gives essentially = Cf (ji' + 24)6

*(E: + 2C)/(3E) which is identical with Hoek's result provided

that the dissolved molecules produce no appreciable changes in

the permeability of the solution (i.e., U = t), and that his

n is interpreted as the refractive index of the solution

relative to that of the pure solvent, or fluid.

As pointed out in Hoek's paper, chemical (or specific)

effects of increasing concentration are highly important in

determining how the observed value of ' varies with concen-

tration (with N or fl, in the present case). Such effects are

apparent in the fact that, for an optically active solution

of sucrose in water, the density of the solution is a non-

linear function of either the molar or the molal concentration

29) H. Hoek, "General Theory of the Rotatory Power of Isotropic

Media", Physica VIII, No. 2, pp. 209-225, Feb. 1941



of sucrose. The specific, or chemical effects would be minimal

in an optically active gas, if one could be synthesized. For

the purpose of experimentally verifying the present formulas one

could construct an artificial dielectric consisting of paraffin

(say) containing randomly distributed and oriented sections of

right-handed wire helices of diameter and length small compared

with wavelength.

Hook's last paragraph deals with reasons why one can neglect

the quadrupole moment of the active molecules. We now rejustify

this neglect. With the present assumption that the active

'molecules' of suspension II are small spheres of radius a (and

composed of medium I) the dipole scattering coefficients A,B,P,Q

are volume proportional, i.e., proportional to a 3 . It can be veri-

fied that the quadrupole scattering coefficients. are of the

negligible order a 5 , as is the case when medium I is inactive.

For the 'molecules' of suspension I, which are composed of

isotropic, inactive materials and produce rotation by virtue of

their shape, the molecules (or scatterers) must have some finite

dimension d to produce the optical rotation, and the finite

dimension also implies a quadrupole moment. In the example of

the Appendix we show that the scattering coefficients corres-

ponding to P and Q (of(10.4)) are of the order d4 , whereas

5quadrupole scattering is of order d 5 . Wi may regard the 'volume

fraction' f1 occupied by the active scatterers as proportional



to Nd 3 ; increasing N and decreasing d 3 proportionately (so that fl

remains constant) decreases the optical activity of suspension I

according to N- 3 / 4 but decreases the effect of the quadrupole

moment at the greater rate N- (2/3). Thus a 'quadrupole effect'

can be made negligibly small compared with the optical activity.



APPENDIX

In deriving (10.5) through (10.8) it was mathematically con-

venient to suppose that the scatterers producing the optical

acticity of suspension II were small spheres composed of some iso-

tropic, optically active material, called suspension I (or medium I).

Suspension I, in turn consisted in an inactive fluid in which were

suspended scatterers of some isotropic, inactive material, having

structures such as to produce, on the average over all orientations,

scattering similar to that of the spheres. In this Appendix, we

describe a physically realisable scatterer having the requisite

properties. In terms of a characteristic scatterer dimension d,

this scatterer will be shown to have a scattering coefficient com-

parable to the B of (10.4) of order (kd)3 , those comparable to A, P

and Q or order (kd) 4 , all other scattering coefficients being of

order (kd)5 or higher.

The 'volume-proportional' coefficients, those of order (kd)3,

produce no optical activity. But the analogues of P and Q vanish

more slowly with d -> 0 than any non-dipole scattering coefficients,

so that with a fixed 'volume-fraction' of sufficiently small par-

ticles, suspension I will have some optical activity () of order

kd. Due to neglect of quadrupole and higher order scattering, the

error made in ascribing bulk constants to he suspension is of

2
order (kd) . Relative to the optical activity, however, this error



is now of order kd; thus the fractional error made in neglecting

particle size is far more serious in the computation of P than in

the computation of E or 4, where the fractional error is of relative

2
order (kd)

In order to describe the scatterer we assume two rectangular

coordinate systems, with common origins, one with the unit vectors

xi) i = 1,2,3, the other with unit vectors x' = aijx . (The Einstein1i j

summation convention is used here.) The scatterer consists in two

rigidly connected identical passive dipoles, PI, P2 , P1 being

parallel to x' I at the position '= ix'i,P 2 parallel to x' 2

at ' + = ix{": + cGixi' (ti = 1). (Call this scatterer

right-handed; we obtain a left-handed scatterer by changing any sign

in the coefficient of d.)

The vector is the position vector of the dipole P1 with

respect to the origin of coordinates; the average scattered field

should be independent of the choice of the origin and hence in-

dependent of . If there is a preferred origin, however, it has

some fixed geometrical relation with the scatterer, so that we

may take 'i = i . We may take the dipoles as copper wires of

length aa, diameter b& with a and b/a being sufficiently small

so that at distances of order (A, the scattered field produced by

each wire may be regarded, within any preassigned fractional error,

as that of a point dipole. The electric field incident on this

-Aatr h 2
scatterer has the sufficiently general form E 0x + F.r + O(kd)



where F is a dyadic fixed in the unprimed system and r measures

distance from the origin.

The volume of each wire being proportional to c 3 , the dipole

3
moment of each is proportional to (kd) ; each dipole causes a field

parallel to the other proportional to the common dipole moment

p(kd)3 times a distance-dependence be having as (kd) - 3 . Hence

the 'Interaction' is independent of kd for Ikdl<< I and may be

incorporated as a constant Q. Then, if el, e 2 are the electric

field components along PI and P2 respectively, we have

E:, d. ,,I+'. .4,6. ,u a., ..1 + Qe + o( (")

Solving, we obtain

OL+ E )A+K



Mnltiplying e1 by pd3x'l, and e 2 by pd3x' yields the two dipole

moments " and -2

We shall now compute the average scattered waves rather than

the scatterer's multipole moments, The mametic field M(R) at

position R
%~ 2R T.X (T. 1) arising from an oscillating

Ii I

electric dipole p at position r is given asymptotically (kR >> 1) by

4LI 400L/ R)]
R2

. h R

A1 L-k( --(E +
Hence we wish to compute the average components <m i> of the scattered

magnetic field M(R): m ml , m2 , i3 -

a, 0 1

E +~ I aIt + FyQ A P, 4d QcL FIIAjt 4

~C - 11 3 6 GLj - CL 63')(~c-~ 2 2 D1

- X. I-6)i 7i
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for (large) R and arbitrary direction cosines T'i, where the average

is to be taken over all orientations ol the primed coordinate system,

the common origin remaining fixed.

We now require averages of products of the a Through terms

of order (kd)4 in the expansion of <_M), averaged products contain no

more than three factors. Here the only non-vanishing averages are

<1> = 1, <ai 2  = 1/3, (aijoak. - amn> = +1/6 or -1/6 according as

the product appears in the formal expansion of Det(aij) 1) with

positive or negative sign. Applying these averages, we obtain,

-10-1 E'CL E+ ~ -< + 4 LXF

WP, have now calculated the leading terms of the average

scattered magnetic field <t at a point many wavelengths away in

a direction I from the scatterer. These are the only terms through

4
order (kd) which do not vanish on the average. Since the i do

not appear, the choice of origin is unimportant.

The partial field m , composed of the three terms in (k&)3

0

is clearly the magnetic field of an electric dipole oriented along

x1  The partial field mk, having components quadratic in the

direction cosines, might appear to be 'quadrupole', but it is

100



actually the field of a magnetic dipole parallel to xI. To see

this, we let 4i = cose, 2 = sinecos0, "3 = sinesin0 and compare

the result with a dipole field evaluated at 1kR\)) 1. As function

of direction ' , the field MD has the form x P/R and hence is

the magnetic field of an electric dipole determined by Fij, i.e. by

the incident magnetic field. If the fluid is slightly conductive,

then a steady current flowing through suspension I will have a non-

vanishing curl, owing to the right- or left-handed character of the

two-wire scatterers. (The present discussion in terms of dipole

moments does not bring out this fact.) Generalizing, one suspects

that a steady current through a real optically active solution may

produce a parallel magnetic field, or that a varying magnetic flux

may produce a parallel comp ,onent of electromottve force.

All the scattering through terms of order (k )4 is of dipole

character. We further note that the magnetic dipole field k is

parallel to the incident electric vector and does not depend on the

propagation direction of the incident wave (on Fij). Finally, if

we take the incident field as a plane wave travelling with pro-

pagation vector x2) electric vector Ex we have FI2 = ikE and

other F-components vanish. Then, in the direction ' = -1,

= 3 = 0, the mk and the mD fields cancel; the electric. polar-

ization of the remaining scattered field mo is parallel to xI.

This result is a necessary consequence of the reciprocity

relation (10.1).

101



The term mk or mD relates incident electric or magnetic dipolekD

excitation with magnetic or electric dipole scattering, respectively.

Each has amplitude proportional to Q( 3. In the present case, the

factor Q (3 is, for fixed &, proportional to c.o( 2. , 3, and maximum

when the three direction cosines are equal.

These results are in disagreement with the statements of

7
Volkenshtein to the effect that there must be quadrupole scatter-

ing of the same order of magnitude as that producing optical ac-

tivity, and that the magnetic incident field produces no electric

dipole scattering, except to a degree quadratic in the amplitude

of the incident field.. This last fact suggests that Volkenshtein's

scatterer is of an electromechanical nature, with scattering there-

fore not strictly comparable with that of the present motionless

scatterer.

The writer conjectures that all electromechanical scatterers

producing optical activity will be found to depend quadratically

on the field amplitude. A model consisting in an electret, which

serves as axis for a rotating massive charged disk, produces optical

activity through precession; here the required interaction of

various parts of the model is of a mechanical nature. This model

has some steady precession at a rate proportional to the square of

7)M. V. Volkenshtein, "on the Theory of N.tural Optical Activity"
Journal of Experimental and Theoretical Physics, USSR, Vol. 20,
No. 4, pp. 342-6 (1950). Naval Research Laboratory Translation
No. 423.
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the amplitude of the oscillatory incident field. As with the

present passive scatter, the activity of Volkenshtein's general

model appears to depend (at least partially) on electromagnetic

interaction between various parts. For any interactions depend-

ing on distances between moving parts, the motions would alter

these distances and hence perturb the interactions. The am-

plitudes of the motions are approximately proportional to the in-

cident field's amplitude, as are the interactions; thus perturb-

ations of the motions would give rise to quadratic terms in the

interaction. (For incident waves of angular frequency w, these

effects would be found at angular frequency 2w or 0.)

Analogous quadratic effects are found in the phenomenon of

ionospheric cross-modulation. Non-linear phenomena connecte.

with acoustic waves, such as hydrodynamic streaming, are also

somewhat analogous. Numerous observations of non-linear effects

of magnetic precession have been made in recent years in experi-

ments with ferrites at high microwave power levels. Probably

all 'natural' interactions producting activity are of an

electromechanical nature; The artificial dielectric described in

Section X shows, however, that activity may be produced by

strictly electromagnetic interactions. There the requirements

of reciprocity produced the simplifying restriction " =

in (10.2). It is not clear to the writer that the necessary

reciprocity relation (10.1) is satisfied for electromechanical

interactions, even if the conjectured non-linearities are neglected.
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Notes added in proof

We discuss matters relating to the extension of Section VII to

statistical mixtures. The physical properties a',b',.o. of a suspension

formed by volume fractions fi of small spherical particles Pi with

volumes v. and properties ai,bi,..., in a fluid with properties a,b,...,a

were given implicitly through the set of equations

F (a,b, .;a',b',..) f if F (a b ,,aib ) (7.4a)

where A vi Fj (a,b,...; ai,bi,...) are volume-proportional scattering

coefficients of P, isolated in the fluid.

For a homogeneous mixture, such as a two-phase alloy, there is no

ambient fluid; the problem is to find some substitute for the fluid so
1

that the method of (7.4a) applies. Here Landauer argues that each

granule may be regarded as immersed in a 'fluid' having the average

properties of the mixture. Alternatively, we regard all particles of

the mixture as spheres of graded sizes; the space between particles cf

any finite size is packed withparticles of the next smaller size, with

the same volume fraction as that obtaining in the final mixture. Thus ,ny

finite spherical particle is surrounded by a fluid having the average

properties of the mixture.

1) Rolf Landauer, "The Electrical Resistance Y Binary Metallic Mixtures",
J. Applied Physics, Vol. 23, No. 7, 779-784, July 1952.
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Thus in (7.4a) above, one sets a,b,...equal to a',b',.... The

F on the left then vanish because a particle physically identical

with its surroundings produces no scattering. Hence, with if - 1 for

the mixture, we have

0- :Zi f iF J (a ' b', .. bi, 6) (N1)

as a set of formulas implicitly determining the bulk properties

at,b',... of the mixture.

But here we have an inconsistency: Let the property b be dielectric

constent, permeability, electrical or thermal conductivity. Then for

two materials of volume fractions f, f2 in a fluid, (7.4a) gives

____ 6 f bt- (142)

When fl + f2 tends to unity, the suspension should approach a mixture and,

by (N1), we should have

S I + b

in the limit; the properties of the fluid being squeezed out of the formula

as the fluid is squeezed out of the suspension. But the b' of(N2)

depends on b in the no-fluid limit. This casts suspicion on the validity

of (7.4a) for high particle concentrations, and hence on the validity of its

derivation.

In deriving (7.4a) for dielectric constant) E' , in the static case, we

would have a sample sphere S (of volume V) embedded in fluid, the typical

particle P in S being in a small sphere s containing no other particles.

Then a potential Bz applied to S would result in a scattered potential
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Az/r3 , A to be computed as if S had Dmee' and some r to be measured

from the center of s. It was then assumed that Bz is the potential

incident on each particle, so that the ith particle scatters Aiz/r3 .

Since

____$_ - const.

p inside s, the average potential scattered by other particles in S

has vanishing gradient at p and the assumption is justified. Furthermore,

iI j : -VZ/r 3 for outside S,

so that the average scattered potential is LALZ/r . Equating A with

ZA. yields (7.4a) (for E ) when the dependence of A,A i on &, C' E i

2 2

and V, v i is taken into account.

Here it was implicitly assumed that P scatters as if it were isolated

in the fluid, so that no waves are rescattered by other particles back to

P to form part of P's excitation. But if a wave incident on S 'sees' an

E ', should not waves leaving s also see E' at the boundary of s and be

reflected? To calculate this reflection and the consequent excitation

of P caused by its own scabtering appears difficult but we may accomplish

the same end by borrowing Landauer's idea that P is to be regarded as

surrounded by the average-material.

General boundary condition equations at the surface of S have the

form Bb + A(a/V) B'b', where b is a two element row vector with

elements functions o the fluid's properties and for standing, or
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exciting waves; a is a similar vector for outgoing, or scattered waves

and bt is for standing waves but with elements depending on the

properties of S; B, A, and B' are wave amplitudes, with A proportional

to V. In the previous example, it was proved that the waves exciting

P were independent of P's position (except perhaps for P's self-

excitation); we similarly assume that the internal wave of amplitude

B' is the exciting wave so that B'b' + A(a/v i ) - Bib i are the

boundary condition equations, determining the fields inside P. But in

the fluid actually surrounding P we must have 8*b + A. :(avi )  Bibi,

where B* is an undetermined exciting wave. Superposing the waves

scattered into the fluid as before, we have -Ai -A. With bal re-

presenting the determinant formed from the two indicated row-vectors,

the three boundary condition equations become

\___ - \1' A

APLL

*L

A

Now we ignore the undetermined starred terms and among the others,

solve forA i and A in terms of B; A - Ai holds if

_____(N3)

where fi- Nivi is the volume fraction for type i, as before. The

previous assumption was that B* = B; using this and ignoring the middle

equation, we get Y. i - A holding when
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OLL 0 (N4)

this is equivalent to (7.4a).

At low concentrations, 2fi 4< 1, a',b ,\., a,b, and the two formulas

are nearly equivalent. When 1 and there is no fluid, the ad hoc

substitution of a',b' for a, b in (N4) to represent the "averape fluid"

surrounding each particle results in

o- L I' (N5); (NJ)

but this follows identicelly from (N) bnd an inherent improveMent has

been made.

For dielectric constant, b = (1,E), a = (19-2E) and (N3) becomes

/

- I-' ELE
L CL z+(N6)

This is a slight generalization of Boettcher's result, derived by

essentially the same reasoning about fields inside Lhe particles°

When two kinds of waves are required in computing scattering

coefficients, the equation-sets are of the form

2) C. J. F. Boettcher, "The Dielectric Corstant of Crystalline Powders",
Rec. Travo Chim. Pays-Bas b4 P. 47,1945.
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(Bb or Cc) + Aa/V + DI/V B'b' + C'c'

(Bib' or C'c') A./ I "- - Bib i + Cic.

(Bibi or ici ) - b E 4c- + Did/ ri

here C and D are amplj &0udes of the. second type of incident and scattered

wave, respectively, and a,b,.., are now four-element vectors. Setting

C = 0 and solving for AD,Ai,D1 in terms of B, we find that A =A i , D -j i

when

Ib'dbcji = 2P f IbdbJ lIa'd'b'cil + Icidbl I'd'bib'I]/a.d'biCl
lab'bcl .2 "i £labibcl (a'd '1,'1 + Jacibcl (a'd.bib'1}/ l a'db ici

When B = 0,. C 0, similar steps yield

lc'dbcj =- y -i [ Ibidbcl 1a'd'c'cij + Icidbcl ia'd'b i 'l /ia'd'b i ci

Lac'bcl :-f . abibcj l a'd'c'c i t  + (acibcl Ia'd'bic'/la'd'bic

(N7)

Ignoring the middle equation and setting B C *: B,C yields

tabb 'c '1 llabb-icil

lcdb I a  i cLicdici l (7.a)

1acb'c'1J !acbicil

WhenLfi 1, we have

b 'd fbicif

0 = b f la'b'bc -- la'dibicil (N8)

Ic'd'bicil

La'c'bicil
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as an identity from (N7) or by ad hoc replacement of a,b,c,d by a',b',c',d'

in (7.4a).

Landauer's method for mixtures seems to have been developed by

Odelevskii3 and to have been applied to the thermoelectric properties of

two-component sintered materials by Airapetiants4 . We now apply the

present (N8) as the natural generalizations of Odelevskii and Landauer's

method to the thermoelectric problem.

In the standard treatment 5 of thermoelectricity, a material is

described by coefficients X,Y,Z, such that electric current j and heat

current Q are given by

7(/7

where t is the electrochemical potential and T is absolute temperature.

For steady state conditions it is necessary that 7.j and'7'Q vanish

everywhere; assuming small potential and temperature gradients, we apply

V" to the above, write I/T = l/To + 6, and ignore terms of second order in

ii and 6 as small to obtain an equation linear in j, Q, t, 0 in which ji and

0 satisfy V i -0) 0. At boundaries between different materials, p,

3) V.I. Odelevskii, J. Tech. Phys. (USSR) 21, 678 (1951).

4) C.V. Airapetiants, "Thermal Electromotive Force and Additional Thermal
Conductivity of Statistical Mixtures", Soviet Phys. (Tech. Phys.) _,
429 (1957)

5) Encyclopedia of Physics (Springer 1956) Volume XIX, page 271-274.
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0 and the normal components of j and Q are continuous. Thus we solve for

the amplitudes of scattered p , e fields of the form z/r3 when waves in the

X,Y,Z medium are incident on a sphere of volume V of an X',Y',Z' medium,

and form the equivalent of (N8):

o - z . [(x'-X XzZ'-'4z) - (ZY-Y Y)L -) /

Qz Z{LL'Y Y72Z'I ZL) (Z '- (2Y4 Y )!'

(N9

These are four equations for three unknownzX' ,Y',Z' but they prove to be

Linearly dependent so that no inconsistency occurs.

For more direct comparison with Airapetiants' work, we convert these

via X = T0 a/e 
2 9 Y = -TtX Z T'/ where a and - are the

usual electrical and thermal conductivities, D( is thermoelectric power,

and e is the electronic change, to

(NO1. 2-

where It" +f T,

For all c* the same, (=o), there are no thermoelectric currents and the

first two equations are equivalent to the Odelevskii-Landauer result,
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o -'+ , i ) , 0 = 2-(z / - i'(t. +

For general / and C'< 1j in accord with the intuitive

idea that thermoelectric currents provide extra channels for carrying

heat and therefore increase thernal conductivity, whereas heat

generated by the thermoelectric effect at particle boundaries is dis-

sipated through heat flow and therefore increases the work done by

electric currents traversing the mixture, hence decreasing electrical

conductivity. Airapetiants predicts a different increase of thermal

conductivity owing to c(t and apparently ignores the resulting decrease

in -' from 6.

Airapetiants compares his prediction with measured values of o(/

for various volume-fractions of a two-component sintered Material.

(his Fig. 2). The experimental points appear to lie about midway be-

tween his prediction and the Fresent 0( calculated for his data, his

prediction lying closest to the line 0("- / 0 + fI (.

The calculation of the present scattering coefficients is

different from Airapetiants', so that it is not clear that he was not

attempting to use the present general method; our expression (Nl0) for

OL is formally identical with that of his eq (12).

For the boundary condition equations pertaining to the LaM6

constants, two types of lwves are involved (7.18) and (7.21) (i.e.,

dilatational and shear) with two types of p.y-ical constants. Our
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tedious algebra (if correct) gives, with z = (3X + 2p) I/(compressibility),

L , + L
L/

These should apply to solid aggregates like concrete or granite. The

small-fi agreement with (7.35), (7.37) is almost obvious. When f 1 1

When z >> i as in a liquid, (Nil) becomes the additive law (7.38, 7.16)

for compressibility and (N12) yields

5_ +

for the viscosity V?. This again has the right limiting forms. In

particular, for concentration f1 of rigid particles, we have 1,I:-:A:

to be compared with (7.40) and (7.41), where the irrelevance of for

high concentrations was already discussed.

In summary, we have developed, in (N3) and (N7), general formulas

for the properties of suspensions which (to judge from the examples)

agree with the result (7.4a) at low concentrations and tend to the pure-

mixture laws (Nl) for high concentrations. [Thus the results of Section

VII, stemming mainly from (7.4a), are to be replaced for high

concentrations with those from (N3), (N7).] A further application would

be to a mixture of materials X and Y, in which the interfaces tended to
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be convex on the X-side. Then the role of fluid would be played by

some subfraction of X; how to assign this subfraction in terms of

the convexity of the Y particles is unclear. Finally, the present

reasoning would introduct an effective viscosity into the acoustic

attenuation calculation of p 95 in a natural way; but the real

problem there is that the particle sizes are comparable with shear

wavelength and the present formulas do not apply.

Odelevskii's argument properly includes the assumption that

the granules of the mixed substances are of comparable sizes; if

the X granules are systematically smaller than the Y, the resulting

bulk properties would appear affected as if the particles v re if

about the same sizes, and surface effects caused the Y particles

tO-be the more nearly spherical, as in the foregoing discussion.

Recent orally presented papers of V. Twersky deal with propa-

gation in suspensions of particles of dimension comparable with

wavejength. The typical particle is also considered surrounded

by an average medium but Twersky's subsequent argument differs

interestingly from the present one. For future comparisons, it

should be easier to apply his method to our small-particle geometry

than to try to extend our argument to his large-particle problems.
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