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FOREWORD

This paper forms a part of a program aimed at deriva-
tion of the correct aerodynamic equations for moderately
rarefied atmospheres, such as those at altitudes of 20,000
to 100,000 feet. The basic ideas of the author's theory of
fluid dynamics are here illustrated with a simple example,
The Stokesian Fluid.

While this model does not represent all the desired
effects, it illustrates, without elaborate calculations, the
method of development of the theory and some of the
phenomena encountered. In particular, some new criteria
for model experiments are discussed.

PROBLEM STATUS

This is an interim report on this problem; work is
continuing.

AUTHORIZATION

NRL Problem No. P10-02R



A NEW DEFINTION OF A FLUID
Part I, The Stokesian Fluid *

§1. PRELIMINARY DISCOURSE

While most recent extensions of the Navier-Stokes equations to take account of phe-
nomena in moderately rarefied gases are derived from the kinetic theory,6 t I have been
able to formulate a new definition of a fluid as a particular type of continuum, whence
follows a more general expression for the stress than any hitherto suggested. In particu-
lar, Burnett's equations4 are included as a special case. A short summary of 'my results,
without proofs, has already appeared in print. 10

Since the effects which my theory describes are extremely varied and involved, the
resulting formulae for the stresses are very complicated, and the intervening manipulations
are necessarily elaborate. The underlying method is, however, very simple and of such
a conceptual immediacy as hardly to arouse objection in any quarter. To display these
ideas concisely and unencumbered by details of calculation, I am presenting here a very
simple example of their use, leading to equations intermediate in generality between the
classical linear expressions and the very general ones already mentioned. This inter-
mediate theory, in fact, was the product of my first attempt to construct a rational
extension of classical fluid dynamics a year ago,' and my more general theory may be
regarded simply as a further development of the same ideas.

The basic method, which may be recommended for establishing any branch of phe-
nomenological mechanics upon a sound foundation, consists of two parts. First, experience
with physical fluids is summarized in a formal definition of a fluid, which is neither more
nor less than the specification of the functional dependence of some of the variables upon
others It need hardly be mentioned that in such a definition no special type of function,
such as a linear or quadratic form, is singled out for preference. An incidental feature,
not necessary to the method but very useful in the interest of simplicity, is that but a
single scalar is so specified. Second, the defining function is expanded in a power series,
the form of whose terms is determined by a full use of the principles of invariance, both
dimensional and tensorial. From this power series, in which any number of terms may
be retained at will, the complete dynamical equations may then be derived.

§2. PROPERTIES OF CONTINUOUS MEDIA
2

If ds be the squared element of arc length and D/Dt the symbol of material differen-
tiation, we have rigorously D

D (ds 2 )= 2dij dx i dx, (2.1)

• A portion of the work described here was supported by contracts (Nos. 45-47 and 53-47)
from the Office of Naval Research to the Naval Ordnance Laboratory and has already been
reported elsewhere. ',0

t See references at end of report.
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where the rate of deformation tensor dij is given by

dij = - (Vij + Vj,i) , (2.2)

Vi being the velocity vector. Thus the components dij are measures of the local and
instantaneous rates at which the medium is suffering deformation. They are of dimension
T-1, where T is a unit of time. Similarly, the components w ij given by

Wij (Vij - vji) (2.3)

are measures of the rate of rotation (vorticity).

The principle of conservation of mass is expressed by Euler's equation,

D logp + Vi" =0, (2.4)
Dt ,1

where p is the density, whose dimensions are ML- 3 , M being a unit of mass and L a unit
of length. The principle of conservation of momentum is expressed by Cauchy's equations,

Tij, +fi= p -, and Tij = TJi, (2.5)

where Tij is the stress tensor and fi is the extraneous force. The dimensions of TIj are
ML -1 T 2. The mean pressure Pm is given by

Pm - Ti (2.6)

Let E be the internal energy (per unit mass). Then the principle of conservation of
energy implies that the rate of change of the total energy (internal plus kinetic) of any
material volume must equal the sum of the rate at which the extraneous force does work
upon it, the rate at which the stresses upon its boundary do work, and the rate at which
thermal energy flows into it from the exterior, in terms of the heat flux vector qi. The
resulting equation may be simplified by (2.5), yielding finally

DETi di qi' (2.7)
P t " = i - Pi.

This equation may be taken as a definition of the internal energy if we please, for from it
the value of e for each particle may be calculated up to an arbitrary constant if the other
variables be known. The dimensions of E are L2 T -2 ; those of qi are MT- .

It will further be assumed that each particle of the continuum constitutes a thermo-
dynamic system: that is, regardless of the state of motion each particle has an equation
of state,

(2.8)
f = E (a ,n) ,

where E is the internal energy (per unit mass), a is the specific volume (a= l/p), and iq
is the entropy (per unit mass). The form of (2.8) may vary from one particle to another,
but it is to remain constant in time; that is, the medium may be heterogeneous, but changes
of phase, chemical reactions, etc. are excluded. Then if the pressure p and temperature
e be defined by P O (2.9)

- , T ,(29
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we have

DE Dt- p DE (2.10)
Dt Dt Dt

The dimensions of p so defined are ML-'T "2 , the same as the dimensions of T and of Pm.
While we are here considering the entropy as a primitive variable, in accord with common
physical practice we shall take a unit of temperature (9 as the fundamental thermal dimen-
sion; then the dimensions of Ti are L2T - 2 e -1.

If now the extra stress Wij be defined by

Wij= p6ij + Tij , (2.11)

it follows from (2.5) that

Wij = Wji . (2.12)

Combination of (2.7), (2.10), and (2.11) yields

P 0-Rt' = 0) - qi't ,  (2.13)

where the dissipation function 0 is given by

-t - Wij dii. (2.14)

Thus (I, whose dimensions are ML';T- 3, is the rate at which mechanical work is being
transformed into thermal energy. From (2.14) it follows that

=D = 0 if d'j = 0. (2.15)

The decomposition (2.11) is of primary physical significance, for it resolves the
stress into two portions, the first, -p8 1 ., being that whose work is always mechanically
recoverable, and the second, W1 , being that whose work$ in deforming the medium is
irretrievably lost as heat, which may be stored in terms of entropy or conducted away.
It cannot be too strongly emphasized that (1) no resolution of the stress other than (2.11)
can yield the simple energy equation (2.13) and the consequent simple physical iliterpretation
for a", (2) both p and p are defined variables whose equations of definition show them to
represent quite differenT-physical concepts and there is no reason whatever a priori to
suppose them equal or even related to each other, and (3) the dissipation function 4 is a
defined quantity which exists in all continua and requires no special hypotheses.§ The
equations presuppose the medium to be compressible; the final equation (2.13) and the
end results of this paper can be shown to be valid for incompressible fluids, but it would
diminish clarity to explain here the necessary adjustments in the intermediate steps.

$ It would not be correct to conclude that from W'j J 0 it necessarily follows that dissipation
takes place, for it is possible that Wij does no work, i.e., wij di i = 0. An example is
mentioned at the end of §5.

§ (P is not to be confused with Rayleigh's dissipation function which, for continuous media,
could better be called a "stress potentialX and which exists only in very special circum-
stances.
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§3. PHENOMENOLOGICAL PROPERTIES OF FLUIDS

The phenomenological properties of fluids are familiar to everyone and may be
summarized in a few words. First, in a compressible fluid suffering no deformation the
only stress is that arising from the pressure p as computed from (2.9). Hence, by (2.11),

W1. =0 if di -0. (3.1)

Secondly, a fluid offers resistance to change of shape while that change is being effected,
but no resistance to permanent deformation (without change of volume) or to rigid rotation.
When in motion, a fluid tends to adhere to solid boundaries, and hence by (2.1) stresses
wi must arise. We then expect these viscous stresses Wij to be functions of the rate of
delormation dii alone of all kinematic variables in particular, W j must be independent of
the rotation and the strain with respect to any initial configuration. From (2.14) we
then have

0 = 0 (dij) . (3.2)

Thus far we have essentially repeated the classical inferences of Stokes ", 2 except
that he (in effect) immediately assumed the function (3.2) to be quadratic. It is far prefer-
able to carry full generality as long as possible, reserving approximations until after the
structure is complete.

Now the phenomenon of resistance requires a nearer analysis. Consider the conceptual
experiment of Maxwell, in which a viscous fluid is confined between infinite parallel plane
boundaries which are in constant relative motion at a velocity v. Then the walls experience
a retarding force according to the formula proposed by Newton as a hypothesis:

v

force = distance between walls (area in contact), (3.3)

where g is a quantity, called the coefficient of viscosity, which is independent of other
magnitudes in the formula but is dependent upon the particular fluid. The dimensions of
g are ML-' T- '. We are not concerned here with the exactness of (3.3); it is sufficient
that a very crude actual experiment shows it to be a fair approximation, for our only pur-
pose at the moment is to indicate that a quantity gA of dimensions ML- T- ' should enter the
definition of a fluid.

The resistance offered by fluids such as oil and molasses is a manifest function of
the temperature 9, and more generally may be supposed to be a function of the thermody-
namic state:

= A (p,0). (3.4)

But this relation connects three quantities composed of the three independent dimensions
ML-" T , T, and e, and hence it cannot subsist unless some of the variables are struck
out or other quantities composed of the same dimensions are inserted. The only alternative
to A. = const., then, is to introduce new quantities. At first sight it would seem reasonable
to propose

p' ' (3.5)

where go, Po, and 6 are certain reference values of g, p, and 0 characteristic of the
particular fluid. BA If there be quantities i o and Po representing properties of the fluid,
then the quantitygAo/po must also represent a property of the fluid. Now go/po is of the
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dimension T, so that such a fluid would necessarily exhibit time dependent phenomena,
such as relaxation effects. These effects are expressly excluded by our initial statement
that it is contrary to experience for a fluid to respond to strain from a past configuration.
Hence, we may either adopt the usual expedient of excluding p altogether from (3.4), as is
done implicitly at the outset in the kinetic theory of gases, or, embracing a more liberal
view, we may seek another quantity of the dimension of p, which is readily found in the
mean pressure Pm given by (2.6). In place of (3.5) we then have

IA ff(P,
IA - f _, T (3.6)

All the remarks of this section are heuristic, serving only to motivate the formal
definition of a fluid which follows now.

§4. FORMAL DEFINITION OF A STOKESIAN COMPRESSIBLE FLUID

Since the qualities of fluids discussed in the preceding section are the same as those
considered by Stokes, a material possessing these qualities in their most general form
may well be called a Stokesian fluid. Accordingly, a Stokesian compressible fluid is a
pontinuous medium such that

I. There exist material constants. Io and 00, C
respectively the reference viscosity aid the ref.-
erence temperature, whose dimensions are

dim go= ML-T - ' (4.1)

and dim 00 = e . (4.2)

II. The dissipation function. 4, is of the functional form

4' = 0 (o, 00o Pm' p' p , dij) (4.3)

and is an analytic function of the components dij.

III. If dij = 0 then (4.4)

WJk = 0.

A fluid will be said to be isotropic if 10 is invariant in form as a function of the com-
ponents dij. For isotropic fluids then, * must depend upon the dij only through their
invariants, a fundamental set of which is A), D2, D3, where

Di - dii_ D2 -dtj dJ, D3 dtj dJk dkt •  (4.5)

For isotropic fluids (4.3) becomes then

0 = 0 ( P, Ow, Pm' P ' Op Dig Dip D3) •(4.6)

It is by no means essential to the present method, and in fact rather complicates than
simplifies the ensuing calculations, to restrict attention to isotropic fluids, but there is
little physical interest in the more general case.
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§5. POWER SERIES FOR THE DISSIPATION FUNCTION

Since 4' is assumed to be an analytic function of the dij, (4.6) may be put into the form

4'= + PD, + ADI 2 + 2 gD2

+TD 3 +UDD 2 +VD 3 +..., (5.1)

where the coefficients a (, X, I, T, U, V, ... are functions of IAo, 00, Pm, p, and 0, and
where the terms are written in the order of the powers of the components dij which they
contain. From (2.15) it follows that a=0. From (2.14) we then have

Wj = (36' + Adkk 6. + 2tId 1i

"+T (dk ~2 6ij+ (uw)dikd k 6i (52k) J U W (5.2)

" Wdkid i + Vdk d k.+ a 0

By (4.4) it follows that =0. It is interesting to observe that one portion of the stress,
namely W (dk dii - d' dk/ 61), can do no work in any motion. The three terms whose
coefficients are i, TfKnd U - W act simply as modifications of the static pressure p.

§6. THE FORM OF THE COEFFICIENTS

Comparing dimensions in (5.2) we have at once

dim A, I = ML-T- , (6.1)

dimT, U, V, W= ML -' .(6.2)

Hence, by (4.1)x /IA0 and iA/.I are dimensionless. But

A = f (IA, P, Pm, 0, 0)9 (6.3)

This relation connects six quantities composed of the three fundamental dimensions
ML-IT-, T, and e and hence must yield a relation among 6 - 3 = 3 dimensionless ratios
of these quantities, viz.,

Pm " f(6.4)

A like relation holds for I.

Taking up now the terms of higher order, we similarly conclude that the equation,

T - T (IoA, p, Pm' 0, 0o) (6.5)

must reduce to relation among three dimensionless ratios. By (6.2), one such ratio is
Tp/oA. Hence the counterpart of (6.4) is now

or-T = f~--- (6.6)
or /to 2o (L )(

Tp Tm
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Like relations hold for U, V, and W. Hence we obtain as the final form for (5.2)

i k ji

++ 
2 [ (dkk) 2 6' +Bdlkd k6i+p k

+ Cdkk di3 +Ddikdkj] +.• , (6.8)

where A and I are the ordinary coefficients of viscosity given by (6.4), while A, B, C, D
are dimensionless second order coefficients of viscosity which are functions of P/Pm
and 6/90 alone.

Terms of still higher order in (6.8) may be written down at will; the first term omitted
above, for example, is IA E(d -) 5 /p, where E is one of the six dimensionless third
order coefficients of viscosity. Thus we have the full expansion for the stresses according
to Stokes' theory.**

§7. NEW SIMILARITY PARAMETERS

If the expression (6.8) for the stress be adopted, in addition to the usual dimensionless

parameters governing dynamic similarity, there are four more, viz.,

aB6 A C D
p 'B'B'B' (7.1)

where 6 is a rate of deformation, frequency, expansion, vorticity, or reciprocal of a time
which is characteristic for the class of motions being compared. Now in the classical
linear theory no such quantity occurs in the complete set of parameters for local dynamic
similarity (although for certain motions such a quantity may occur in parameters governing
similarity at boundaries). In a general Stokesian fluid however, either a time, a frequency,
an expansion, or a vorticity must always be taken into account in considerations of simi-
larity. And furthermore this quantity is the only new dimensional parameter which need be
employed no matter how many higher order terms in (6.8) are retained, for the only new
characteristic numbers to which these give rise are ratios of the several dimensionless
higher order coefficients, viz., E/B, etc. Thus the classical linear theory altogether
neglects one effect of primary physical significance. There are, in fact, two qualities
of the classical theory which are very striking. The first is that, while the vorticity is
expressly excluded from the defining formulae for the stress, it is nevertheless of the
greatest dynamical importance, occurring quite analogously to the expansion in the Navier-
Stokes equations and in the basic energy equation. The second is that, although the theory
represents fluid dynamics, all the variables which occur in the parameters governing
dynamic similarity are static quantities (in the usual Eulerian description), so that it would
seem that time rates are of secondary importance in the resulting structure even though
they alone are considered in its basic dynamical laws. Both these strange qualities, as

** Stokes began' by formulating a priciple equivalent to our (4.6). By a certain argument
regarding the ultimate molecules of the fluid, he then concluded that the principal com-
ponents of W' should be linear functions of the principal components of di". The present
theory, being purely phenomenological, consists in a full elaboration of Stokes' principle
through employment of the method of dimensions, a method not developed in Stokes' time.
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we now see, result only from omitting the higher order terms in (6.8) and thus are not
proper to the Stokesian concept but are mere accidents of the classical linear theory.
From a physical point of view we may say that, in the general theory here presented, time
rates play the dominant part we should expect from the concept of fluidity and that, more-
over, this part is essentially the same no matter how many terms in the series for the
stresses are retained so long as they go past the linear terms.

To grasp the significance of this new effect, consider the case in which the higher
order terms in (6.8) are not negligible, yet act only as small perturbations. Then if
motions of two different Stokesian fluids be compared, it is not unreasonable to suppose
that the effect of different values of the higher order coefficients A, B,... for the two
fluids may be neglected, so that the number Yf given by

IA6  (7.2)

becomes the only characteristic parameter which need be added to govern the effects of
the perturbing terms. Suppose now we have two identical vessels, containing specimens
of the same fluid, which we place in a vacuum at the same altitude above sea level. Let
cocks be opened so as to permit the fluids to escape, and at suitable corresponding points
in each issuing jet let measurements be taken. Suppose the velocity, density, and tempera-
ture at these corresponding points are found to be the same. Then all the criteria for
dynamic similarity in the classical theory are satisfied. And while in the absence of a
uniqueness theorem we cannot actually prove, yet we may with some confidence expect,
that the two flows will be altogether identical. In the case of the Stokesian fluid, in order
to gain the same expectation, we must first verify that, say, the corresponding vorticities
are equal, or that the total times of efflux are equal, etc. In other words, two samples of
a Stokesian fluid, each issuing from one of two identical vessels, and under identical
static conditions at a typical point, may require quite different times of efflux. This
greater freedom arises mathematically from the fact that the dynamical equations for the
Stokesian fluid are of higher order than are the Navier-Stokes equations.

More generally, a condition for the classical linear expression for Wij to be valid is
that, locally, BD

IA A +BW+ C+ D2  d
ev-p - <<1. (7.3)

Thus, for a given Stokesian fluid the Navier-Stokes equations become a poorer approximation
as the pressure is lowered or as the rate of deformation is increased. A criterion for
discarding terms of higher order than those actually written down in (6.8) is

E + << (7.4)

VA2+

§8. MEAN PRESSURE AND THERMODYNAMIC PRESSURE

Most treatment of fluid dynamics employ the assumption p = Pm, although it is supported
neither by sound theory nor by experiment and effects but slight simplification of the re-
sulting equations. By (6.4) and (6.7) an immediate consequence is that the coefficients of
viscosity A, I, A, B, . . . all become independent of pressure. It is sometimes said to
be proved in the kinetic theory of gases that I is independent of p. Since the basic
definitions of that theory, at least as usually employed, imply p = Pm at the outset, the
result is not surprising.
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In the general case, by (2.6), (2.11), and (6.8) we have

3(p- pm ) = (3 A + 2I)dkk

+ _ [(3A + C)(dkk)2

+ (3B + D) d'i di|] .... (8.1)

In the classical linear theory we have p -Pm in an expanding motion and p =Pm in a
contracting motion; but (8.1) shows that if the numberY, as given by (7.2), be sufficiently
large, it is possible that p can exceed Pm by a very large amount even in a motion of con-
traction except in the case when p = Pm always. Necessary and sufficient conditions
for p = Pm are

3A + 2 A= 0,

3A+C =0,

3B+D =0,... (8.2)

of which the first is the classical Stokes relation.

§9. CONTRAST WITH ELASTICITY

From the formal analogy between Hooke's Law and the classical linear terms of (6.8)
it is sometimes erroneously concluded that a proper generalization of the equations of
elasticity simultaneously yields a proper generalization of the Navier-Stokes equations.
Since fluids and elastic solids, being the very extremes of possible types of deformable
continua, embody entirely different physical concepts, such an analogy would be very sur -

prising, and it is in fact an accident of the classical linear theories. Of the many general-
izations of elasticity, we may select Murnaghan's 3 as the most rational and elegant (and,
not surprisingly, the best borne out by experiment). Comparison of (6.8) and Murnaghan's
expression for the stress shows their entirely different form and character as soon as the
first terms of higher order are considered - a difference reflecting the fact that strain is
dimensionless while rate of deformation is of dimension T - 1 . In the classical linear the-
ories the elastic stress Is the gradient of the elastic energy with respect to the strain,
while the viscous stress is the gradient of Rayleigh's stress potential with respect to the
rate of deformation. Neither property carries over in a rational generalization. In
Murnaghan's theory of elasticity, the stress remains expressible in terms of derivatives
of the elastic energy with respect to the strain but no longer as a simple gradient. In the
present theory of fluids the viscous stresses are no longer derivable by differentiation,
and no Rayleigh function exists. To prove this, we need only observe that, since a Rayleigh
function is a scalar, it can contain (in the isotropic case) at most three terms of third order3

in the components dij; for DI, ) D2, and Da form a complete set of third order invariants of
dij. An expression derived from a Rayleigh function by differentiation can then contain at
most three third order coefficients of viscosity, while from (6.8) there are four. Our der-
ivation of (6.8) from the scalar dissipation function (5.1) employed tensor division, a pro-
cess which generally introduces new arbitrary constants each time it is employed, while
differentiation at most leaves their number unchanged.

These differences of form between elasticity and fluid dynamics are only to be expected
because of the different physical situations considered, and the nonlinear theories are thus
of greater conceptual clarity than the classical linear theories, whose simplicity is misleading.
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§ 10. CONTRAST WITH THE REINER-RIVLIN THEORY OF FLUIDS

There is not space here to present a full analysis of the theories of Reiner 5 and
Rivlin.8 Let it suffice to state now that these theories (which are essentially the same
although the former is restricted to compressible, the latter to incompressible fluids)
implicitly involve a relaxation time to, which we expressly forbade in the heuristic formu-
lation of the present theory (§3). Thus the Reiner-Rivlin theory and the present one em-
body quite different physical concepts. The present theory includes correction terms
appropriate for phenomena at very low pressure, very high viscosity, or very high rates
of deformation, while the Reiner-Rivlin theory includes correction terms appropriate to
a departure from perfect fluidity. Both theories, of course, reduce to the classical one
as a first approximation.

§ 11. GENERALIZED STOKESIAN FLUIDS

The Stokesian fluid as presented here is not susceptible of several phenomena observed
in rarefied gases. One such is thermal creep, in which a stress arises even in a fluid at
rest by the sole presence of a thermal gradient. In order to include such effects we may
now extend our basic definition of §4 by permitting 4 to depend upon the various gradients

Opili2  f1,12O i' ,... 0 ili2 * ".In  ; P 2i P ili 2  .. Pili2  in ; fil0 2  .. .f '22) '"in

up to some specified order n. The analysis of §§ 5-6 may then be generalized, but it will
be found (after considerable labor) that the coefficients of all terms involving these grad-
ients are necessarily zero. The difficulty lies in our having neglected a more fundamental
property of fluids which may influence the mechanism of dissipation of energy. This prop-
erty is the dependence of pressure upon temperature and density, which for perfect gases
assumes the form p = Rp 0, where dimR = L2 T -2 e-1. More general equations of state
involve a modulus of similar dimensions. If the existence of such a modulus be added in
part 1 of the definition of §4, and the modulus itself be inserted as one of the arguments of
0 along with the gradients mentioned above, then the principles of §§5-6 may be applied
again, this time yielding a positive result.

The formulae so derived, however, still fail to agree with Burnett's equations, in
which not only the rate of deformation but also the vorticity can produce stresses. Now
stresses arising from vorticity alone, or even stresses which can vary with the vorticity
when the rate of deformation is kept constant, form no part of Stokes' concept of a fluid,
and I must confess that in their occurrence in the results derived by Enskog's method of
integrating the Maxwell-Boltzmann equation I find occasion for questioning the validity
of that method, or the particular application of it. Nevertheless, if such stresses are de-
sired, we may insert the rotation Wij into (4.3) along with the dij; there results finally the
more general theory of fluids mentioned in my opening sentence. If desired, higher velocity
gradients up to any specified order may also be introduced. The calculations are very
much more elaborate, but the method is quite the same. A noteworthy feature of this
more general theory is that it too reduces to the classical theory as a linear approximation.
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