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ABSTRACT

The microthermal variations described in Part I
(NRL Report No. S-3392) are analyzed, and the average
variations, both thermal and spatial, are plotted against
depth. Autocorrelation curves are presented for typ-
ical recordings.

The extent to which the observed variations are
capable of bending sound waves or producing rever-
beration is estimated.

PROBLEM STATUS

This is an interim report, the second of two on
one phase of this problem; work on other phases of the
problem is continuing.

AUTHORIZATION
NRL Problem S02-04R
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THE MICROTHERMAL STRUCTURE OF THE OCEAN
NEAR KEY WEST, FLORIDA
PART II - ANALYSIS

INTRODUCTION

Part I of this report has given a qualitative description of the types of microthermal
variations at constant depth obtained with a sensitive thermopile mounted on a submarine
underway at constant speed in the waters adjacent to Key West, Florida.* Part II
is an analysis of some of the typical records obtained and an estimate of some of the
effects of the thermal microstructure on the propagation of sound in the ocean.

It was found in Part I that the “isothermal” water off Key West in summer is charac-
terized by thermal variations at constant depth that are small, both spatially and thermally.
The thermocline on the other hand is characterized by large fluctuations at constant depth
that sometimes have a distinct periodicity.

THERMAL VARIATIONS

Figure 1 is a plot for the microthermal cross sections (Part I) of “root-mean-square
maximum (RMSM) temperature variation” against depth. For each record used for the
cross section, a figure which may be called the RMSM temperature variation was obtained
in the following way. The maximum and minimum of the irregular record were read off,
subtracted from the mean, and squared. When converted to temperature and averaged, the
mean square maximum variation is obtained, the square root of which is the RMSM vari-
ation, Only maxima and minima greater than 20 percent of the total variation of the rec-
ord were used, Thus the RMSM value is an artificial, though convenient, estimate of the
magnitude of the microthermal variation of a record; it is in fact an average of those
peaks and troughs that are greater than 20 percent of the total deviation.

It is seen from Figure 1 that the above qualitative difference between the isothermal
and gradient layers shows up strongly in the RMSM plots. The connecting lines in Figure
1 serve to join points computed from records obtained in the same area on the same day.
Since it is likely that a real microthermal discontinuity exists at the top of the thermo-
cline, no line is drawn so as to cross this boundary, except for the cases of Area D (Gulf
Stream) and Area E (Cuba Coast water), where the bathythermogram showed no sharp
boundary between the mixed and gradient layers, and where, similarly, none seems to
exist in the RMSM plot. The geometric mean of the plotted points in the isothermal layer
is 0.013°C and in the gradient layer 0.45°C. In the gradient layer the greatest temperature

* Urick, R, J. and Searfoss, C. W., “Microthermal Structure of the Ocean Near Key West,
Florida, Part I - Description,” NRL Report S-3392, December 1948 (Unclassified)
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Fig. 1 - Root-mean-square maximum temperature deviation vs depth

variation is found just below the top of the layer, with decreasing variation below. The
isothermal water is characterized by an increasing variation with depth, except for a
near-surface layer in which greater microthermal variation is found.

SPATIAL VARIATIONS

A somewhat similar plot is shown as Figure 2a, where “patch size” in yards is plotted
against depth. The “patch size” for a particular record is determined by counting the
number of peaks and troughs greater in amplitude than 20 percent of the largest swing of
the record, and dividing that number into the over-all length of the record in yards. The
result is the average spatial size of those temperature fluctuations that are greater than
the arbitrary value of 20 percent of the over-all deviation of the record. Thus the “patch
size” defined in this way is the average half period of the larger microthermal variations
at constant depth.

It is seen from Figure 2a that in the isothermal water there is an increase of patch
size with depth. A larger patch size is observed in the gradient layer, where there is a
slight tendency for the size to decrease with depth. Thus except for the near-surface
layer, the similarity between Figures 1 and 2a indicates that water bodies of large patch
size are of large thermal size as well, This is of course necessary for thermal stability.

Figure 2b shows typical bathythermograms for Key West areas A, B, and C. The
exact location of these areas is shown in Figure 7 of Part I of this report.
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AUTOCORRELATION ANALYSIS

Mathematical Review

A convenient method of studying a time-variable process is by means of an auto-
correlation analysis.t The autocorrelation function of a function y(t) is defined as the
average of [y(t)-y(t + s)] where s is a time interval, It is a function therefore of s and

of the function y, and will be denoted by R(s). By this definition,

R(s) = y(t).y(t + s) = lim —lf'r (t).y(t + s) dt
= gl y(t)-y(t + .

It is normally more convenient to work with the normalized autocorrelation function

Do -y] [t + 9 -7]
-

where 7 is the average value of y. The normalization is such that p(o) = 1.

p(s

¥ James, H. M., Nichols, N. B. and Phillips, R. S., “Theory of Servomechanisms,” M.LT,
Rad, Lab, Series vol. 25, Chap. 6, McGraw-Hill (1947)
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The autocorrelation function is useful for determining the spectrum of a time-variant
function, and therefore to reveal hidden periodicities in that function. If we denote by
AT(f) the Fourier transform of y(t) in the interval -T to +T, that is,

T 27 ift
Aq(D) = f yie  dt,
-T

then the power spectral density G(f) is defined by

G(f) = lim —2117 [A-r(f)]’.

T »®

If we imagine for a moment y(t) to represent the current flowing in a one-ohm resistor,
the average power dissipation will be

T
iy 2
2T Jp y2(t) dt,
and it can be shown that
1 T
lim — f y‘(t)dt=r G(f) df, (¥ = 0).

Thus G(f) is the power contained in a one-cycle band about the central frequency f. Since
G(f) is a power spectrum, periodicities in y(t) will appear as peaks in G(f). Since the in-
tegral of G(f) over all f gives the average power in y(t), it is convenient to normalize it so
as to give the normalized power spectrum,

s = 9,

j G(f)df
0
which has the property that

o0
Jo S(f)df = 1.

Both the autocorrelation function R(s) and the power spectrum G(f) depend on the
product of y(t) by itself, and on the periodicities in y(t). It can be proved that R(s) and
G(f) are Fourier transforms of each other, that is

R(s) = JPG(f) cos2nis df; G(f) = 4'rnR(s) cos 27fs ds
0
0

with similar relations for their normalized equivalents p(s) and S(f).
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R(s) is much simpler in form than the function y(t) from which it was derived. This
allows the computation of G(f) to be made with much less labor through the use of the
second of the above equations, than by an ordinary Fourier analysis of the raw data y(t)
itself. For example, most types of noise have the autocorrelation function R(s) = e-8s
(s positive) and therefore the power spectrum,

48

Gf) = —M— .
BZ + (27 f)?

R(s) can be obtained from the raw data by routine repeated multiplications for different
values of s; should R(s) turn out to be of exponential (or other algebraic) form to which
an algebraic expression may be fitted with permissible accuracy, the power spectrum can
be computed by evaluation of its integral

4 I:R(s) cos 2 fsds.

Application to Microthermal Records

Autocorrelation functions have been found for several microthermal records in the
isothermal layer and in the thermocline, Figure 3 shows normalized autocorrelation
curves for three representative records of microthermal variation at near-surface depths.
The abscissa is in yards rather than time, since the time scale of the original records
can be converted into distance once the speed of the submarine is known. These curves
(and the ones for greater depths shown later in Figure 5) were computed by the Mark 22
relay computer at NRL, and also by manual computation using a Marchant calculating
machine,

In Figure 3 the autocorrelation function for record 206 is approximated by a curve
of the form e-2Scos bs, with a = .20 and b = .27. By evaluating the integral

2
4 r) e-38 cosbs cos 27fsds = 2 + 22
0 a? +(b+276)> a%+ (b- 278

we obtain the normalized power spectrum. The value of this function at abscissa f is the
fraction of the total squared deviation (= 1 under normalization) from the mean of the
original record which lies in a band one unit of f wide centered at f. Since in the present
application s has the units of yards, f must have the units (yards)=-*. It is perhaps more
meaningful to replace f by 1/f = T so that T has the units of yards, and then

J"G(f)df:fi”-;)—dtu.
0 © T

Now the function G(T)/T? is the fraction of the total “power” which lies in a wavelength
band one yard wide centered at wavelength T yards, and thus the function is a period
power spectrum of the thermal inhomogeneities. For record 206, when approximated by
the function given above, this spectrum is shown in Figure 4. No extension to very short
periods is possible because of the finite response time of the thermopile and records with
which the original records were obtained. This curve is probably a qualitatively
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(based on R(s) = e~+20s cos .27s with s in yards)

representative power spectrum of
the upper ocean layers, in view of
the rough similarity of the auto-
correlation curves of typical near-
surface records. There is evident
a slight periodicity at a patch size
of 8 yards.

No such similarity of auto-
correlation function was found for
typical records in the thermocline.
A half dozen of these are shown in
Figure 5. Although marked peri-
odicity (period 120 yards) is evi-
denced by the curve for record 34,
the remaining curves are not no-
ticeably periodic. Because of the
variety of autocorrelation curves,
no power spectra have been com-
puted for the thermal inhomoge-
neities in the thermocline,

EFFECTS ON SOUND
PROPAGATION

Ray Bending

The presence of thermal
variations in the ocean indicates
that the velocity of sound C and
its refractive index n=C/C,,
(Co a constant) fluctuate slightly
from point to point. An obvious
result of such velocity variation
is a normally irregular slight bend-
ing of sound ray paths about the
average ray path predicted in the
ordinary manner by the bathyther-
mograph. The amount of such ray
bending is of interest whenever
accurate measurements of the di-
rection of arrival of sound are
important,

When the spatial size of the thermal variations is large compared to a wavelength,

the methods of geometrical optics can be used to evaluate the ray bending in terms of the
thermal variations. Let us consider a medium which, in the absence of thermal variations,
is of uniform velocity, that is, one in which the ray paths are, on the average, straight
lines. The analysis is not essentially different for the gradient layer case of a nearly uni-
form velocity gradient. We will also postulate that the velocity variations are such that

the deviations of the ray paths from straight lines are small. Further, the medium is taken
to be isotropic, that is, the velocity variations in all directions are statistically the same,
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Consider a ray which travels between the points A and B and take the x-axis of coordinates
to be the line A-B, with the y-axis at right angles. Let C(x) = C4(1 + M), where Cj is the
velocity at A, so that n= AC/C,. Then by geometrical optics it can be shown that for

N« 1 the ray satisfies d’y/dx? = dn/dy.} Now by the assumption of isotropy, dn/dy is
statistically the same as dn/dx. We therefore assume d’y/ax® = dn/dx will give a sta-
tistically correct picture of the ray-bending. Integrating once between A and B, we have

dy dy
d—x'B'KA—nB'"A'

If the ray is directed by a projector A toward B, dy/dx | A = 0; also, by the above definition
of /7, np = 0. Hence, calling the slope of the ray at the receiving point 6p, we have

6B ="p. g =AC/C can easily be obtained from the RMSM thermal deviation vs depth
data of Figure 1. From tables of velocity against temperature for sea water we find that
at a temperature of 85°F, C = 5060 ft/sec, and 1° F change of temperature is equivalent

to 4 ft/sec change in velocity. Thus 1°C = 1.8°F =+ 7.2/5060 units of AC/C = 0.0014 upits
of AC/C. Using the RMSM values mentioned previously of 0.013°C and 0.45°C for the
mixed and gradient water respectively, as obtained from Figure 1, we obtain for the mixed layer
bp=18x 10~* radian = 3.7 seconds-and for gradient water 6p=6.3x 107* = 2.1 minutes.

1 Synge, J. L., “Geometrical Optics - An Introduction to Hamilton’s Method,” Chap. V.,
Camb. Univ. Press (1937)
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Reverberation

The scattering produced by random spherical small variations of velocity has been
the subject of a short paper by Pekeris.§ It is there shown that the energy E scattered
by a volume V into a solid angle d@ at an angle 6, to the backward direction to the source

is
E= Eo—--V d.Q( )ro 2 R(s )sinbks

where k = 27/A, R(s) is the normalized autocorrelation function of the thermal variations,
and b = 2cos (6o/2). The reverberation encountered in echo ranging is sound scattered
backward toward the source, so that 5 = 0; b = 2. The volume-scattering coefficient, m,
equal to the number of scatterers times the scattering cross section per scatterer, can
be defined as 47 times the fraction of the incident energy scattered backward into a unit
solid angle by a unit volume of ocean. Thus, the volume scattering coefficient for the
thermal inhomogeneities becomes

41 E aAc\?
m= ) — = 4k‘ __) r 82 R(S) Sinbks ds'
V.dQ@ Eo o] 0 ks

Pekeris finds that the validity of this expression holds only if ak(AC/C) <<1, where a is
the radius of a spherical scatterer. For the present data this restricts its applicability
to the mixed layer where both the radius a and magnitude AC/C of the thermal variations
are found to be small enough for this condition to be satisfied.

Let us attempt to obtain an estimate of m from some of the averaged data obtained
previously. Let us take R(s) = e~2S cos bs where, as in Figure 3, a = 0.20 and b = 0,27
yards. Then the above integral becomes**

1 a(2k + b) 1 a(2k - b)

2 sin2ks . 1 -
j:sn(s) ks ST @k T 2 B 2k DT

For sound at 24 kc. k = 90 reciprocal yards, so that k 3>a; k >>b; and the above result be-

comes simply a/8k®. Hence
m =2 (8C)*
=5 (2

the same as if the oscillatory term cos bs were omitted from R(s). For a RMSM

perature deviation of 0,013°C in the isothermal water, the corresponding value of (A C/C)

is 3.2 x10°"°, Using a = 0.20, we obtain m = 3.2 x 10~" yard-!. Field observations,
mostly near San Diego, show that measured values of m center about 10-¢, with a range

of 5 x 10~ ° to as small as 10-'%; no measurements are at hand for the Key West area in
summer. Nevertheless, it seems probable that the contribution of the scattering by thermal
inhomogeneities in “isothermal” water to volume reverberation will be found to be

§ Pekeris, C. L., Phys. Rev. 71, 268-269, February 1947

** Bierens de Haan, D., Nouvelles Tables D’Integrales Definies, Table 361, New York,
Steckert (1939)
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negligible, This same conclusion has been reachedit by assuming rather extreme values
for parameters which are here estimated more accurately. However, the effect of the
thermal variations in gradient water cannot be estimated until a theory for the scattering
by these spatially and thermally large inhomogeneities is developed.

Other Effects

Thermal variations are in theory possible causes of other effects on the propagation
of sound in the ocean, such as fluctuation of signal level at a single receiving point. Theory
alsopermitsi} the evaluation of the mean deviation of the acoustic path length along the
ray to the geometrical path length, and the correlation of signal level between two re-
ceiving points, What is required for an estimate of these quantities is the autocorrelation
function of the temperature gradient, and of the second space derivative of temperature,
While the data of the present report could conceivably be analyzed so as to yield the tem-
perature gradient, the validity of these gradients, in view of the time constants involved,
was not felt to justify the labor involved. Such information could be obtained by field
observations with two or four suitably connected thermopiles of the type used in this
investigation.

* ¥ %

11 NDRC Summary Technical Report, Div. 6, vol. 8, 482 (Unclassified)

11 Bergmann, P. G., Phys. Rev. 70, 486-492, October 1946
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