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.BSTRACT

The fundamental equations r.overnin6 the process of isotope
separation by thermal diffusion are -red. The equations are applied

to the behavior of a sin[;!e coluimn in the cases of equilibrium,
stationary flowr and approach to ecluilibrium.



D, h RODU CTION

1. The separetion of isctop,,s 'y th ,, m-.cthod of' t ermal .;ififusion
has assumed a practical significa- .cc, in conn.-ction .,ith the problem of
obtaining concentrated uraniurma 235, element .,'hich is capable of
releasing large amounts of eergryb .hilc the work on this problem is
primarily of anexperirrmental nature, theoretical wiork can play f.n
i-nmportant role in guiding the ..oork of the experimenter and in -..rrelatin -
his results.

2. The present paper deals with the theory of the thermal diffusion
method. In the published literature there a'-re a number of papers on
the theoretical treatment of isotope separation by thermal diffusicn,
,.ainont-i- w,,hich one miuh si J , - L U ur ones anm rich be itsingle out for ,.:enio.- those of FurryJ
OnsaLerl(t-o be referred to as F. J. 3.), .aldmann), 2ardeen , rnd i y-.

However, all of these but the last are concerned writh gases rather th~rn
liquids. The paper of Debye is not Satisfactory because of the rough
approximations introduced, while the papers dealing with gases make
some assumptions which are probably not valid for liquids. (Incidentally
it is interesting to note that since 1940 no papers on isotope separation
by thermal diffusion have appeared in German publications, although
there had been numerous papers previously.)

3. Because there exists no satisfectory theoretical treatment of
isotope separation by thermal diffusion in liquids, it seems desirable
to attempt such a treatment. The purpose of the present paper is to
discuss the case of a single liquid diffusion column, introducing
assumptions and approximations which are appropriate to the type of
column being used, and to obtain results which can be directly applied
to it.

APPARATUS AND PROCESS

4. In order to be able to treat the problem theoretically, we
must first have a clear picture before us of the system to be investi-
gated. Some idealization will be necessary, to be sure, but it is
important to try to retain the essential features.

5. We shall consider a column to consist of two vertical
concentric tubes, spaced a distance a apart, each of length L, between
which the diffusing liquid is cntaied, in the annular space of mean
circumference b. The surfaces of the tubes in contact with the liquid
will be referred to as the "walls". One wall is maintained at a low
temperature Ti, the other at a high temperature T2. The mass of the
fluid contained between the walls will be denoted by !,-. At the top
of the column there is a reservoir filled with liquid having a masa
1'R . At the bottom of the column there is an outlet which ray be con-
nected to anothe.- reservoir, or else kept closed,

6, Because of the temperature difference between the -walls, a
con ection current sets in, the liquid near the hot wall, having the
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lowv-er' density, flowing upward4,hile that near the cold wall flows down.

At the same t ime thermal diffusion takes place, the molecules of the
lighter isotope diffusing from the cold tow-vard the hot wall. The result
is that there is an exchange of molecules betwmeen the upward convection
stream and the downward one, by which the upward stream acquires an
excess of the lighter isotope and carries it to the top of the column.
The concentration of the lighter isotope at the top of the column, or
in the reservoir, gradually increases, while that at the bottom decreases,
unless the bottom is connected to a large reservoir or to another
column, so that a constant concentration is maintained.

7. If this process is allowed to continue, a condition of
equilibrium will be approached, at -,.-hich there will be a defirte
relation between the concentrations at top and bottom. it i2 -ossible
to stop the process at some stage, remo-re the enriched liquid from the
reservoir and start the procese over agein. Such a procedur is ferred
to as intermittent operation. On the other hand, it is possible,
be-inning at a certain stase, to draw off a continuous strea-m of enriched
lic!uid from the top of the column . This procedure is called
continuous operation. Under working conditions, the rate at which the
isotope is drawn off from the top of the column is equal to that at
which it is carried to t1he top of the column by convecticn, so that one
has a stationary condition i,:ithin the column.

8. In the mathematical treatment of a column such as has been
described, one can take into account the fact that the distance betwi-een
the walls a is very small compared to the circumference b, by neglecting
the curvatre of the walls and treating them as plane sufaces. In
discussing the convection and diffusion, one can simplify the calcUlat-
ions considerably by neglecting the small regions near the ends of the
column where the temperatures vary from the values prevailing elsewhere
and where the convection streams curve back to reverse their directions.
These regions can be neglected because their dimensions are generally
very small compared to the usual length of a column. (F.J.O.I)

9. Finally, since a column in a practical case will produce a
relatively small change in the isotope cbncentration, one can represent
the concentration very often as a power series in the distance up from
the bottoiof the column. The series will usually converge so
rapidly that only a small number of terms are required for reasonable
accuracy. Such a power series expansion frequently reduces the work
of mathematical calculation considerably.

C NE% CT I ON

10. Since we are dealing with isotopes having a small percentage
difference in atomic weight, the two kinds of molecules being separated
are very similar in their properties, and the presence of thermal
diffusion does not alter the behavior of the liquid to any marked
extent. Hence one can first treat the convection of the liquid in the



-absence of diffusion atnd aftorTards tnoat the diffusion : s influenced
by the convection.

11. Let us suppose that we have the liquid bcotcen two p-.rallcl
vertical walls a distance a apart, of breadth b rnd height L. Let us
take a coordinate system w-ith the X-axis at right angles to the pl t..
and the Z-axis vertical, so that C'> .
Since we shall cc nsider the case in which none off'qurmtitics to b
disnussed v.rics in the direction Df the third coordinate axis, t h,
latter will not be used. Let us take the "cold" wa-ll, as the one fat
x - 0, and let its temperature be T1 , while the "hot" wall, at x = a,
has a tomnperaturo T2, so that \T -T Tl' 0. Let p be the pressure,
g the a-cceleratlon of gravity, and Q the heat flow pur unit 'Area of

1L-A. Fu rthe nnor lt ,s \. and p-donote the density, th; mnal ccnduc-
tivity, and viscosity of the liquid, as functions of the tap-eratur
T. Doby) 4 assumed the l..ast three qurntities to be constant, ccrr0;s-
pending to - sm-all vAluc of tT. However, these quar.ntities nay clh.n ;
rapidly with the temperfature and therefore, for any a-ppreciable vw lue
of /T, the dependence on temr-pr-ture should bu tfkon into considrrticr..
On the other hand, because of the similrrity of the two kinds of
molecules, we shall assur,-' that p,'k and P do not depend on their
concontrations. Finally, from the conditions of the problem, we c.n
take these quantities independent of Ze

12, To calculavte the convection flov, wc follow F, J, 0o in
dotermining the temperwture distribution on the basis of the hoet
conduction alone. Except ncar the edges of the plate, one can write,

01,.- .. .. '(1)

or, on integrPting,

(2)

w h'N.- r o

-I A.
1

13. F.J.O. showed that tho convection flow can bo trea, ted as
lamollar. To a sufficient accuracy, one can use the hydrodamicaI
equation for steady viscous flow in the form

V)- (4)

whore v the v.lczity vector, is taken in the z-direction, but inde-
pendent of z, while ', the gravitational acceleraticn vector is tc-ken
in the (-z)-diro.tion .nd of mnagnitudo go Eq. (4) gives for the
x-ovmponentI
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S(4)

and for the z component:

- '_ 'p
.0X kf. ,' 7

Since in (5). all termcs ether than',p depend only on x, ,e see that

B,

where B is a constant, and the equation can be vritten by means of (1)
as

2 d , /u dV AT- 4 c . (7

This equation is to be solved subject to the boundary conditions

V(T1 ) = V(T2 ) : (8)

The solution of (7) can be obtained by quandrttures and will depend
linearly upon the constant B. The value of this constant will depend

on the total flow of liquid.- It will be seen from (7) that for given
values of B,>Tl and T2, v(T) for a fixed value of T will vary as 1/Q, or
by (1), as a-.

DIFFUS ION

14. Let the tvo types of molecules in the liquid be referred
to by subkcripts 1 and 2, so that, for example, c, and c2 are the
relative particle concentrations, (cl-i- 02 = 1), and let 1 represent
the species which it is desired to concentrate, i~e., the lighter one.
The equation of diffusion can be written in the form

Ol(Vl -- *) - DC9 l C T, (9)

where the first term on the right-hand side represents ordinary diffus-
ion, while the second term represents thermal diffusion. In the case
of ordinary diffusion, the diffusion coefficient D (often denoted by

D1 2 ) is known to be a function of the temperature-- It will be assumed
that it is independent of the concentrations cI and c2, an assumption
which is justified by the similarity of the Uwo species of molecules.

15. The coeffici6nt C of the thermal diffusion term must depend
not only on the temperature, but also on the concentrations. Since
there is no thermal diffusion if either species alone is present, one
can assume C to contain a factor clC 2. Let us write

-4-



i I ., - "" c 'I C2
D

One can expect that q will depend on T and that it will 'e, in rf-erf;,
a slowly varying function of the concentrations. In rarti'uiAr, if th.
t-ro species are very similar in their properties, it is reuscnale to
believe that q will be very neErly independent of c,.nd c'. "'* , - ,
borne out by the fact that such i s the case for the..al ci fui ccc
r.&ses , se shall therefore assume, until there is ,2ni rice tc-
(!-ntrary, that q in (10) 4s a function only of the te--rxratur". - .
tis functio is we do not know at present. In he case of gS .,

has been found to be of the form LA/T, where cSis nearly a con.t...., & -Z
this is tge function used by F.J.0. L For liquids, very rcuah theeret .
ar -4nents have led to either,/ ur iT2 , depending o;; the moi0!,

assumed. It seems best, in the present state of cur knowledke,
leave open the question of what the dependence cf o c.

16. Fro.. (9) end (V; ,he flux density o: s cie 1 I,
+" iven biy

0i"#clv : -'!CIV + D(-Vcl-t qclC2rF ' Cii

so that we can write

where t is the time. If we are dealing with a. stationary conditicn,
such a that of equilibrium, or of continuous operation, the left-hend
member is zero, and we have

V. J- 0 (13)

As pointed out by F.J.O.1 , the condition will be essentially
stationary even during theapproach to equilibrium provided the end-
reservoirs are sufficiently large*

STATIONARY CONDITION

17. Substituting (11) into (13), we get

bx + q] vT\ 2 =~ 0, (14

or if we replace x by T, by means of (1),

Ajf4 -  - _qclcZ.)j v N.c D (U)

The boundary conditions at the walls are given by

Jx- 0 (x : osq),

-5-



(17)

18, In aD lying thosc tqu.-ticn-s, we; sha~ll not look for ci x-
1j-licit solution gi-ving- the val,,ue, of cl for ea,,ch value of T and 7,;
ra-,th-.r we,- shall followvv F.J.0. in secking information a-bout ti-a rver'

vl3of c, 5across -,(-Ictirn z.-ccnsza--nt, for ,,,ricus val,.ucs -f' z,
since this is the qua~nti-ty wh'fich is of th- most direct conce rn to th&1c
cexperimenter, L-nd sin-ce tho cencc.,.-ntrctior, -va,7rios but littleovrro

cross-section of the colum~n.

19. 1,,ot us th%-rcfore Jtcrt( q (15) oveIcr T frbm T1 to',
M,'aking usre of' the boundary .clnditions (17) wie obtain aresultwhc.
can be wrte

where ) is the upwrd tr,-,rsL:'ert of' spa dcics 1, !rivon by

-4 (19)

Eq., (16) sta-tes the obv,.io.us- fa-Ict, tht ' is constilnt ailong thc tube.
for C- stationary stf~o

20. Let us now. dofint, a func t ion

V,./

Wo see th&.t

T,7)o A(T.) Q (21)

whore C,, is tho total trans'Port, given by

-~ b~:~s~ -t J(22)
Eq. (119) ca-n bc. wri1-ton

L IF t(23)

a T7'j d

I. IT



Integration by pfart s, with the aid of (21), gives

7-F- 7-
7-r 7 - (24i)

21. If one now gocs back to oq. (15) and integrs.tes it with
respect to T, one obtains an expression for :c,/ZT , which
c.-n then be substituted into (24)o Taking into account the boundary
conditions (17), ont- finds

T-

-1 I 1  o,0'',:

and, substituting this into (24)i one obtains

'a

F-/7- - . d.,,J- ?c" T
• r r.r

+ -, C/ iJ . L T

(25)

.f~v , a
7* (26)

22. If one neglects the smmall variation in conccntration along
a section z. const., one can write this equation as

,-d c,
. - , -+ , . , - --

/ A U, 27)

where H , K, and N .rc positive quantities defined by

1*~'-a--
T

7"

Ayk

IV~
TW 7

0..

(2 )

/
~1

I

T



.nd the concentr,!tions 1'ru now reg-e rded n.s depending only on z.

23. One cc-n show thr.t in practical cRmses the term in (27)involving r:"7 "' :~. will gcnor.lly be smzll comparcd to the

other quantities present. Honae we shall discard this torn. For
convenience we shall write c in place of c 1 1-c in place of 02,
and t in pl.."c- of 7:, • The equation ten becomes

(a) Equilibritm

In the c-s(. cf equilibriumt both c c-.nd r. are zero. Eq. (29) then

- H (-a) .-.-. (30)

If we lot

- -(31)

this can bc. intc.grated to give

L:
0. --- = " ,. o. (32)

24. Let the value of c -.t the top of the column be denoted by
c , that rtt tho bottom by c." It is customary to define the
separ bion factor by

" I-.

If we let S. denote the value of S at equilibrium, then it follows

from (32) that

._ ". ,. -xeL. , ,, = (34)

Where L is the length of the column. ,n important feature of this
result is that the value of the oquilibrium sep.n.ration factor is
independent of the concentration at the bottom of the column.

25. It is desirable to investigate more closely the dependence
of SO on the variables of the systeim. In terms of the inteograls
listed in. (28), it cn be written

HL (35)e.}1 K "



f, -. :

or, by use of (2).
.. -Lu ,..1" . (5

i . h,
4- j.y~

26. If one looks for .-th:.. valu-. of a, .nc.,'. by n..., f"r 
inS,. h:.a .. xi- v:-lu , cr."C. finds thnt-it c-tisfit-,- thc r.. 1,

i. - YI - = \T .r"

The ...ximum vr.luc of lnSr is thcn givcn by

" 1, i7

- '

...7 I--

This duponds only on the w-rll temporatures T1 -nd T * Thc dercr.de.ncc
is rcther complicnted, hovcvcre 2

27. It might be pointed out that, on the basis of rough
considerations of the behavior of the vcricus quantitics in (3&,
rvising T2 should goncrally increaso Some However, this crnnet b.
done indefinitely, since a high value of .!:T will lead to prt-sitic,
or local onvection, resulting in mixing of the liquid and lowering
of the separation fr.ctor. It appears that the choice of opti=um w-all
temperatures can best be made on the basis of oxperimunt, rather than
theory.

28. Returning to (36),we see.. that, for fixed wall temperatures
Tl and T2, the dependence of S0 on a can be expressed in the form

2 = kicj (39Y-1 " 1 S- =z. °

where kl and k2 are eonstants do pending on the temperature .A similar
rolatibn was given by WaldmannZ for gases.

29.In plate l,the crosses indicate experimental values of inS
for a number of values of a, as determined by Dr. Philip H. Abelson
for a particular set of cnditions. The curve represents ln Se as
given by (39), ki and k having been chosen to fit the experimental
data. It will be seen that the agreement is good. However, the
agreemont may be fortuitous to some extant for, as Dr. Abelson
pointed out, in the wxperiments what was kept constant was not the
temperature of the wall in contact with the diffusing liquid, but
rather the temperature of the heating or cooling substance in contact
with the other side of

- 9-



the wall. 'jhen the distance a is varied, the temperature of the
diffusing liquid at the wall 'll vary somewhat in spite of the fact
that the heating and cooling agents are kept at fixed temperatures.

30. If we wish to have a solution for the concentration c at
equilibrium, ,-e can obtain it in a convenient form by expandin"7. it in
a power series in z. Substituting into eq. (30) and equating to
zero the coefficients of each pov-er, we get

0 oi+ -,2 (40)

provided ve take z 0 at tie bottom of the column.

31. If the solution is desired in a closed form rather than as a
pow.er series, it can be obtained fro.- (32). The result is

1 ±Co (o- " (401.)

(b) Stationary flow

32. .e next consider the case in which there is a steady upward
flow of liquid through the column at such a rate that the concentration
at every point remains constant with time, a condition which might be
referred to as "stationary". In this case eq. (29) applies, with -

and both constant, - beingE the mass- of liquid flowing upward per
unit time throgh any cross-section of the column, while t- is the mass

of the desired constituent crossing any section per unit time.
These two quantities are related to each other by the equation

- (41)

where cm is the value of c at the point where the enriched material is
withdrawn. If one is operating a single column this will be the same

as C + , but if the column is part of a pyrmnid, cm will be the
concentration at the top of the pyramid1 Let us for the present impose
no restriction on cm .

Eq. (29) can now be written

• -"-Cm :(-oc + Hc(l-c) - I dc. (42)

If we define-A. as in (31) and let

Ii (43)

the equation becomes

do -, ,c(i-c)+. -V(cm-c) 0 (44)
7-10-



This can be solved most conveniently by means of a pover series in z.
In this way one obtains as the solution

00~4 [Co~l-co) --r (c -ccii + I -12c V~~.]~.
o ~ ~ ~ ~ ~ _ o +o V)(oo 'AC-° - '

" +(45)

Putting z = L gives us C +, and f rom this *e get the separatin factor

,o 1 • % ..N..,

L V /- (46)

33. If we are dealing with the ca:.se in which c. c can

put the result into a more convenient form. At the top the column,
(45) then becores

i2_c C0 C. + olnc)-~.-c) } L 44g(l2co +y2L.V1

(47)
,e solve this equation for c4 we obtain

c 9 co + co(l-co)L. (xL (l2CoV)2 (48)

and from this uie find

,S, L -- +L (1-,)A . . .. (49)

34. It will be seen by a comparison of (49) with (34) that when

liquid is withdrawn continuously from the top of the column the
separation factor is less than that at equilibrium; the difference
will be very small however if S e is nearly equal to unity small).

APPROACH TO E.QU ILIfI RR

35. If one is interested in following the process by which the
column goes from its initial state to the condition of equilibrium,
one must replace eq. (29) by the more general equation involving
the time. This equation can be obtained from eq. (12) in much the same
way as (29) was obtained from (13). Such an equation was derived by

Bardeen. 7  If we again omit terms which are small in practical cases,
the equation oan be written in the form

(50)

If we define 4,as in (31) and let

,- ... ,..._.,.: .• ,..(51)

this becomes .

4, , .(52)



36. To solve this equation, we look for a sblution which is a
powrer series in z, with coefficients which are functions of t.
Let us set

S (t) + t) (53)0 : o-, " : 2 N'

Substituting this into (52) and equating coefficients of corresp.ondi.n,
powers of z on both sides of the equation, we c-bain a series of relat-
ions '/r:,<>

/'.~ (. - ..

.... ( .-

where a Trime denotes differentiation with res-rect to It will
be seen that twvo of the functions, /Y . and can be taken
arbitrarily. The others will then be deterrrfin6d by the equations in
terms of these twpo. One finds, for example,

• - .. .-- ' ' (55)

The upward transport , given by

is found to be

,.r~- --- . _.. .")

.- 4 ,,-/?. $ *_,

37. The functions, 0 and will be chosen in any pcrticular
problem so as to satisfj the initial conditions and the boundary
conditions at the top and bottom of the column.

38. This method of solution is much simpler than the usual method
involving a Fourier series, and it should work satisfactorily for the
cases encountered in practice. An example of its application *ill
next be given.

(.) Fixod concentration at bottom of coluin:i

39. 'e consider the case of a column of the type previously
discussed which is operated by having its lower end connected to a
large reservoir or to a stripper column so that the initial concen-
tration is maintained there at all times. ;! e have then, by taking
z z 0,

" ( ) ,: ,: ". *- ._-. '.... t

-12-



whence it follows from (54) that

'j A

, ''1

40. In this case, e

[-I I4U (/

(57) ,ives ior

-~

At the top of the column (z = L) ve have

or, since

we can write

'.

, . .. ,•

-i

~*~*1~* '~

41. On the other hand, at the top of the column, we have the

rate of change of concentration related to thetransport,

(64)

where I is the mass of the liquid in the reservoir, while o+ is
giv-.n 14

~j-. .;- ~4-..

Substituting (65) and (63) into (64) vwe get an equation for X'

'I~J. -

Neglecting higher order terms, one integrates this to get

ya-.. /

where the relaxation time @ is given byr,
) .. _ - .+

-13-

(68)-c~)~, LI
-J

(59)

(SO)

(C~l)

(52)

(E33)

(65)

(67)

C, ) 'J' . -.. _.... (66)



to the approximation considered.

42. The solution for the concentration can be written

Frcom this one finds for the separation factor

S(70)

-14-
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