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ABSTRACT

The problem of decomposing a population that is a mixture of two Gaussian
subpopulations is approached by two statistical methods: the method of mo-
ments and the method of maximum likelihood. The density function of such a
population is of the form

f(x) C-0f x) + W2 f 2 (x)

where

_-(x-a,) -(x- 2 )
12012 1 2cr22

f 1 (x) e and f 2 (x) e o e

with the mixing constants satisfying the equation I, + )2 z 1. The problem of
decomposing the original population is equivalent to the problem of determin-
ing the values of the parameters a1 , IPa2, U2 P • 1•, and w2 , for if these values
are known, the Gaussian subpopulations are completely determined. The
purpose of this report is to obtain estimates al, a 2 1 s,, s 2 1 Wl, and w2 of the
parameters a,,P a 2, 10y,, c2, , and a)2P respectively, and to investigate some
statistical properties of these estimates.

Computer programs which obtain solutions by the method of moments
have been written and successfully used on the Naval Research Electronic
Computer (NAREC). On the other hand, certain difficulties arise in applying
the method of maximum likelihood, but studies are in progress to obtain solu-
tions by this method.

PROBLEM STATUS

This report completes one phase of the problem; work on other phases
of the problem is continuing.

AUTHORIZATION

NRL Problem F04-05
Project RR 009-03-45-5802

Manuscript submitted November 24, 1964.
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STATISTICAL DECOMPOSITION OF A MIXTURE
OF TWO GAUSSIAN POPULATIONS

INTRODUCTION

In various fields of scientific research, there is a frequent occurrence of popula-
tions consisting of two Gaussian subpopulations. The density function of such a population
is of the form

f(x) w•61f 1(x) + C2f 2(x) (1)

where

(x-0 1 ) 2

1fI(x) I -- e
2o 22

(x-a2)

1 2o-22

and f2(x) 
e 2o- 2 e

2 T- 2

with the mixing constants satisfying the equation w, + co 2 = 1. It is often the case that the
given total population is known to be of this form, but it is not known which two Gaussian
populations compose the total population and in what proportion they are present. The
problem of decomposing the original population into two Gaussian components is equiv-
alent to the problem of determining the values of the parameters a1 , a 2 1 0_1 , c 2 , 721, and
W02, for if. these values are known, the Gaussian subpopulations are completely determined.
The purpose of this report will therefore be to obtain estimates a, a 2 Sil, s2, w1, and
w2 of the parameters a1,, a 2 , oI ), -2 W), and w2, respectively, and to investigate some
statistical properties of these estimates.

Before proceeding with the problem of estimation of parameters, it should be men-
tioned that the decomposition of any population whose density is of the form of Eq. (1)
into two Gaussian subpopulations is unique. That is to say, if

(x - a 2

S 2o-2
f(x) e

(x-a 3 )2

W)3  
2o 3 2

7 C e

2 2o- 2 2
22

(x- )2o4 2
__4_ 2cr4

2

+ e
2, c-r4

(where w 1 + o 1)

(where w 3 + co4 1),

S 3' 1 3' 01 3 0-3

(3)
6o2 a 4 a2 a 4 012 0- 4

This can be proved by performing certain algebraic operations on Eq. (2), letting x ap-
proach co and then demonstrating that contradictions result if Eqs. (3) do not hold.

1

then

(2)
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ESTIMATION BY THE METHOD OF MOMENTS

A general method of estimation which is widely used because of its practical expedi-
ency is the method of moments, developed by Karl Pearson. This method involves equat-
ing population moments to sample moments and then solving for the unknown population
parameters. This can be demonstrated for the problem in question.

The population moments 3j, A 2 , ... ... , are defined by

L; = f xf(x) dx,

and

cc= $ (- L )( f(x) dx (vz 2,3,3....

Thus,

AL� cc $_xl e

L OT0-11

(x-a 1) 2

2o- 12 a)o2
+ e

f cVr 2

(x -a2) 2

2cr 2 2 IJ d-lx

and

( x-a )2

r 2o_ 2
S -co (X Al)vr9 0- 1

(x-a 2 )2

+ W 2 2c 2
2  dx

'127T 0r2

These moments are clearly seen to be functions of the population parameters. Given a
set of n sample values (x , x2P .  x,) drawn from the population, the sample moments

in1 , m2 '. . .... , are defined by

m, - n xi' and m - 1 (xi-m,)0  (vz-2,3, ..
ini

By equating population moments to sample moments we get the following system of equa-
tions in the unknown parameters:

Ad (a, a2) O- 0-2) 02) : Ml
and

AL0 (al, a. 2, 0- 1, "- 2 , '1 '2) : M (v= 2,3,...).

The solutions of this system of equations are denoted by a,, a2 , S s2 , W1 , and w2 and
are called the method of moments estimates. Applying this method and using a great deal
of algebraic manipulation, we obtain the following results.

Case I: f(x) is Asymmetric

For this case it is sufficient to consider the first five moments plus the constraint
CL1 + 2 = 1. The resulting system of equations was reduced to the ninth-degree polynomial
equation

(v = 2,3,.... ) •
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24p 9 - 28,v 1p7 + 36mi 2 
p 2

6 
- (24mX3 2 - 10k 1

2 ) p2
5 

- (148m 3
2

x 1 + 2\ 2 )P4

+ (288m4 - 12k xk2 m3 - k3) p 3 + (24m3
3 k 2 - 7m3

2 k 1
2 ) p 2

2 + 32m34 k 1 P 2 - 24m3 6 = 0,

where

kI = 9m2
2 - 3m 4, and X2 = 30m 2m3 - 3ms,

which must be solved for p2.

Once P 2 is found, the roots v, and v2 of the quadratic

v 2 - Plv + P 2 = 0,

where

P1 =

2mi3
3 - 2m3 klp 2

P2 (4m 3
2 -

-X. 2p22 - 8m3P23

X P2 + 2P2)

must be determined.

Finally, the estimates are given by

a 1  -v + m,

V 2
v1 V -v

a 2  - V 2 1 V

1 2

(6)

(7)

(8)

(9)

S 12 = m2  1 M3 1 + P2
.3 v 2  3 + P2

s2 1 M 3 1
3 v, p2

Although it was stated above that the decomposition is unique, this does not mean
that the estimates will be unique. Equation (4) will often have more than one real root,
and this in turn may lead to more than one real value for each of the estimates a,, a 2 ,
sl, S 2 , w, and w If this should happen, the 'best" estimate may have to be that which
best agrees with other aspects of the problem under study.

Case II: f(x) is Symmetric

The case where f(x) is symmetric may be further divided into two cases: (a) a.I = a 2 ,
and (b) a 1 ý a 2 , but U=1 -- 0-2 and cw, = W2

A. a•I= a 2

This case is a most deceptive one. As can be seen in Fig. 1, when two Gaussian
density functions with equal means are added, the result itself may appear to be a
Gaussian density function. Hence, if a histogram plotted from the values of a sample
seems to approach a bell-shaped curve, it should not be assumed (unless other aspects

(4)

(5)
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w1 f1 (xW
w2 f2(x)

x=a =a 2

Fig. 1 - Superposition of
two Gaussian density func-
tions with equal means
(a 1 = a 2 )

of the problem warrant it) that the population is in
itself, Gaussian. It may instead be a mixture of
two Gaussian populations.

For a Gaussian population, the equations
AL4 = 3ýL2 and /L6 = 5AL A 4 hold. A simple test,
then, of whether a given symmetrical histogram
approaches a Gaussian density curve is given by
whether or not m4 =3m 2

2 and m 6 = 5m 2 m4 . Now, if
these latter relations do not approximately hold,
an attempt should be made to represent the popu-
lation as the superposition of two Gaussian popu-
lations. We equate the two estimates a1 and a.2

to m1,

a1 = a 2 = m 1

and require that the estimated variances, s, 2 and s2 , be roots of the equation

(M+ - ( 3 2) 2) + 0m4- 3 2) y ..2 "+ m 4 -5 m6) Y + (S1 m m __ 4

(Notice that here we also require M6 , the
estimated weights

m2 - s22

2 2

S 1 S2

B. al #a 2, but'l =c c2 and 1o, =60 2

sixth sample moment.) Finally, we obtain the

m- s1
2

and w2  - 2
2 $s22- S1 2

For this case we have

1
01 = )2=2-

so that

a 3m 2 2 m4)1/4

a1 (-- 2 "~n +ml

X=(a X=a 2

Fig. 2 - Superposition of
two Gaussian density func-
tions with different means
(a.1 a 2 ) but equalvariances
(cr1 - or2 ) andweights (C)1 = C02 )

a2 (3m 2 2 -m 4 )1/4

a 2 2

and

_ 3m 2

2
-

S 1 = S 2 = - ra1

It can be shown that the estimates a1, a 2 1 sl, s22 w 1 , and w2 are each asymptotically
normally distributed with respective means a., a.2 1 cr1, 22 , a)1, and co2 P i.e., the estimates
are asymptotically unbiased. The variance of each estimate tends to zero as the sample
size n-oo. Thus, each estimate is a consistent estimate of the corresponding parameter.*

*For proofs of these statements, see H. Bixhorn, "Statistical Methods for Decomposing a Mix-

ture of Two Normal Populations," thesis submitted in partial fulfillment of requirements
for Master of Arts degree, The Catholic University of America, Washington, D.C. (1964).

X

+ M;

4

X

f (X)=W1f1(X)+W2f2(X)
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ESTIMATION BY THE METHOD OF MAXIMUM LIKELIHOOD

Let f(x;0) be the density function of a population where 0 = (o1, 0 2...) is a
vector of unknown population parameters. The likelihood function of a sample (x 1, x2,...
Xn,) taken from this population is defined by

L(xI .... x ;0) =

The principle of the method of maximum likelihood is to take estimates of the unknown
parameters that maximize the probability of obtaining the observed sample. The values

Sl(X1x .... xn) , 0 2(x . .. xn),. I, 0p(xl .. xn) of the parameters 01 .0.,0p, determined
by the system of equations

ML- 0 (i = 1,2 ... p) ,

are called maximum likelihood estimates of 01.... • if these values maximize L. Since
L and log L attain their maximums for the same values of a the preceding set of equa-
tions may be replaced by

D(log L) -

l 1  
0

log L(x, ..... n;0)

For the decomposition prol lem we have

f(xi; 0) = f(xi; al, a 2, cr 1 ,c r 2, ow1 , 6o2 ) -

and thus the system of equations

(i = 1,2 ..... p).

2 log f(xj;O)
i=1

ki ",e

(X. - a I)

2cr 12

*1
i=l

=11

I 2
__ _ _1 0j 2cr 2

f(x(;X) L (x -a.) e 2 jc2 0

1 WL)2
f(xi 1 ;0) cr.2

(x i- aj)20-.
2 Xje

(xi -• a )
2o-. )2

2

2L 1 e -1 2
f(xi; 0) c e (xi'a%)2j2a 20 2

012

Now

(x -a2) 2

2 0 -2

2
(j2

+-- e0-2 1J

D(log L)
Ja.

D(log L)
Dcr.

(j = 1,2)

= 0 (j=1,2)

D(log L)

-aw1
i=L

0

"fx;D) f(x2;O) ... f(Xn;-O).
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must be solved for a.,I a.2, cra, cr2 , ,, and w2" (D(logL)!- 2 is not considered since
(02 = 1 - cow.) No method has yet been found to reduce this system of five transcendental
equations in five unknowns to a more workable form. However, programs are being
written to find solutions of this system by the Newton-Raphson method. It is expected
that this iterative process will quickly converge if method of moments estimates are
taken as an initial approximation of the unknown parameter values.

It can be shown that the maximum likelihood estimates are asymptotically unbiased
and consistent. In addition to these properties (which the method of moments estimates
also have), the maximum likelihood estimates are asymptotically efficient. For proofs
of these statements and an extension of the definition of efficient estimate to the case of
more than one parameter, see the thesis by H. Bixhorn previously cited.

APPLICATIONS

The method of moments was applied to several samples taken from populations con-
sisting of two Gaussian subpopulations. For the most general case (Case I previously
mentioned) this involved the solution of a ninth-degree equation. The roots of this equa-
tion, and thus the estimates of the parameters, were obtained by means of an equation-
solving routine programmed for use on the Naval Research Electronic Computer (NAREC).

The first sample to which the method was applied was artificially constructed as fol-
lows. One hundred values were taken from a table of random deviates of a Gaussian pop-
ulation with a mean value of 0 and a standard deviation of 1. Fifty additional values were
taken from another table of random deviates of the same population, but each of these lat-
ter values Yi was transformed into zi = 2yi + 2 (i = 1,2 .. 50). Forming one sample
from the first one hundred values and from the fifty "transformed" values gave a random
sample from a population with a density function

(x- ,)2 (x-a 2 ) 2
2 2c 2 22 •2

f(x) e + e

V'27 cr 1  Vr/7 cr 2

where

w 1C 2/3 a, 1  0 cr1 =1

cW2 = 1/3 a2 = 2 cr2 = 2.

The method of moments yielded the following estimates for the sample:

W, = 0.672 a 1 = 0.006 s, = 1.001

w2 = 0.328 a 2 = 2.021 s2 = 1.999.

Figure 3 shows a histogram of this sample.

Other samples to which the method of moments was applied resulted from a problem
being studied by the Cosmic Rays Branch of the Nucleonics Division. Helium nuclei are
known to be present in primary cosmic radiation in two forms: the lighter isotope 3He,
and the heavier more abundant isotope 4 He. Each of these isotopes has certain observ-
able physical properties, such as a characteristic "rate of energy loss" and "coulomb
scattering." If many measurements are made, say, of the rate of energy loss of many
3He (or 4He) ions, these measurements would approximately obey a Gaussian distribution
with a mean value equal to that isotope's characteristic value. Measurements of the rate
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A 0.16 -
f A

0.14 W

0.12

0.10 I

008 1 /w 2f2 (x)

O0.00.084

0.06

I -

-2.875 -1.475 -0.075 1.325 2.725 4.125 5.525

l -0.

Fig. 3 - Histogram of artificially constructed sample
with the density functions given by

(x-ai )2

2s.
2

fi(x) - e

ai, si, and wi are method of moments estimates
(= 1, 2).

of energy loss of helium nuclei present in cosmic radiation are therefore considered to
be drawn from a mixture of two Gaussian populations. The method of moments was used
to decompose this population, and hence it was possible to estimate the relative abundance
of each isotope of helium.

The measurements of coulomb scattering were also subjected to decomposition by
the method of moments. Since the rate of energy loss is independent of coulomb scatter-
ing, an indication of the accuracy of the decomposition could be had by comparison of the
w1 ,w2 values for both sets of measurements. In other words, the estimates of the relative
abundance of each variety of helium should be approximately the same for the two sets of
measurements.

Results of decomposition of the above samples, together with histograms of the sam-
ples and plots of population densities, are given in Appendices A and B.
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Appendix A

SOME CONCEPTS IN THE THEORY OF ESTIMATION

The following brief discussion will attempt to give the reader some understanding of
the concepts of unbiased, efficient, and consistent estimates. It is assumed that the
reader is familiar with the notions of populations, random variables, density functions,
and means and variances as descriptions of density functions.

Suppose a random variable x has a density function f(x; 0), where 0 is an unknown
population parameter. For example, x may obey a Gaussian distribution of the form

(x-m)2
1 2cr

2

f(x;Mc) 
e

where the value of the parameter m is unknown. A common problem in mathematical
statistics is the estimation of such unknown parameters. This is done by drawing a
sample of n items x1 , x2 . . xn from the population and inferring from this the value of
the parameter. Usually there is a standard procedure by which a function of the sample
values, say g = g(x1 , x2 ..... Xn), can be found to serve as an estimate. This function g
is itself a random variable possessing a certain density function. In the above example,
one could use the function

1 2
g(xi,x 2 . x) n L x1

i-l

as an estimate of m. Clearly if the estimate g is to be of any use, it must at least ap-
proximate the true parameter value and, in some sense, converge to this value as the
sample size n - co. Further desirable properties of estimates are given below.

Let f(x; 0) be the density function of a random variable x and g - g(xI,x 2 ' . xn) be
an estimate of the population parameter 0. Then: (a) g is said to be an unbiased estimate
if E(g) (the mean of g) is equal to the value of 0. (b) It can be shown that, under certain
general conditions, the variances of the class of all unbiased estimates of 0 are bounded
below by the number

M=

1( -nE )([1 • 0)

An unbiased estimate g is said to be efficent if its variance E [g - E(g)] 2 = E(g - 0) 2 is
equal to M. Because the variance is a measure of dispersion of a random variable about
its mean, the values assumed by an efficient estimate are clustered more closely about
the value of 0 than those of a nonefficient estimate. (c) If foi any E > 0, 8 > o, and suffi-
ciently large n the inequality P( Ig - 0 > E) < 8 holds, g is said to be a consistent esti-
mate. Thus the probability that g differs from 0 by an amount c can be made arbitrarily
small by taking a sufficiently large sample. Estimates are said to be asymptotically un-
biased or efficient if the above-mentioned properties hold only as n -Co.

For a complete discussion of these concepts, see Refs. A1-A4.

8
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Appendix B

COMPUTATION OF ESTIMATES BY THE METHOD OF MOMENTS

A program was written in NAREC floating-point language to compute estimates for
Case I (f(x) is asymmetric). This involved obtaining the roots of Eq. (4). When given a
sample in floating-point decimal notation, tape 5330-A will compute the first five sample
moments and the coefficients needed in Eq. (4), obtain roots of this equation, and then
compute the estimates of the parameters.

Suppose Eq. (4) has n real roots 'p 2 , 2p2,
will be printed out in the order given below:

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

0012

m1

m 2

m3

.. , np 2 (n <9). The following quantities

0013

0014

0015

0016

0017

0018

00191
p 2

lp1

Ia1

'a2

WI

1w2

1s 2

1 2

s2 2

2p P

2p1

281

2
W

1

etc.

Tape 5330-A must be used in conjunction with tape 2700, a floating-point subroutine,
and tape 4197, an equation-solving routine. These tapes take the following locations:

First Address

Tape 2700
Tape 4197

0000
0800

Last Address

03FF
08C2.

The following entries must be made in tape 5330-A:

103A
Ax

103BJ

} Tolerance

103E lb
103F

1040
ub.

1041J

location location

103C

103D

10
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These quantities are to be entered as floating-point decimal numbers. Their meanings
are given in NAREC Bulletin #35, "Equation Solving Routine." It can be shown that any
nonnegative root of Eq. (4) will lead to imaginary values for the estimates. The values
of lb and ub should therefore always be negative. It is possible to find reasonable values
of lb and ub by the following procedure: Draw a histogram of the sample and from this
make rough estimates of a1 and a 2. From Eq. (6), obtain v1  a1 - m ' and V 2 = a 2 - m' 1 .

These values can now be inserted in Eq. (5) to solve for p 2 . This value will usually be a
very rough estimate of P 2 , but it will give some idea of the interval in which the root p 2

can be found.

The sample size must be stored in location 700 as a fixed point hexadecimal number.
Sample values should be placed in location 701 and consecutive locations in floating-point
decimal notation.

The entire decomposition routine is to be entered at the left side of location 1110.
The routine will run until all estimates are computed and printed out, and it will then
come to an automatic stop.

It may happen that a value of P 2 leads to imaginary values for the estimates. For
example, s 12 or s 22 may be a negative quantity, or Eq. (5) might have no real solutions.
In the former case the printout will be the same as that shown above, but in the latter
case, instead of a complete printout of P2, Pl .... , the symbol +)+) will appear. If either
of these cases arises, it might still be possible to obtain real estimates by the method of
moments. In many situations estimates of a 1 and a 2 (call them a, and 3 2 ) are known
from other aspects of the problem. From Eqs. (7), (8), and (9) we can then solve for wl,
W2 y s1, and s2 by inserting

VI = a -mi V 2 = a.2 -imn

Pl = Vl +V 2  P2 = VIV2"

This was actually done for the decomposition shown in Fig. (B3) because the program
obtained only imaginary values for the estimates. The decomposition shown in Fig. (B2)
was also done by this method, not out of necessity, but to compare the results with those
obtained by complete application of the method of moments [Fig. (B1)]. *

*In Figs. (Bl-B3), f(x) w f (x) + w f 2 (x), where 7 1 (x) and f 2 (x) are the Gaussian
density functions into which the sampie was decomposed.

11
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0.8185 0.8985 0.9785 1.0585 1.1385 1.2185

x(=5 3 ) -

13
(PAGE 1 4 BLANK)

Fig. B3 -Histogram of sample consisting of 88 meas-
urements of helium nuclei "coulomb scattering" D3 "
The density functions of the sample are given by

f (x)

X- ai) 2

V 27Tx/5•-2s.2

The estimates ai, sSi' ?nd w. are as described in Fig.
B2 (i = 1, 2).

* * *
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programing
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Parameter estimates - method of maximum

likelihood
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